

SAR Compliance Test Report

WR1016.001_V1 Date of report: 2006-02-22 Test report no.: **Template version:** Number of pages: Client: **Testing laboratory:** TCC San Diego Nokia Mobile Phones, Inc. 12278 Scripps Summit Drive 12278 Scripps Summit Drive San Diego, CA 92131, USA San Diego, CA 92131, USA Tel. +1 858 831 5000 Tel. +1 858 831 5000 Fax +1 858 831 6500 Fax +1 858 831 6500 Responsible test **Product contact** Jose Gomez Julian Kim engineer: person: Measurements made by: Julian Kim

Tested device:

RH-90

FCC ID:

QMNRH-90 IC: 661X-RH90

Supplement reports:

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IFFF 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

Documentation:

The documentation of the testing performed on the tested devices is archived for 15 years at TCC San Diego.

Test results:

The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.

Date and signatures:

2006-02-22

For the contents:

Nerina Walton Lab Manager Julian Kim Senior Certification Engineer

SAR Report WR1016.001_V1 Applicant: Nokia Corporation Type: RH-90

CONTENTS	
1. SUMMARY OF SAR TEST REPORT	
1.1 Test Details	
1.2 MAXIMUM RESULTS	
1.2.1 Head Configuration	
1.2.2 Body Worn Configuration	
1.2.3 Maximum Drift	
1.2.4 Measurement Uncertainty	
2. DESCRIPTION OF THE DEVICE UNDER TEST	
2.1 PICTURE OF THE DEVICE	
2.2 DESCRIPTION OF THE ANTENNA	
3. TEST CONDITIONS	
3.1 Temperature and Humidity	(
3.2 TEST SIGNAL, FREQUENCIES, AND OUTPUT POWER	
4. DESCRIPTION OF THE TEST EQUIPMENT	
4.1 MEASUREMENT SYSTEM AND COMPONENTS	-
4.1.1 Isotropic E-field Probe Type ET3DV6	
4.2 PHANTOMS	
4.3 TISSUE SIMULANTS	
4.3.1 Tissue Simulant Recipes	
4.3.2 System Checking	
4.3.3 Tissue Simulants used in the Measurements	
5. DESCRIPTION OF THE TEST PROCEDURE	17
5.1 DEVICE HOLDER	
5.2 Test Positions	
5.2.1 Against Phantom Head	
5.2.2 Body Worn Configuration	
5.3 Scan Procedures	
5.4 SAR Averaging Methods	14
6. MEASUREMENT UNCERTAINTY	1
7. RESULTS	10
APPENDIX A: SYSTEM CHECKING SCANS	1
APPENDIX B: MEASUREMENT SCANS	2
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	33
APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	34
SAR Report	Type: RH-90
WD1016 001 V1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2006-02-14 to 2006-02-17
SN, HW and SW numbers of	SN: 026/04483373
tested device	HW: 7000
	SW: R220_03w24_45_34.nep
Batteries used in testing	BL-6C
Headsets used in testing	HS-3
Other accessories used in	-
testing	
State of sample	Prototype Unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
CDMA 1900	600 / 1880.0	23.4 dBm	Left Tilt	0.90 W/kg	1.01 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
CDMA 1900	600 / 1880.0	23.4 dBm	2.2 cm	0.44 W/kg	0.49 W/kg	1.6 W/kg	PASSED

^{*}SAR values are scaled up by 12% to cover measurement drift.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.10 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / Uncontrolled

Modes and Bands of Operation	CDMA 1900
Modulation Mode	QPSK
Duty Cycle	1
Transmitter Frequency Range (MHz)	1850 – 1910

2.1 Picture of the Device

2.2 Description of the Antenna

The device has an internal patch antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	21.6 to 21.8
Ambient humidity (RH %):	30 to 59

3.2 Test Signal, Frequencies, and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY 4 software, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the device was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE V1	604	12 months	2006-12
E-field Probe ET3DV6	1805	12 months	2006-04
Dipole Validation Kit, D1900V2	534	24 months	2006-10
DASY Software	Version 4.6	•	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	Agilent E4436B	US 39260114	24 months	2006-05
Amplifier	Milmega AS0825-20L	1009777	-	-
Power Meter	Agilent E4417A	GB41290918	12 months	2006-10
Power Sensor	Agilent E9327A	US 40440897	12 months	2006-03
Power Sensor	Agilent E9327A	US 40440896	12 months	2006-03
Call Tester	Agilent 8960/E5515C	US 40440119	24 months	2007-12
Vector Network Analyzer	Agilent 8753ES	MY40002861	12 months	2006-06
Dielectric Probe Kit	Agilent 85070D	US 01440165	-	-

4.1.1 Isotropic E-field Probe Type ET3DV6

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface ± 0.2 mm repeatability in air and clear liquids over diffuse

Detection reflecting surfaces

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checking and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the simulating liquids are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipes were used for Head and Body tissue simulants:

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)			
Deionised Water	54.88	69.02			
Butyl Diglycol	44.91	30.76			
Salt	0.21	0.22			

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	€r	σ [S/m]	[°C]
	Reference result	9.91	39.4	1.44	
	$\pm10\%$ window	8.92 - 10.90			
1900	2006-02-14	9.83	39.8	1.45	21.8
	2006-02-15	9.72	39.2	1.43	21.6

System checking, body tissue simulant

		<u> </u>			
		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1g	εr	σ [S/m]	[°C]
	Reference result	9.85	51.3	1.59	
	$\pm10\%$ window	8.87 - 10.83			
1900	2006-02-17	9.69	51.1	1.57	21.6

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

	ricaa tissac siirialaric iricasa ciriciis								
		Dielectric Parameters		Temp					
f [MHz]	Description	Er	σ [S/m]	[°C]					
	Recommended value	40.0	1.40						
	± 5% window	38.0 – 42.0	1.33 - 1.47						
1880	2006-02-14	40.0	1.41	21.8					
	2006-02-15	39.3	1.41	21.6					

Body tissue simulant measurements

		Dielectric	Temp	
<i>f</i> [MHz]	Description	Er	σ [S/m]	[°C]
	Recommended value	53.3	1.52	
	\pm 5% window	50.6 - 56.0	1.44 - 1.60	
1880	2006-02-17	51.2	1.55	21.6

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Νοκία 3ρας

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

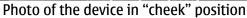


Photo of the device in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in the photo below using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

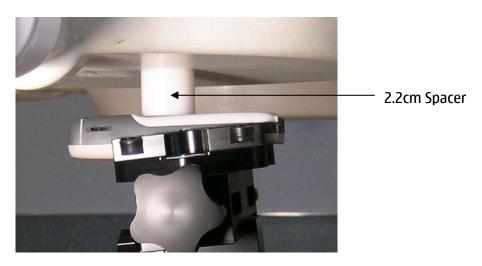


Photo of the device positioned for Body SAR measurement. The spacer was removed for the tests.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Table 6.1 – Measurement uncertainty evaluation							
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	$(c_p)^{1/2}$	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	∞
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	8
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty	RSS			±12.9	116		
Coverage Factor for 95%	k=2				110		
Expanded Uncertainty				±25.8			
	1	1	1		1		

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

CDMA1900 Head SAR Results

CDITATOO TICAA SAN NOSARS								
		SAR, averaged over 1g (W/kg)						
Test Conf	figuration	Ch 25	Ch 600	Ch 1175				
		1851.25 MHz	1851.25 MHz 1880.00 MHz					
Po	Power		23.4 dBm	23.2 dBm				
Left	Cheek	-	0.79	-				
	Tilt	0.87	0.90	0.77				
Right	Right Cheek		0.66	-				
	Tilt	0.79	0.87	0.72				

The measured Body SAR values for the test device are tabulated below:

CDMA1900 Body SAR Results

CD: IN LEGICIES							
	SAR, averaged over 1g (W/kg)						
Test Configuration	Ch 25	Ch 600	Ch 1175				
	1851.25 MHz	1880.00 MHz	1908.75 MHz				
Power	23.6 dBm	23.4 dBm	23.2 dBm				
Without headset	-	0.43	-				
Headset HS-3	0.43	0.44	0.40				

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date: 2006-02-14; Test Laboratory: TCC San Diego

Dipole 1900 MHz; Serial No. 534; Head System Check

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

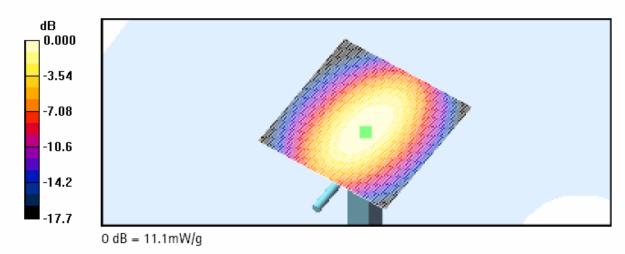
Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.) =

21.8 °C

Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.97, 4.97, 4.97); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160


1900MHz system check/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.3 mW/g

1900MHz system check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.5 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.83 mW/g; SAR(10 g) = 5.13 mW/gMaximum value of SAR (measured) = 11.1 mW/g

Date: 2006-02-15; Test Laboratory: TCC San Diego

Dipole 1900 MHz; Serial No. 534; Head System Check

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

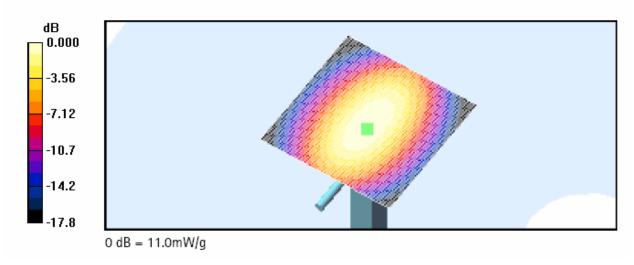
Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ϵ_{r} = 39.2; ρ = 1000 kg/m³ ; Temperature (liq.) =

21.6 °C

Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.97, 4.97, 4.97); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160


1900MHz system check/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.1 mW/g

1900MHz system check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.0 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.72 mW/g; SAR(10 g) = 5.09 mW/gMaximum value of SAR (measured) = 11.0 mW/g

Date: 2006-02-17; Test Laboratory: TCC San Diego

Dipole 1900 MHz; Serial No. 534; Body System Check

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

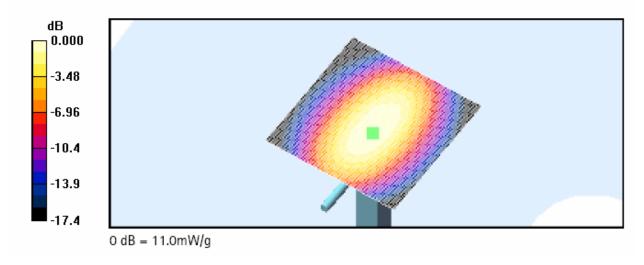
Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m 3 ; Temperature (liq.) =

21.6 °C

Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.54, 4.54, 4.54); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160


1900MHz system check/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.4 mW/g

1900MHz system check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.9 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.15 mW/gMaximum value of SAR (measured) = 11.0 mW/g

APPENDIX B: MEASUREMENT SCANS

Date: 2006-02-14; Test Laboratory: TCC San Diego

Type: RH-90; HWID: 7000; Serial No: 026/04483373

Communication System: CDMA1900; Channel: 600; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.)

= 21.8 °C

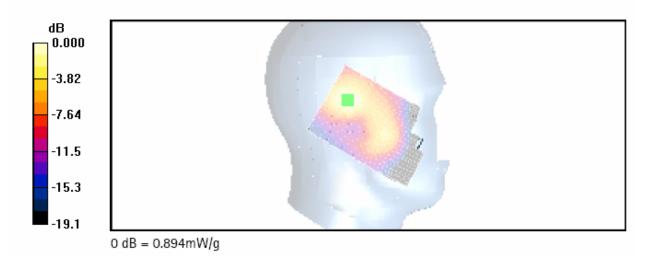
Phantom section: Left Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.97, 4.97, 4.97); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.838 mW/g


Left cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.3 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.39 W/kg

Maximum value of SAR (measured) = 0.894 mW/g

SAR(1 g) = 0.787 mW/g; SAR(10 g) = 0.423 mW/g

Date: 2006-02-14; Test Laboratory: TCC San Diego

Type: RH-90; HWID: 7000; Serial No: 026/04483373

Communication System: CDMA1900; Channel: 600; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.)

= 21.8 °C

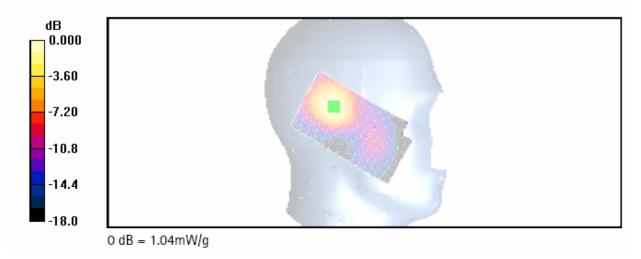
Phantom section: Left Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.97, 4.97, 4.97); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

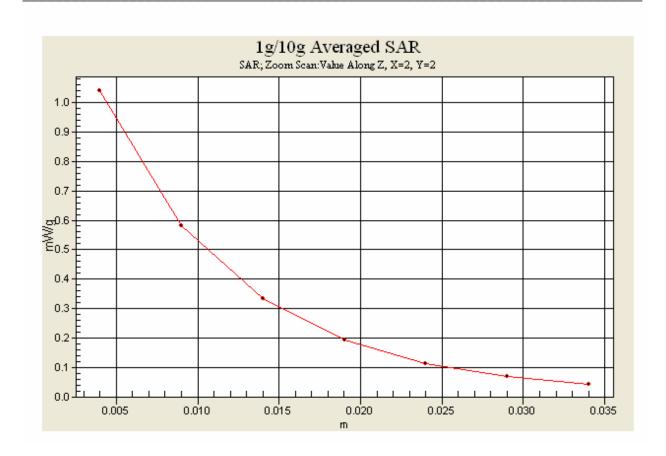
Left tilt/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.01 mW/g


Left tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.6 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 1.63 W/kg


Maximum value of SAR (measured) = 1.04 mW/g

SAR(1 g) = 0.903 mW/g; SAR(10 g) = 0.476 mW/g

Date: 2006-02-15; Test Laboratory: TCC San Diego

Type: RH-90; HWID: 7000; Serial No: 026/04483373

Communication System: CDMA1900; Channel: 600; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.)

= 21.6 °C

Phantom section: Right Section; Advanced Extrapolation

DASY4 Configuration:

Probe: ET3DV6 - SN1805; ConvF(4.97, 4.97, 4.97); Calibrated: 4/22/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn604; Calibrated: 12/12/2005

- Phantom: SAM2; Type: SAM; Serial: TP-1279

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right cheek/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.761 mW/g

Right cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.8 V/m; Power Drift = 0.004 dB

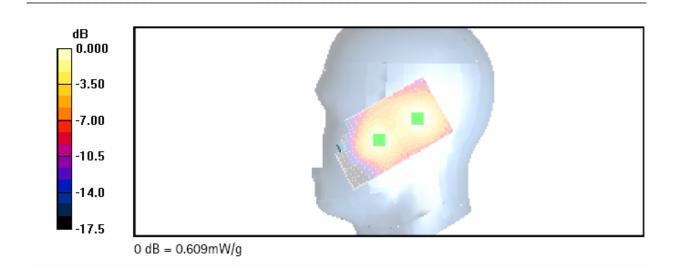
Peak SAR (extrapolated) = 1.09 W/kg

Maximum value of SAR (measured) = 0.734 mW/g

SAR(1 g) = 0.664 mW/g; SAR(10 g) = 0.379 mW/g

Right cheek/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.8 V/m; Power Drift = 0.004 dB


Peak SAR (extrapolated) = 0.822 W/kg

Maximum value of SAR (measured) = 0.609 mW/g

SAR(1 q) = 0.550 mW/q; SAR(10 q) = 0.333 mW/q

Date: 2006-02-15; Test Laboratory: TCC San Diego

Type: RH-90; HWID: 7000; Serial No: 026/04483373

Communication System: CDMA1900; Channel: 600; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.)

= 21.6 °C

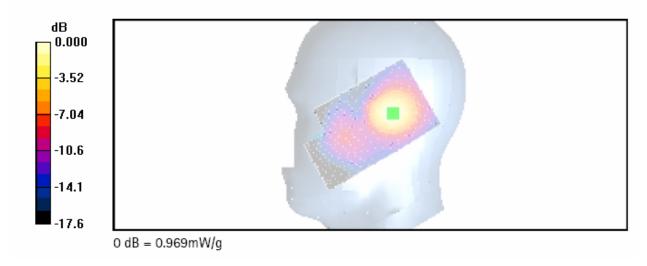
Phantom section: Right Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.97, 4.97, 4.97); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.00 mW/g


Right tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 1.52 W/kg

Maximum value of SAR (measured) = 0.969 mW/g

SAR(1 q) = 0.869 mW/q; SAR(10 q) = 0.473 mW/q

Date: 2006-02-17; Test Laboratory: TCC San Diego

Type: RH-90; HWID: 7000; Serial No: 026/04483373; without headset

Communication System: CDMA1900; Channel: 600; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.)

= 21.6 °C

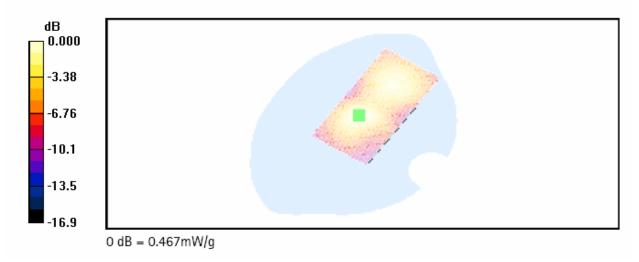
Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.54, 4.54, 4.54); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Body/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.489 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 0.711 W/kg

Maximum value of SAR (measured) = 0.467 mW/g

SAR(1 g) = 0.432 mW/g; SAR(10 g) = 0.254 mW/g

Date: 2006-02-17; Test Laboratory: TCC San Diego

Type: RH-90; HWID: 7000; Serial No: 026/04483373; with headset HS-3

Communication System: CDMA1900; Channel: 600; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$; Temperature (liq.)

= 21.6 °C

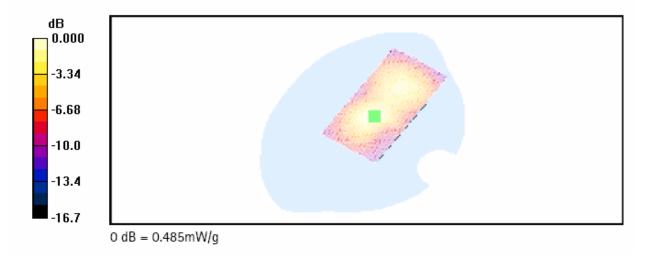
Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(4.54, 4.54, 4.54); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 12/12/2005
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

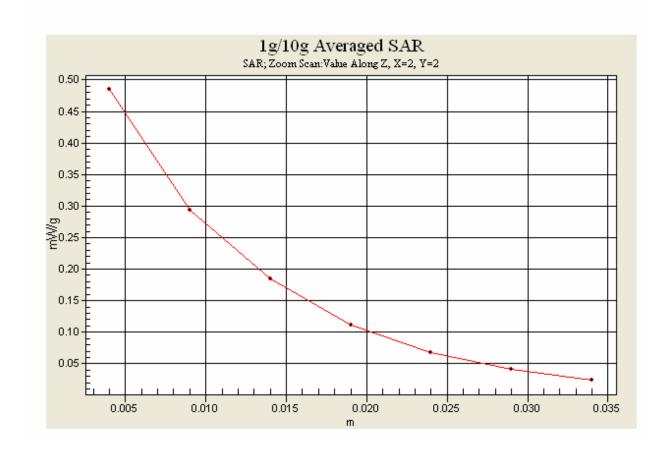
Body/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.496 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.742 W/kg


Maximum value of SAR (measured) = 0.485 mW/g

SAR(1 g) = 0.440 mW/g; SAR(10 g) = 0.255 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

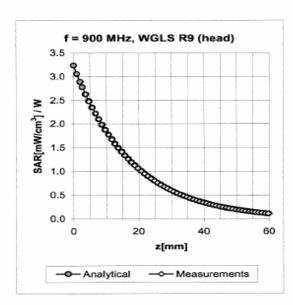
Client Nokia SD

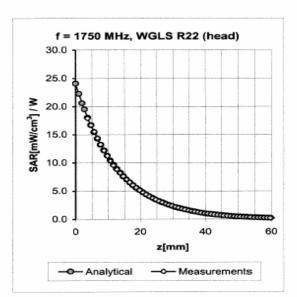
Certificate No: ET3-1805_Apr05

Dbject	ET3DV6 - SN:18	805	
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	April 22, 2005		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence	ntional standards, which realize the physical units of probability are given on the following pages and are ory facility: environment temperature (22 ± 3)°C and	e part of the certificate.
			-
Calibration Equipment used (M&	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388)	Scheduled Calibration May-05
Primary Standards	ID#		
Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874	5-May-04 (METAS, No. 251-00388)	May-05
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388)	May-05 May-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID# GB41293874 MY41495277 SN: S5054 (3c)	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403)	May-05 May-05 Aug-05 May-05 Aug-05
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID# GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b)	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID# GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404)	May-05 May-05 Aug-05 May-05 Aug-05
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID# GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID# GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-04)	May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-04) Function	May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05

Certificate No: ET3-1805_Apr05

Page 1 of 9


Copyright © 2006 TCC San Diego



ET3DV6 SN:1805 April 22, 2005

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.70	6.37 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.61	1.81	6.27 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.60	2.28	5.24 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.59	2.38	4.97 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.68	2.19	4.50 ± 11.8% (k=2)
835	± 50 / ± 100	Body	$55.2 \pm 5\%$	0.97 ± 5%	0.58	1.90	6.34 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.54	2.06	6.23 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49 \pm 5\%$	0.57	2.75	4.64 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.57	2.77	4.54 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.71	2.08	4.21 ± 11.8% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1805_Apr05

Page 8 of 9

SAR Report WR1016.001_V1

Applicant: Nokia Corporation

Copyright © 2006 TCC San Diego

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Nokia SD

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-534_Oct04/2

CALIBRATION CERTIFICATE (Replacement of No: D1900V2-534_Oct04)

Object D1900V2 - SN: 534 QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits October 22, 2004 Calibration date Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Power meter EPM E442 GB37480704 12-Oct-04 (METAS, No. 251-00412) Oct-05 Power sensor HP 8481A US37292783 12-Oct-04 (METAS, No. 251-00412) Oct-05 Reference 20 dB Attenuator SN: 5086 (20g) 10-Aug-04 (METAS, No 251-00402) Aug-05 SN: 5047.2 (10r) 10-Aug-04 (METAS, No 251-00402) Aug-05 Reference 10 dB Attenuator Reference Probe ET3DV6 SN 1680 23-Feb-04 (SPEAG, No. ET3-1680_Feb04) Feb-05 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) Jul-05 DAE4 SN 601 Scheduled Check Secondary Standards ID# Check Date (in house) MY41092317 18-Oct-02 (SPEAG, in house check Oct-03) In house check: Oct-05 Power sensor HP 8481A 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 RF generator R&S SML-03 100698 In house check: Nov 04 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-03) Name Function Signature Calibrated by: Mike Meili Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 15, 2004

Certificate No: D1900V2-534_Oct04/2

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY4 Validation Report for Head TSL

Date/Time: 11/15/04 16:09:12

Test Laboratory: SPEAG, Zürich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:534

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1800 MHz;

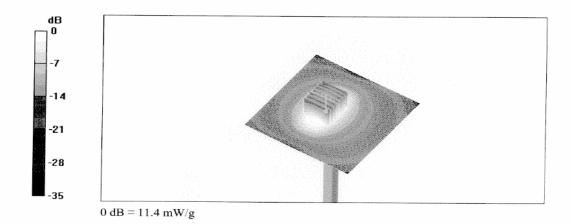
Medium parameters used: f = 1900 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1680; ConvF(5.02, 5.02, 5.02); Calibrated: 23.02.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.7 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.18 mW/gMaximum value of SAR (measured) = 11.4 mW/g

Certificate No: D1900V2-534_Oct04/2

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 11/15/04 16:09:27

Test Laboratory: SPEAG, Ziourich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:534

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.59 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

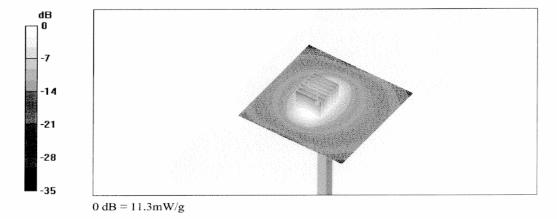
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1680; ConvF(4.52, 4.52, 4.52); Calibrated: 23.02.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74.3 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 9.85 mW/g; SAR(10 g) = 5.28 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

Certificate No: D1900V2-534_Oct04/2

Page 8 of 9