APPENDIX C. Calibration Certificates

Schmid & Partner Engineering AG

Zeugheusstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1395
Place of Calibration:	Zurich
Date of Calibration:	August 27, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:	N. Verlew		
Approved by:	Blesic Kesty-		

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1395

Manufactured:

October 1, 1999

Last calibration:

July 25, 2001

Recalibrated:

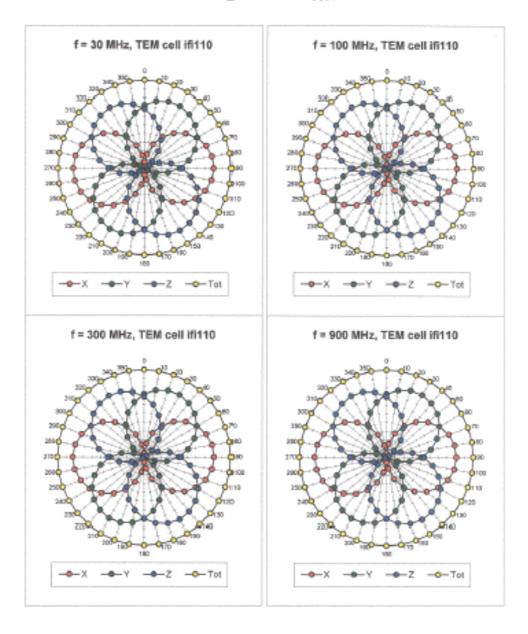
August 27, 2002

Calibrated for System DASY3

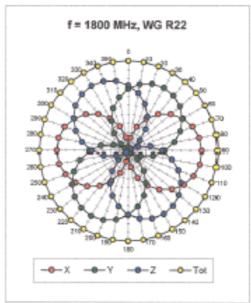
Page 1 of 9

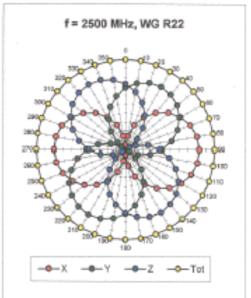
August 27, 2002 ET3DV6 SN:1395

DASY3 - Parameters of Probe: ET3DV6 SN:1395

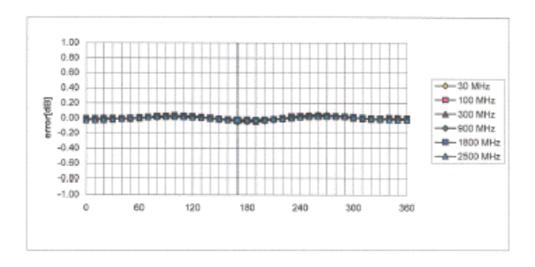

DASTS - Farameters of Frobe: E13DV6 SN: 1395								
Sensiti	vity in Fre	e Space		Diode C	compressio	n		
	NormX	1.69	$\mu V/(V/m)^2$		DCP X	94	mV	
	NormY	1.73	$\mu V/(V/m)^2$		DCP Y	94	mV	
	NormZ	1.67	$\mu V/(V/m)^2$		DCP Z	94	mV	
Sensitivity in Tissue Simulating Liquid								
Head Head		MHz MHz	$\varepsilon_r = 41.5 \pm 5\%$ $\varepsilon_r = 41.5 \pm 5\%$		0.97 ± 5% mh 0.90 ± 5% mh			
	CanvF X	6.3	± 9.5% (k=2)		Boundary effe	ct:		
	ConvF Y	6.3	± 9.5% (k=2)		Alpha	0.42		
	ConvF Z	6.3	± 9.5% (k=2)		Depth	2_57		
Head Head		MHz	$\varepsilon_{\Gamma} = 40.0 \pm 5\%$ $\varepsilon_{\Gamma} = 40.0 \pm 5\%$		1.40 ± 5% mh 1.40 ± 5% mh			
	CanvF X	5.4	± 9.5% (k=2)		Boundary effe	ect;		
	ConvF Y		± 9.5% (k=2)		Alpha	0.61		
	ConvF Z	5.4	± 9.5% (k=2)		Depth	2.26		
Bounda	ary Effect							
Head	900	MHz	Typical SAR gradient	t: 5 % perm	ım			
	Probe Tip to	Boundary			1 mm	2 mm		
			rrection Algorithm		11.5	6.7		
	\$AR _{be} [%]	With Corre	ction Algorithm		0.3	0.6		
Head	1800	MHz	Typical SAR gradient	t: 10 % per i	mm			
	Probe Tip to	Boundary			1 mm	2 mm		
			rrection Algorithm		13.2	8.4		
	SAR _{te} [%]	With Corre	ction Algorithm		0.1	0.2		

Sensor Offset

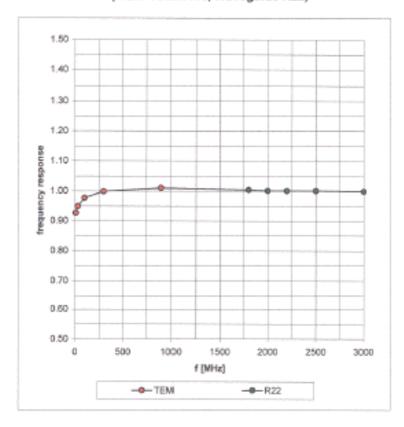

Probe Tip to Sensor Center 2.7 mm 1.4 ± 0.2 Optical Surface Detection mm


Page 2 of 9

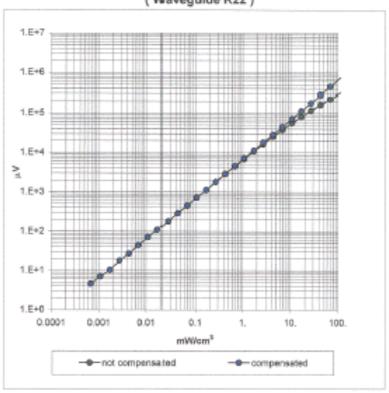
Receiving Pattern (ϕ), θ = 0°

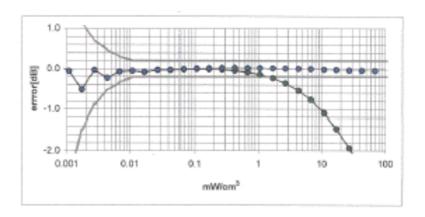


Page 3 of 9

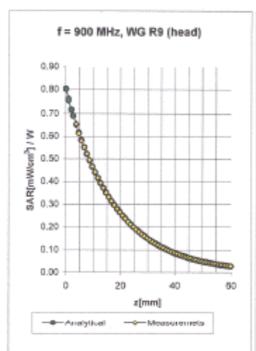

Isotropy Error (ϕ), $\theta = 0^{\circ}$

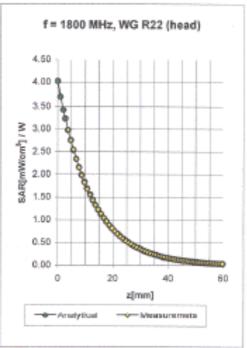
Page 4 of 9


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

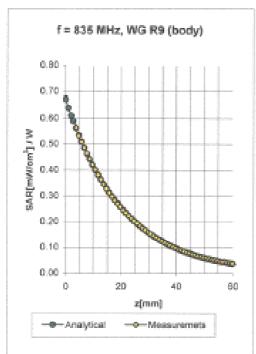
Dynamic Range f(SAR_{brain})

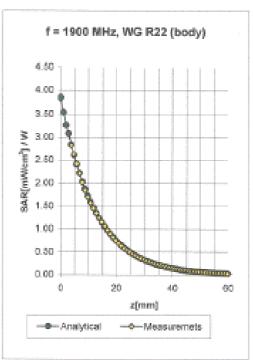

(Waveguide R22)



Page 6 of 9

Conversion Factor Assessment

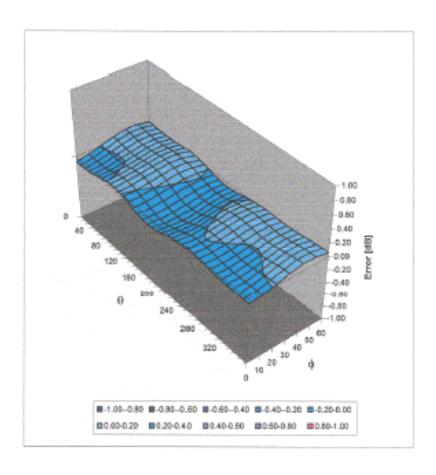



Head	900 MHz	ε _τ = 41.5 ± 5%	$\sigma = 0.97 \pm 5\% \text{ mho/m}$
Head	835 MHz	$e_r = 41.5 \pm 5\%$	σ = 0.90 \pm 5% mho/m
	ConvF X	6.3 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.3 ± 9.5% (k=2)	Alpha 0.42
	ConvF Z	6.3 ± 9.5% (k=2)	Depth 2.57

Head	1800 MHz	$s_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$	
Head	1900 MHz	ε, = 40.0 ± 5%	σ = 1.40 ± 5% mho/m	
	ConvF X	5.4 ±9.5% (k=2)	Boundary effect:	
	ConvF Y	5.4 ±9.5% (k=2)	Alpha 0.	61
	ConvF Z	5.4 ± 9.5% (k=2)	Depth 2.	26

Page 7 of 9

Conversion Factor Assessment


Body	835 MHz	$\varepsilon_{r} = 55.2 \pm 5\%$	
Body	900 MHz	$\epsilon_r = 65.0 \pm 6\%$	c = 1.05 ± 5% mho/m
	CanvF X	6.2 ± 9.5% (k=2)	Boundary effect
	ConvF Y	6.2 ± 9.5% (k=2)	Alpha 0.50
	ConvF Z	6.2 ± 9.5% (k=2)	Depth 2.28

вюсу	7	1800	MHZ		ε _r = 63.3 ± 6%	Ø =	1.52 ± 5% mno/	m
Body	1	800	MHz		s _r = 53.3 ± 5%	$\sigma =$	1.52 ± 5% mho/	m
	CanvF 2	X.	4	9	± 9.5% (k=2)		Boundary effect:	
	ConvF 3	Y	4	9	± 9.5% (k=2)		Alpha	0.84
	ConvF 2	Z	4	.9	± 9.5% (lk=2)		Depth	2.01

Page 8 of 9

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Nokia Salo (TTC)

Object(s)	ET3DV6 - SN 1396	5	
Calibration procedure(s)	QA CAL-01.v2 Calibration proced	ure for dosimetric E-field probes	s
Calibration date:	January 15, 2003		
Condition of the calibrated item	In Tolerance (acco	rding to the specific calibration	document)
17025 international standard.			
		ty: environment temperature 22 +/- 2 degrees (Celsius and humidity < 75%.
All calibrations have been conducted		ty: environment temperature 22 +/- 2 degrees (Cal Date	
III calibrations have been conducted calibration Equipment used (M&TE Model Type	critical for calibration)		Celsius and humidity < 75%. Scheduled Calibration In house check: Aug-05-
Il calibrations have been conducted calibration Equipment used (M&TE fodel Type IF generator HP 8684C	critical for calibration)	Cal Date	Scheduled Calibration
Il calibrations have been conducted calibration Equipment used (M&TE fodel Type IF generator HP 8684C lower sensor E4412A	critical for calibration) ID # US3842U01700	Cal Date 4-Aug-99 (in house check Aug-02)	Scheduled Calibration In house check: Aug-05-
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	critical for calibration) ID # US3842U01700 MY41496277	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02	Scheduled Calibration In house check: Aug-05- Mar-03
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Wetwork Analyzer HP 8753E	Critical for calibration) ID # US3842U01700 MY41496277 MY41092180	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02	Scheduled Calibration In house check: Aug-05- Mar-03 Sep-03
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	Critical for calibration) ID # US3842U01700 MY41495277 MY41092180 GB41293874	Cal Date 4-Aug-98 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02	Scheduled Calibration In house check: Aug-05- Mar-03 Sep-03 Sep-03
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor E4412A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	US3842U01700 MY41496277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-98 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00	Scheduled Calibration In house check: Aug-05- Mar-03 Sep-03 Sep-03 In house check: May 03-
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	US3842U01700 MY41496277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01 Function Technician	Scheduled Calibration In house check: Aug-05- Mar-03 Sep-03 Sep-03 In house check: May 03- Sep-03
All calibrations have been conducted calibration Equipment used (M&TE allocation Equipment use	US3842U01700 MY41496277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01 Function Technician	Scheduled Calibration In house check: Aug-05- Mar-03 Sep-03 Sep-03 In house check: May 03- Sep-03

Schmid & Partner Engineering AG

Zoughausstrasse 43, 1004 Zurich, Switzerleed, Telephone +41 1 245 97 00, Fan +41 1 245 97 79

Probe ET3DV6

SN:1396

Manufactured:

October 1, 1999

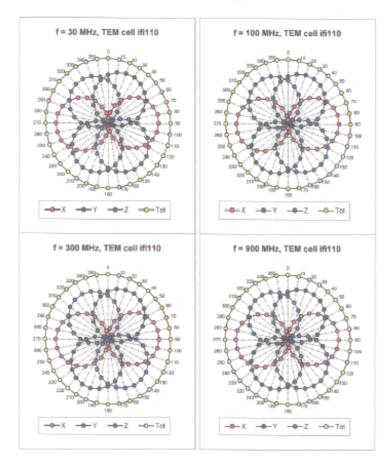
Last calibration: Recalibrated: January 29, 2002 January 15, 2003

Calibrated for DASY Systems

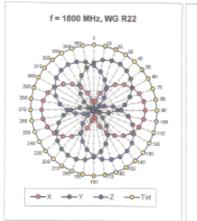
(Note: non-competible with DASY2 system!)

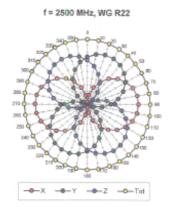
Page 1 of 9

ET3DV6 SN:1396 January 15, 2003

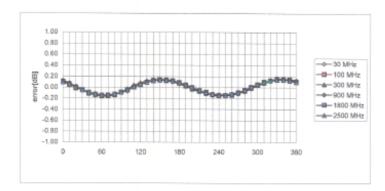

DASY - Parameters of Probe: ET3DV6 SN:1396

Sensit	ivity in Free S	Space		Diode (Compress	ion	
	NormX NormY NormZ	1.72 μV/(1.73 μV/(1.84 μV/(V/m) ²		DCP X DCP Y DCP Z	93 93 93	mV mV
Sensit	ivity in Tissue	e Simulatin	ng Liquid				
Head Head	900 MI 835 MI	Hz	$\epsilon_r = 41.5 \pm 5\%$ $\epsilon_r = 41.5 \pm 5\%$		= 0.97 ± 5% n = 0.90 ± 5% n	nho/m	
	ConvF Y	6.9 ±9.5			Boundary et	0.35	
	ConvF Z	6.9 ± 9.5			Alpha Deoth	2.53	
Head Head	1800 MI	Hz	ε _r = 40.0 ± 5% ε _r = 40.0 ± 6%		= 1.40 ± 5% n	nho/m	
	ConvF X	5.6 ±9.5			Boundary el		
	ConvF Y	5.6 ± 9.5	- ,		Alpha	0.46	
	ConvF Z	5.6 ± 9.5	5% (k=2)		Depth	2.71	
Bound	ary Effect	Ma Tuesia	cal SAR gradier	to F #/			
nead	900 MI	12 Typic	cal SAN gradier	ic 5 % per ii	nim		
	Probe Tip to Bo	-			1 mm	2 mm	
	SAR _{be} [%] W		_		9.2	5.2	
	SAR _{se} [%] W	ith Correction /	Algorithm		0.3	0.5	
Head	1800 MI	Hz Typic	cal SAR gradier	rt: 10 % per	mm		
	Probe Tip to Bo	bundary			1 mm	2 mm	
	SAR _{be} [%] W	ithout Correction	on Algorithm		13.1	8.9	
	SAR _{be} [%] W	ith Correction /	Algorithm		0.2	0.1	
Senso	r Offset						
	Probe Tip to Se	ensor Center		2.7		mm	
	Optical Surface	Detection		1.5 ± 0.2	2	mm	

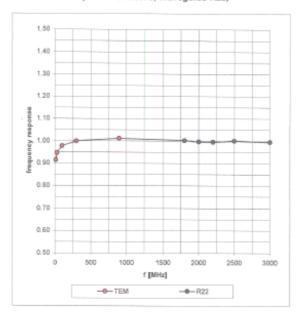

Page 2 of 9


ET3DV6 SN:1396 January 15, 2003

Receiving Pattern (ϕ), θ = 0°



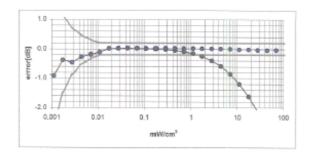
Page 3 of 9


Isotropy Error (ϕ), θ = 0°

Page 4 of 9

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)


Page 5 of 9

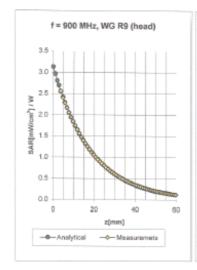
Dynamic Range f(SAR_{brain})

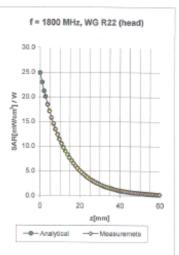
(Waveguide R22) 1.E+5 1.E+5 1.E+4 ž 1.E+3 1.E+2 1.E+0 0.0001

0.1

mWWsm³

0.001


0.01


---not compensated

Page 6 of 9

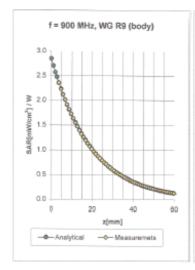
ET3DV6 SN:1396 January 15, 2003

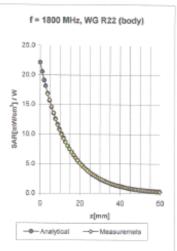
Conversion Factor Assessment

Boundary effect: Alpha 0.35

2.53

Head	900 MHz	$\epsilon_{r} = 41.5 \pm 5\%$	σ = 0.97 ± 5% mho/m
Head	835 MHz	$\epsilon_r\!=41.5\pm5\%$	$\sigma = 0.90 \pm 5\% \text{ miho/m}$
	ConvF X	6.9 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.9 ± 9.5% (k=2)	Alpha 0.
	ConvF Z	6.9 ± 9.5% (k=2)	Depth 2.

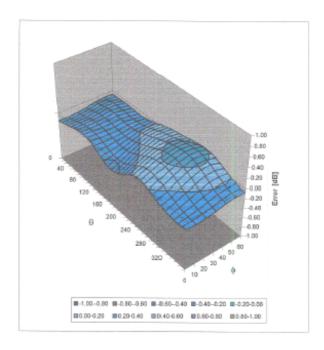

Head	1800 MHz	$\epsilon_r = 40.0 \pm 6\%$	σ = 1.40 ± 5% mho/m
Head	1900 MHz	$\epsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m
. С	onvF X	5.6 ± 9.5% (k=2)	Boundary effect:
C	onvF Y	5.6 ± 9.5% (k=2)	Alpha 0.46
C	onvF Z	5.6 ± 9.5% (k=2)	Depth 2.71


Page 7 of 9

January 15, 2003

ET3DV6 SN:1396

Conversion Factor Assessment


Body	900 MHz	$\varepsilon_r = 55.0 \pm 5\%$	a = 1.05 ± 5% mho/m
Body	835 MHz	ϵ_{r} = 55.2 ± 5%	σ = 0.97 ± 5% mho/m
	ConvF X	6.6 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.6 ± 9.5% (k=2)	Alpha 0.36
	ConvE Z	6.6 + 9.5% (km2)	Death 2.57

Body	1800 MHz	$\epsilon_{r} = 53.3 \pm 5\%$	$\sigma = 1.52 \pm 5\% \text{ mho/m}$
Body	1900 MHz	ϵ_r = 63.3 ± 5%	σ = 1.52 ± 5% m/ho/m
	ConvF X	5.1 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.1 ± 9.5% (k=2)	Alpha 0.53
	ConvF Z	5.1 ± 9.5% (k=2)	Depth 2.75

Page 8 of 9

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Page 9 of 9

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

900 MHz System Validation Dipole

Туре:	D900V2
Serial Number:	056
Place of Calibration:	Zurich
Date of Calibration:	January 29, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

N. Kolos E: Nerraca

Approved by:

Alimic Kaff

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D900V2

Serial: 056

Manufactured:

September 25, 1999

Calibrated: January 29, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 41.1 \pm 5% Conductivity 0.95 mho/m \pm 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.48 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $2.50 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue: 11.1 mW/g

averaged over 10 cm3 (10 g) of tissue: 7.00 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.348 ns (one direction)

Transmission factor:

0.986

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz:

 $Re\{Z\} = 50.2 \Omega$

Im $\{Z\} = -0.7 \Omega$

Return Loss at 900 MHz

-42.9 dB

4. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with body simulating solution of the following electrical parameters at 900 MHz;

Relative Dielectricity

54.8

± 5%

Conductivity

1.03 mho/m ± 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.17 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 4. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue:

11.7 mW/g

averaged over 10 cm3 (10 g) of tissue:

7.44 mW/g

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz:

 $Re{Z} = 45.7 \Omega$

 $Im \{Z\} = -2.4 \Omega$

Return Loss at 900 MHz

-25.7 dB

Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

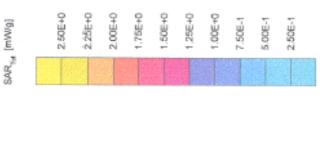
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore shortcircuited for DC-signals.

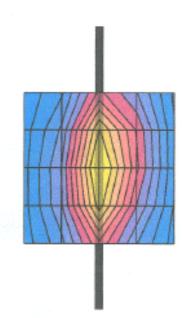
Power Test

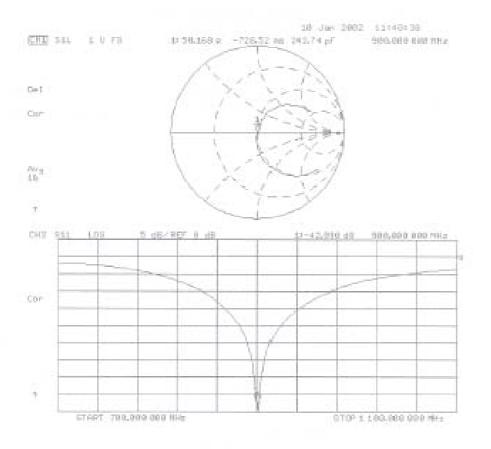
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

01/28/02

Validation Dipole D900V2 SN:056, d = 15 mm


Frequential 20 MHz; Antenna Irput Power: 250 [mM]


SAM Phanton; Flat Section; Grid Specing: Dx = 200, Dy = 200, Dz = 10.0


Probe: ET3009 - 8N 1507; ConvF[6.48,6.48) 81 900 MHz; IEEE1528 900 MHz; σ = 0.95 mholm 6, = 41.1 ρ = 1.00 g/cm²

Cubes (2): Peek: 4.48 mWig ± 0.01 dB, SAR (19): 2.78 mWig ± 0.02 dB, SAR (10g): 1.75 mWig ± 0.02 dB, (Worst-case extrapolation)

Powerdrit: -0.02 dB

Validation Dipole D900V2 SN:056, d = 15 mm

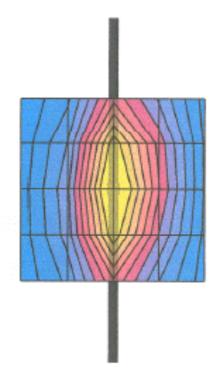
Frequency: 900 MHz; Anterna Input Power. 250 [mW]

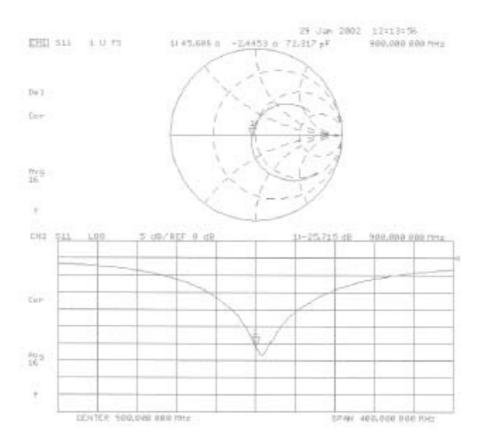
SAM Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0

Probe: ET3DV6 - SN1507; ConvF(6.17,6.17,6.17) at 900 MHz; Muscle 900 MHz; c = 1.03 mholm c, = 54.8 p = 1.00 g/cm²

Cubes (2): Peak 4.65 mWg ± 0.01 dB, SAR (1g): 2.52 mWg ± 0.00 dB, SAR (10g) 1.96 mW/g ± 0.01 dB, (Worst-case extrapolation)

Penetration depth: 12.0 (10.7, 13.7) [mm]


2.50E+0 2.25E+0 2.00E+0 1.75E+0 1.50E+0 1.25E+0 1,00E+0 7.508-1


2.50E-1

5.00E-1

[myyy/g]

SAR

Schmid & Partner Engineering AG

Zoughausstrasso 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

1800 MHz System Validation Dipole

Type:	D1800V2
Serial Number:	256
Place of Calibration:	Zurich
Date of Calibration:	January 29, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:	Ni Edvik Nevana
Approved by:	Alexio Krty-

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D1800V2

Serial: 256

Manufactured: December 23, 1999 Calibrated: January 29, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating glycol solution of the following electrical parameters at 1800 MHz:

Relative Dielectricity 3-9.6 \pm 5% Conductivity 1.37 mho/m \pm 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.31 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm² (1 g) of tissue: 40.0 mW/g

averaged over 10 cm² (10 g) of tissue: 20,8 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well. The estimated sensitivities of SAR-values and penetration depths to the liquid parameters are listed in the DASY Application Note 4: 'SAR Sensitivities'.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.180 ns (one direction)

Transmission factor: 0.980 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1800 MHz: $Re\{Z\} = 47.3 \Omega$

Im $\{Z\} = -6.6 \Omega$

Return Loss at 1800 MHz -22.7 dB

4. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with body simulating glycol solution of the following electrical parameters at 1800 MHz:

Relative Dielectricity 53.5 ± 5% Conductivity 1.45 mho/m ± 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.0 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 4. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue:

39.5 mW/g

averaged over 10 cm3 (10 g) of tissue:

20.4 mW/g

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1800 MHz:

 $Re{Z} = 43.2 \Omega$

 $Im \{Z\} = -6.3 \Omega$

Return Loss at 1800 MHz

-20.1 dB

Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

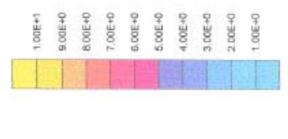
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore shortcircuited for DC-signals.

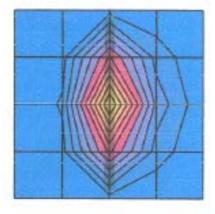
Power Test

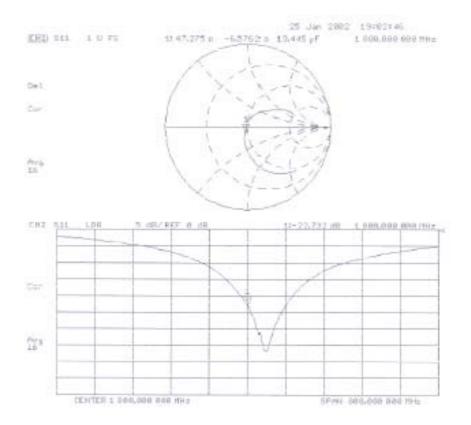
After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Validation Dipole D1800V2 SN:256, d = 10 mm

Frequency: 1800 MHz Antonna Input Power: 250 [mW]

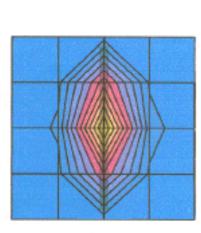

SAM Phantom; Flat Section, Grid Spacing, Dx = 200, Dz = 10.0


Probe: E130 M SAM SOT: ConvE(5.31,5.31,5.31) at 1800 MHz; IEEE1528 1800 MHz; a = 1.37 mhofm s, = 28.6 p = 1.00 glom?

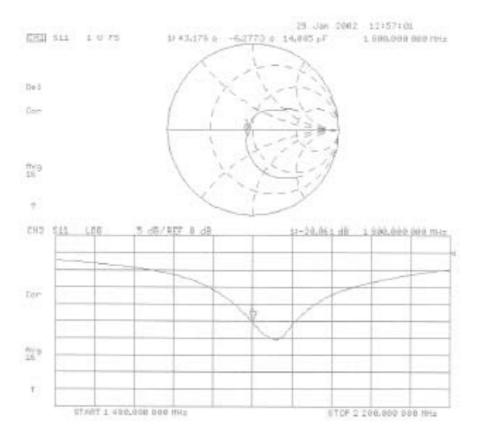

Cubes (2): Peak 18.9 mWg ± 0.04 dB, SAR (1g): 9.39 mWg = 0.01 dB, SAR (10g): 5.19 mWg ± 0.01 dB, (Worst-case extrapolation)

Powerdrift: 0.02 dB

SAR [m/W/g]



Validation Dipole D1800V2 SN:256, d = 10 mm


Frequency, 1800 MHz, Anternas Input Power: 250 [mW]
SAM Phantom (Section; Grid Spacing: Dx = 20.0, Dz = 10.0
Probe: ET3DV6 - SN1507; Conv. (Si (Sp. 20.5, D) at 1800 MHz; Muscle 1800 MHz; σ = 1.45 mholm e_i = 53.5 p = 1.00 g/cm³
Cubes (2); Peak: 18.7 mWg ± 0.02 dB, SAR (1g); 9.87 mW/g ± 0.01 dB, SAR (10g); 5.11 mW/g ± 0.01 dB, (Werst-case extrapolation)
Penetration depth; 8.4 (7.7, 9.8) [mm]

9.00E+0 8.00E+0 7.00€+0 6.00E+0 5.00E+0 1.00E+1

SAR_{Tot} [mW/g]

4.00E+0 3.00E+0 2.00E+0 1.00E+0

