

Test & Certification Center (TCC) - Dallas

FCC ID: QMNRH-27
Test Report #: 02-RF-0223

Accredited Laboratory
Certificate Number: 1819-01

SAR Compliance Test Report

Test report no.: 02-RF-0223 Date of report: 1st August, 2003
Number of pages: 49 Contact person: Nerina Walton
Responsible test engineer: Nerina Walton

Testing laboratory: Test & Certification Center (TCC) Dallas Client: Nokia San Diego
Nokia Mobile Phones, Inc 12278 Scripps Summit Drive
6021 Connection Drive San Diego
Irving CA, 92131, USA
TX 75039, USA Tel. +1 858 831 5000
Tel. +1 972 894 5000 Fax. +1 858 831 6500
Fax. +1 972 894 4988

Tested devices: QMNRH-27, Model 6225
BLD-3, HDB-4, HS-1C and HDK-1K

Supplement reports: -

Testing has been IEEE Std 1528-200X, Draft CBD 1.0 – April 4, 2002
carried out in Draft Recommended Practice for Determining the Peak Spatial-Average Specific
accordance with: Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices:
Experimental Techniques
FCC Supplement C Edition, 01-01
Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency
Electromagnetic Fields

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at
Test & Certification Center (TCC) Dallas

Test results: The tested device complies with the requirements in respect of all parameters subject to
the test.

The test results and statements relate only to the items tested. The test report shall not be
reproduced except in full, without written approval of the laboratory.

Date and signatures: 1st August, 2003
For the contents:

Alan C. Ewing
TCC Line Manager

Nerina Walton
Test Engineer

CONTENTS

1. QUALITY SYSTEM	3
2. SUMMARY FOR SAR TEST REPORT	4
2.1 MAXIMUM RESULTS FOUND DURING SAR EVALUATION	4
3. DESCRIPTION OF TESTED DEVICE	5
3.1 PICTURE OF PHONE	5
3.2 DESCRIPTION OF THE ANTENNA	5
3.3 BATTERY OPTIONS	5
3.4 BODY WORN OPERATION	5
4. TEST CONDITIONS	5
4.1 AMBIENT CONDITIONS	6
4.2 RF CHARACTERISTICS OF THE TEST SITE	6
4.3 TEST SIGNAL, FREQUENCIES, AND OUTPUT POWER	6
5. DESCRIPTION OF THE TEST EQUIPMENT	7
5.1 SYSTEM ACCURACY VERIFICATION	8
5.2 TISSUE SIMULANTS	10
5.3 PHANTOMS	12
5.4 ISOTROPIC E-FIELD PROBE ET3DV6	12
6. DESCRIPTION OF THE TEST PROCEDURE	13
6.1 TEST POSITIONS	13
6.2 SCAN PROCEDURES	15
6.3 SAR AVERAGING METHODS	15
7. MEASUREMENT UNCERTAINTY	16
7.1 DESCRIPTION OF INDIVIDUAL MEASUREMENT UNCERTAINTY	16
8. RESULTS	18
8.1 HEAD CONFIGURATION	18
8.2 BODY WORN CONFIGURATION	19

APPENDIX A: SCOPE OF ACCREDITATION FOR A2LA

APPENDIX B: VALIDATION TEST PRINTOUTS

APPENDIX C: SAR DISTRIBUTION PRINTOUTS

APPENDIX D: CALIBRATION CERTIFICATE (S)

1. QUALITY SYSTEM

The quality system in place for TCC-Dallas conforms to ISO/IEC 17025 and has been audited to the standard by A2LA (American Association of Laboratory Accreditation). Appendix D of this report contains the scope of accreditation for A2LA. TCC – Dallas has also been audited using the ISO 9000 Quality System, as part of Nokia Mobile Phones, Inc., by ABS (American Bureau of Shipping) Quality Evaluations Inc.

TCC-Dallas is a recognized laboratory with the Federal Communications Commission in filing applications for Certification under Parts 15 and 18, Registration Number 100060, and Industry Canada, Registration Number IC 661.

2. SUMMARY FOR SAR TEST REPORT

Date of test	12 May - 17 July 2003
Contact person	Nerina Walton
Test plan referred to	-
FCC ID	QMNRH-27
Type, SN, HW and SW numbers of tested device	Type: RH-27, ESN: 072/01987159, HW: 2506f, SW: V H100-03w10-01.nbr
Accessories used in testing	BLD-3 (3.7v Rechargeable Li-Ion) Battery, HDB-4, HS-1C and HDK-1K Headsets
Notes	-
Document code	02-RF-0223
Responsible test engineer	N. Walton
Measurement performed by	E. Parish / J. Love / M. Sundstrom / C. Bertz

2.1 Maximum Results Found during SAR Evaluation

The equipment is deemed to fulfill the requirements if the measured values are less than or equal to the limit.

2.1.1 Head Configuration

Mode	Ch / f(MHz)	Power (dBm) ¹	Position	Limit (mW/g)	Measured (mW/g)	Result
AMPS	384 / 836.52	27.229	Right Touch Position	1.6	1.07	PASSED
CDMA 800	384 / 836.52	26.233	Left Touch Position	1.6	0.93	PASSED
CDMA 1900	600 / 1880.00	24.851	Left Touch Position	1.6	1.12	PASSED

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

2.1.2 Body Worn Configuration

Mode	Ch / f(MHz)	Power (dBm) ¹	Position	Limit (mW/g)	Measured (mW/g)	Result
AMPS	384 / 836.52	27.229	Flat - Back of Phone with 22mm Measurement Distance	1.6	0.97	PASSED
CDMA 800	1013 / 824.70	25.673	Flat - Back of Phone with 22mm Measurement Distance	1.6	0.79	PASSED
CDMA 1900	600 / 1880.00	24.851	Flat - Back of Phone with 22mm Measurement Distance	1.6	0.54	PASSED

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

2.1.3 Measurement Uncertainty

Combined Standard Uncertainty	±14.5
Expanded Standard Uncertainty (k=2)	±29.1

3. DESCRIPTION OF TESTED DEVICE

Device category	Portable device		
Exposure environment	Uncontrolled exposure		
Unit type	Prototype unit		
Case type	Fixed case		
Mode of Operation	AMPS	CDMA 800	CDMA 1900
Maximum Device Rating	Power Class III	Power Class III	Power Class II
Modulation Mode	Frequency Modulation (FM)	Quadrature Phase Shift Keying	Quadrature Phase Shift Keying
Duty Cycle	1	1	1
Transmitter Frequency Range (MHz)	824.04 - 848.97	824.70 - 848.31	1851.25 - 1908.75

3.1 Picture of Phone

The tested device, QMNRH-27 is shown below: -

3.2 Description of the Antenna

Type	Internal integrated antenna
Location	Inside the back cover, near the top of the device

3.3 Battery Options

There is only one battery available for the tested device, a rechargeable Li-ion battery, BLD-3.

3.4 Body Worn Operation

Body SAR was evaluated with a separation distance of 22mm and with the HDB-4, HS-1C and HDK-1K headsets connected.

4. TEST CONDITIONS

4.1 Ambient Conditions

Ambient temperature (°C)	22±2
Tissue simulating liquid temperature (°C)	20±2
Humidity (%)	43

4.2 RF characteristics of the test site

Tests were performed in a fully enclosed RF shielded environment.

4.3 Test Signal, Frequencies, and Output Power

The device was controlled by using a radio tester. Communication between the device and the tester was established by air link.

Measurements were performed on the lowest, middle and highest channels of the operating band.

The phone was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY3 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. These records were used to monitor stability of power output.

5. DESCRIPTION OF THE TEST EQUIPMENT

The measurements were performed with an automated near-field scanning system, DASY3, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland.

Test Equipment	Model	NMP #	Serial Number	Due Date
DASY3, Data Acquisition	DAE V1	2292	389	07/03
E-field Probe	ET3DV6	2954	1504	07/03
Dipole Validation Kit	D900V2	3670	025	10/04
Dipole Validation Kit	D835V2	3453	455	07/04
Dipole Validation Kit	D1900V2	3457	5d004	07/04
Dipole Validation Kit	D1900V2	2952	504	05/04

E-field probe and dipole validation kit calibration records are presented in Appendix D.

Additional equipment (required for validation).

Test Equipment	Model	NMP #	Serial Number	Due Date
Signal Generator	HP 8648C	0409	3836A04346	06/03
Signal Generator	HP 8648C	2667	3847U02985	11/03
Amplifier	AR 5S1G4	0188	25583	-
Coupler	AR DC7144	2057	25304	-
Power Meter	Boonton 4232A	0147	26001	07/03
Power Sensor	Boonton 51015	0163	31143	07/03
Power Sensor	Boonton 51015	0164	31144	07/03
Thermometer	Omega CL27	3391	T-228448	06/03
Thermometer	Omega CL27	3392	T-228448	07/03
Network Analyzer	Agilent 8753ES	2605	US39174932	01/04
Dielectric Probe Kit	Agilent 85070C	3089	US99360172	-

The calibration interval on all items listed above can be obtained from the Engineering Services Group within NMP, Product Creation - Dallas. Where relevant, measuring equipment is subjected to in-service checks between testing. TCC - Dallas shall notify clients promptly, in writing, of identification of defective measuring equipment that casts doubt on the validity of results given in this report.

5.1 System Accuracy Verification

The manufacturer calibrates the probes annually. Dielectric parameters of the simulating liquids are measured using an Agilent 85070C dielectric probe kit and an HP 8720D network analyzer.

SAR measurements of the tested device were performed within 24 hours of system accuracy verification, which was done using the dipole validation kit.

The dipole antenna's, which are manufactured by Schmid & Partner Engineering AG, are matched to be used near a flat phantom filled with tissue simulating solution. Length of the 835 MHz dipole is 161mm with an overall height of 330mm; length of the 900MHz dipole is 149mm with an overall height of 300mm; length of the 1900MHz dipole is 68mm with an overall height of 300mm. A specific distance holder is used in the positioning to ensure correct spacing between the phantom and the dipole.

A power level of 250 mW was supplied to the dipole antenna placed under the flat section of the SAM phantom. Validation results are in the table below and a print out of the validation tests are presented in Appendix B. All the measured parameters were within specification.

5.1.1 Head Tissue

Tissue	<i>f</i> (MHz)	Description (Date Measured)	SAR (W/kg), 1g	Dielectric Parameters	Temp (°C)
				ϵ_r	σ (S/m)
Head	900	20-May-03	10.5	41.9	0.97
		22-May-03	10.6	41.7	0.97
		25-May-03	10.8	42.1	0.98
		27-May-03	10.6	40.9	0.96
		30-May-03	10.6	40.9	0.96
		Reference Result	11.4	41.5	0.97
Head	1900	12-May-03	45.2	38.8	1.46
		13-May-03	43.2	38.3	1.42
		14-May-03	43.2	38.5	1.46
		Reference Result	42.8	38.5	1.44

5.1.2 Muscle Tissue

Tissue	<i>f</i> (MHz)	Description (Date Measured)	SAR (W/kg), 1g	Dielectric Parameters		Temp (°C)
				ϵ_r	σ (S/m)	
Muscle	835	16-July-03	9.8	55.0	0.96	21.7
		17-July-03	10.1	54.8	0.97	21.5
		Reference Result	10.1	55.3	0.95	N/A
Muscle	1900	15-May-03	41.6	51.8	1.55	20.2
		02-June-03	40.0	52.3	1.56	19.4
		Reference Result	43.6	51.9	1.58	N/A

5.2 Tissue Simulants

All dielectric parameters of tissue simulants were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the ear reference point of the phantom was 15cm \pm 5mm during all tests. Volume for each tissue simulant was 27 litres.

5.2.1 Head Tissue Simulant

The composition of the brain tissue simulating liquid for 835 MHz is: -

51.07%	De-Ionized Water
47.31%	Sugar
1.15%	Salt
0.23%	HEC
0.24%	Bactericide

f (MHz)	Description (Date Measured)	Dielectric Parameters		Temp (°C)
		ϵ_r	σ (S/m)	
836.52	20-May-03	42.6	0.92	20.0
	22-May-03	42.4	0.91	20.2
	25-May-03	42.9	0.91	20.1
	27-May-03	41.6	0.90	20.7
	30-May-03	41.6	0.90	21.1
	Recommended Values	41.5	0.90	N/A

The composition of the brain tissue simulating liquid for 1900 MHz is: -

44.91%	2-(2-butoxyethoxy) Ethanol
54.88%	De-Ionized Water
0.21%	Salt

f (MHz)	Description	Dielectric Parameters		Temp (°C)
		ϵ_r	σ (S/m)	
1880	12-May-03	38.8	1.43	19.2
	13-May-03	38.4	1.40	20.7
	14-May-03	38.6	1.44	20.7
	Recommended Values	40.0	1.40	N/A

Recommended values are adopted from OET Bulletin 65 (97-01) Supplement C (01-01).

5.2.2 Muscle Tissue Simulant

The composition of the muscle tissue simulating liquid for 835 MHz is: -

65.45%	De-Ionized Water
34.31%	Sugar
0.62%	Salt
0.10%	Bactericide

f (MHz)	Description (Date Measured)	Dielectric Parameters		Temp (°C)
		ϵ_r	σ (S/m)	
836.52	16-July-03	55.0	0.96	21.7
	17-July-03	54.8	0.97	21.5
	Recommended Values	55.2	0.97	N/A

The composition of the muscle tissue simulating liquid for 1900 MHz is: -

69.02%	De-Ionized Water
30.76%	Diethylene Glycol Monobutyl Ether
0.22%	Salt

f (MHz)	Description	Dielectric Parameters		Temp (°C)
		ϵ_r	σ (S/m)	
1880	15-May-03	51.9	1.53	20.2
	02-June-03	52.3	1.53	19.4
	Recommended Values	53.3	1.52	N/A

Recommended values are adopted from OET Bulletin 65 (97-01) Supplement C (01-01).

5.3 Phantoms

"SAM v4.0" phantom", manufactured by SPEAG, was used during the measurement. It has a fiberglass shell integrated into a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. Reference markings on the phantom allow the complete set-up of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

The thickness of phantom shell is 2 mm except for the ear, where an integrated ear spacer provides a 6 mm spacing from the tissue boundary. Manufacturer reports tolerance in shell thickness to be ± 0.1 mm.

5.4 Isotropic E-Field Probe ET3DV6

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)
Calibration	Calibration certificate in Appendix D
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Optical Surface	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Detection	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

6. DESCRIPTION OF THE TEST PROCEDURE

6.1 Test Positions

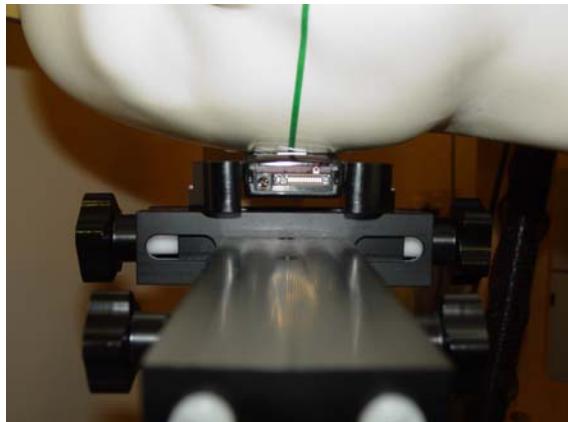
The device was placed into a holder using a special positioning tool, which aligns the bottom of the device with the holder and ensures that holder contacts only to the sides of the device. After positioning is done, the tool is removed. This method provides standard positioning and separation, and also ensures free space for antenna.

Device holder was provided by SPEAG together with the DASY3.

6.1.1 Against Phantom Head

Measurements were made on both the "left hand" and "right hand" side of the phantom.

The device was positioned against phantom according to OET Bulletin 65 (97-01) Supplement C (01-01). Definitions of terms used in aligning the device to a head phantom are available in IEEE Std 1528-200X "Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"


6.1.1.1 Initial Ear Position

The device was initially positioned with the earpiece region pressed against the ear spacer of a head phantom parallel to the "Neck-Front" line defined along the base of the ear spacer that contains the "ear reference point". The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane".

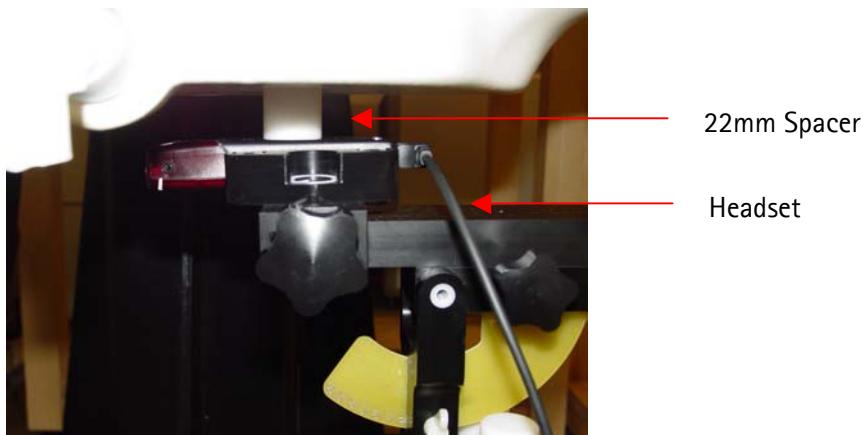
6.1.1.2 Touch Position

"Initial ear position" alignments are maintained and the device is brought toward the mouth of the head phantom by pivoting along the "Neck-Front" line until any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom or when any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

The following picture shows the tested device in the right touch position:

6.1.1.3 Tilt Position

In the "Touch Position", if the earpiece of the device is not in full contact with the phantom's ear spacer and the peak SAR location for the "touch position" is located at the ear spacer region or corresponds to the earpiece region of the handset, the device is returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. Otherwise, the device is moved away from the cheek perpendicular to the line passes through both "ear reference points" for approximate 2-3 cm. While it is in this position, the device is tilted away from the mouth with respect to the "test device reference point" by 15°. After the tilt, it is then moved back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process is repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously.


The following picture shows the tested device in the right tilt position:

6.1.2 Body Worn Configuration

Body SAR measurements were performed with the antenna facing towards the flat part of the phantom with a separation distance of 22mm and with the HDB-4, HS-1C or HDK-1K headset connected.

The following picture shows the tested device in the body test position: -

Note: the 22mm spacer was removed before the SAR measurement.

6.2 Scan Procedures

First coarse scans are used for quick determination of the field distribution. Next a cube scan, 5x5x7 points; spacing between each point 8x8x5 mm, is performed around the highest E-field value to determine the averaged SAR-distribution over 1g.

6.3 SAR Averaging Methods

The maximum SAR value is averaged over its volume using interpolation and extrapolation.

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot" -condition [W. Gander, Computermathematik, p. 141-150] (x, y and z -directions) [Numerical Recipes in C, Second Edition, p 123].

The extrapolation is based on least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 30 mm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1mm from one another.

7. MEASUREMENT UNCERTAINTY

7.1 Description of Individual Measurement Uncertainty

7.1.1 Assessment Uncertainty

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	$e = f(d,k)$	<i>F</i>	$h = c \times f/e$	<i>k</i>
Uncertainty Component	Section in P1528.	Tol. (%)	Prob. Dist.	Div.	<i>c_i</i>	<i>u_i</i> (%)	<i>v_i</i>
Measurement System							
Probe Calibration	E2.1	±4.8	N	1	1	±4.8	∞
Axial Isotropy	E2.2	±4.7	R	$\sqrt{3}$	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	$\sqrt{3}$	$\sqrt{c_p}$	±3.9	∞
Boundary Effect	E2.3	±8.3	R	$\sqrt{3}$	1	±4.8	∞
Linearity	E2.4	±4.7	R	$\sqrt{3}$	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	$\sqrt{3}$	1	±0.6	∞
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	$\sqrt{3}$	1	±0.5	∞
Integration Time	E2.8	±2.6	R	$\sqrt{3}$	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	$\sqrt{3}$	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	$\sqrt{3}$	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	$\sqrt{3}$	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	$\sqrt{3}$	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	$\sqrt{3}$	1	±2.3	∞
Test sample Related							
Test Sample Positioning	E4.2.1	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	$\sqrt{3}$	1	±5.8	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity Target - tolerance	E3.2	±5.0	R	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	$e = f(d,k)$	<i>F</i>	$h = c \times f/e$	<i>k</i>
Uncertainty Component	Section in P1528.	Tol. (%)	Prob. Dist.	Div.	<i>c_i</i>	<i>u_i</i> (%)	<i>v_i</i>
Measurement System							
Liquid Permittivity Target tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Liquid Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±14.5	208
Expanded Uncertainty (95% CONFIDENCE INTERVAL)						±29.1	

8. RESULTS

Corresponding SAR distribution print outs of maximum results in every operating mode and position are shown in Appendix C; z-axis plots of the maximum measurement results in head and body worn configurations are also included. The SAR distributions are substantially similar or equivalent to the plots submitted, regardless of used channel in each mode and position unless otherwise presented.

8.1 Head Configuration

Mode	Channel/ <i>f</i> (MHz)	Power (dBm) ¹	SAR, averaged over 1g (mW/g)			
			Left-hand		Right-hand	
			Touch	Tilt	Touch	Tilt
AMPS	991 / 824.04	26.773	0.93	0.56	0.87	0.53
	384 / 836.52	27.229	1.05	0.70	1.07	0.63
	799 / 848.97	26.785	1.02	0.75	1.02	0.68

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

Mode	Channel/ <i>f</i> (MHz)	Power (dBm) ¹	SAR, averaged over 1g (mW/g)			
			Left-hand		Right-hand	
			Touch	Tilt	Touch	Tilt
CDMA 800	1013 / 824.70	25.673	0.81	0.46	0.75	0.59
	384 / 836.52	26.233	0.93	0.57	0.86	0.51
	777 / 848.31	25.783	0.80	0.58	0.80	0.52

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

Mode	Channel/ <i>f</i> (MHz)	Power (dBm) ¹	SAR, averaged over 1g (mW/g)			
			Left-hand		Right-hand	
			Touch	Tilt	Touch	Tilt
CDMA 1900	25 / 1851.25	25.181	1.09	1.10	0.87	0.70
	600 / 1880.00	24.851	1.10	1.12	0.88	0.81
	1175 / 1908.75	23.521	0.70	0.76	0.63	0.64

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

8.2 Body Worn Configuration

Body SAR measurements were performed with the HDB-4, HS-1C and HDK-1K headsets connected.

Mode	Channel/ <i>f</i> (MHz)	Power (dBm) ¹	SAR, averaged over 1g (mW/g)		
			HDB-4	HS-1C	HDK-1K
AMPS	991 / 824.04	26.773	0.74	0.60	0.87
	384 / 836.52	27.229	0.76	0.66	0.97
	799 / 848.97	26.785	0.73	0.61	0.94

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

Mode	Channel/ <i>f</i> (MHz)	Power (dBm) ¹	SAR, averaged over 1g (mW/g)		
			HDB-4	HS-1C	HDK-1K
CDMA 800	1013 / 824.70	25.673	0.57	0.59	0.79
	384 / 836.52	26.233	0.45	0.61	0.59
	777 / 848.31	25.783	0.49	0.56	0.66

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

Mode	Channel/ <i>f</i> (MHz)	Power (dBm) ¹	SAR, averaged over 1g (mW/g)		
			HDB-4	HS-1C	HDK-1K
CDMA 1900	25 / 1851.25	25.181	0.43	0.44	0.34
	600 / 1880.00	24.851	0.54	0.50	0.45
	1175 / 1908.75	23.521	0.47	0.44	0.34

Note 1: PCTEST Engineering Laboratory Inc, performed the power measurements (EDRP and EIRP).

APPENDIX A: SCOPE OF ACCREDITATION FOR A2LA

TCC-Dallas is accredited by the American Association for Laboratory Accreditation (A2LA) as shown in the scope below:

American Association for Laboratory Accreditation	
SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999	
NOKIA MOBILE PHONES TEST & CERTIFICATION CENTER - DALLAS 6021 Connection Drive Irving, TX 75039 Alan Ewing Phone: 972 894 4744	
ELECTRICAL	
Valid to: November 30, 2003	Certificate Number: 1819-01
In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following Electromagnetic Compatibility (EMC), Specific Absorption Rate (SAR), and tests on wireless communications devices:	
Tests Test Method	
<i>Emissions</i>	
Conducted and Radiated	CFR 47 Part 2, 16, 22, 24 CISPR 22; EN 55022 ICES-003; RSS-128, 122 and 133 3GPP TS 51.010-1; Section 12.2 ETSI EN 301 489-1; EN 301 489-7 (using ANSI C63.4 and RSS-212)
Specific Absorption Rate	IEEE 1528 EN 50360; EN 50361 CFR 47 Parts 2 and 24 OET Bulletin 65 and Supplement C RSS-102
<i>Immunity</i>	
Vehicular Immunity	ISO 7637-1; ETSI EN 301 489-1; EN 301 489-7
Electrostatic Discharge (ESD)	EN 61000-4-2; ETSI EN 301 489-1; EN 301 489-7
RF Radiated	EN 61000-4-3; ETSI EN 301 489-1; EN 301 489-7
Electrical Fast Transient/Burst	EN 61000-4-4; ETSI EN 301 489-1; EN 301 489-7
Surge	EN 61000-4-5; ETSI EN 301 489-1; EN 301 489-7
Conducted	EN 61000-4-6; ETSI EN 301 489-1; EN 301 489-7
Voltage Dips, Short Interruptions and Voltage Variations	EN 61000-4-11; ETSI EN 301 489-1; EN 301 489-7
<small>(A2LA Cert. No. 1819.01) Revised 09/18/02</small>	
<small>5301 Buckeystown Pike, Suite 350 • Frederick, MD 21704-8373 • Phone: 301-644 3248 • Fax: 301-662 2974</small>	
<small>Page 1 of 2</small>	
<small>(A2LA Cert. No. 1819.01) Revised 09/18/02</small>	
<small>Page 2 of 2</small>	

"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined to be in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, such data would not be covered by this laboratory's A2LA accreditation

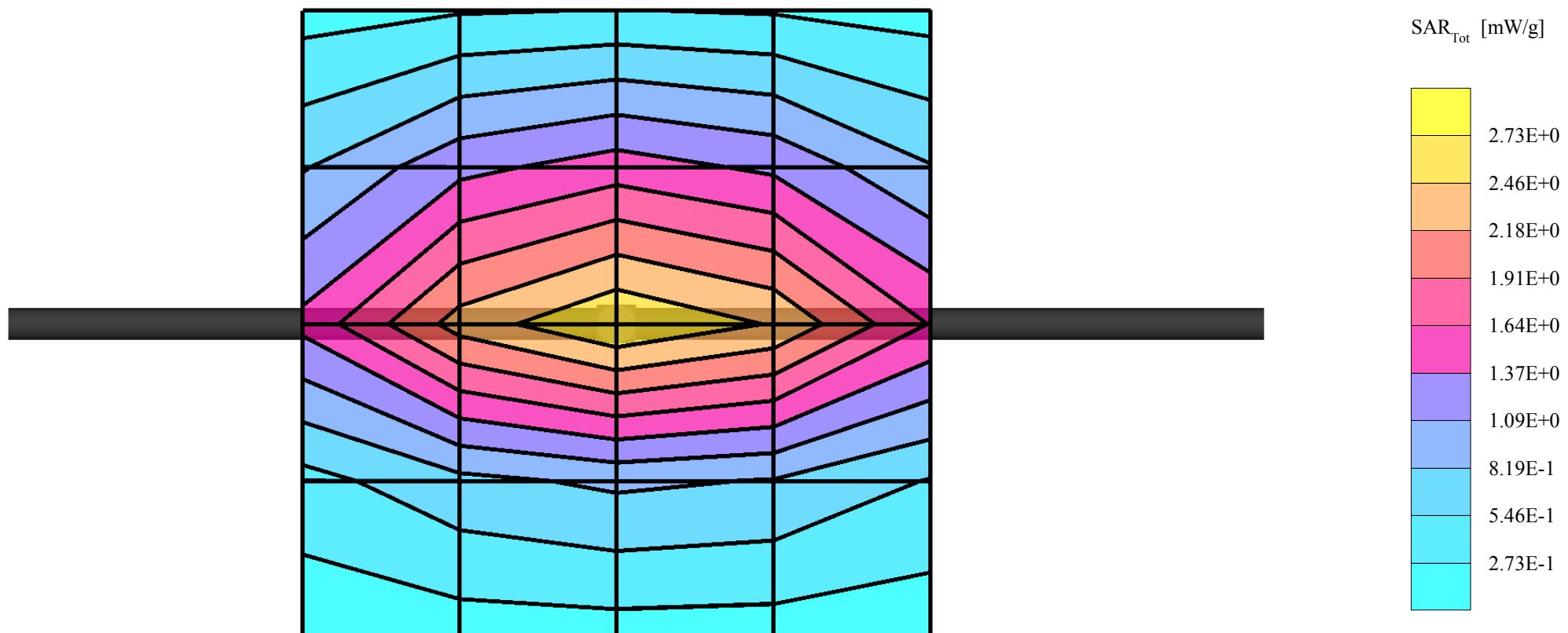
APPENDIX B: VALIDATION TEST PRINTOUTS

Dipole 900 MHz, Head Validation

SAM 1 (Cellular - Brain Tissue)

Frequency: 900 MHz; Crest factor: 1.0

Validation 900MHz - Brain Tissue: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 41.9$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): Peak: 4.23 mW/g ± 0.03 dB, SAR (1g): 2.62 mW/g ± 0.01 dB, SAR (10g): 1.65 mW/g ± 0.01 dB, (Worst-case extrapolation)

Penetration depth: 11.3 (10.2, 12.9) [mm]

Powerdrift: -0.52 dB

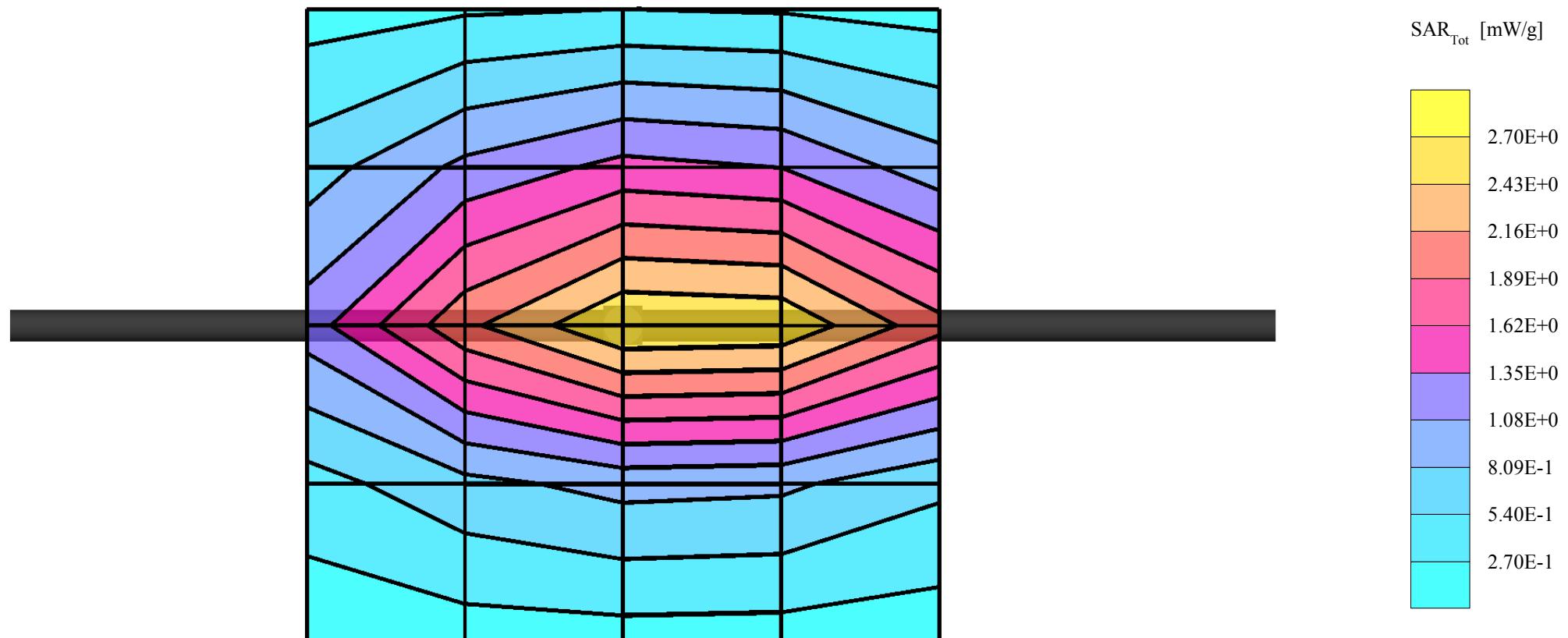
Liquid Temperature (°C): 20.0

Dipole 900 MHz, Head Validation

SAM 1 (Cellular - Brain Tissue)

Frequency: 900 MHz; Crest factor: 1.0

Validation 900MHz - Brain Tissue: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 41.7$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): Peak: 4.29 mW/g ± 0.01 dB, SAR (1g): 2.65 mW/g ± 0.01 dB, SAR (10g): 1.66 mW/g ± 0.01 dB, (Worst-case extrapolation)

Penetration depth: 11.3 (10.2, 12.8) [mm]

Powerdrift: -0.17 dB

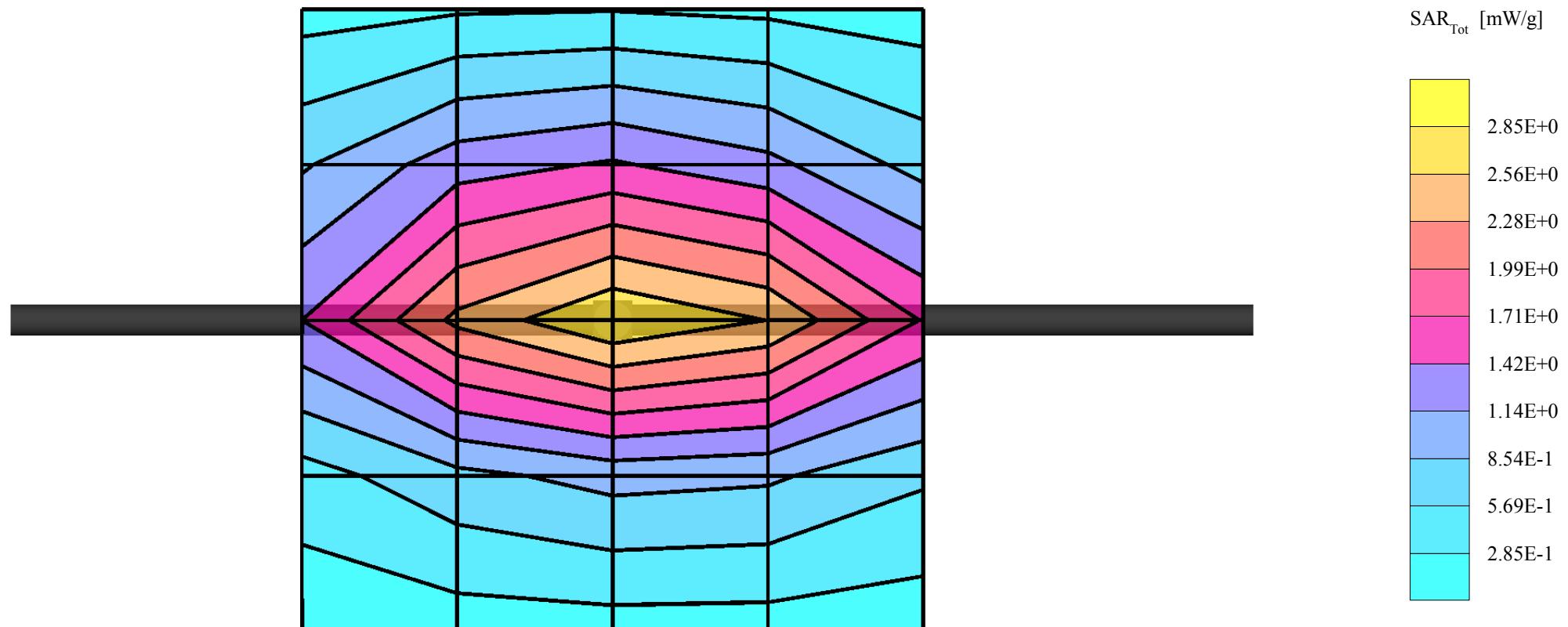
Liquid Temperature (°C): 20.2

Dipole 900 MHz, Head Validation

SAM 1 (Cellular - Brain Tissue)

Frequency: 900 MHz; Crest factor: 1.0

Validation 900MHz - Brain Tissue: $\sigma = 0.98 \text{ mho/m}$ $\epsilon_r = 42.1$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): Peak: 4.34 mW/g ± 0.01 dB, SAR (1g): 2.71 mW/g ± 0.00 dB, SAR (10g): 1.70 mW/g ± 0.00 dB, (Worst-case extrapolation)

Penetration depth: 11.5 (10.4, 12.9) [mm]

Powerdrift: -0.22 dB

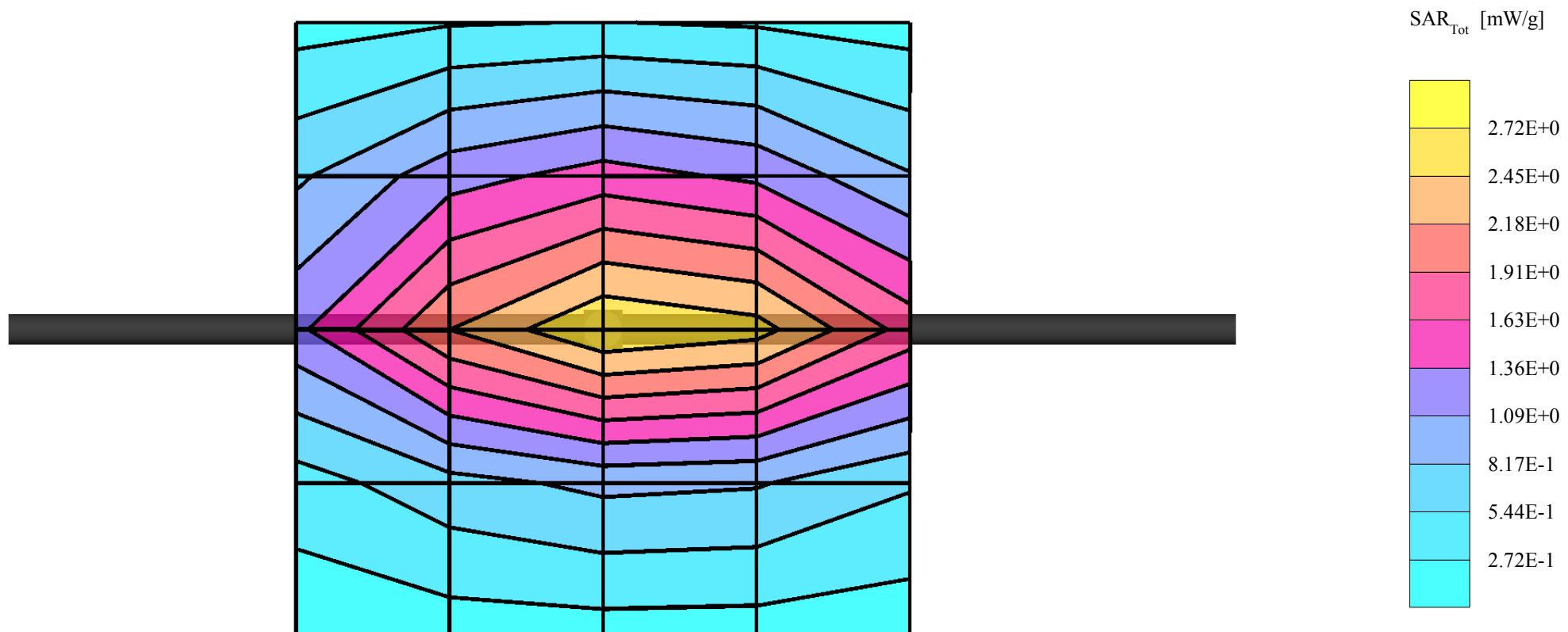
Liquid Temperature (°C): 20.1

Dipole 900 MHz, Head Validation

SAM 1 (Cellular - Brain Tissue)

Frequency: 900 MHz; Crest factor: 1.0

Validation 900MHz - Brain Tissue: $\sigma = 0.96 \text{ mho/m}$ $\epsilon_r = 40.9$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): Peak: 4.26 mW/g ± 0.01 dB, SAR (1g): 2.64 mW/g ± 0.00 dB, SAR (10g): 1.66 mW/g ± 0.00 dB, (Worst-case extrapolation)

Penetration depth: 11.4 (10.2, 12.9) [mm]

Powerdrift: -0.16 dB

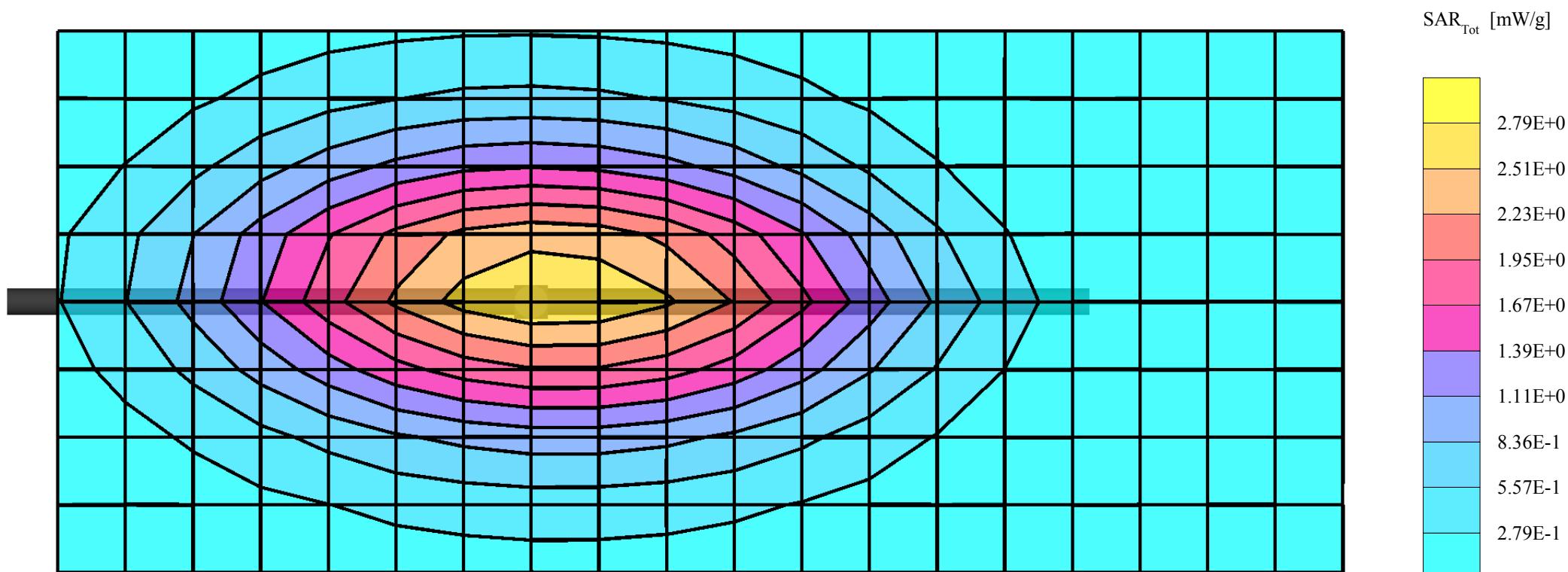
Liquid Temperature (°C): 20.7

Dipole 900 MHz, Head Validation

SAM 1 (Cellular - Brain Tissue)

Frequency: 900 MHz; Crest factor: 1.0

Validation 900MHz - Brain Tissue: $\sigma = 0.96 \text{ mho/m}$ $\epsilon_r = 40.9$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cube 5x5x7: Peak: 4.30 mW/g, SAR (1g): 2.66 mW/g, SAR (10g): 1.67 mW/g, (Worst-case extrapolation)

Penetration depth: 11.4 (10.2, 12.9) [mm]

Powerdrift: -0.18 dB

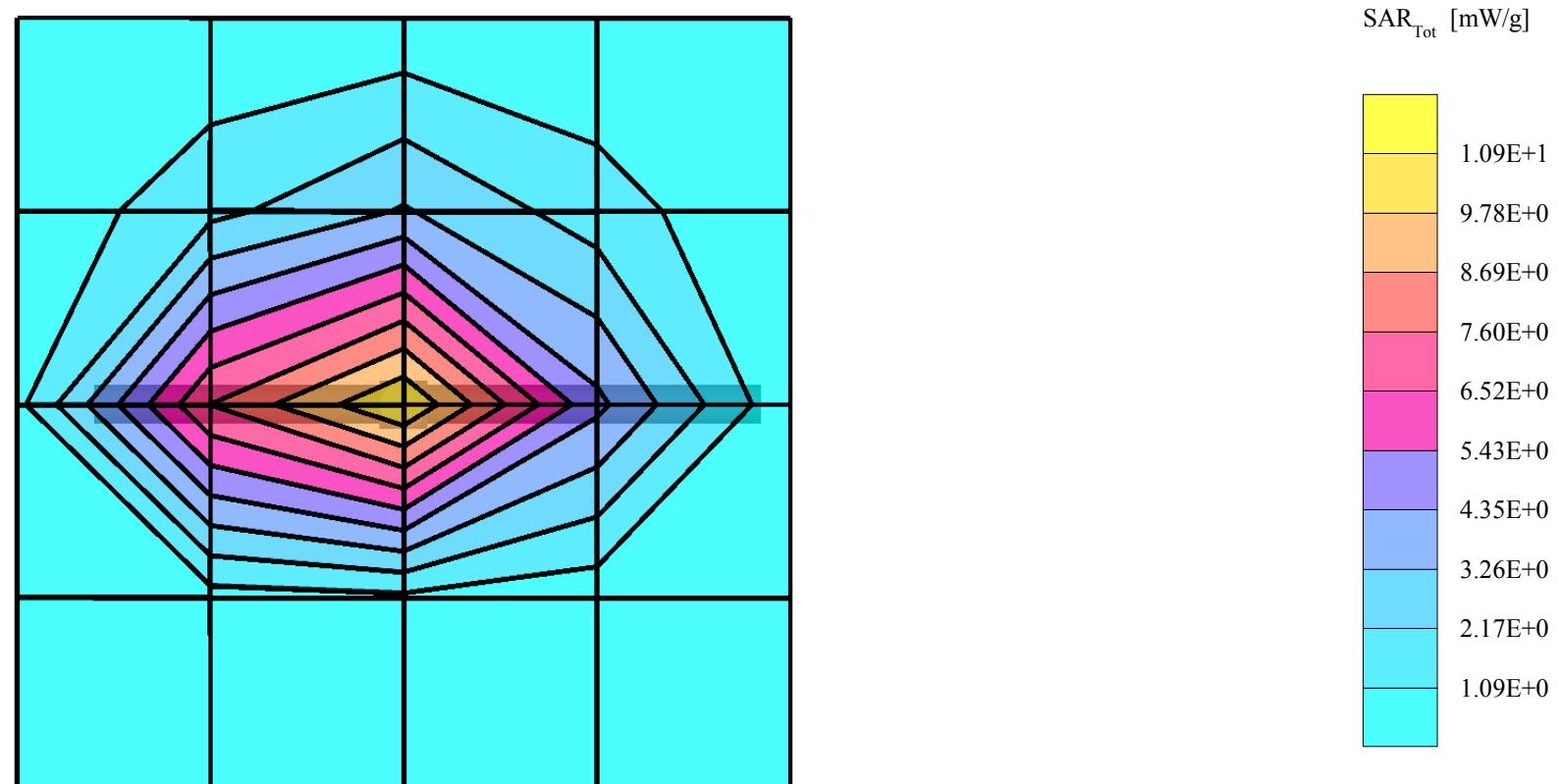
Liquid Temperature (°C): 21.1

Dipole 1900 MHz, Head Validation

SAM 3 (PCS - Brain / Muscle Tissue)

Frequency: 1900 MHz; Crest factor: 1.0

Validation 1900MHz - Brain Tissue: $\sigma = 1.46 \text{ mho/m}$ $\epsilon_r = 38.8$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cubes (2): Peak: 21.5 mW/g ± 0.11 dB, SAR (1g): 11.3 mW/g ± 0.09 dB, SAR (10g): 5.76 mW/g ± 0.08 dB, (Worst-case extrapolation)

Penetration depth: 7.9 (7.5, 8.8) [mm]

Powerdrift: 0.02 dB

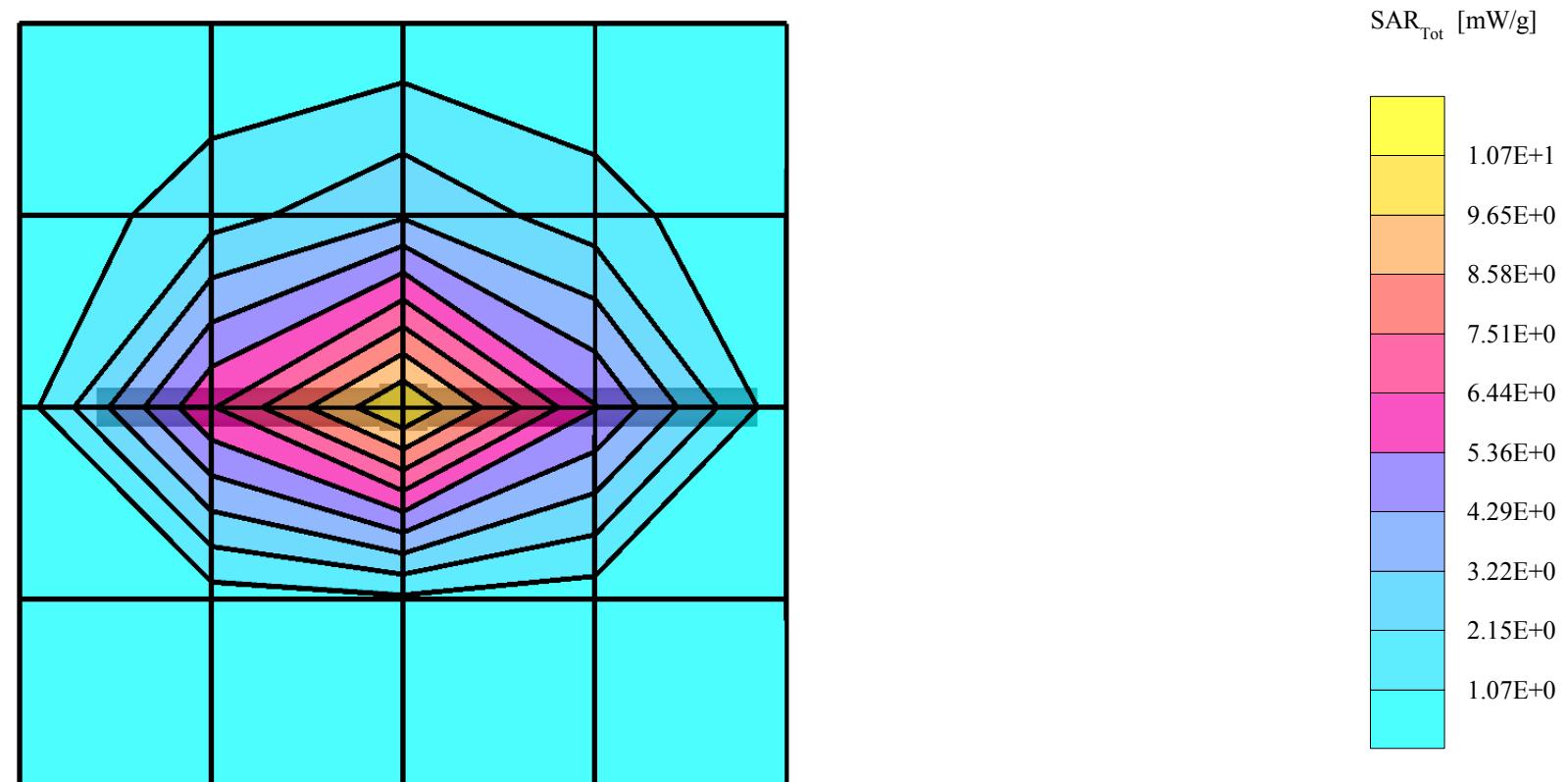
Liquid Temperature (°C): 19.2

Dipole 1900 MHz, Head Validation

SAM 3 (PCS - Brain / Muscle Tissue)

Frequency: 1900 MHz; Crest factor: 1.0

Validation 1900MHz - Brain Tissue: $\sigma = 1.42 \text{ mho/m}$ $\epsilon_r = 38.3$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cubes (2): Peak: 20.4 mW/g ± 0.10 dB, SAR (1g): 10.8 mW/g ± 0.08 dB, SAR (10g): 5.50 mW/g ± 0.06 dB, (Worst-case extrapolation)

Penetration depth: 8.0 (7.6, 8.9) [mm]

Powerdrift: -0.26 dB

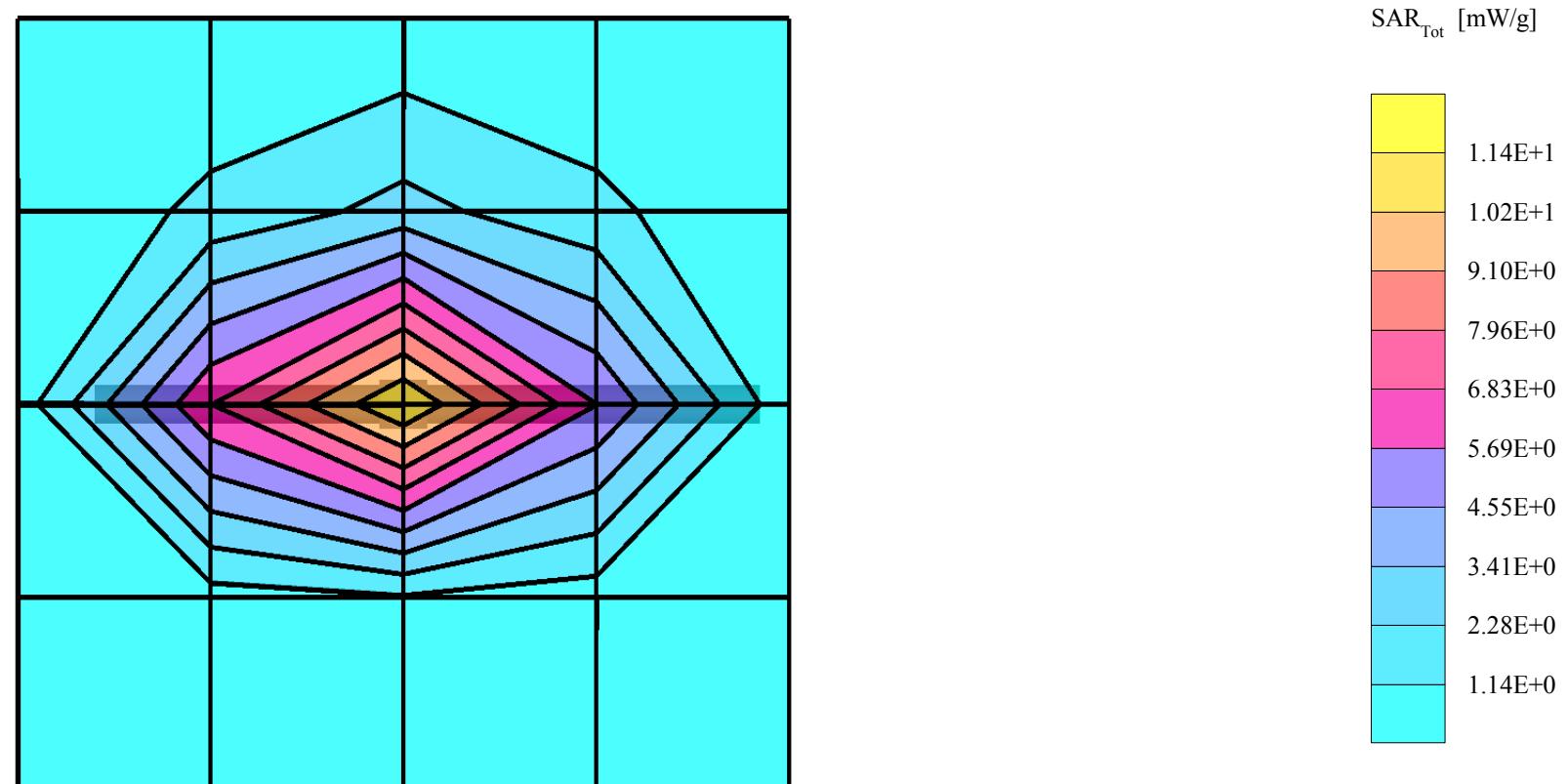
Liquid Temperature (°C): 20.7

Dipole 1900 MHz, Head Validation

SAM 3 (PCS - Brain / Muscle Tissue)

Frequency: 1900 MHz; Crest factor: 1.0

Validation 1900MHz - Brain Tissue: $\sigma = 1.46 \text{ mho/m}$ $\epsilon_r = 38.5$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cubes (2): Peak: 20.4 mW/g ± 0.13 dB, SAR (1g): 10.8 mW/g ± 0.09 dB, SAR (10g): 5.53 mW/g ± 0.06 dB, (Worst-case extrapolation)

Penetration depth: 8.0 (7.6, 8.9) [mm]

Powerdrift: -0.13 dB

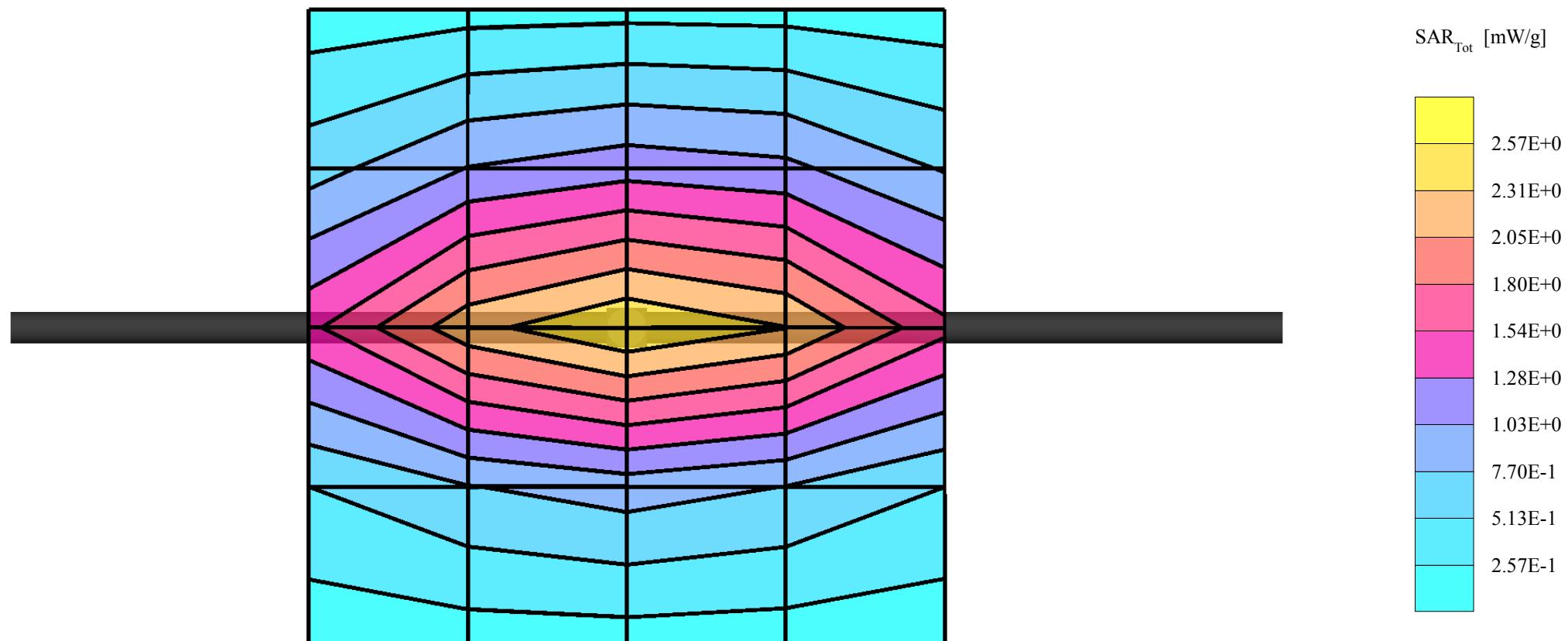
Liquid Temperature (°C): 20.7

Dipole 835 MHz, Body Validation

SAM 2 (Cellular - Muscle Tissue)

Frequency: 835 MHz; Crest factor: 1.0

Validation 835MHz - Muscle Tissue: $\sigma = 0.96 \text{ mho/m}$ $\epsilon_r = 55.0$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): Peak: 3.81 mW/g ± 0.04 dB, SAR (1g): 2.44 mW/g ± 0.03 dB, SAR (10g): 1.58 mW/g ± 0.02 dB, (Worst-case extrapolation)

Penetration depth: 12.6 (11.3, 14.3) [mm]

Powerdrift: -0.19 dB

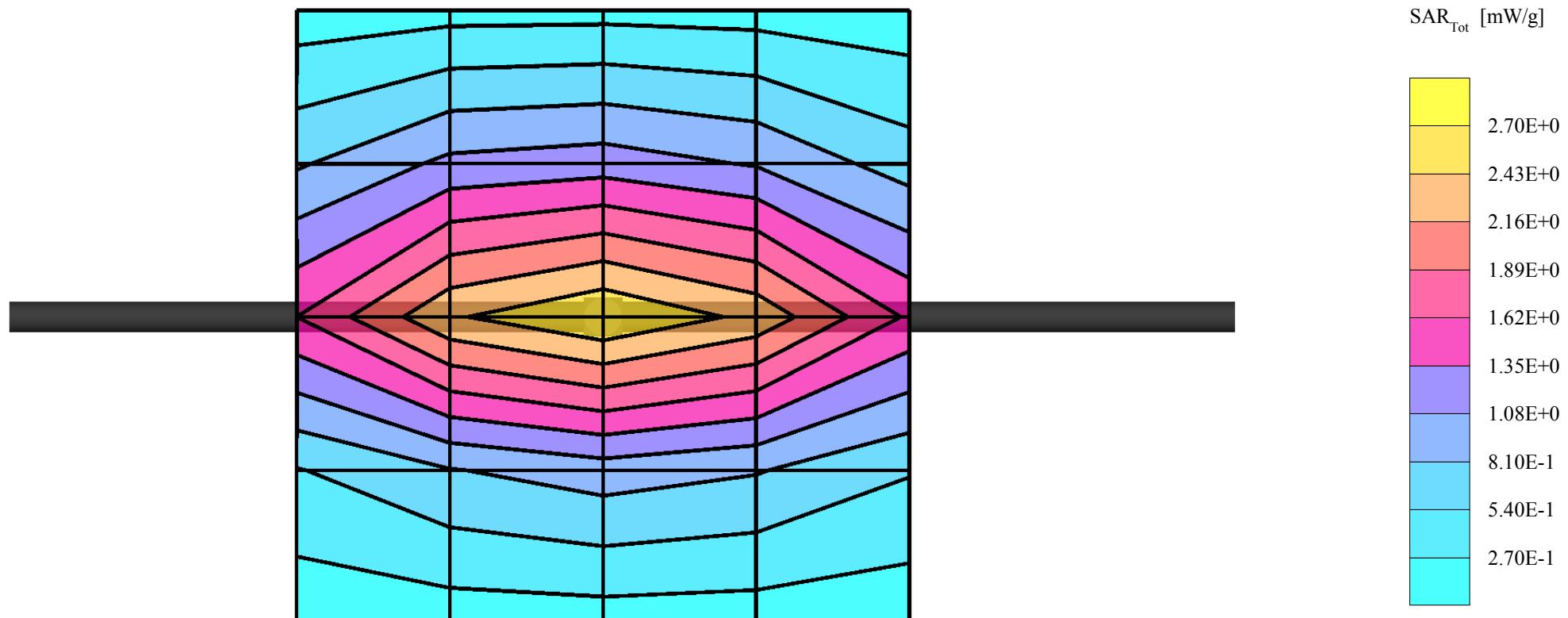
Liquid Temperature (°C): 21.7

Dipole 835 MHz, Body Validation

SAM 2 (Cellular - Muscle Tissue)

Frequency: 835 MHz; Crest factor: 1.0

Validation 835MHz - Muscle Tissue: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 54.8$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): Peak: 3.95 mW/g ± 0.01 dB, SAR (1g): 2.53 mW/g ± 0.00 dB, SAR (10g): 1.63 mW/g ± 0.01 dB, (Worst-case extrapolation)

Penetration depth: 12.6 (11.3, 14.4) [mm]

Powerdrift: -0.13 dB

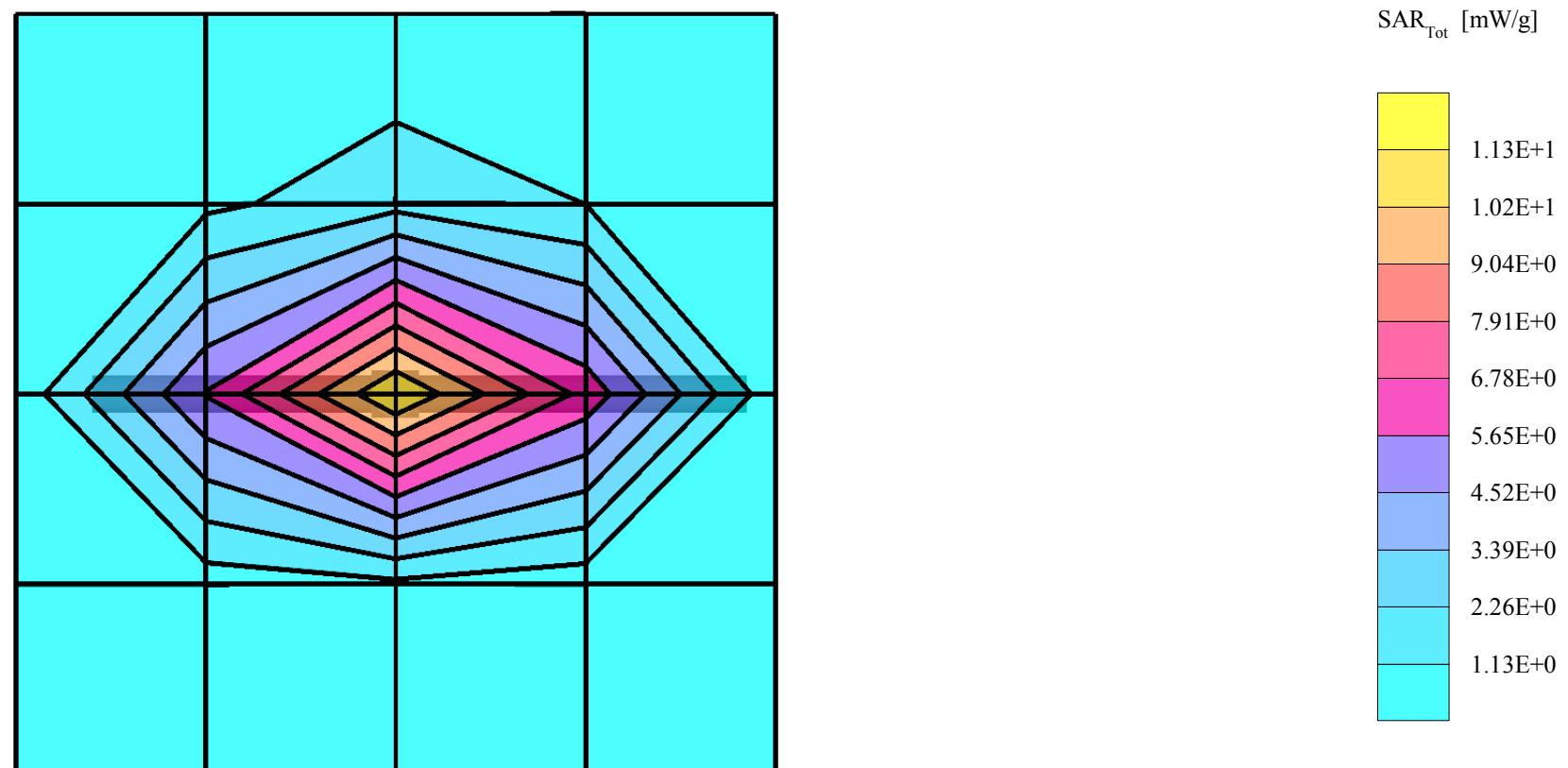
Liquid Temperature (°C): 21.5

Dipole 1900 MHz, Body Validation

SAM 3 (PCS - Brain / Muscle Tissue)

Frequency: 1900 MHz; Crest factor: 1.0

Validation 1900MHz - Muscle Tissue: $\sigma = 1.55 \text{ mho/m}$ $\epsilon_r = 51.8$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.00,5.00,5.00)

Cubes (2): Peak: 19.6 mW/g ± 0.02 dB, SAR (1g): 10.4 mW/g ± 0.01 dB, SAR (10g): 5.33 mW/g ± 0.02 dB, (Worst-case extrapolation)

Penetration depth: 8.3 (7.7, 9.6) [mm]

Powerdrift: -0.30 dB

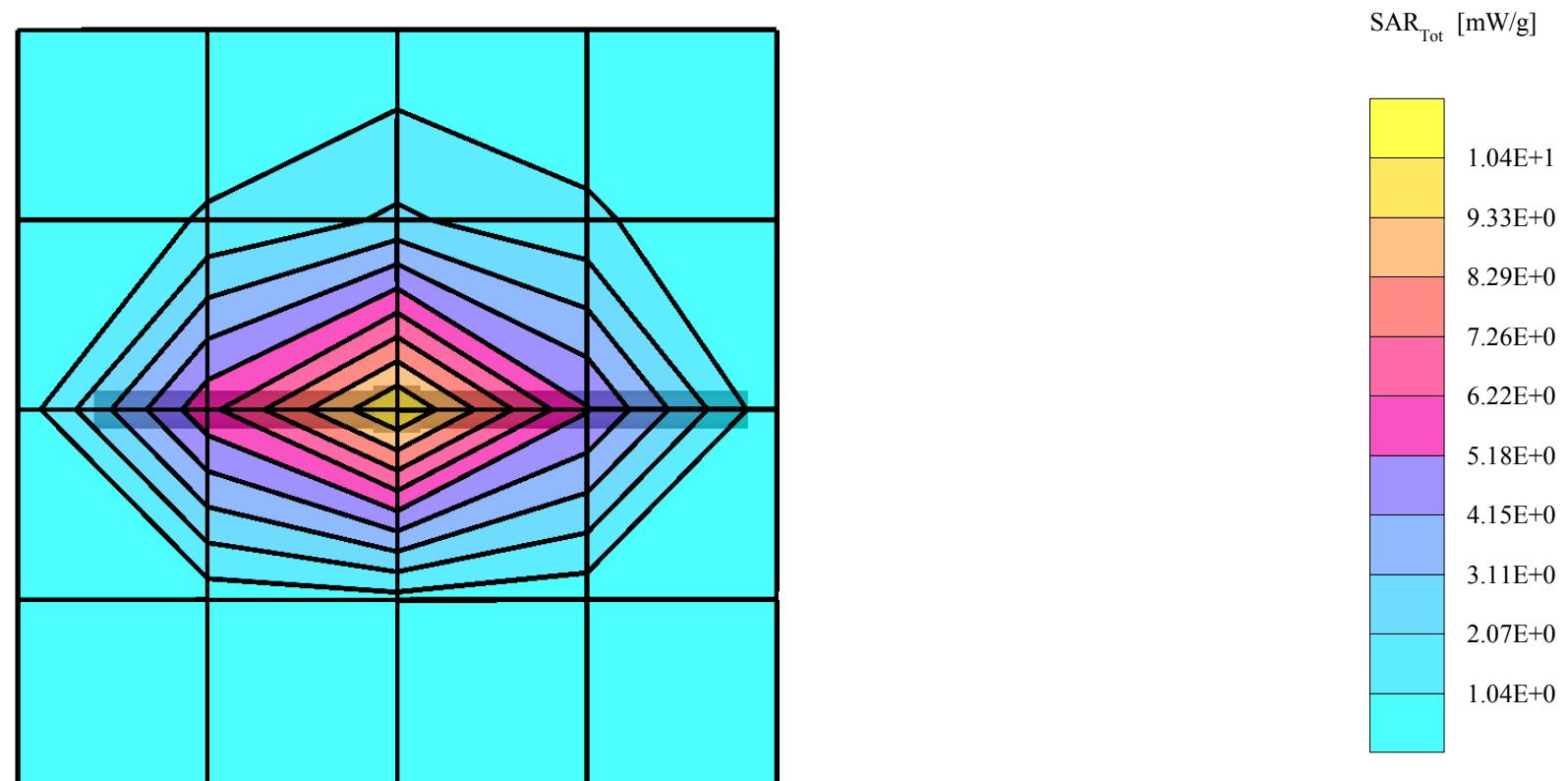
Liquid Temperature (°C): 20.2

Dipole 1900 MHz, Body Validation

SAM 3 (PCS - Brain / Muscle Tissue)

Frequency: 1900 MHz; Crest factor: 1.0

Validation 1900MHz - Muscle Tissue: $\sigma = 1.56 \text{ mho/m}$ $\epsilon_r = 52.3$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.00,5.00,5.00)

Cubes (2): Peak: 18.8 mW/g ± 0.07 dB, SAR (1g): 10.0 mW/g ± 0.02 dB, SAR (10g): 5.16 mW/g ± 0.01 dB, (Worst-case extrapolation)

Penetration depth: 8.5 (7.9, 9.7) [mm]

Powerdrift: -0.03 dB

Liquid Temperature (°C): 19.4

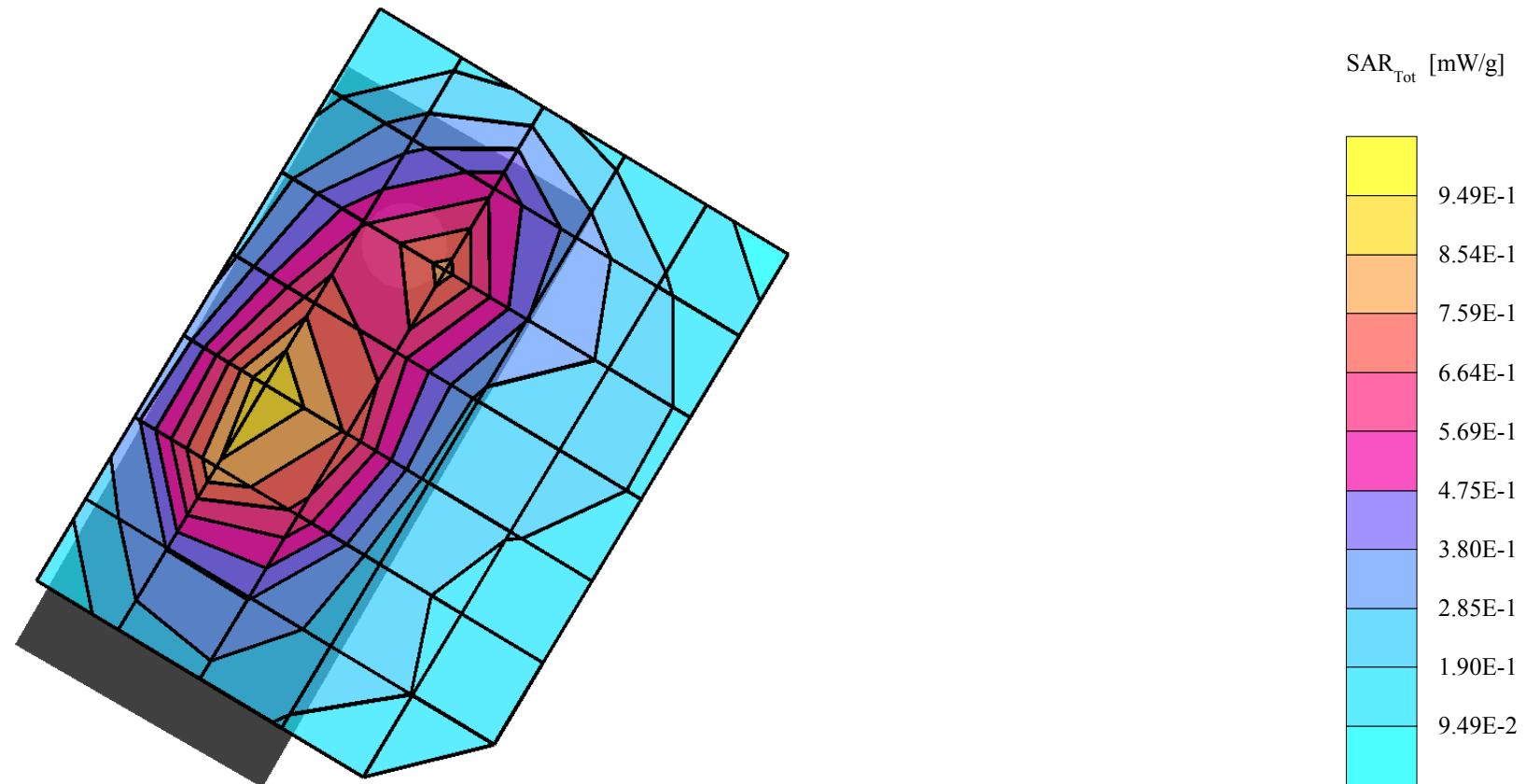
APPENDIX C: SAR DISTRIBUTION PRINTOUTS

QMNRH-27, AMPS, Channel 384, Left Touch Position

SAM 1 (Cellular - Brain Tissue) Phantom

Frequency: 837 MHz; Crest factor: 1.0

Cellular Band - Brain Tissue: $\sigma = 0.92 \text{ mho/m}$ $\epsilon_r = 42.6$ $\rho = 0.91 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cube 5x5x7: SAR (1g): 1.05 mW/g, SAR (10g): 0.567 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.25 dB

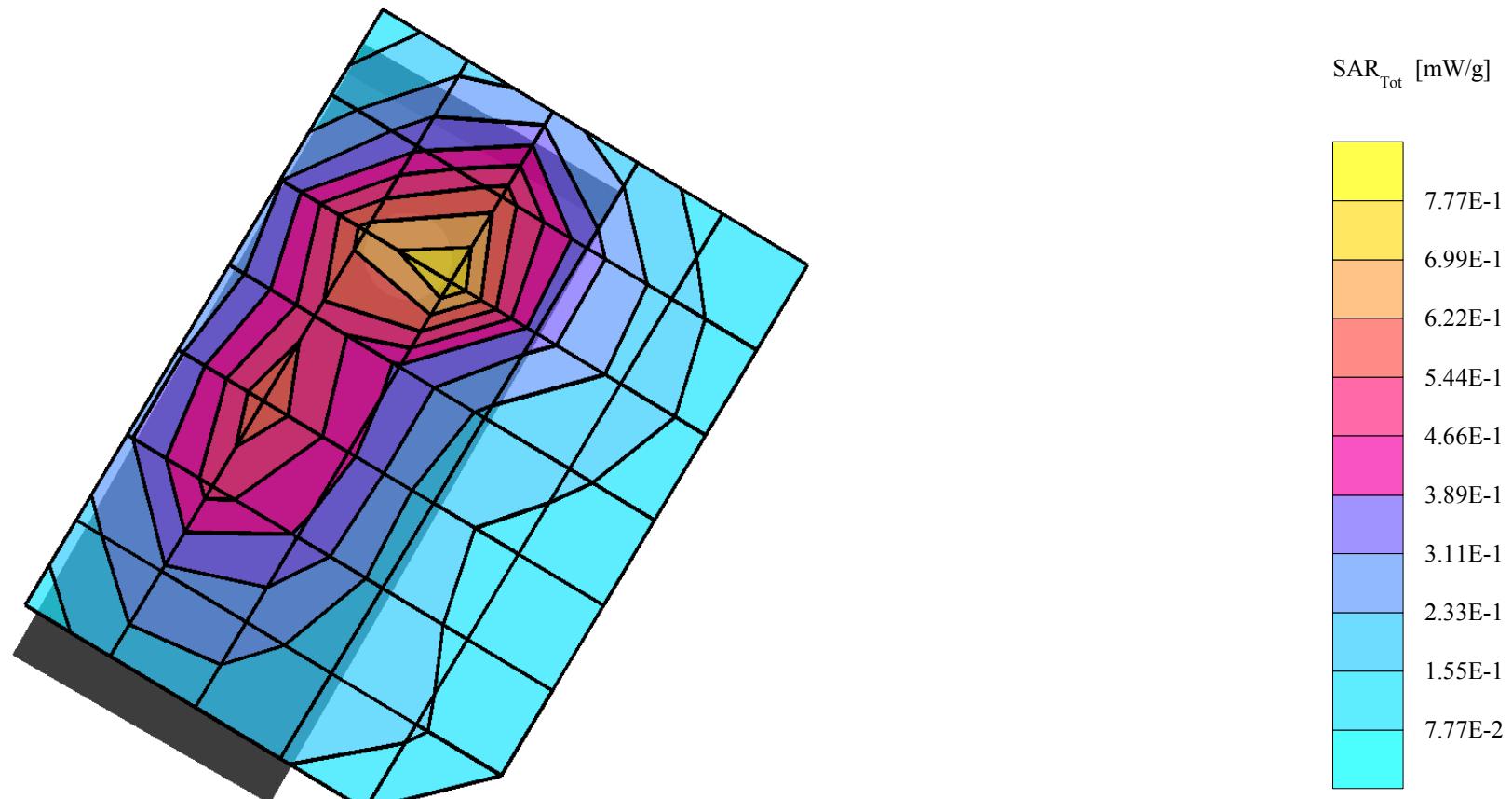
Liquid Temperature (°C): 20.0

QMNRH-27, AMPS, Channel 799, Left Tilt Position

SAM 1 (Cellular - Brain Tissue) Phantom

Frequency: 849 MHz; Crest factor: 1.0

Cellular Band - Brain Tissue: $\sigma = 0.91 \text{ mho/m}$ $\epsilon_r = 42.4$ $\rho = 0.91 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cube 5x5x7: SAR (1g): 0.747 mW/g, SAR (10g): 0.401 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.08 dB

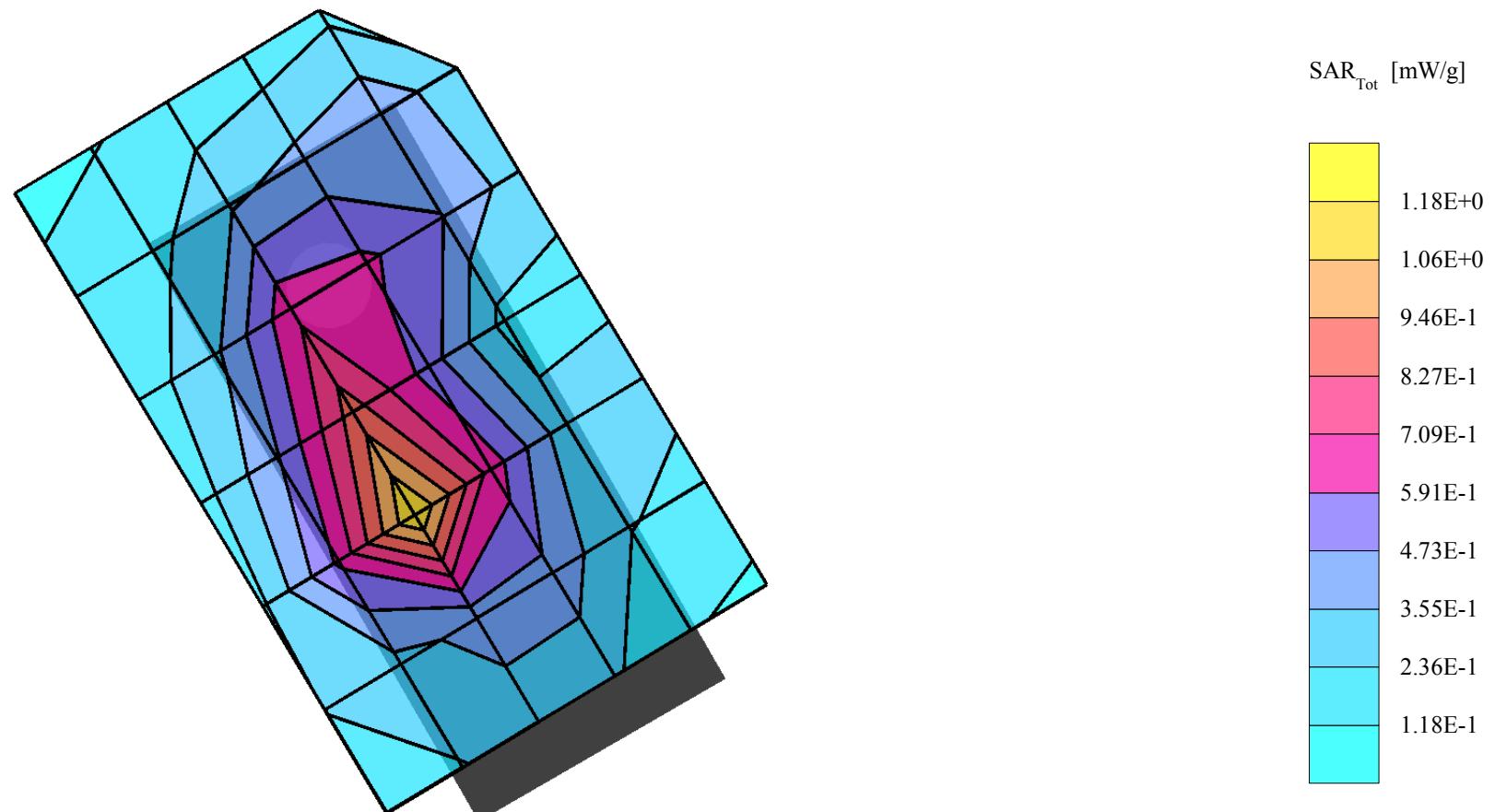
Liquid Temperature (°C): 20.2

QMNRH-27, AMPS, Channel 384, Right Touch Position

SAM 1 (Cellular - Brain Tissue) Phantom

Frequency: 837 MHz; Crest factor: 1.0

Cellular Band - Brain Tissue: $\sigma = 0.92 \text{ mho/m}$ $\epsilon_r = 42.6$ $\rho = 0.91 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): SAR (1g): 1.07 mW/g \pm 0.05 dB, SAR (10g): 0.562 mW/g \pm 0.07 dB, (Worst-case extrapolation)

Coarse: Dx = 19.0, Dy = 14.0, Dz = 10.0

Powerdrift: -0.31 dB

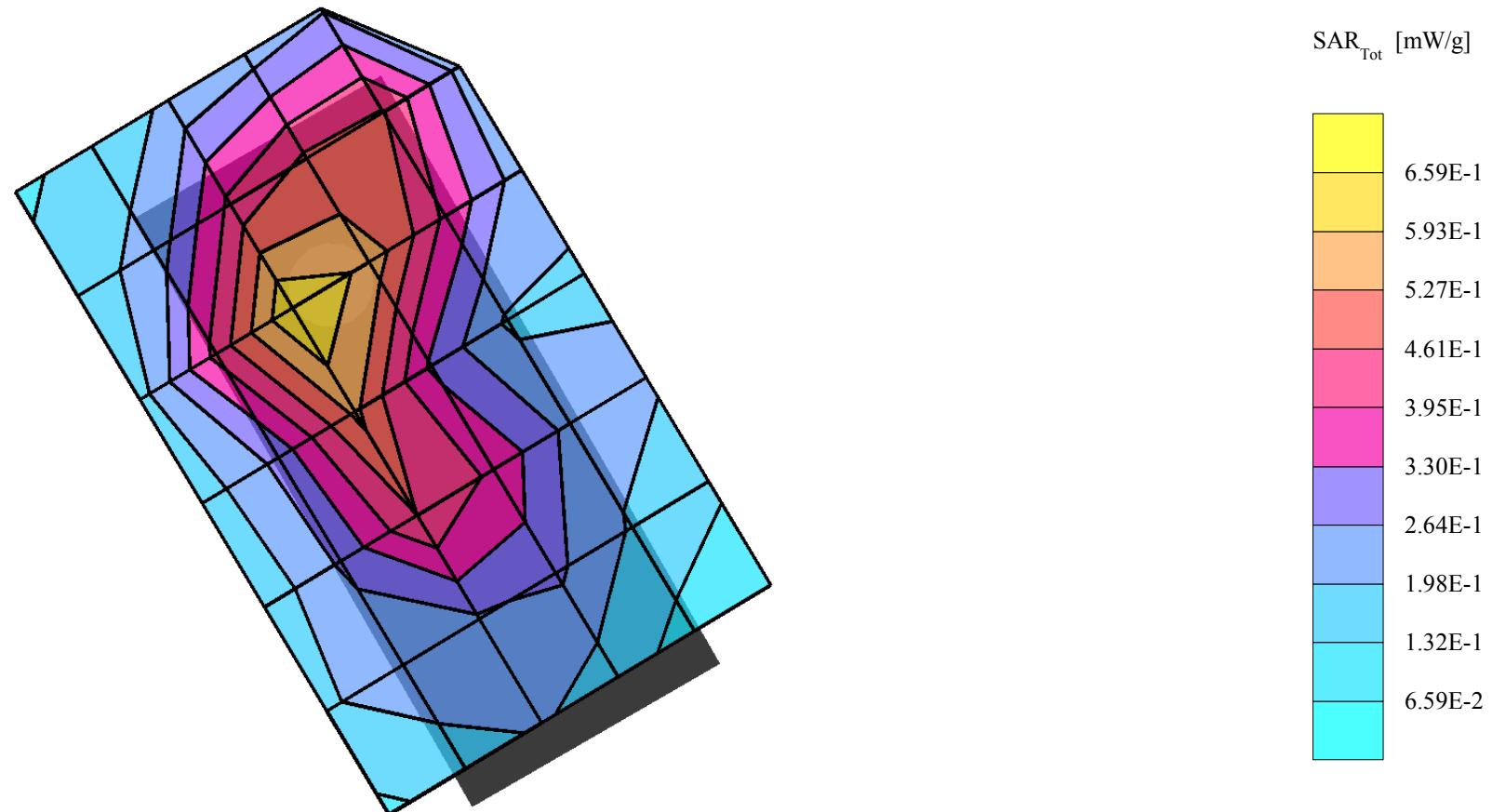
Liquid Temperature (°C): 20.0

QMNRH-27, AMPS, Channel 799, Right Tilt Position

SAM 1 (Cellular - Brain Tissue) Phantom

Frequency: 849 MHz; Crest factor: 1.0

Cellular Band - Brain Tissue: $\sigma = 0.91 \text{ mho/m}$ $\epsilon_r = 42.4$ $\rho = 0.91 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): SAR (1g): 0.684 mW/g ± 0.12 dB, SAR (10g): 0.381 mW/g ± 0.03 dB, (Worst-case extrapolation)

Coarse: Dx = 19.0, Dy = 14.0, Dz = 10.0

Powerdrift: -0.14 dB

Liquid Temperature (°C): 20.2

QMNRH-27, AMPS, Channel 384, Flat Position - Back of Phone with 22mm Spacer and HDK-1K Headset

SAM 2 (Cellular - Muscle Tissue) Phantom

Frequency: 837 MHz; Crest factor: 1.0

Cellular Band - Muscle Tissue: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 54.8$ $\rho = 1.00 \text{ g/cm}^3$

Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cube 5x5x7: SAR (1g): 0.965 mW/g, SAR (10g): 0.677 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 12.0

Powerdrift: -0.35 dB

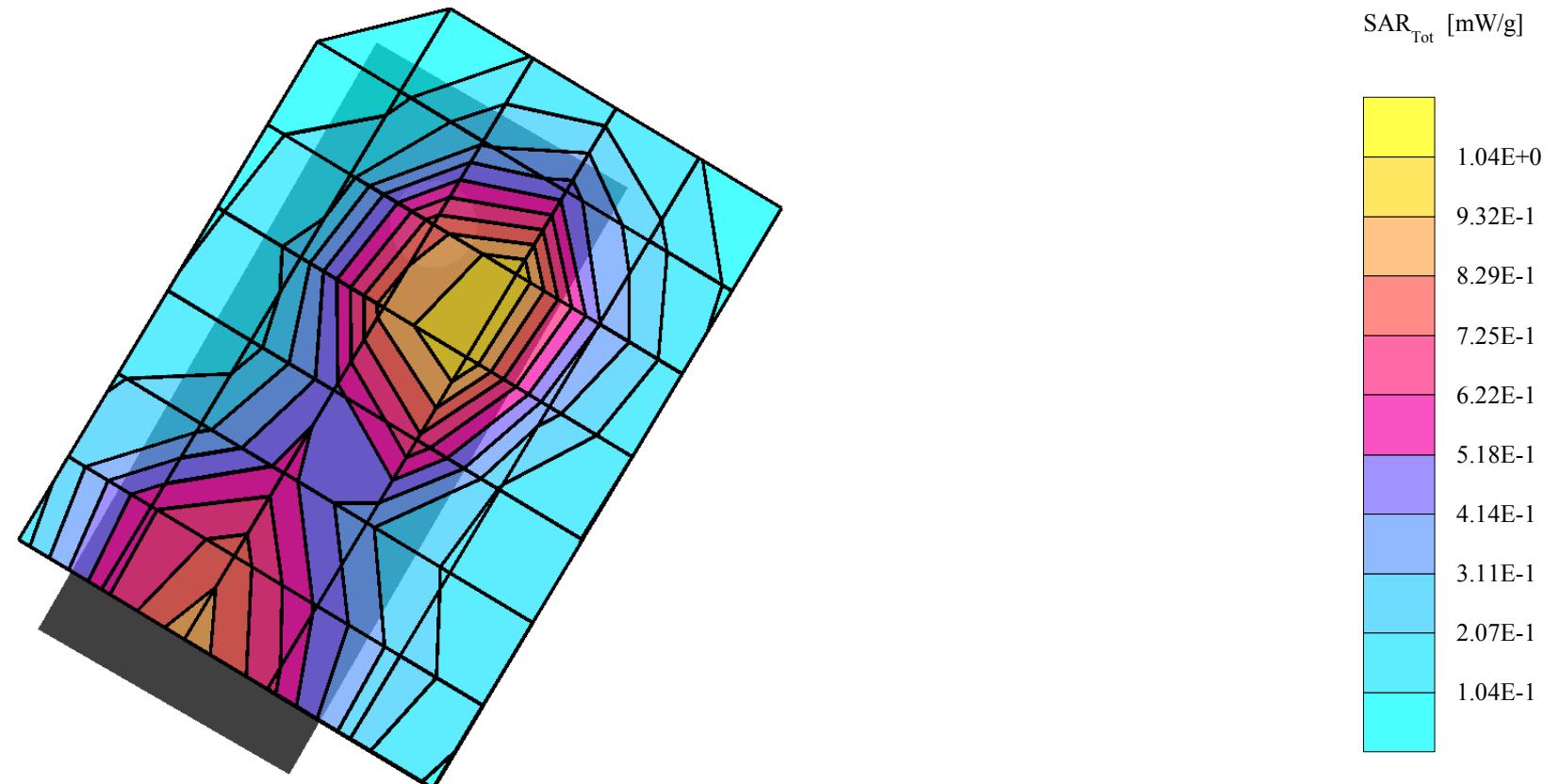
Liquid Temperature (°C): 21.5

QMNRH-27, CDMA 1900, Channel 600, Left Touch Position

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0

PCS Band - Brain Tissue: $\sigma = 1.43 \text{ mho/m}$ $\epsilon_r = 38.8$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cube 5x5x7: SAR (1g): 1.10 mW/g, SAR (10g): 0.603 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.16 dB

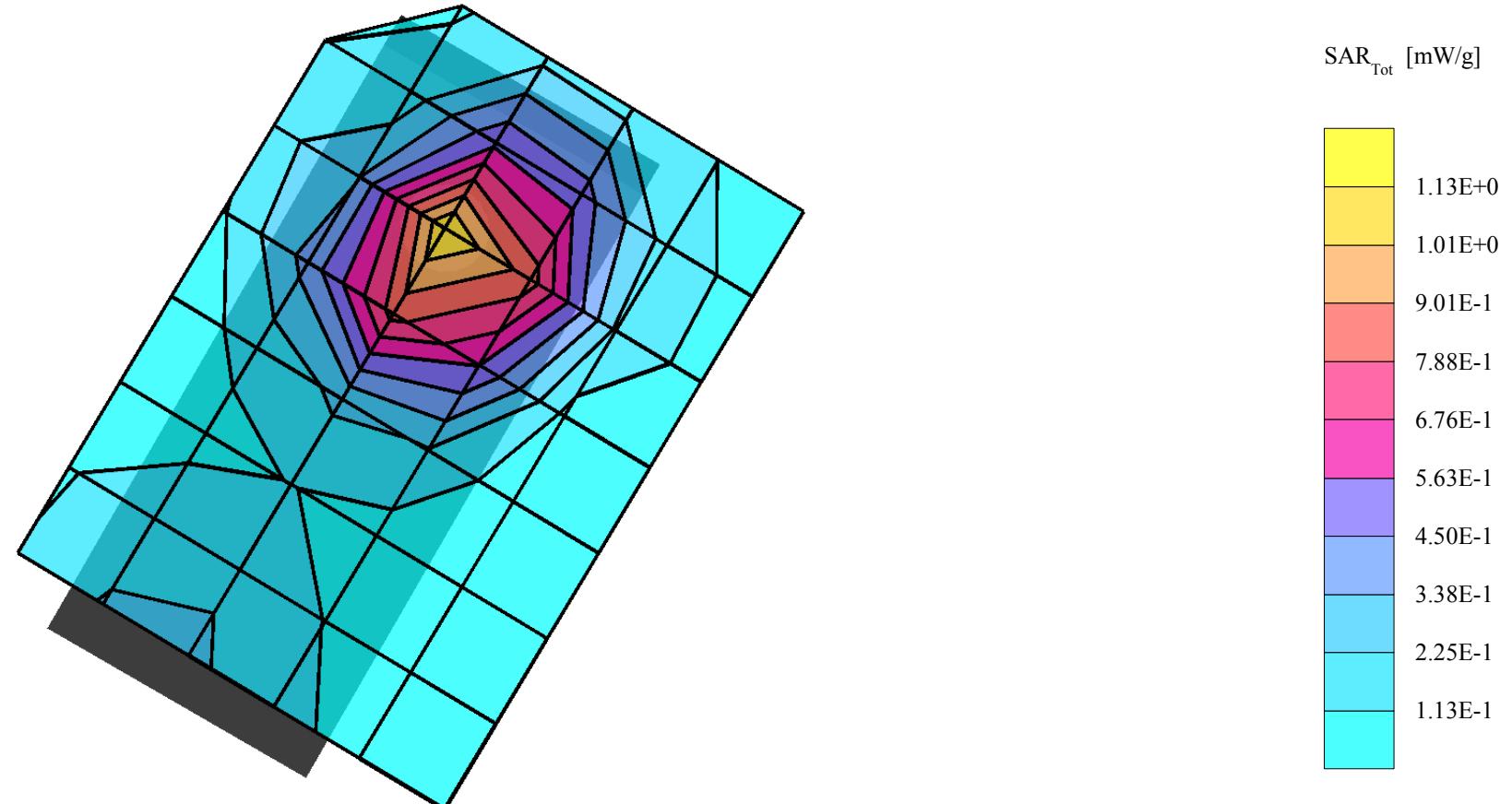
Liquid Temperature (°C): 19.2

QMNRH-27, CDMA 1900, Channel 600, Left Tilt Position

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0

PCS Band - Brain Tissue: $\sigma = 1.44 \text{ mho/m}$ $\epsilon_r = 38.6$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cube 5x5x7: SAR (1g): 1.12 mW/g, SAR (10g): 0.594 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.06 dB

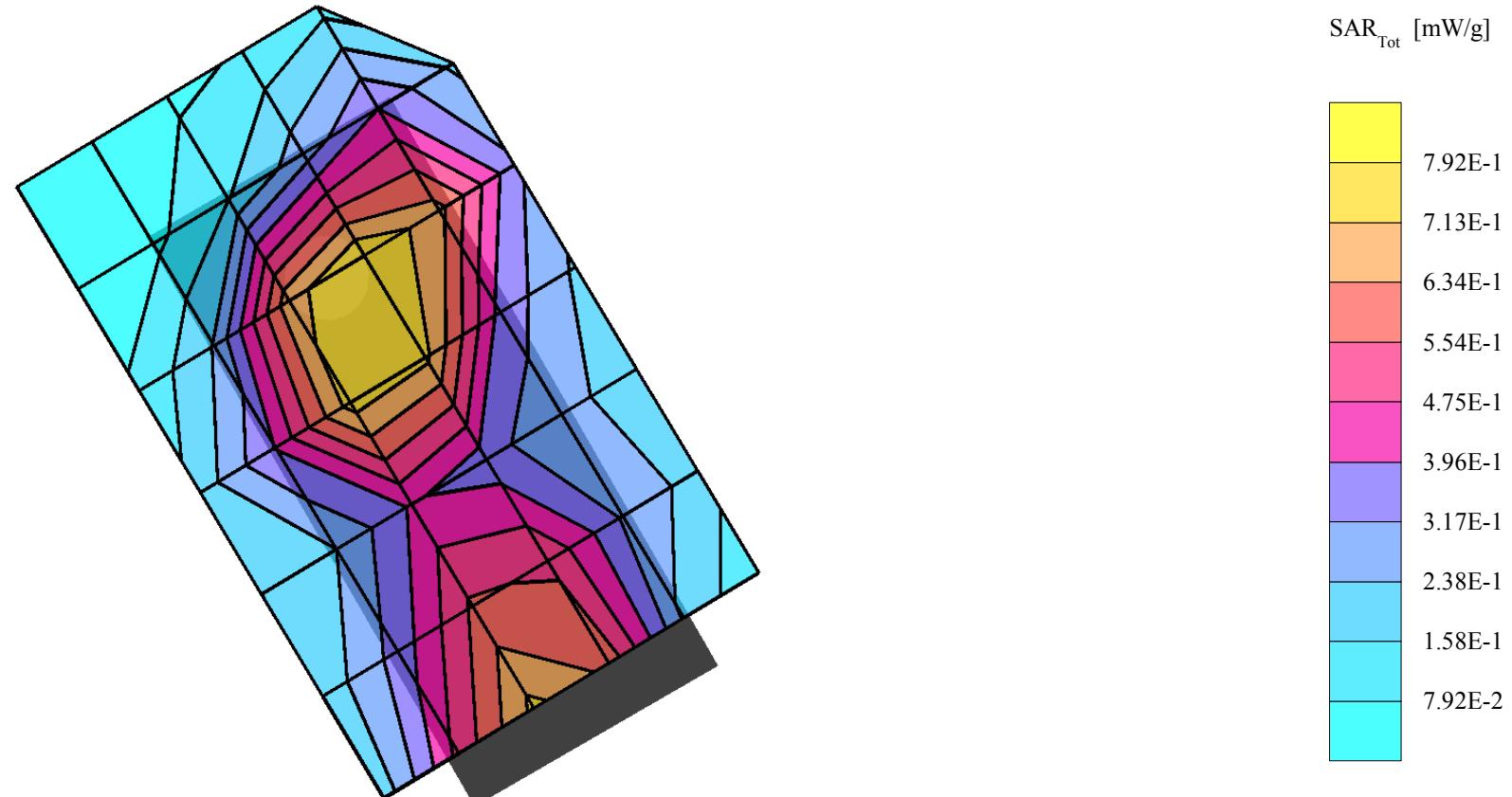
Liquid Temperature (°C): 20.7

QMNRH-27, CDMA 1900, Channel 600, Right Touch Position

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0

PCS Band - Brain Tissue: $\sigma = 1.40 \text{ mho/m}$ $\epsilon_r = 38.4$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cube 5x5x7: SAR (1g): 0.876 mW/g, SAR (10g): 0.512 mW/g, (Worst-case extrapolation)

Coarse: Dx = 19.0, Dy = 14.0, Dz = 10.0

Powerdrift: -0.03 dB

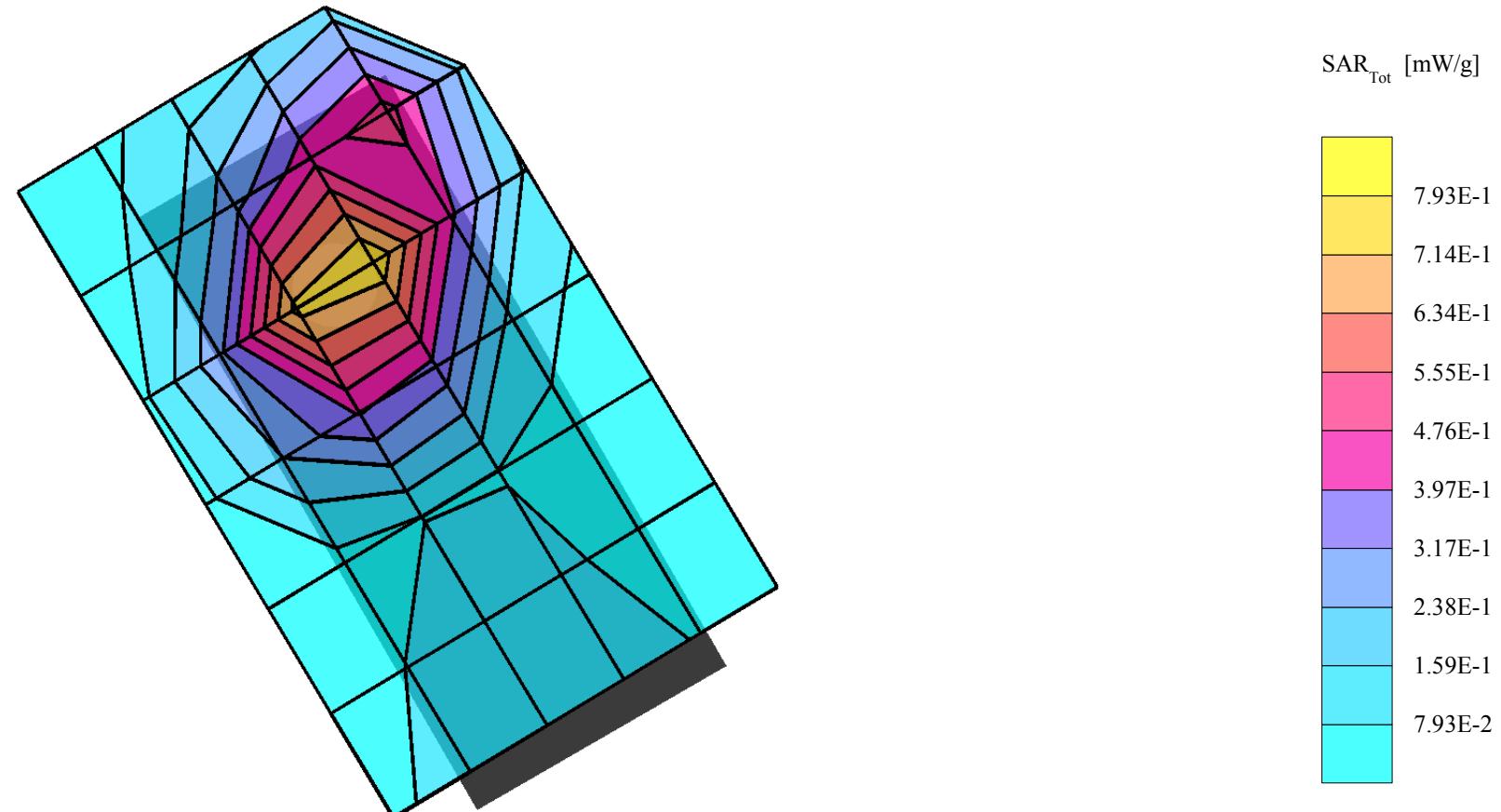
Liquid Temperature (°C): 20.7

QMNRH-27, CDMA 1900, Channel 600, Right Tilt Position

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0

PCS Band - Brain Tissue: $\sigma = 1.40 \text{ mho/m}$ $\epsilon_r = 38.4$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cube 5x5x7: SAR (1g): 0.807 mW/g, SAR (10g): 0.456 mW/g, (Worst-case extrapolation)

Coarse: Dx = 19.0, Dy = 14.0, Dz = 10.0

Powerdrift: -0.13 dB

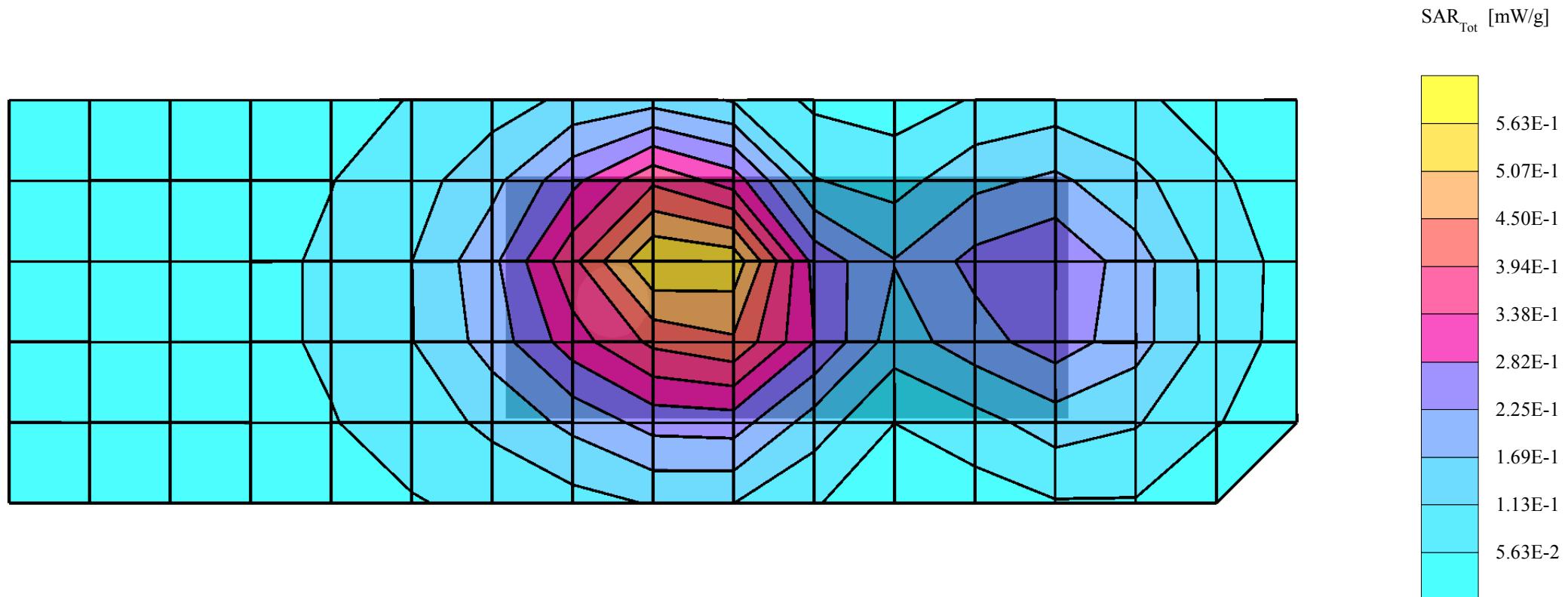
Liquid Temperature (°C): 20.7

QMNRH-27, CDMA 1900, Channel 600, Flat Position - Back of Phone with 22mm Spacer and HDB-4 Headset

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0

PCS Band - Muscle Tissue: $\sigma = 1.53 \text{ mho/m}$ $\epsilon_r = 51.9$ $\rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1504; ConvF(5.00,5.00,5.00)

Cube 5x5x7: SAR (1g): 0.544 mW/g, SAR (10g): 0.325 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 12.0

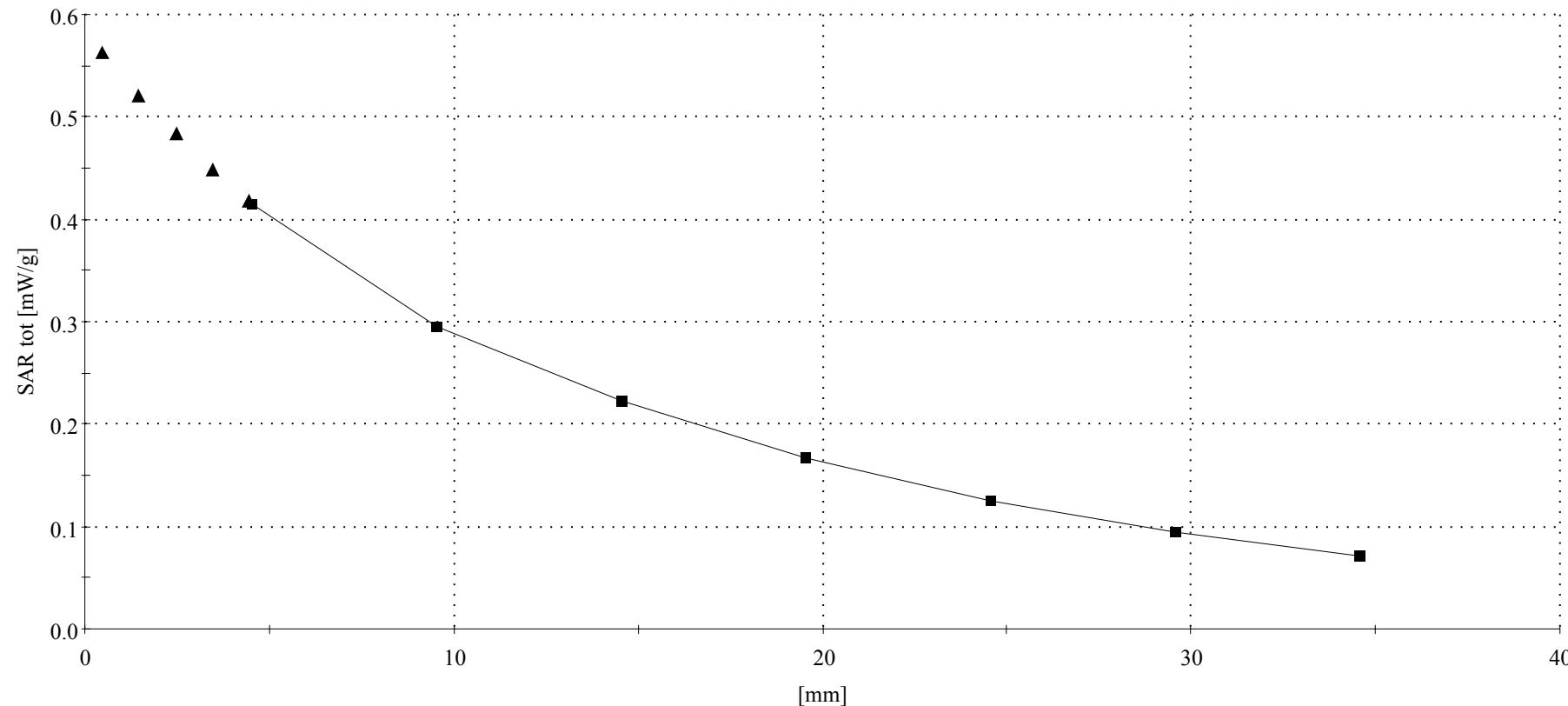
Powerdrift: -0.09 dB

Liquid Temperature (°C): 20.2

QMNRH-27, AMPS, Channel 384, Right Touch Position

SAM 1 (Cellular - Brain Tissue) Phantom

Frequency: 837 MHz; Crest factor: 1.0


Cellular Band - Brain Tissue: $\sigma = 0.92 \text{ mho/m}$ $\epsilon_r = 42.6$ $\rho = 0.91 \text{ g/cm}^3$

Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cubes (2): SAR (1g): $1.07 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (10g): $0.562 \text{ mW/g} \pm 0.07 \text{ dB}$, (Worst-case extrapolation)

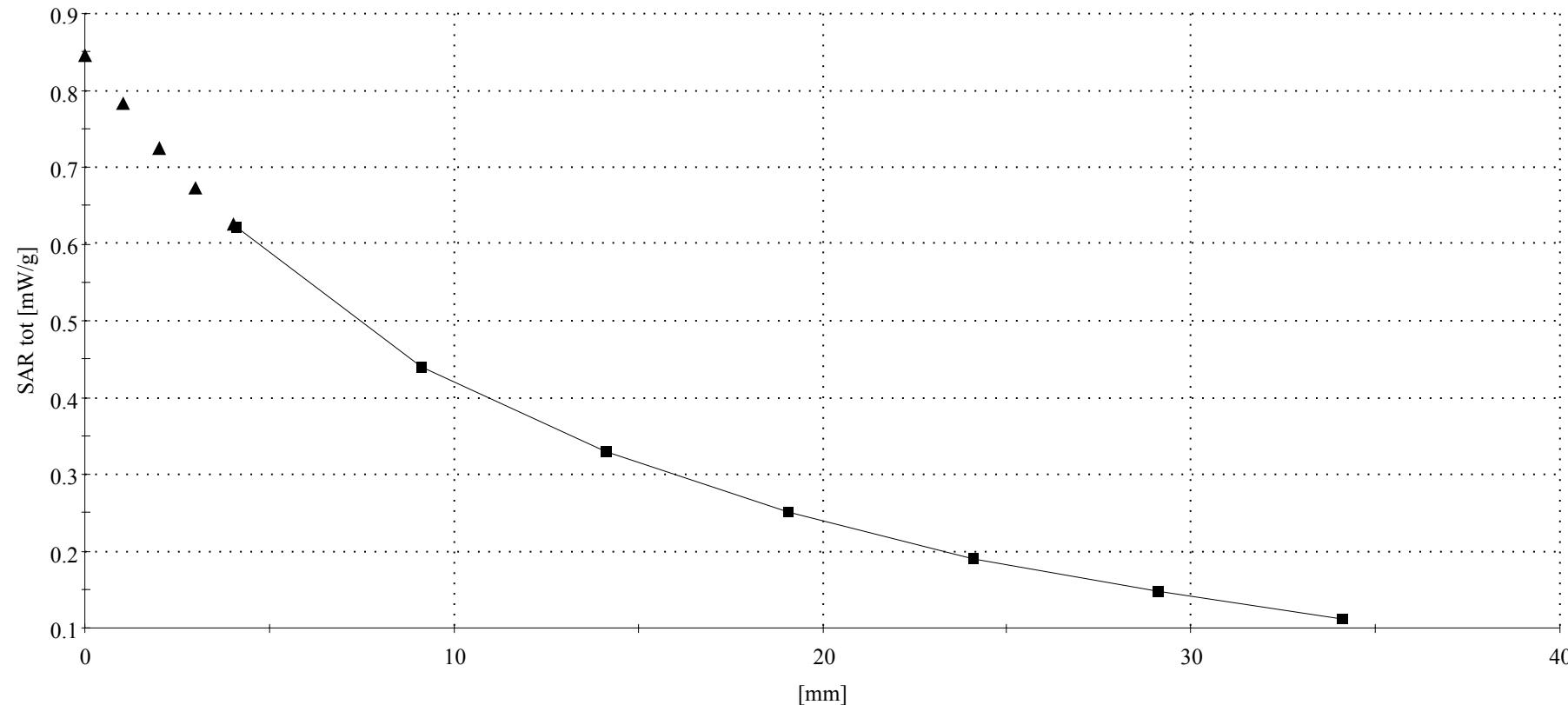
Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

Liquid Temperature (°C): 20.0

QMNRH-27, AMPS, Channel 384, Flat Position - Back of Phone with 22mm Spacer and HDK-1K Headset

SAM 2 (Cellular - Muscle Tissue) Phantom

Frequency: 837 MHz; Crest factor: 1.0


Cellular Band - Muscle Tissue: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 54.8$ $\rho = 1.00 \text{ g/cm}^3$

Probe: ET3DV6 - SN1504; ConvF(6.50,6.50,6.50)

Cube 5x5x7: SAR (1g): 0.965 mW/g, SAR (10g): 0.677 mW/g, (Worst-case extrapolation)

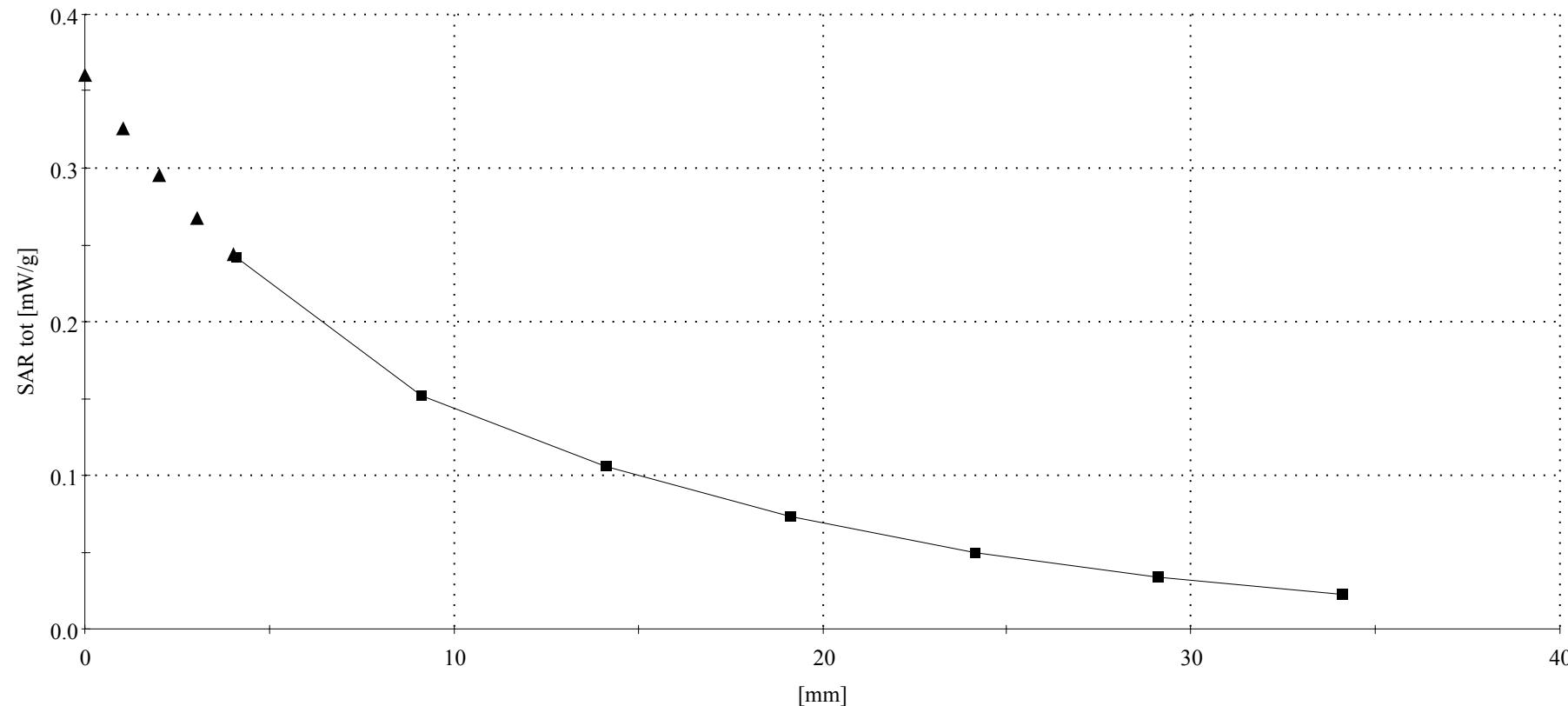
Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

Liquid Temperature (°C): 21.5

QMNRH-27, CDMA 1900, Channel 600, Left Tilt Position

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0


PCS Band - Brain Tissue: $\sigma = 1.44 \text{ mho/m}$ $\epsilon_r = 38.6$ $\rho = 1.00 \text{ g/cm}^3$

Probe: ET3DV6 - SN1504; ConvF(5.40,5.40,5.40)

Cube 5x5x7: SAR (1g): 0.112 mW/g, SAR (10g): 0.594 mW/g, (Worst-case extrapolation)

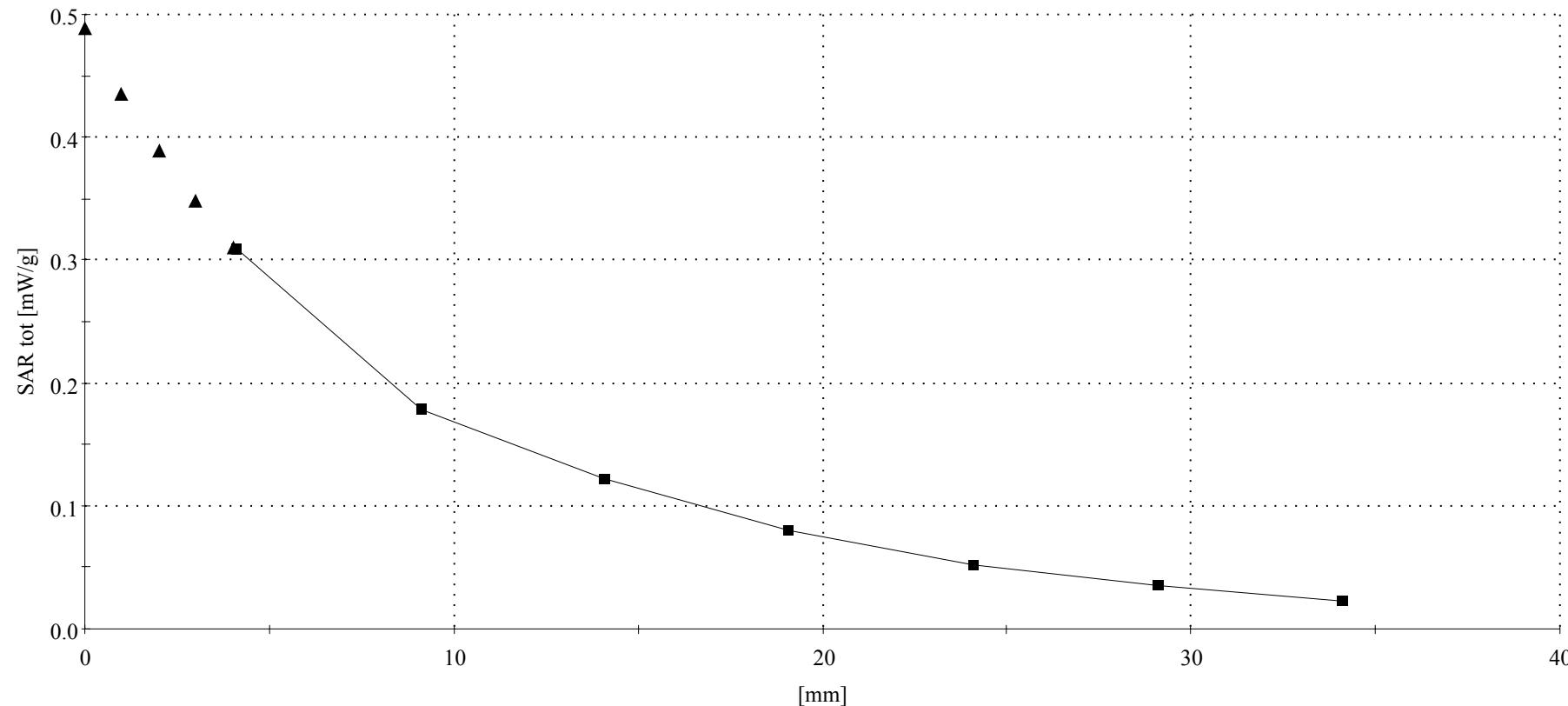
Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

Liquid Temperature (°C): 20.7

QMNRH-27, CDMA 1900, Channel 600, Flat Position - Back of Phone with 22mm Spacer and HDB-4 Headset

SAM 3 (PCS - Brain / Muscle Tissue) Phantom

Frequency: 1880 MHz; Crest factor: 1.0


PCS Band - Muscle Tissue: $\sigma = 1.53 \text{ mho/m}$ $\epsilon_r = 51.9$ $\rho = 1.00 \text{ g/cm}^3$

Probe: ET3DV6 - SN1504; ConvF(5.00,5.00,5.00)

Cube 5x5x7: SAR (1g): 0.544 mW/g, SAR (10g): 0.325 mW/g, (Worst-case extrapolation)

Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

Liquid Temperature (°C): 20.2

