

For

Xingtel Xiamen Electronics Co., Ltd.

Xingtel Building, Chuangxin Road, Torch Hi-tech Industrial District,

Xiamen, Fujian 361006, P. R. of China

FCC ID: QMH3398

IC: 4002A-3398

Report Type: Product Type:

Original Report DECT 6.0 Cordless Phone

Test Engineer: Jimmy Xiao

Report Number: RSZ10082301-SAR

Report Date: 2010-10-20

William Chen

Reviewed By: EMC Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

Jimmy xiao

William . Chan.

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Shenzhen). This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"...

Summary of Test Results				
Rule Part(s):	CFR 47 §2.1093, RSS-102, Issue 4			
Test Procedure(s):	FCC OET Bulletin 65C IEEE 1528-2003			
Device Type:	Portable Device			
Exposure Category	Population/Uncontrolled			
Modulation:	GFSK			
TX Frequency Range:	1921.536-1928.448 MHz			
Maximum Conducted Power Tested:	19.17 dBm			
Antenna Type(s):	Internal Antenna			
Face-Head Accessories:	None			
Max. SAR Level(s) Measured:	0.041 W/Kg, 1g Head Tissue			

This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C and IEEE 1528-2003.

The results and statements contained in this report pertain only to the device(s) evaluated.

EUT Photo

TABLE OF CONTENTS

REFERENCE, STANDARDS AND GUILDELINESSAR LIMITS	
EUT DESCRIPTION	
TECHNICAL SPECIFICATION	
FACILITIES AND ACCREDITATION	
DESCRIPTION OF TEST SYSTEM	
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFO	
SAR MEASUREMENT SYSTEM VERIFICATION	
Liquid Verification	
System Accuracy Verification	
EUT TEST STRATEGY AND METHODOLOGY	20
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
SAR EVALUATION PROCEDURE	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	24
APPENDIX A – MEASUREMENT UNCERTAINTY	25
APPENDIX B – PROBE CALIBRATION CERTIFICATES	26
APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	46
APPENDIX D – SAR SYSTEM VALIDATION DATA	51
APPENDIX E – EUT SCAN RESULTS	53
APPENDIX F – CONDUCTED OUTPUT POWER MEASUREMENT	59
TEST BLOCK DIAGRAM AND PROCEDURE	59
TEST EQUIPMENTS LIST AND DETAILS	
TEST RESULT	
APPENDIX G – EUT TEST POSITION PHOTOS	
LIQUID DEPTH ≥ 15CM LEFT HEAD TOUCH SETUP PHOTO	
LEFT HEAD TILT SETUP PHOTO	
RIGHT HEAD TOUCH SETUP PHOTO	
RIGHT HEAD TILT SETUP PHOTO	62
APPENDIX H – EUT PHOTOS	63
EUT – Front Side View	
EUT – BACK SIDE VIEW	
EUT - BOTTOM SIDE VIEWEUT- UNCOVERED VIEW	
APPENDIX I - INFORMATIVE REFERENCES	
APPENDIX J - PRODUCT SIMILAR DECLARATION LETTER	
ALLENDIA J - FRUDUCT SHYHLAR DECLAKATIUN LETTEK	00

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RSZ10082301-SAR	Original Report	2010-10-20

REFERENCE, STANDARDS AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

CE Limit (10g Tissue)

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	2.0	10	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

EUT DESCRIPTION

This Bay Area Compliance Laboratories Corp. test report has been prepared on behalf of Xingtel Xiamen Electronics Co., Ltd. and their product, Model: 801xyyTP227F, CL-3398, FCC ID: QMH3398, IC: 4002A-3398 or the EUT (Equipment Under Test) as referred to in the rest of this report.

*Note: The series products, model 801xyyTP227F, CL-3398, we select CL-3398 to test, there is no electrical change has been made to the equipment, which was explained in the Appendix J Product Similar Declaration Letter.

Technical Specification

Item	Content	
Modulation	GFSK	
Frequency Band	1921.536-1928.448 MHz	
Dimensions (L*W*H)	150mm (L)× 50mm (W)× 28mm (H)	
Weight	119 g	
Power Source	AAA 1.2 Vdc/600mAh Rechargeable Battery*2	
Normal Operation	Head	

FACILITIES AND ACCREDITATION

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at

6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

DESCRIPTION OF TEST SYSTEM

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments. Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10 mm, with the side length of the 10 g cube 21.5 mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

ALSAS-10U Interpolation and Extrapolation Uncertainty


The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{a^2} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Isotropic E-Field Probe Specification

Calibration in Air	Frequency Dependent Below 2 GHz Calibration in air performed in a TEM Cell Above 2 GHz Calibration in air performed in waveguide	
Sensitivity	$0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$	
Dynamic Range	0.0005 W/kg to 100 W/kg	
Isotropic Response	Better than 0.2 dB	
Diode Compression Point (DCP)	Calibration for Specific Frequency	
Probe Tip Radius	< 5 mm	
Sensor Offset	1.56 (+/- 0.02 mm)	
Probe Length	290 mm	
Video Bandwidth	@ 500 Hz: 1 dB @ 1.02 kHz: 3 dB	
Boundary Effect	Less than 2% for distance greater than 2.4 mm	
Spatial Resolution	Diameter less than 5 mm Compliant with Standards	

Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit	
Amplifier Range	20 mV to 200 mV and 150 mV to 800 mV	
Field Integration	Local Co-Processor utilizing proprietary integration algorithms	
Number of Input Channels	4 in total 3 dedicated and 1 spare	
Communication	Packet data via RS232	

Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

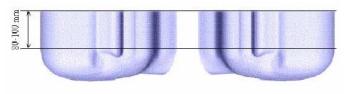
Robot/Controller Manufacturer	Thermo CRS	
Number of Axis Six independently controlled axis		
Positioning Repeatability	0.05 mm	
Controller Type	Single phase Pentium based C500C	
Robot Reach	710 mm	
Communication	RS232 and LAN compatible	

ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

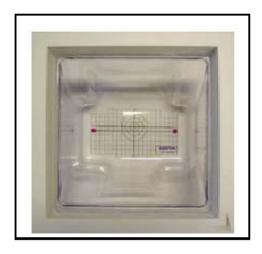
The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.


Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.



APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software.

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

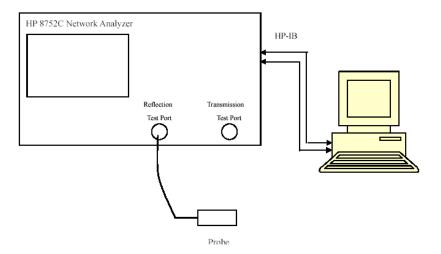
Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	83	35	91	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters

Frequency	Head	Tissue	Body Tissue		
(MHz)	εr	O (S/m)	εr	O'(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Info

Equipment	Model	Calibration Date	S/N	
CRS F3 robot	ALS-F3	N/A	RAF0805352	
CRS F3 Software	ALS-F3-SW	N/A	N/A	
CRS C500C controller	ALS-C500	N/A	RCF0805379	
Probe mounting device & Boundary Detection Sensor System	ALS-PMDPS-3	N/A	120-00270	
Universal Work Station	ALS-UWS	N/A	100-00157	
Data Acquisition Package	ALS-DAQ-PAQ-3	N/A	110-00212	
Miniature E-Field Probe	ALS-E-020	2010-08-21	273	
Dipole,1900 MHz	ALS-D-1900-S-2	2010-09-20	210-00710	
Dipole Spacer	ALS-DS-U	N/A	250-00907	
R&S, universal Radio Communication Tester	CMU200	2010-06-28	1100.0008.02	
Device holder/Positioner	ALS-H-E-SET-2	N/A	170-00510	
Left ear SAM phantom	ALS-P-SAM-L	N/A	130-00311	
Right ear SAM phantom	ALS-P-SAM-R	N/A	140-00359	
UniPhantom	ALS-P-UP-1	N/A	150-00413	
Simulated Tissue 1900 MHz Head	ALS-T-1900-1-H	Each Time	295-01103	
Signal Generator	HP8648C	2010-04-28	3426A01345	
Power Amplifier	5S1G4	N/A	71377	
Spectrum Analyzer	FSEM30	2010-07-05	849720/019	

SAR MEASUREMENT SYSTEM VERIFICATION

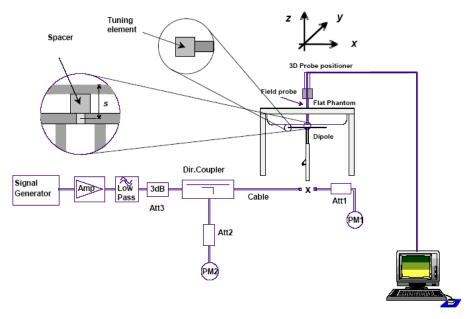
Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid	Liquid Parameter		Result	
(MHz)	Type	εr	O'(S/m)	Result	
1900	Head	39.88	1.43	In Tolerance	

^{*} Verification was performed on 2010-09-21.


Please refer to the following tables.

1900 MHz Head			1900 MHz Body				
Frequency	e'	e''	Frequency	e'	e''		
1921536000	39.922824	13.162845	1921536000	53.054030	14.211755		
1921674240	39.896435	13.172304	1921674240	53.034137	14.176180		
1921812480	39.907412	13.164600	1921812480	53.038365	14.167597		
1921950720	39.902130	13.178994	1921950720	53.007467	14.153109		
1922088960	39.869402	13.168444	1922088960	53.004793	14.161845		
1922227200	39.879729	13.203075	1922227200	52.964973	14.166535		
1922365440	39.880348	13.144925	1922365440	52.977262	14.154463		
1922503680	39.846199	13.204184	1922503680	52.977927	14.175200		
1922641920	39.846741	13.170031	1922641920	52.954305	14.172941		
1922780160	39.848052	13.180326	1922780160	52.983157	14.146054		
1922918400	39.835827	13.216973	1922918400	52.983695	14.170661		
1923056640	39.819159	13.193573	1923056640	52.974716	14.188825		
1923194880	39.816722	13.212153	1923194880	52.991156	14.173006		
1923333120	39.798719	13.210549	1923333120	52.977569	14.169313		
1923471360	39.790374	13.238774	1923471360	52.995045	14.171158		
1923609600	39.814867	13.228614	1923609600	52.987021	14.173636		
1923747840	39.806584	13.256831	1923747840	52.996911	14.208360		
1923886080	39.791855	13.265139	1923886080	53.023010	14.194944		
1924024320	39.821725	13.239626	1924024320	53.030882	14.194273		
1924162560	39.810296	13.257863	1924162560	53.054441	14.231560		
1924300800	39.781409	13.248184	1924300800	53.047722	14.247744		
1924439040	39.787684	13.261263	1924439040	53.069855	14.275086		
1924577280	39.798792	13.177299	1924577280	53.087787	14.268939		
1924715520	39.806940	13.174299	1924715520	53.083618	14.275369		
1924853760	39.807376	13.196999	1924853760	53.093388	14.276566		
1924992000	39.783399	13.190275	1924992000	53.115446	14.307681		
1925130240	39.822950	13.218188	1925130240	53.110348	14.292521		
1925268480	39.814510	13.207706	1925268480	53.095492	14.319850		
1925406720	39.836606	13.207786	1925406720	53.125693	14.302362		
1925544960	39.840282	13.216487	1925544960	53.148051	14.329453		
1925683200	39.834868	13.224929	1925683200	53.135633	14.347123		
1925821440	39.835862	13.229320	1925821440	53.130059	14.343553		
1925959680	39.830934	13.219580	1925959680	53.117089	14.331837		
1926097920	39.848881	13.246023	1926097920	53.125606	14.363997		
1926236160	39.852024	13.249054	1926236160	53.106530	14.357883		
1926374400	39.873896	13.258082	1926374400	53.147601	14.360198		
1926512640	39.835541	13.275458	1926512640	53.134355	14.356307		
1926650880	39.863214	13.274792	1926650880	53.111115	14.312954		
1926789120	39.887806	13.288019	1926789120	53.106252	14.342431		
1926927360	39.858018	13.299999	1926927360	53.122243	14.337780		
1927065600	39.867174	13.316985	1927065600	53.093432	14.381852		
1927203840	39.892165	13.312018	1927203840	53.076253	14.332958		
1927342080	39.895591	13.338625	1927342080	53.092365	14.328230		
1927480320	39.904375	13.308196	1927480320	53.111209	14.350865		
1927618560	39.906679	13.323576	1927618560	53.116695	14.318535		
1927756800	39.893936	13.324727	1927756800	53.093400	14.327751		
1927895040	39.896598	13.321994	1927895040	53.070993	14.313685		
1928033280	39.889297	13.331584	1928033280	53.094065	14.328568		
1928171520	39.884227	13.298124	1928171520	53.077434	14.316735		
1928309760	39.879671	13.311909	1928309760	53.067691	14.328370		
1928448000	39.885806	13.309931	1928448000	53.132225	14.323442		

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

System Verification Setup Block Diagram

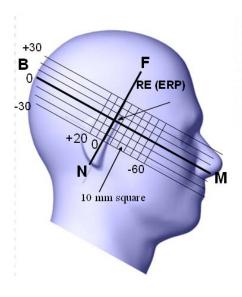
System Accuracy Check Results

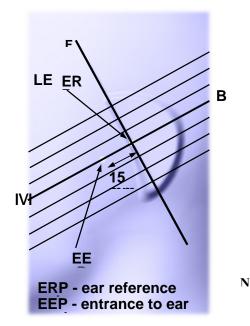
Frequency	1 g SAR	10 g SAR	Result	
(MHz)	(W/Kg)	(W/Kg)		
1900	41.691	21.315	In Tolerance	

^{*} System Check was performed on 2010-09-22.

All SAR values are normalized to 1 Watt forward power.

IEEE P1528 recommended reference value for Head Tissue


Frequency (MHz)	1 g SAR (W/Kg)	10 g SAR (W/Kg)	Local SAR at surface (above feed point)	Local SAR at surface (v=2cm offset from feed point)
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
835	9.5	6.2	14.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50.2	6.5
1800	38.1	19.8	69.5	6.8
1900	39.7	20.5	72.1	6.6
2000	41.1	21.1	74.6	6.5
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

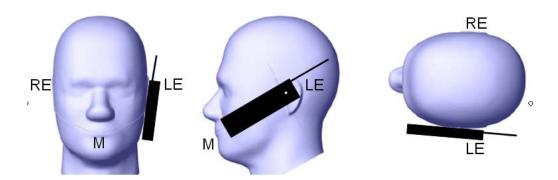

EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position

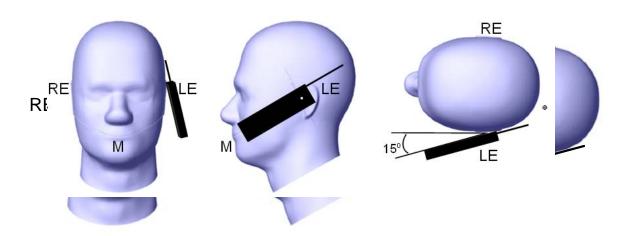

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

- When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Check / Touch Position


Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 15 mm x 15 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 21 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device, could be found in Appendix E.

SAR Test Data

Environmental Conditions

Temperature:	21° C	
Relative Humidity:	54%	
ATM Pressure:	1005 mbar	

^{*} Testing was performed by Jimmy Xiao on 2010-09-22—09-23.

EUT	Frequency (MHz)		Antenna	1 g SAR Value	FCC Limit	
Position	Channel	MHz	Туре	(W/Kg)	(W/Kg)	
Left Head	0 (Low)	1928.448	Integral	0.035	1.6	
Cheek	2 (Middle)	1924.992	Integral	-	1.6	
	4 (High)	1921.536	Integral	-	1.6	
1 -0 11 - 1	0 (Low)	1928.448	Integral	0.023	1.6	
Left Head Tilt	2 (Middle)	1924.992	Integral	-	1.6	
	4 (High)	1921.536	Integral	-	1.6	
Right Head Cheek	0 (Low)	1928.448	Integral	0.041	1.6	
	2 (Middle)	1924.992	Integral	0.028	1.6	
	4 (High)	1921.536	Integral	0.036	1.6	
Right Head -	0 (Low)	1928.448	Integral	0.024	1.6	
	2 (Middle)	1924.992	Integral	-	1.6	
	4 (High)	1921.536	Integral	-	1.6	

Note: Right Head Cheek is the worst case model.

APPENDIX A – MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %	
	Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	
Axial Isotropy	3.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	$(1-cp)^1$	1.5	1.5	
Hemispherical Isotropy	10.9	rectangular	$\sqrt{3}$	√ср	√ср	4.4	4.4	
Boundary Effect	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6	
Linearity	4.7	rectangular	$\sqrt{3}$	1	1	2.7	2.7	
Detection Limit	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6	
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	
Response Time	0.8	rectangular	$\sqrt{3}$	1	1	0.5	0.5	
Integration Time	1.7	rectangular	$\sqrt{3}$	1	1	1.0	1.0	
RF Ambient Condition	3.0	rectangular	$\sqrt{3}$	1	1	1.7	1.7	
Probe Positioner Mech.	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2	
		Res	triction					
Probe Positioning with respect to Phantom Shell	2.9	rectangular	$\sqrt{3}$	1	1	1.7	1.7	
Extrapolation and Integration	3.7	rectangular	$\sqrt{3}$	1	1	2.1	2.1	
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0	
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0	
Drift of Output Power	3.2	rectangular	$\sqrt{3}$	1	1	1.8	1.8	
		Phantor	n and Seti	ир				
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	$\sqrt{3}$	1	1	2.0	2.0	
Liquid Conductivity(target)	5.0	rectangular	$\sqrt{3}$	0.7	0.5	2.0	1.4	
Liquid Conductivity(meas.)	0.0	normal	1	0.7	0.5	0.0	0.0	
Liquid Permittivity(target)	5.0	rectangular	$\sqrt{3}$	0.6	0.5	1.7	1.4	
Liquid Permittivity(meas.)	0.0	normal	1	0.6	0.5	0.0	0.0	
Combined Uncertainty Combined Uncertainty (coverage factor=2)		RSS Normal(k=2)				9.4	9.2	

APPENDIX B – PROBE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1141

Client.: BACL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

Manufacturer: APREL Laboratories Model No.: E-020 Serial No.: 273

Calibration in Head Tissue

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2
Project No: BACB-E020-5537

Calibrated: 21st August 2010 Released on: 24th August 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Division of APREL Laboratories.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 273.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 273 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Page 2 of 10

Division of APREL Laboratories.

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 273

Frequency: 1900 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Laboratories.

Sensitivity in Head Tissue Measured

Frequency: 1900 MHz

Epsilon: 38.90 (+/-5%) **Sigma:** 1.39 S/m (+/-5%)

ConvF

Channel X: 5.25

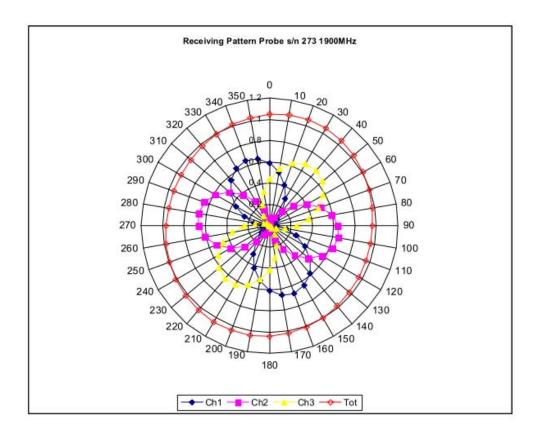
Channel Y: 5.25

Channel Z: 5.25

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

Boundary Effect:

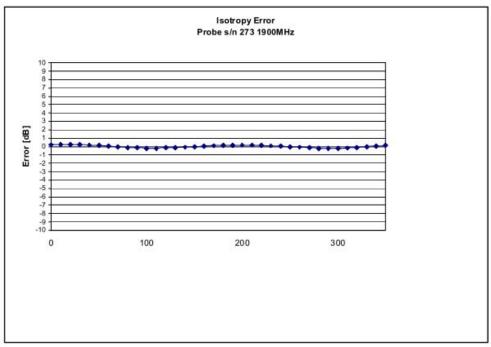
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.

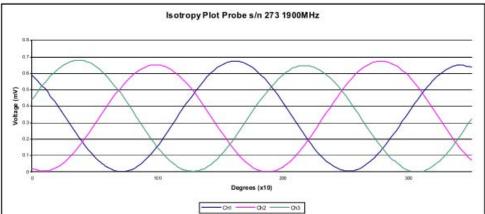

Spatial Resolution:

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Page 4 of 10

Division of APREL Laboratories.

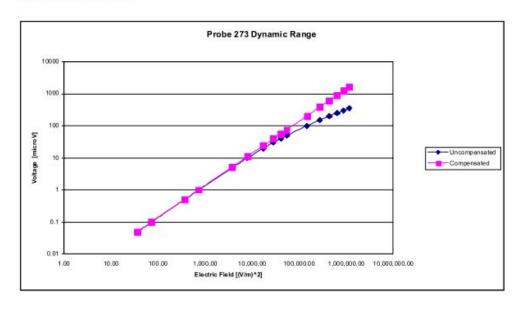

Receiving Pattern 1900 MHz (Air)



Page 5 of 10

Division of APREL Laboratories.

Isotropy Error 1900 MHz (Air)

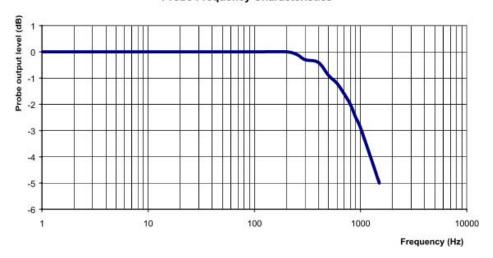

Isotropicity in Tissue:

0.10 dB

Page 6 of 10

NCL Calibration Laboratories Division of APREL Laboratories.

Dynamic Range



Page 7 of 10

Division of APREL Laboratories.

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Page 8 of 10

Division of APREL Laboratories.

Conversion Factor Uncertainty Assessment

Frequency: 1900MHz

Epsilon: 38.90 (+/-5%) **Sigma:** 1.39 S/m (+/-5%)

ConvF

Channel X: 5.25 7%(K=2)

Channel Y: 5.25 7%(K=2)

Channel Z: 5.25 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Page 9 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Laboratories.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Page 10 of 10

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1142

Client.: BACL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

Manufacturer: APREL Laboratories Model No.: E-020 Serial No.: 273

Calibration in Body Tissue

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: BACB-E020-5537

Calibrated: 21st August 2010 Released on: 24th August 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Division of APREL Laboratories.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 273.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 273 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Page 2 of 10

Division of APREL Laboratories.

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 273

Frequency: 1900 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

 Channel X:
 1.2 μV/(V/m)²

 Channel Y:
 1.2 μV/(V/m)²

 Channel Z:
 1.2 μV/(V/m)²

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Page 3 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Laboratories.

Sensitivity in Body Tissue Measured

Frequency: 1900 MHz

Epsilon: 53.11 (+/-5%) **Sigma:** 1.56 S/m (+/-5%)

ConvF

Channel X: 5.15

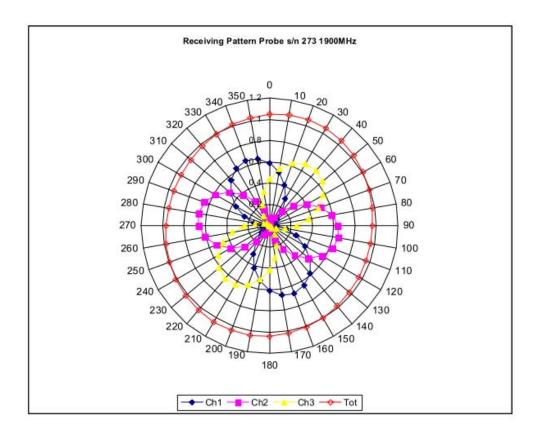
Channel Y: 5.15

Channel Z: 5.15

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

Boundary Effect:

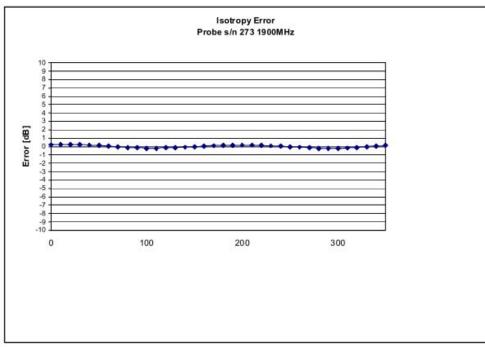
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.

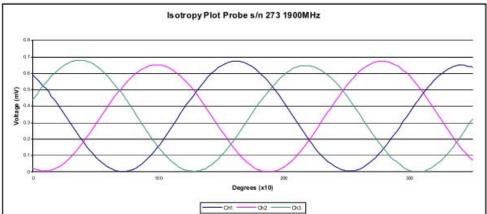

Spatial Resolution:

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Page 4 of 10

Division of APREL Laboratories.

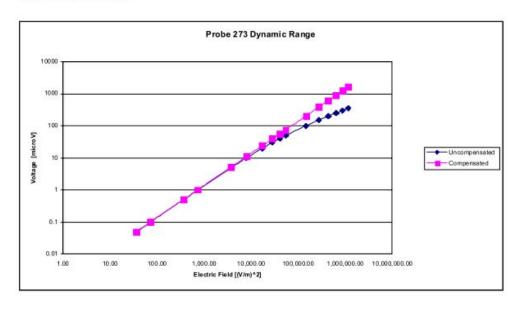

Receiving Pattern 1900 MHz (Air)



Page 5 of 10

Division of APREL Laboratories.

Isotropy Error 1900 MHz (Air)

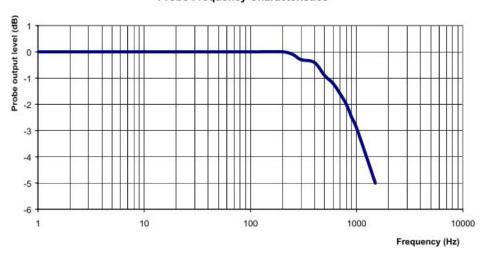

Isotropicity in Tissue:

0.10 dB

Page 6 of 10

NCL Calibration Laboratories Division of APREL Laboratories.

Dynamic Range



Page 7 of 10

Division of APREL Laboratories.

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Page 8 of 10

Division of APREL Laboratories.

Conversion Factor Uncertainty Assessment

Frequency: 1900MHz

Epsilon: 53.11 (+/-5%) **Sigma:** 1.56 S/m (+/-5%)

ConvF

Channel X: 5.15 7%(K=2)

Channel Y: 5.15 7%(K=2)

Channel Z: 5.15 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Page 9 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Laboratories.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Page 10 of 10

APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

Bay Area Compliance Laboratories Corp. 1274 Anvilwood Ave, Sunnyvale, CA 94089 Tel: (408)732-9162 / Fax: (408)732-9164

Verification of Calibration Report

Report Number: CAL 2010-09-20

Description: Dipole Antenna

Manufacturer: APREL Laboratories

Model Number: ALS-D-1900-S-2

Serial Number: SN: 210-00710

Date of Calibration: 20 Sept 2010

Condition Received: In Tolerance

Condition Returned: In Tolerance

Conditions and results of calibration: See attachment

This device has been instrumented, measured and calibrated in accordance with the Bay Area Compliance Laboratories Corp. ("BACL") Quality Assurance Manual procedures and the results being traceable to the National Institute of Standards and Technology (NIST). The BACL Quality System is accredited by NVLAP to ISO/IEC 17025:2005. Unless stated otherwise; Measurement Uncertainties are derived from ISO Guide to the Determination of Uncertainties with a Coverage Factor of k=2 for a 95% level of confidence, no sampling plan or other process was used for this calibration (unless stated otherwise), the results reported herein apply only to the calibration of the item described above, and limitations of use (if any) shall be stated this Calibration Report.

Calibrated By:

Quinn Jiang

Date

Reviewed By:

9/21/2/3

Victor Zhang

Date

Quality Assurance:

21 SEP 2010

Hans Mellberg Date

Attachment

Ambient Environment of Calibration

Temperature	Relative Humidity	Pressure
22 ° C	53.5 %	104.55 k Pa

Equipment List

Description	Manufacturer	Model	Serial #	Cal Date
Signal Generator	HP	8648C	3426A00417	2010-08-30
Network Analyzer	HP	8753D	3410A04346	2010-06-03
Power meter	Agilent	E4419B	MY41291511	2010-09-01
Power Sensor	Agilent	E9301A	MY41497252	2010-02-19
Reference Probe	SPEAG	ET3DV6	1604	2010-09-16

Measurement Conditions

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom	
Distance Dipole Center-TSL	10 mm	With Spacer
Area Scan resolution	dx,dy = 15 mm	
Zoom Scan resolution	dx,dy,dz = 5 mm	
Frequency	1900 MHz ± 1MHz	

Calibration is performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devise used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- 3. DASY 4 System Handbook

Calibration Data:

Head TSL Parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL Parameters	22.0°C	40.0	1.40
Measured Head TSL Parameters	(22.0±0.3)°C	39.9	1.38
Head TSL Temperature during test	(23.0±0.3)°C		

SAR result with Head TSL

SAR average over 1 cm3 (1g) of Head TSL	Condition	
SAR measured	500 mW input power	18.8 mW / g
SAR normalized	Normalized to 1W	37.6 mW / g
SAR for nominal Head TSL parameters ¹	Normalized to 1W	39.7 mW / g ± 10%

SAR average over 10 cm3 (10g) of Head TSL	Condition	
SAR measured	500 mW input power	9.58 mW / g
SAR normalized	Normalized to 1W	19.16 mW/g
SAR for nominal Head TSL parameters ¹	Normalized to 1W	20.5 mW / g ± 10%

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.727 Ω
Return Loss	-35.881 dB

Report No.: RSZ10082301-SAR Page 48 of 66 SAR Evaluation Report

¹Correction to nominal TSL parameters according to DASY 4 System Handbook, chapter "SAR Sensitivities"

DASY4 Validation Report for Head TSL

Test Laboratory: Bay Area Compliance Lab Corp.(BACL)

System Performance Test (1900 MHz Head Tissue)

DUT: Dipole 1900 MHz; Type: ALS-D-1900-S-2; Serial: SN: 210-00710

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

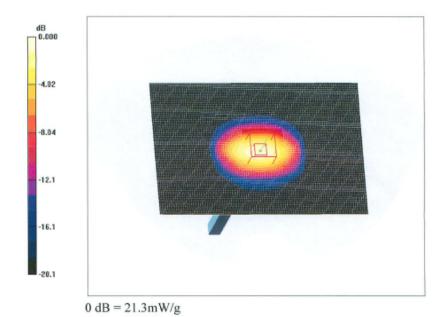
Phantom section: Flat Section

DASY4 Configuration:

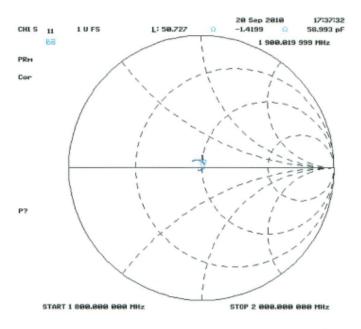
Probe: ET3DV6 - SN1604; ConvF(5.04, 5.04, 5.04); Calibrated: 9/16/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

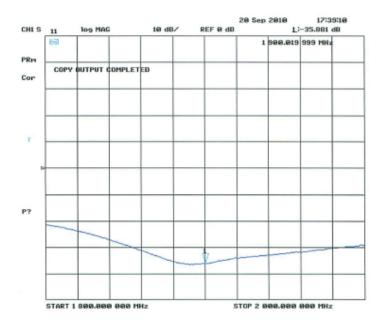
Electronics: DAE3 Sn456; Calibrated: 11/8/2007


Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 184


d =10 mm, Pin = 0.5W /Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 20.7 mW/g

d =10 mm, Pin = 0.5W /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 127.5 V/m; Power Drift = -0.054 dB Peak SAR (extrapolated) = 34.7 W/kg


SAR(1 g) = 18.8 mW/g; SAR(10 g) = 9.58 mW/gMaximum value of SAR (measured) = 21.3 mW/g

Impedance Measurement Plot for Head TSL

Return Loss Measurement Plot for Head TSL

APPENDIX D – SAR SYSTEM VALIDATION DATA

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

System Performance Check 1900 MHz, Head Tissue

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data

Device Name : Dipole 1900MHz Serial No. : 210-00710 Type : Dipole

Model : ALS-D-1900-S-2 Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 3 min(s) Power Drift-Start : 45.287 W/kg Power Drift-Finish : 47.328 W/kg Power Drift (%) : 3.637

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) : 280 x 280 x 200 Serial No. : System Default

Location : Center Description : Default

Tissue Data

: HEAD Type Serial No. : 295-01103 : 1900.00 MHz Frequency Last Calib. Date : 21-Sep -2010 Temperature : 20.00°C Ambient Temp. : 20.00 °C : 56.00 RH% Humidity : 39.88 F/m **Epsilon** : 1.43S/m Sigma

Density : 1000.00 kg/cu. m

Probe Data

: E-Field Name Model : E-020

: E-Field Triangle Type

Serial No. : 273

Last Calib. Date : 21-Aug-2010 Frequency : 1900.00 MHz

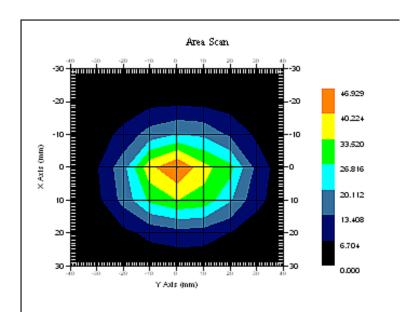
Duty Cycle Factor : 1 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor


Scan Type : Complete Tissue Temp. : 20.00°C : 20.00 °C Ambient Temp.

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm Zoom Scan

Page 51 of 66

SAR Evaluation Report

1 gram SAR value : 41.691 W/kg 10 gram SAR value : 21.315 W/kg Area Scan Peak SAR : 45.806 W/kg Zoom Scan Peak SAR : 75.227 W/kg

1900 MHz System Validation

APPENDIX E – EUT SCAN RESULTS

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Left Head Cheek (1900 MHz Low Channel)

Measurement Data

Crest Factor : 12 Scan Type: : Complete

Area Scan : 11x6x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.022 W/kg Power Drift-Finish : 0.021 W/kg Power Drift (%) : -2.894

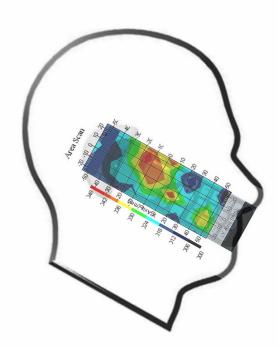
Tissue Data

Type : HEAD
Frequency : 1900.00 MHz
Epsilon : 39.88 F/m
Sigma : 1.43 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 273

Frequency : 1900.00 MHz


Duty Cycle Factor : 12 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.035 W/kg 10 gram SAR value : 0.026 W/kg Area Scan Peak SAR : 0.046 W/kg Zoom Scan Peak SAR : 0.095 W/kg

Plot 1#

Left Head Tilt (1900 MHz Low Channel)

Measurement Data

Crest Factor : 12 Scan Type: : Complete

Area Scan : 11x6x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.011 W/kg Power Drift-Finish : 0.012 W/kg Power Drift (%) : 1.785

Tissue Data

 Type
 : HEAD

 Frequency
 : 1900.00 MHz

 Epsilon
 : 39.88 F/m

 Sigma
 : 1.43 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

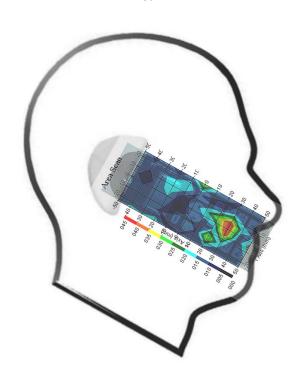
Serial No. : 273

Frequency : 1900.00 MHz

Duty Cycle Factor : 12 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm


 1 gram SAR value
 : 0.023 W/kg

 10 gram SAR value
 : 0.009W/kg

 Area Scan Peak SAR
 : 0.042 W/kg

 Zoom Scan Peak SAR
 : 0.078W/kg

Plot 2#

Right Head Cheek (1900 MHz Low Channel)

Measurement Data

Crest Factor : 12 Scan Type: : Complete

Area Scan : 11x6x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.023 W/kg Power Drift-Finish : 0.022W/kg Power Drift (%) : -1.805

Tissue Data

 Type
 : HEAD

 Frequency
 : 1900.00 MHz

 Epsilon
 : 39.88 F/m

 Sigma
 : 1.43 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

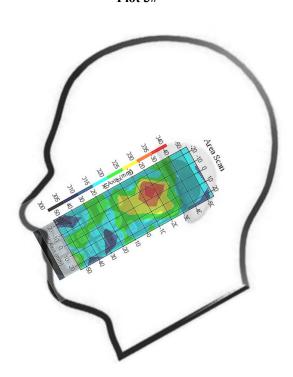
Serial No. : 273

Frequency : 1900.00 MHz

Duty Cycle Factor : 12 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm


 1 gram SAR value
 : 0.041 W/kg

 10 gram SAR value
 : 0.022 W/kg

 Area Scan Peak SAR
 : 0.047 W/kg

 Zoom Scan Peak SAR
 : 0.060 W/kg

Plot 3#

Right Head Cheek (1900 MHz Middle Channel)

Measurement Data

Crest Factor : 12 Scan Type: : Complete

Area Scan : 11x6x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.009 W/kg Power Drift-Finish : 0.008 W/kg Power Drift (%) : -1.216

Tissue Data

 Type
 : HEAD

 Frequency
 : 1900.00 MHz

 Epsilon
 : 39.88 F/m

 Sigma
 : 1.43S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

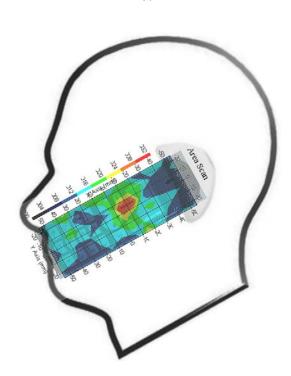
Serial No. : 273

Frequency : 1900.00 MHz

Duty Cycle Factor : 12 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm


 1 gram SAR value
 : 0.028 W/kg

 10 gram SAR value
 : 0.018 W/kg

 Area Scan Peak SAR
 : 0.029 W/kg

 Zoom Scan Peak SAR
 : 0.070 W/kg

Plot 4#

Right Head Cheek (1900 MHz High Channel)

Measurement Data

Crest Factor : 12 Scan Type: : Complete

Area Scan : 11x6x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.025 W/kg Power Drift-Finish : 0.024 W/kg Power Drift (%) : -1.274

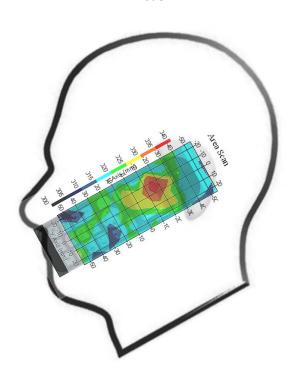
Tissue Data

Type : HEAD
Frequency : 1900.00 MHz
Epsilon : 39.88 F/m
Sigma : 1.43 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 273

Frequency : 1900.00 MHz


Duty Cycle Factor : 12 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.036 W/kg 10 gram SAR value : 0.025 W/kg Area Scan Peak SAR : 0.038 W/kg Zoom Scan Peak SAR : 0.070 W/kg

Plot 5#

Right Head Tilt (1900 MHz Low Channel)

Measurement Data

Crest Factor : 12 Scan Type: : Complete

Area Scan : 11x6x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.013 W/kg Power Drift-Finish : 0.016 W/kg Power Drift (%) : 3.839

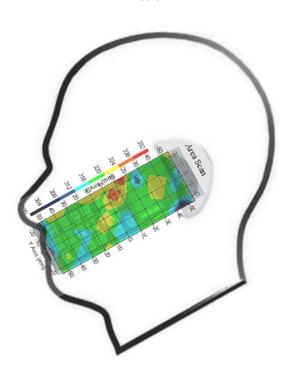
Tissue Data

Type : HEAD
Frequency : 1900.00 MHz
Epsilon : 39.88 F/m
Sigma : 1.43 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 273

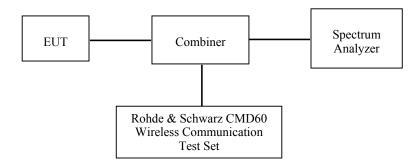
Frequency : 1900.00 MHz


Duty Cycle Factor : 12 Conversion Factor : 5.25

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

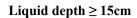
1 gram SAR value : 0.024 W/kg 10 gram SAR value : 0.015 W/kg Area Scan Peak SAR : 0.032 W/kg Zoom Scan Peak SAR : 0.065 W/kg


Plot 6#

APPENDIX F – CONDUCTED OUTPUT POWER MEASUREMENT

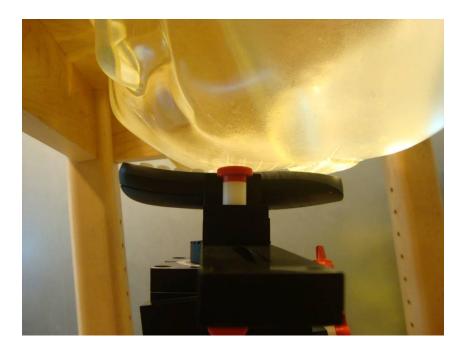
Test Block Diagram and Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

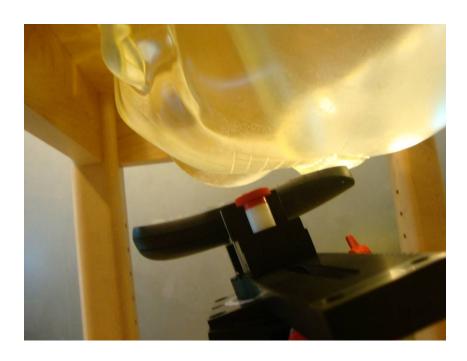

Test Equipments List and Details

Manufacturer	Equipment Description	Model No.	Serial No.	Calibration Date
Rohde & Schwarz	Communication Tester	CMD60	1050.9008.60	2010-06-26
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2010-07-05

Test Result

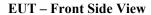

Channel No.		Conducted Output Power		
Channel No.	(MHz)	(dBm)	(Watt)	
4	1921.536	19.08	0.0809	
2	1924.992	19.17	0.0826	
0	1928.448	19.01	0.0796	

APPENDIX G – EUT TEST POSITION PHOTOS



Left Head Touch Setup Photo

Left Head Tilt Setup Photo


Right Head Touch Setup Photo

Right Head Tilt Setup Photo

APPENDIX H – EUT PHOTOS

EUT – Back Side View

EUT - Bottom Side View

EUT- Uncovered View

APPENDIX I - INFORMATIVE REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments" IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105(113).
- assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15 {17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The depen-dence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.

APPENDIX J - PRODUCT SIMILAR DECLARATION LETTER

Tel: +86-592-562-5929 +86-592-603-6442 Fax: +86-592-603-7860

TO : Bay Area Compliance Laboratories Corp

Declaration of Similarity

To whom it may concern,

We.

Xingtel Xiamen Electronics Co., Ltd.

Address: Xingtel Building, Chuangxin Road, Torch Hi-tech Industrial District, Xiamen, 361006,

China

Hereby declare that

Product Name: DECT 6.0 Cordless Phone

Model No. 801xyyTP227F

belong to Cortelco, Inc. with the trade name is CORTELCO, it is exactly same with the telephone model no. CL-3398, and belong to Xingtel. These two models are electrically and mechanically identical, the only difference between them are the model number and trade name! Among the two models, model: CL-3398 was certified by BACL.

Model number	Trade name
CL-3398	Xingtel
801xyyTP227F	CORTELCO

Remark:

Where "x" represents the different combination, for example: 2 is 1base+1handset; 3 is 1charger+1handset; 4 is 1base+1charger+2handsets.

Where "yy" represents the different color, for example: 00 is black; 15 is white.

Regards,

Xingtel Xiamen Electronics Co., Ltd.

Simon Liu

Managing Director August 14, 2010

***** END OF REPORT *****

Report No.: RSZ10082301-SAR Page 66 of 66 SAR Evaluation Report