RF Test Report Applicant : REYAX TECHNOLOGY CO.,LTD. Product Name : LoRaWAN Transceiver Module Trade Name : REYAX Model Number : RYLR993 Applicable Standard : FCC 47 CFR PART 15 SUBPART C ANSI C63.10:2013 Received Date : May 12, 2023 Test Period : Jun. 03 ~ Aug. 11, 2023 Issued Date : Oct. 12, 2023 Issued by Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel: +886-3-2710188 / Fax: +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330 Frequency Range: 9 kHz to 325 GHz Test Firm Registration Number: 226252 (Bade test site) Test Firm Registration Number: 191812 (Wugu test site) #### Note: - 1.The test results are valid only for samples provided by customers and under the test conditions described in this report. - 2. This report shall not be reproduced except in full, without the written approval of Eurofins E&E Wireless Taiwan Co., Ltd. - 3. The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility. ## **Revision History** | Version | Issued Date | Revisions | Revised By | |---------|---------------|--|------------| | 00 | Aug. 31, 2023 | Initial Issue | Snow Wang | | 01 | Oct. 12, 2023 | Update chapter 2 (P.7) Update chapter 3.1 (P.8) Update chapter 3.3 (P.9) Update chapter 5.1 (P.24) Update chapter 5.3 (P.39) Update Appendix A. Test Setup Photographs | Snow Wang | | | | | | | | | | | Page 2 of 62 Report Number: USRC235149002 # Verification of Compliance | Applicant | : | REYAX TECHNOLOGY CO.,LTD. | | | | | |---------------------------------|---------------|--|--|--|--|--| | Product Name | : | LoRaWAN Transceiver Module | | | | | | Trade Name | : | REYAX | | | | | | Model Number | : | RYLR993 | | | | | | FCC ID | : | QLYRYLR993 | | | | | | Applicable Standard | : | FCC 47 CFR PART 15 SUBPART C
ANSI C63.10:2013 | | | | | | Test Result | : | Complied | | | | | | Performing Lab. | : | Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel: +886-3-2710188 / Fax: +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330 | | | | | | in the above standards. All inc | dicat
rpre | o., Ltd. tested the above equipment in accordance with the requirements set forth cions of Pass/Fail in this report are opinions expressed by Eurofins E&E Wireless tations and/or observations of test results. The test results show that the equipment g compliance with the requirements as documented in this report. | | | | | | Approved By | : | | | | | | Page 3 of 62 Report Number: USRC235149002 ## **TABLE OF CONTENTS** | 1 | Gen | eral Information | . 5 | |---|------|--|-----| | | 1.1. | Summary of Test Result | . 5 | | | 1.2. | Testing Location | . 6 | | | 1.3. | Measurement Uncertainty | .6 | | | 1.4. | Test Site Environment | . 6 | | 2 | EUT | Description | .7 | | 3 | Tes | t Methodology | .8 | | | 3.1. | Mode of Operation | . 8 | | | 3.2. | EUT Test Step | . 8 | | | 3.3. | Configuration of Test System Details | . 9 | | | 3.4. | Test Instruments | 11 | | 4 | Mea | surement Procedure1 | 13 | | | 4.1. | Maximum Conducted Output Power Measurement | 13 | | | 4.2. | AC Power Line Conducted Emission Measurement | 14 | | | 4.3. | Radiated Emission Measurement | 16 | | | 4.4. | 20 dB RF Bandwidth Measurement | 19 | | | 4.5. | Carrier Frequency Separation Measurement | 20 | | | 4.6. | Maximum Power Density Measurement | 21 | | | 4.7. | Time of Occupancy (Dwell Time) Measurement | 22 | | | 4.8. | Out of Band Conducted Emissions Measurement | 23 | | | 4.9. | Antenna Measurement | 23 | | 5 | Tes | t Results2 | 24 | | | 5.1. | Conducted Emission2 | 24 | | | 5.2. | Conducted Test Results | 28 | | | 53 | Radiated Emission Measurement | ฉฉ | ## Appendix A. Test Setup Photographs ## 1 General Information ## 1.1. Summary of Test Result | Standard | Item | Result | Remark | |--------------|---|--------|--------| | 15.207 | AC Power Conducted Emission | PASS | | | 15.203 | Antenna Requirement | PASS | | | 15.247(b)(2) | Max. Output Power | PASS | | | 15.247(f) | Power Spectral Density | PASS | | | 15.247(a)(1) | 20 dB Bandwidth | PASS | | | 15.247(d) | Transmitter Radiated Emissions | PASS | | | 15.247(a)(1) | Carrier Frequency Separation | PASS | | | 15.247(f) | Time of Occupancy (Dwell Time) | PASS | | | 15.247(d) | Out of Band Conducted Spurious Emission | PASS | | | Standard | Description | | | |---|--|--|--| | CFR47, Part 15, Subpart C | Intentional Radiators | | | | ANSI C63. 10: 2013 | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | | | | KDB 558074 D01 15.247
Meas Guidance v05r02 | GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES | | | ### **Decision Rule** ■ Uncertainty is not included. $\hfill \square$ Uncertainty is included. Page 5 of 62 Report Number: USRC235149002 ## 1.2. Testing Location Lab Name: Eurofins E&E Wireless Taiwan Co., Ltd. Site Address: No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.) Site Address: No. 2, Wuquan 5th Rd. Wugu Dist., New Taipei City, Taiwan (R.O.C.) ## 1.3. Measurement Uncertainty | Test Item | Fragueney | Uncertainty | | | | | |--------------------|-----------------------|-------------|----------|----------|----------|--| | rest item | Frequency | BD | | WG | | | | Conducted Emission | 150 kHz ~ 30 MHz | 2.7 | dB | 2.6 dB | | | | Conducted C | Output Power | 1.1 | dB | 1.1 | dB | | | RF Bar | ndwidth | 4.5 | 5 % | 4.5 % | | | | Power Spec | ctral Density | 1.1 dB | | 1.1 | 1.1 dB | | | Took Move | Francis | Uncertainty | | | | | | Test Item | Frequency | 96601-BD | 96603-BD | 96602-WG | 96603-WG | | | | 9 kHz ~ 30 MHz | 1.9 dB | 1.9 dB | 1.6 dB | 1.6 dB | | | | 30 MHz ~ 1000 MHz | 4.9 dB | 4.9 dB | 4.8 dB | 4.8 dB | | | Radiated Emission | 1000 MHz ~ 18000 MHz | 4.9 dB | 5.0 dB | 5.0 dB | 5.2 dB | | | | 18000 MHz ~ 26500 MHz | 4.3 dB | 4.4 dB | 4.4 dB | 4.5 dB | | | | 26500 MHz ~ 40000 MHz | 4.5 dB | 4.5 dB | 4.6 dB | 4.5 dB | | ## 1.4. Test Site Environment | Items | Required (IEC 60068-1) | Interval(*) | | |------------------|------------------------|-------------|--| | Temperature (°C) | 15-35 | 20-30 | | | Humidity (%RH) | 25-75 | 45-75 | | ^(*)The measurement ambient temperature is within this range. Page 6 of 62 Report Number: USRC235149002 #### 2 **EUT Description** The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity(except Max. RF Output Power). | responsibility for the authenti | responsibility for the authenticity(except Max. RF Output Power). | | | | | | |---------------------------------|---|------------------------|--------------------|--|--|--| | Applicant | REYAX TECHNOLOGY CO.,LTD. 4F15, No.26, Ln. 321, Yangguang St., Neihu Dist. Taipei City Taiwan | | | | | | | Product Name | LoRaWAN Transceiver Module | | | | | | | Trade Name | REYAX | | | | | | | Model No. | RYLR993 | | | | | | | FCC ID | QLYRYLR993 | | | | | | | Frequency Range | 902.3 ~ 914.9 MHz | | | | | | | Channel Space | 125 kHz | | | | | | | Modulation Type | Hybrid (FSK, CSS) | | | | | | | Operate Temp. Range | -40 ~ +85 °C | | | | | | | EUT Power Rating | 3.3 V | | | | | | | | Model Number | Antenna Type | Max. Gain
(dBi) | | | | | Antenna Information | RYBF915 | 915 MHz DIPOLE Antenna | 5.7 | | | | | | RYAI915 | 2 | | | | | | Max. RF Output Power | 0.00925 W | | | | | | #### **Channel List** | onamio E | onamier List | | | | | | | | | |----------|--------------|---------|-------------|---------|-------------|---------|-------------|---------|-------------| | Channel | Freq. (MHz) | | 0 | 902.3 | 13 | 904.9 | 26 | 907.5 | 39 | 910.1 | 52 | 912.7 | | 1 | 902.5 | 14 | 905.1 | 27 | 907.7 | 40 | 910.3 | 53 | 912.9 | | 2 | 902.7 | 15 | 905.3 | 28 | 907.9 | 41 | 910.5 | 54 | 913.1 | | 3 | 902.9 | 16 | 905.5 | 29 | 908.1 | 42 | 910.7 | 55 | 913.3 | | 4 | 903.1 | 17 | 905.7 | 30 | 908.3 | 43 | 910.9 | 56 | 913.5 | | 5 | 903.3 | 18 | 905.9 | 31 | 908.5 | 44 | 911.1 | 57 | 913.7 | | 6 | 903.5 | 19 | 906.1 | 32 | 908.7 | 45 | 911.3 | 58 | 913.9 | | 7 | 903.7 | 20 | 906.3 | 33 | 908.9 | 46 | 911.5 | 59 | 914.1 | | 8 | 903.9 | 21 | 906.5 | 34 | 909.1 | 47 | 911.7 | 60 | 914.3 | | 9 | 904.1 | 22 | 906.7 | 35 | 909.3 | 48 | 911.9 | 61 | 914.5 | | 10 | 904.3 | 23 | 906.9 | 36 | 909.5 | 49 | 912.1 | 62 | 914.7 | | 11 | 904.5 | 24 | 907.1 | 37 | 909.7 | 50 | 912.3 | 63 | 914.9 | | 12 | 904.7 | 25 | 907.3 | 38 | 909.9 | 51 | 912.5 | | | Page 7 of 62 Report Number: USRC235149002 ## 3 Test Methodology ## 3.1. Mode of Operation Decision of Test Eurofins has verified the construction and function in typical operation. All the test modes
were carried out with the EUT in normal operation, which was shown in this test report and defined as: | Pre-Test Mode | Final-Test Mode | | | |---------------|-----------------|--|--| | Transmit Mode | V | | | | Hybrid Mode | V | | | Software used to control the EUT for staying in continuous transmitting mode was programmed. After verification, all tests were carried out with the worst case test modes. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" (Antenna model: RYBF915), "Y axis" (Antenna model: RYAI915) position was the worst, then the final test was executed the worst condition and test data were recorded in this report. ## 3.2. EUT Test Step | 1 | Setup the EUT shown on "Configuration of Test System Details". | | | | |---|--|--|--|--| | 2 | Turn on the power of all equipment. | | | | | 3 | EUT run test program. | | | | Page 8 of 62 Report Number: USRC235149002 ## 3.3. Configuration of Test System Details | Product | | Manufacturer | Model Number | Serial Number | Power Cord | |---------|--------------------------------|--------------|-------------------------------|---------------|------------| | (1) | Notebook | HP | 440 G1 | | | | (2) | Notebook | acer | N19C1 | | | | (3) | Fixture | SiLab | USB to TTL CP2102
Cnverter | | | | (4) | RYLR993
Evaluation
Board | REYAX | RYLR993_Lite | | | Page 9 of 62 Report Number: USRC235149002 | | Product | Manufacturer | Model Number | Serial Number | Power Cord | |-----|--------------------------------|--------------|-------------------------------|---------------|------------| | (1) | Notebook | HP | 440 G1 | | | | (2) | Notebook | acer | N19C1 | | | | (3) | Fixture | SiLab | USB to TTL CP2102
Cnverter | | | | (4) | RYLR993
Evaluation
Board | REYAX | RYLR993_Lite | | | Page 10 of 62 Report Number: USRC235149002 ## 3.4. Test Instruments For Conducted Emission Test Period: Jun. 03 ~ Aug. 11, 2023 Testing Engineer: Jayson Hsieh | Test Site Conduction01-BD | | | | | | | |---------------------------|---------------|--------------|----------------|---------------|---------------|----------------| | Use | Equipment | Manufacturer | Model Number | Serial Number | Cal. Date | Cal.
Period | | \boxtimes | Test Receiver | R&S | ESCI | 100367 | May 22, 2023 | 1 year | | | LISN | R&S | ENV216 | 101040 | Mar. 21, 2023 | 1 year | | | LISN | R&S | ENV216 | 101140 | Jan. 12, 2023 | 1 year | | \boxtimes | RF Cable | Woken | 00100D1380194M | TE-02-03 | Jun. 01, 2023 | 1 year | | \boxtimes | Software | EZ EMC | 1.1.4.3 | N/A | N.C.R. | | For Conducted Test Period: Jun. 08 ~ Jul. 21, 2023 Testing Engineer: Brian Lin | 9 | Test Site | RF01-BD | | | | | | | |-------------|---------------------------------------|--------------|--------------|---------------|---------------|----------------|--|--| | Use | Equipment | Manufacturer | Model Number | Serial Number | Cal. Date | Cal.
Period | | | | \boxtimes | Power Sensor | Agilent | N1921A | MY45241957 | Nov. 30, 2022 | 1 year | | | | \boxtimes | Power Meter | Agilent | N1911A | MY45101619 | Nov. 30, 2022 | 1 year | | | | | Spectrum Analyzer
(10 Hz~26.5 GHz) | Keysight | N9010B | MY59071418 | Mar. 20, 2023 | 1 year | | | Note: N.C.R. = No Calibration Request. Page 11 of 62 Report Number: USRC235149002 For Radiated Emissions Test Period: Jun. 07, 2023~ Jul. 14, 2023 Testing Engineer: Hung Chou | resung | Engineer: Hung Chou | | | | | | | | | | |-------------|---|--------------------------------|-----------------------|---------------|---------------|----------------|--|--|--|--| | | Test Site | | 96603-BD | | | | | | | | | R | adiation test sites | Semi Anechoic Room | | | | | | | | | | Use | Equipment | Manufacturer | Model Number | Serial Number | Cal. Date | Cal.
Period | | | | | | \boxtimes | Spectrum Analyzer
(10 Hz~44 GHz) | Keysight | N9020B | MY60112363 | Jan. 13, 2023 | 1 year | | | | | | | Amplifier
(100 kHz~1.3 GHz) | Agilent | 8447D | 2944A11119 | Jan. 07, 2023 | 1 year | | | | | | \boxtimes | Broadband Amplifier (1 GHz~26.5 GHz) | Titan | T0912E01263025
A1F | 002 | Jul. 07, 2023 | 1 year | | | | | | \boxtimes | Trilog Broadband
Antenna
(30 MHz~1 GHz) | Schwarzbeck
Mess-Elektronik | VULB9168 | 01146 | Jun. 26, 2023 | 1 year | | | | | | | Broadband Horn
Antenna
(1 GHz~18 GHz) | Schwarzbeck
Mess-Elektronik | 9120D | 02207 | Jul. 13, 2022 | 1 year | | | | | | \boxtimes | Coaxial Cable | Titan | T0710AT327A10A
100 | J11005 | Aug. 04, 2022 | 1 year | | | | | | | Coaxial Cable | Titan | T0710AT327A10A
900 | J11004 | Aug. 04, 2022 | 1 year | | | | | | \boxtimes | Coaxial Cable | Titan | CFD400NL-LW | 001 | Aug. 04, 2022 | 1 year | | | | | | \boxtimes | Software | EZ EMC | 1.1.4.4 | N/A | N.C.R. | | | | | | Note: N.C.R. = No Calibration Request. Page 12 of 62 Report Number: USRC235149002 ## 4 Measurement Procedure ## 4.1. Maximum Conducted Output Power Measurement #### **■** Limit For systems using digital modulation in the 902-928 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels. #### ■ Test Setup #### ■ Test Procedure Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The tests below are run with the EUT's transmitter set at high power in Transmit mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to spectrum analyzer. Use a direct connection between the antenna port of transmitter and the spectrum analyzer, for prevent the spectrum analyzer input attenuation 40-50 dB. Set the RBW Bandwidth of the emission or use a channel power function. For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm). For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6)/3 dBm. The antenna port of the EUT was connected to the input of a power sensor. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals. The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement: - a) Set the RBW ≥ DTS bandwidth. - b) Set VBW \geq [3 × RBW]. - c) Set span ≥ [3 × RBW]. - d) Sweep time = No faster than coupled (auto) time. - e) Detector = peak. - f) Trace mode = max-hold. - g) Allow trace to fully stabilize. - h) Use peak marker function to determine the peak amplitude level. Page 13 of 62 Report Number: USRC235149002 #### **AC Power Line Conducted Emission Measurement** 4.2. #### ■ Limit | Frequency (MHz) | Quasi-peak | Average | |-----------------|------------|----------| | 0.15 - 0.5 | 66 to 56 | 56 to 46 | | 0.50 - 5.0 | 56 | 46 | | 5.0 - 30.0 | 60 | 50 | ### Test Setup Page 14 of 62 Report Number: USRC235149002 #### **■** Test Procedure The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 Ω // 50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 Ω // 50 uH coupling impedance with 50 ohm termination. Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40 cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80 cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12 mm insulating material. Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150 kHz to 30 MHz then quasi-peak and average measurement was unnecessary. The AMN shall be placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8 m from the AMN. If the mains power cable is longer than 1 m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4 m. All of interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1 m. All 50 Ω ports of the LISN shall be resistively terminated into 50 Ω loads when not connected to the measuring instrument. If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored. Page 15 of 62
Report Number: USRC235149002 ### 4.3. Radiated Emission Measurement #### ■ Limit According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency | Field Strength | Measurement Distance | |---------------|-----------------|----------------------| | (MHz) | (μV/m at meter) | (meters) | | 0.009 - 0.490 | 2400 / F (kHz) | 300 | | 0.490 – 1.705 | 24000 / F (kHz) | 30 | | 1.705 – 30.0 | 30 | 30 | | 30 - 88 | 100** | 3 | | 88-216 | 150** | 3 | | 216-960 | 200** | 3 | | Above 960 | 500 | 3 | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241. #### ■ Setup 9 kHz ~ 30 MHz Page 16 of 62 Report Number: USRC235149002 Below 1 GHz Above 1 GHz Page 17 of 62 Report Number: USRC235149002 #### ■ Test Procedure Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated. For measurements below 30 MHz the resolution bandwidth is set to 10 kHz for peak detection measurements or 9 kHz for quasi-peak detection measurements. The video bandwidth is 3 times of the resolution bandwidth. For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements and according to C63.10:2013 Section 7.5 procedure fo determining the average value of pulsed emissions with duty cycle correction factor. A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization. SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20 dB/decade). For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test. The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings. The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m). The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m). The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer. - (1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB) - FI= Reading of the field intensity. - AF= Antenna factor. - CL= Cable loss. - P.S Amplitude is auto calculate in spectrum analyzer. - (2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB) - The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations: - (a) For fundamental frequency: Transmitter Output < +30 dBm - (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10 Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured. Page 18 of 62 Report Number: USRC235149002 #### 4.4. 20 dB RF Bandwidth Measurement #### ■ Limit N/A ### ■ Test Setup #### **■** Test Procedure 20 dB RF Bandwidth - 1. Span = approx. 2 to 3 times the 20 dB bandwidth, centered on a hopping frequency - 2. RBW \geq 1 % of the 20 dB span - 3. VBW ≥ RBW - 4. Sweep = auto - 5. Detector function = peak - 6. Trace = max hold The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20 dB bandwidth of the emission. Page 19 of 62 Report Number: USRC235149002 ## 4.5. Carrier Frequency Separation Measurement #### **■** Limit Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. #### ■ Test Setup #### **■** Test Procedure Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The following spectrum analyzer settings were used: - 1. Span = wide enough to capture the peaks of two adjacent channels - 2. Resolution (or IF) Bandwidth (RBW) \geq 1 % of the span - 3. Video (or Average) Bandwidth (VBW) \geq RBW - 4. Sweep = auto - 5. Detector function = peak - 6. Trace = max hold The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels. Page 20 of 62 Report Number: USRC235149002 ## 4.6. Maximum Power Density Measurement #### ■ Limit For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. #### ■ Test Setup #### **■** Test Procedure The EUT tested to DTS test procedure of ANSI C63.10:2013 section 11.10.2 for compliance to FCC 47CFR 15.247 requirements. - 1. Set analyzer center frequency to DTS channel center frequency. - 2. Set the span to 1.5 times the DTS bandwidth. - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. - 4. Set the VBW \geq 3 \times RBW. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum amplitude level within the RBW - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. Page 21 of 62 Report Number: USRC235149002 ## 4.7. Time of Occupancy (Dwell Time) Measurement #### ■ Limit The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. #### ■ Test Setup #### **■** Test Procedure Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the spectrum through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth hopping function of the EUT was enabled. The following spectrum analyzer settings were used: - 1. Span = zero span, centered on a hopping channel - 2. RBW = 1 MHz - 3. $VBW \ge RBW$ - 4. Sweep = as necessary to capture the entire dwell time per hopping channel - 5. Detector function = peak - 6. Trace = max hold The marker-delta function was used to determine the dwell time. Page 22 of 62 Report Number: USRC235149002 #### 4.8. Out of Band Conducted Emissions Measurement #### ■ Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power #### ■ Test Setup #### ■ Test Procedure Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the
spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function. All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. ### 4.9. Antenna Measurement #### ■ Limit For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And According to 15.247 (b)(4), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### ■ Antenna Connector Construction See section 2 – antenna information. Page 23 of 62 Report Number: USRC235149002 ## 5 Test Results ## 5.1. Conducted Emission #### Antenna model: RYBF915 Standard: FCC Part 15.247 Line: L1 Test item: Conducted Emission Power: AC 120 V/60 Hz Mode: Transmit Mode Temp.(°C)/Hum.(%RH): 26(°C)/60 %RH Description: | No. | Frequency
(MHz) | QP
reading
(dBuV) | AVG
reading
(dBuV) | Correction
factor
(dB) | QP
result
(dBuV) | AVG
result
(dBuV) | QP
limit
(dBuV) | AVG
limit
(dBuV) | QP
margin
(dB) | AVG
margin
(dB) | Remark | |-----|--------------------|-------------------------|--------------------------|------------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------|-----------------------|--------| | 1 | 0.1500 | 37.82 | 22.16 | 9.59 | 47.41 | 31.75 | 66.00 | 56.00 | -18.59 | -24.25 | Pass | | 2 | 0.1660 | 32.66 | 18.88 | 9.59 | 42.25 | 28.47 | 65.16 | 55.16 | -22.91 | -26.69 | Pass | | 3 | 0.1860 | 31.53 | 16.15 | 9.58 | 41.11 | 25.73 | 64.21 | 54.21 | -23.10 | -28.48 | Pass | | 4 | 0.2140 | 27.11 | 14.15 | 9.58 | 36.69 | 23.73 | 63.05 | 53.05 | -26.36 | -29.32 | Pass | | 5 | 0.2380 | 23.82 | 11.54 | 9.58 | 33.40 | 21.12 | 62.17 | 52.17 | -28.77 | -31.05 | Pass | | 6 | 0.4860 | 23.19 | 17.93 | 9.60 | 32.79 | 27.53 | 56.24 | 46.24 | -23.45 | -18.71 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). 2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB). Page 24 of 62 Report Number: USRC235149002 Standard: FCC Part 15.247 Line: Test item: Conducted Emission Power: AC 120 V/60 Hz 26(°C)/60 %RH Temp.(°C)/Hum.(%RH): Mode: Transmit Mode Description: | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1500 | 38.17 | 21.95 | 9.58 | 47.75 | 31.53 | 66.00 | 56.00 | -18.25 | -24.47 | Pass | | 2 | 0.1740 | 32.65 | 16.82 | 9.58 | 42.23 | 26.40 | 64.77 | 54.77 | -22.54 | -28.37 | Pass | | 3 | 0.1860 | 32.57 | 16.82 | 9.58 | 42.15 | 26.40 | 64.21 | 54.21 | -22.06 | -27.81 | Pass | | 4 | 0.2340 | 24.16 | 15.09 | 9.58 | 33.74 | 24.67 | 62.31 | 52.31 | -28.57 | -27.64 | Pass | | 5 | 0.4820 | 22.41 | 17.08 | 9.59 | 32.00 | 26.67 | 56.30 | 46.30 | -24.30 | -19.63 | Pass | | 6 | 0.5060 | 21.08 | 18.47 | 9.59 | 30.67 | 28.06 | 56.00 | 46.00 | -25.33 | -17.94 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). 2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB). Page 25 of 62 Report Number: USRC235149002 #### Antenna model: RYAI915 Standard: FCC Part 15.247 Line: L1 Test item: Conducted Emission Power: AC 120 V/60 Hz $\label{eq:mode:topological mode} \mbox{Mode:} \qquad \mbox{Transmit Mode} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26({^{\circ}\!{\circ}$C)/60 $^{\circ}$RH}$ Description: | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1540 | 34.87 | 20.74 | 9.61 | 44.48 | 30.35 | 65.78 | 55.78 | -21.30 | -25.43 | Pass | | 2 | 0.1700 | 38.61 | 21.59 | 9.61 | 48.22 | 31.20 | 64.96 | 54.96 | -16.74 | -23.76 | Pass | | 3 | 0.1940 | 32.17 | 13.86 | 9.61 | 41.78 | 23.47 | 63.86 | 53.86 | -22.08 | -30.39 | Pass | | 4 | 0.2220 | 27.36 | 11.06 | 9.61 | 36.97 | 20.67 | 62.74 | 52.74 | -25.77 | -32.07 | Pass | | 5 | 0.2700 | 24.35 | 8.89 | 9.61 | 33.96 | 18.50 | 61.12 | 51.12 | -27.16 | -32.62 | Pass | | 6 | 16.2460 | 27.18 | 21.26 | 9.97 | 37.15 | 31.23 | 60.00 | 50.00 | -22.85 | -18.77 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). 2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB). Page 26 of 62 Report Number: USRC235149002 Standard: FCC Part 15.247 Line: Test item: Conducted Emission Power: AC 120 V/60 Hz 26(°C)/60 %RH Temp.(°C)/Hum.(%RH): Mode: Transmit Mode Description: | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1540 | 33.73 | 20.13 | 9.60 | 43.33 | 29.73 | 65.78 | 55.78 | -22.45 | -26.05 | Pass | | 2 | 0.1740 | 32.70 | 18.18 | 9.60 | 42.30 | 27.78 | 64.77 | 54.77 | -22.47 | -26.99 | Pass | | 3 | 0.2020 | 30.68 | 13.99 | 9.61 | 40.29 | 23.60 | 63.53 | 53.53 | -23.24 | -29.93 | Pass | | 4 | 0.2260 | 26.24 | 12.25 | 9.61 | 35.85 | 21.86 | 62.60 | 52.60 | -26.75 | -30.74 | Pass | | 5 | 0.2500 | 23.07 | 8.68 | 9.61 | 32.68 | 18.29 | 61.76 | 51.76 | -29.08 | -33.47 | Pass | | 6 | 15.7940 | 27.24 | 21.75 | 10.07 | 37.31 | 31.82 | 60.00 | 50.00 | -22.69 | -18.18 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). 2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB). Page 27 of 62 Report Number: USRC235149002 ## 5.2. Conducted Test Results ## **Maximum Conducted Output Power Measurement** | Test Mode | Frequency
(MHz) | RF Power setting in Test Software | Test Software Version | |-------------|--------------------|-----------------------------------|-----------------------| | Hybrid Mode | 902.3 | 10 | 000M V/4 C | | | 914.9 | 10 | QCOM_V1.6 | | Test Mode | Hybrid Mode | Hybrid Mode | | | | | | | | | | |-----------|-------------|-------------|-------|---------|--------|--|--|--|--|--|--| | Frequency | Average | e Power | Peak | Limit | | | | | | | | | (MHz) | (dBm) | (W) | (dBm) | (W) | (W) | | | | | | | | 902.3 | 9.29 | 0.00849 | 9.66 | 0.00925 | ≤ 0.25 | | | | | | | | 908.5 | 9.15 | 0.00822 | 9.42 | 0.00875 | ≤ 0.25 | | | | | | | | 914.9 | 8.99 | 0.00793 | 9.46 | 0.00883 | ≤ 0.25 | | | | | | | Note: The relevant measured result has the offset with cable loss already. Page 28 of 62 Report Number: USRC235149002 #### 20 dB RF Bandwidth Measurement | Test Mode | Hybrid Mode | |--------------------|------------------------------| | Frequency
(MHz) | Measurement Results
(kHz) | | 902.3 | 140.80 | | 908.5 | 139.40 | | 914.9 | 142.80 | Page 29 of 62 Report Number: USRC235149002 #### 20 dB RF Bandwidth Measurement Page 30 of 62 Report Number: USRC235149002 ## **Carrier Frequency Separation Measurement** | Test Mode | Hybrid Mode | | |--------------------|------------------------------|----------------| | Frequency
(MHz) | Measurement Results
(kHz) | Limit
(kHz) | | 902.3 | 200.00 | ≥ 140.80 | | 908.5 | 200.00 | ≥ 139.40 | | 914.9 | 200.00 | ≥ 142.80 | Page 31 of 62 Report Number: USRC235149002 #### **Carrier Frequency Separation Measurement** Page 32 of 62 Report Number: USRC235149002 ## Time of Occupancy (Dwell Time) Measurement | Test Mode | Hybrid Mode | | | |----------------|--------------|------------|-------| | Captured Burst | Pulse Number | Dwell Time | Limit | | (ms) | | (ms) | (ms) | | 0.1657 | 11 | 1.82 | 400 | Note: Dwell Time = Pulse x Pulse number in Period Period = 0.4 (seconds / channel) x 64 (channel) = 25.6 seconds Page 33 of 62 Report Number: USRC235149002 ### Time of Occupancy (Dwell Time) Measurement Page 34 of 62 Report Number: USRC235149002 ## **Maximum Power Density Measurement** | Test Mode | Hybrid Mode | | |--------------------|------------------------------------|----------------| | Frequency
(MHz) | Measurement Results
(dBm/3 kHz) | Limit
(dBm) | | 902.3 | 7.88 | ≤ 8 | | 908.5 | 7.74 | ≤ 8 | | 914.9 | 7.78 | ≤ 8 | Page 35 of 62 Report Number: USRC235149002 #### **Maximum Power Density Measurement** Page 36 of 62 Report Number: USRC235149002 # **Out of Band Conducted Emissions Measurement Conducted Spurious Emission** Page 37 of 62 Report Number: USRC235149002 ## **Conducted Band Edge** Page 38 of 62 Report Number: USRC235149002 #### 5.3. **Radiated Emission Measurement** Antenna model: RYBF915 Below 1 GHz Standard: Part 15C Test Site: 966 Chamber Polarization: Horizontal Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1* | 131.8500 | 44.31 | -8.72 | 35.59 | 43.50 | -7.91 | QP | | 2 | 264.7400 | 31.32 | -6.89 | 24.43 | 46.00 | -21.57 | QP | | 3 | 356.8900 | 34.42 | -4.60 | 29.82 | 46.00 | -16.18 | QP | | 4 | 457.7700 | 27.96 | -2.48 | 25.48 | 46.00 | -20.52 |
QP | | 5 | 620.7300 | 27.04 | 0.30 | 27.34 | 46.00 | -18.66 | QP | | 6 | 763.3200 | 29.18 | 3.05 | 32.23 | 46.00 | -13.77 | QP | Page 39 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1* | 120.2100 | 45.22 | -9.90 | 35.32 | 43.50 | -8.18 | QP | | 2 | 222.0600 | 33.70 | -8.99 | 24.71 | 46.00 | -21.29 | QP | | 3 | 344.2800 | 30.90 | -4.87 | 26.03 | 46.00 | -19.97 | QP | | 4 | 461.6500 | 31.73 | -2.43 | 29.30 | 46.00 | -16.70 | QP | | 5 | 560.5900 | 31.80 | -0.78 | 31.02 | 46.00 | -14.98 | QP | | 6 | 769.1400 | 32.13 | 3.17 | 35.30 | 46.00 | -10.70 | QP | Page 40 of 62 Report Number: USRC235149002 ## Harmonic #### Above 1 GHz Standard: Part 15C Test Site: 966 Chamber Polarization: Horizontal Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1804.600 | 58.40 | -9.68 | 48.72 | 74.00 | -25.28 | peak | | 2 | 8120.700 | 44.11 | 9.45 | 53.56 | 74.00 | -20.44 | peak | | 3* | 8120.700 | 40.68 | 9.45 | 50.13 | 54.00 | -3.87 | AVG | Page 41 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1804.600 | 63.76 | -9.68 | 54.08 | 74.00 | -19.92 | peak | | 2 | 1804.600 | 60.81 | -9.68 | 51.13 | 54.00 | -2.87 | AVG | | 3 | 8120.700 | 45.71 | 9.45 | 55.16 | 74.00 | -18.84 | peak | | 4* | 8120.700 | 42.48 | 9.45 | 51.93 | 54.00 | -2.07 | AVG | Page 42 of 62 Report Number: USRC235149002 Polarization: Horizontal Test Mode: Hybrid Mode_908.50 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1817.000 | 58.66 | -9.47 | 49.19 | 74.00 | -24.81 | peak | | 2* | 8176.500 | 42.56 | 9.19 | 51.75 | 74.00 | -22.25 | peak | Page 43 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_908.50 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1817.000 | 60.10 | -9.47 | 50.63 | 74.00 | -23.37 | peak | | 2 | 8176.500 | 45.42 | 9.19 | 54.61 | 74.00 | -19.39 | peak | | 3* | 8176.500 | 42.40 | 9.19 | 51.59 | 54.00 | -2.41 | AVG | Page 44 of 62 Report Number: USRC235149002 Polarization: Horizontal Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1829.800 | 59.86 | -9.27 | 50.59 | 74.00 | -23.41 | peak | | 2 | 8234.100 | 43.98 | 9.08 | 53.06 | 74.00 | -20.94 | peak | | 3* | 8234.100 | 39.21 | 9.08 | 48.29 | 54.00 | -5.71 | AVG | Page 45 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1829.800 | 60.51 | -9.27 | 51.24 | 74.00 | -22.76 | peak | | 2 | 8234.100 | 43.32 | 9.08 | 52.40 | 74.00 | -21.60 | peak | | 3* | 8234.100 | 41.27 | 9.08 | 50.35 | 54.00 | -3.65 | AVG | Page 46 of 62 Report Number: USRC235149002 # Band Edge Standard: Part 15C Test Site: 966 Chamber Polarization: Horizontal Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 612.7040 | 34.56 | 0.08 | 34.64 | 46.00 | -11.36 | QP | | 2 | 614.0000 | 34.96 | 0.08 | 35.04 | 46.00 | -10.96 | QP | | 3* | 902.3000 | 112.17 | 5.03 | 117.20 | 46.00 | 71.20 | peak | | 4! | 960.0000 | 35.01 | 5.89 | 40.90 | 46.00 | -5.10 | QP | | 5 | 990.9840 | 35.32 | 6.66 | 41.98 | 54.00 | -12.02 | QP | Page 47 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 609.5680 | 34.91 | 0.06 | 34.97 | 46.00 | -11.03 | QP | | 2 | 614.0000 | 35.00 | 0.08 | 35.08 | 46.00 | -10.92 | QP | | 3* | 902.3000 | 114.90 | 5.03 | 119.93 | 46.00 | 73.93 | peak | | 4! | 960.0000 | 34.99 | 5.89 | 40.88 | 46.00 | -5.12 | QP | | 5 | 996.8640 | 35.07 | 6.81 | 41.88 | 54.00 | -12.12 | QP | Page 48 of 62 Report Number: USRC235149002 Polarization: Horizontal Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 611.5280 | 34.26 | 0.08 | 34.34 | 46.00 | -11.66 | QP | | 2 | 614.0000 | 34.27 | 0.08 | 34.35 | 46.00 | -11.65 | QP | | 3* | 914.9000 | 112.00 | 5.20 | 117.20 | 46.00 | 71.20 | peak | | 4! | 960.0000 | 34.58 | 5.89 | 40.47 | 46.00 | -5.53 | QP | | 5 | 986.6720 | 34.85 | 6.56 | 41.41 | 54.00 | -12.59 | QP | Page 49 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 613.0960 | 34.01 | 0.08 | 34.09 | 46.00 | -11.91 | QP | | 2 | 614.0000 | 34.43 | 0.08 | 34.51 | 46.00 | -11.49 | QP | | 3* | 914.9000 | 114.40 | 5.20 | 119.60 | 46.00 | 73.60 | peak | | 4! | 960.0000 | 34.66 | 5.89 | 40.55 | 46.00 | -5.45 | QP | | 5 | 984.7120 | 35.09 | 6.51 | 41.60 | 54.00 | -12.40 | QP | Page 50 of 62 Report Number: USRC235149002 ### Antenna model: RYAI915 ### Below 1 GHz Standard: Part 15C Test Site: 966 Chamber Polarization: Horizontal Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1* | 125.0600 | 40.62 | -9.31 | 31.31 | 43.50 | -12.19 | QP | | 2 | 276.3800 | 29.61 | -6.46 | 23.15 | 46.00 | -22.85 | QP | | 3 | 392.7800 | 32.70 | -3.82 | 28.88 | 46.00 | -17.12 | QP | | 4 | 516.9400 | 26.69 | -1.64 | 25.05 | 46.00 | -20.95 | QP | | 5 | 670.2000 | 26.08 | 0.90 | 26.98 | 46.00 | -19.02 | QP | | 6 | 811.8200 | 26.19 | 3.99 | 30.18 | 46.00 | -15.82 | QP | Page 51 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1* | 128.9400 | 40.78 | -9.01 | 31.77 | 43.50 | -11.73 | QP | | 2 | 242.4300 | 26.98 | -7.58 | 19.40 | 46.00 | -26.60 | QP | | 3 | 351.0700 | 26.33 | -4.73 | 21.60 | 46.00 | -24.40 | QP | | 4 | 467.4700 | 29.87 | -2.36 | 27.51 | 46.00 | -18.49 | QP | | 5 | 574.1700 | 30.57 | -0.43 | 30.14 | 46.00 | -15.86 | QP | | 6 | 744.8900 | 26.00 | 2.69 | 28.69 | 46.00 | -17.31 | QP | Page 52 of 62 Report Number: USRC235149002 ## Harmonic #### Above 1 GHz Standard: Part 15C Test Site: 966 Chamber Polarization: Horizontal Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1804.600 | 52.80 | -9.68 | 43.12 | 74.00 | -30.88 | peak | | 2* | 8120.700 | 38.64 | 9.45 | 48.09 | 74.00 | -25.91 | peak | Page 53 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1804.600 | 57.94 | -9.68 | 48.26 | 74.00 | -25.74 | peak | | 2* | 8120.700 | 39.26 | 9.45 | 48.71 | 74.00 | -25.29 | peak | Page 54 of 62 Report Number: USRC235149002 Polarization: Horizontal Test Mode: Hybrid Mode_908.50 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1817.000 | 53.26 | -9.47 | 43.79 | 74.00 | -30.21 | peak | | 2* | 8176.500 | 37.16 | 9.19 | 46.35 | 74.00 | -27.65 | peak | Page 55 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_908.50 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1817.000 | 54.69 | -9.47 |
45.22 | 74.00 | -28.78 | peak | | 2* | 8176.500 | 38.72 | 9.19 | 47.91 | 74.00 | -26.09 | peak | Page 56 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1829.800 | 53.51 | -9.27 | 44.24 | 74.00 | -29.76 | peak | | 2* | 8234.100 | 36.28 | 9.08 | 45.36 | 74.00 | -28.64 | peak | Page 57 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1829.800 | 53.05 | -9.27 | 43.78 | 74.00 | -30.22 | peak | | 2* | 8234.100 | 36.75 | 9.08 | 45.83 | 74.00 | -28.17 | peak | Page 58 of 62 Report Number: USRC235149002 # Band Edge Standard: Part 15C Test Site: 966 Chamber Polarization: Horizontal Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 609.9600 | 34.79 | 0.06 | 34.85 | 46.00 | -11.15 | QP | | 2 | 614.0000 | 34.72 | 0.08 | 34.80 | 46.00 | -11.20 | QP | | 3* | 902.3920 | 61.00 | 5.03 | 66.03 | 46.00 | 20.03 | peak | | 4! | 960.0000 | 35.10 | 5.89 | 40.99 | 46.00 | -5.01 | QP | | 5 | 994.1200 | 34.64 | 6.75 | 41.39 | 54.00 | -12.61 | QP | Page 59 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_902.30 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 612.7040 | 34.43 | 0.08 | 34.51 | 46.00 | -11.49 | QP | | 2 | 614.0000 | 34.31 | 0.08 | 34.39 | 46.00 | -11.61 | QP | | 3* | 902.3920 | 54.44 | 5.03 | 59.47 | 46.00 | 13.47 | peak | | 4! | 960.0000 | 34.78 | 5.89 | 40.67 | 46.00 | -5.33 | QP | | 5 | 970.2080 | 35.83 | 6.14 | 41.97 | 54.00 | -12.03 | QP | Page 60 of 62 Report Number: USRC235149002 Polarization: Horizontal Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 608.3920 | 34.21 | 0.05 | 34.26 | 46.00 | -11.74 | QP | | 2 | 614.0000 | 34.37 | 0.08 | 34.45 | 46.00 | -11.55 | QP | | 3* | 914.9360 | 61.52 | 5.20 | 66.72 | 46.00 | 20.72 | peak | | 4! | 960.0000 | 34.69 | 5.89 | 40.58 | 46.00 | -5.42 | QP | | 5 | 992.1600 | 34.61 | 6.69 | 41.30 | 54.00 | -12.70 | QP | Page 61 of 62 Report Number: USRC235149002 Polarization: Vertical Test Mode: Hybrid Mode_914.90 MHz Remark: | No. | Frequency | Reading | Correction | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 609.5680 | 34.66 | 0.06 | 34.72 | 46.00 | -11.28 | QP | | 2 | 614.0000 | 34.20 | 0.08 | 34.28 | 46.00 | -11.72 | QP | | 3* | 914.9360 | 54.44 | 5.20 | 59.64 | 46.00 | 13.64 | peak | | 4! | 960.0000 | 34.85 | 5.89 | 40.74 | 46.00 | -5.26 | QP | | 5 | 993.3360 | 35.22 | 6.72 | 41.94 | 54.00 | -12.06 | QP | ---END--- Page 62 of 62 Report Number: USRC235149002