

Test Report

Test report no.: 19113662-17867-3 Date of issue: 2021-05-02

Test result: The test item - passed - and complies with below listed standards.

Applicant TeraTron GmbH

Manufacturer TeraTron GmbH

> Test Item KR0304

RF-Spectrum Testing according to:

FCC 47 CFR Part 15 Radio Frequency Devices, Subpart C -§15.225 Operation within the band 13.110-14.010 MHz

RSS-210 Licence-Exempt Radio Apparatus: Category I Equipment

Tested by (name, function, signature)

Karsten Geraldy Head of Laboratory RF

signature

Approved by (name, function, signature)

Dr.-Ing. Harald Ansorge Managing Director

signature

Germany · IBL-Lab GmbH · Heinrich-Hertz-Allee 7-10 · 66386 Sankt Ingbert · Tel: +49 6894 38938-0 · Fax: +49 6894 38938-99 Company Register: 105151, Amtsgericht Saarbrücken URL: <u>www.ib-lenhardt.de</u> · E-Mail: <u>info@ib-lenhardt.de</u>

2021-05-02

Applicant and Test item details	
Applicant	TeraTron GmbH Martin-Siebert-Str. 5
	51647, Gummersbach, Germany
Manufacturer	TeraTron GmbH
	Martin-Siebert-Str. 5
	51647, Gummersbach, Germany
Test item description	Desktop KeyReader Plus
Model/Type reference	KR0304
FCC ID	QLXKR0304
IC	4430A-KR0304
PMN	Desktop KeyReader Plus
HVIN	KR0304
FVIN	N/A
HMN	N/A
Frequency	13.56 MHz
Antenna	Integrated PCB antenna
Power supply	5.0 V DC via USB Connection from PC
Temperature range	0 °C – +45 °C

Disclaimer and Notes

The content of this rest report relates to the mentioned test sample(s) only. Without a written permit of IBL-Lab GmbH, this test report shall not be reproduced, except in full. The last valid version is available at TAMSys[®]. Copyright ©: All rights reserved by IBL-Lab GmbH

Within this test report, a ⊠ point / □ comma is used as a decimal separator. If otherwise, a detailed note is added adjected to its use.

IBL-Lab GmbH does not take test samples. The sample used for testing is provided by the applicant.

Decision rule: Binary Statement for Simple Acceptance Rule according ILAC-G8:09/2019

2021-05-02

1 TABLE OF CONTENTS

1	TABLE OF CONTENTS	
2	GENERAL INFORMATION	4
2.1	Administrative details	4
2.2	Possible test case verdicts	4
2.3	Observations	4
2.4	Opinions and interpretations	4
2.5	Revision History	5
2.6	Further documents	5
3	ENVIRONMENTAL & TEST CONDITIONS	6
3.1	Environmental conditions	6
3.2	Normal and extreme test conditions	6
4	TEST STANDARDS AND REFERENCES	6
5	EQUIPMENT UNDER TEST (EUT)	7
5.1	Product description	7
5.2	Description of test item	7
5.3	Technical data of test item	7
5.4	Additional information	7
6	Test Setup Description	
6.1	Semi Anechoic Chamber with Ground Plane	9
6.2	AC conducted	11
6.3	Frequency error	
7	Measurement procedures	
7.1	Radiated spurious emissions from 9 kHz to 30 MHz	13
7.2	Radiated spurious emissions from 30 MHz to 1 GHz	14
8	SUMMARY OF TEST RESULTS	
9	TEST RESULTS	
9.1	Field strength of emissions (transmitter spectrum mask)	
9.2	Field strength of emissions (spurious and harmonics)	
9.3	Frequency tolerance	21
9.4	Conducted emissions	24
9.5	20 dB bandwidth / occupied bandwidth	27
10	MEASUREMENT UNCERTAINTIES	

2 GENERAL INFORMATION

2.1 Administrative details		
Testing laboratory	IBL-Lab GmbH Heinrich-Hertz-Allee 7 66386 Sankt Ingbert / Germany Fon: +49 6894 38938-0 Fax: +49 6894 38938-99 URL: www.ib-lenhardt.de	
Accreditation	E-Mail: info@ib-lenhardt.de The testing laboratory is accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025:2018. Scope of testing and registration number: • Electromagnetic Compatibility and Telecommunication (FCC requirements) D-PL-21375-01-03 • Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards D-PL-21375-01-04 Website DAkkS: https://www.dakks.de/ The Deutsche Akkreditierungsstelle GmbH (DAkkS) is also a signatory to ILAC Mutual Recognition Arrangement	
Testing location	IBL-Lab GmbH Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany	
Date of receipt of test samples	2021-02-01	
Start – End of tests	2021-02-17 – 2021-04-30	

2.2 Possible test case verdicts

Test sample meets the requirements	P (PASS)
Test sample does not meet the requirements	F (FAIL)
Test case does not apply to the test sample	N/A (Not applicable)
Test case not performed	N/P (Not performed)

2.3 Observations

No additional observations other than the reported observations within this test report have been made.

2.4 Opinions and interpretations

No appropriate opinions or interpretations according ISO/IEC 17025:2017 clause 7.8.7 are within this test report.

2.5 Revision History

-1 Initial Version

-2 Revision: technical modification

Measurement result for occupied bandwidth included.

-3 Revision: administrative modifications / corrections

Internal review and editorial changes, accreditation symbol changed.

Measurement result for 20 dB bandwidth included.

The present test report 19113662-17867-3 replaces the previous test report 19113662-17866-2. Utilisation, publication and control of previous report editions is under responsibility of the applicant.

2.6 Further documents

List of further applicable documents belonging to the present test report:		
External EUT photographs:	19113662-17867_AnnexA	
Internal EUT photographs:	19113662-17867_AnnexB	
Test setup photographs:	19113662-17867_AnnexC	

3 ENVIRONMENTAL & TEST CONDITIONS

3.1 Environmental conditions

Temperature	20°C ± 5°C
Relative humidity	25-75% r.H.
Barometric Pressure	860-1060 mbar
Power supply	230 V AC ± 5%

2021-05-02

3.2 Normal and extreme test conditions

	minimum	nominal	maximum
Temperature	-20 °C	+22 °C	+50 °C
Relative humidity	-/-	45 % r.h.	-/-
Power supply	90 V AC	110 V AC	130 V AC

4 TEST STANDARDS AND REFERENCES

Test standard (accredited)	Description
	Radio Frequency Devices, Subpart C - §15.225 Operation within the band 13.110-14.010 MHz
RSS-210	Licence-Exempt Radio Apparatus: Category I Equipment
RSS-Gen	General Requirements for Compliance of Radio Apparatus

Reference	Description
	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

5 EQUIPMENT UNDER TEST (EUT)

5.1 **Product description**

Desktop KeyReader Plus

5.2 Description of test item

Model name*	KR0304
Serial number*	351826
PCB identifier*	0304.01.03
Hardware status*	03
Software status*	01.11

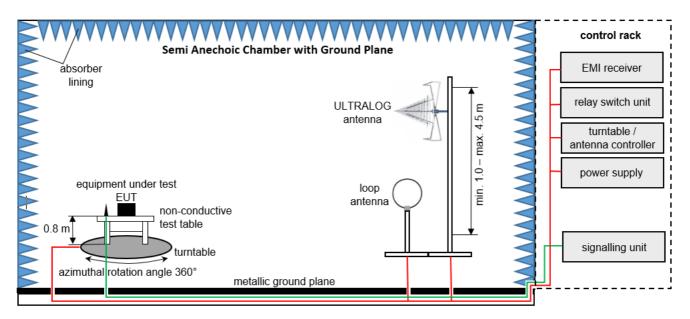
*: as declared by applicant

5.3 Technical data of test item		
Operational carrier frequency*	13.56 MHz	
Operational frequency band*	13.11 – 14.01 MHz	
Type of radio transmission*	Modulated carrier	
Modulation type*	ASK (OOK)	
Number of channels*	1	
Channel bandwidth*	<1 MHz	
Channel spacing*	n.a.	
Receiver category*	n.a.	
Receiver bandwidth*	n.a.	
Duty cycle*	For testing purpose: 50 ms on / 150 ms off, i.e. DC = 25 % Normal operation: 55 ms on / 1410 ms off, i.e. DC = 3.9 %	
Antenna*	Integrated PCB antenna	
Power supply*	5.0 V DC via USB Connection from PC	
Temperature range*	0 °C – +45 °C	

*: as declared by applicant

5.4 Additional information	
Model differences	None
Ancillaries tested with	AC/DC-Adapter: I.T.E. Power Supply, FW8002USB/05
Additional equipment used for testing	Notebook with test software

6 Test Setup Description


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Cyclically chamber inspections and range calibrations are performed. Where possible resp. necessary, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

6.1 Semi Anechoic Chamber with Ground Plane

Radiated measurements are performed in vertical and horizontal plane in the frequency range 30 MHz to 1 GHz in a Semi Anechoic Chamber with a metallic ground plane. The EUT is positioned on a non-conductive test table with a height of 0.80 m above the metallic ground plane that covers the whole chamber. The receiving antennas conform to specification ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.5 m in order to search for maximum field strength emitted from the EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by a spectrum analyzer where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

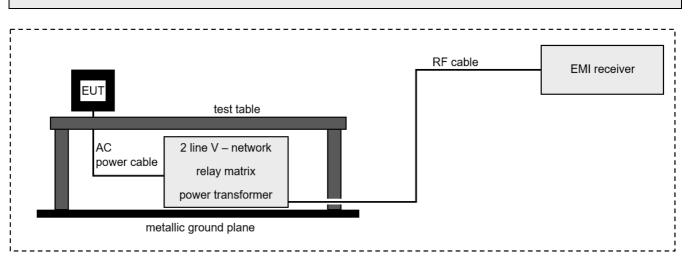
Measurement distance: ULTRALOG antenna 3 m; loop antenna 3 m EMC32 software version: 11.10.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)


List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NE	-
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NE	-
3	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NE	-
4	Compressed Air	Implotex	1-850-30	-	LAB000256	NE	-
5	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	К	$2020-06-03 \rightarrow 12M \rightarrow 2021-06-03$
6	Semi-Anechoic Chamber (SAC)	Albatross Projects GmbH	SAC 5 (Babylon 5)	20168.PRB	LAB000235	ZW	$2020\text{-}08\text{-}24 \rightarrow 12\text{M} \rightarrow 2021\text{-}08\text{-}24$
7	Measurement Software	Rohde & Schwarz	EMC32 V11.00.10		LAB000226	NE	-
8	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NE	-
9	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NE	-
10	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NE	-
11	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NE	-
12	Power Supply	Elektro-Automatik GmbH & Co. KG	PS 2042-10 B	2878350292	LAB000191	NE	-
13	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	ZW	$2020-07-07 \rightarrow 12M \rightarrow 2021-07-07$
14	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	К	$2020-04-23 \rightarrow 36M \rightarrow 2023-04-23$
15	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	К	$2020-07-05 \rightarrow 36M \rightarrow 2023-07-05$
16	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	к	$2020\text{-}03\text{-}25 \rightarrow 36\text{M} \rightarrow 2023\text{-}03\text{-}25$
17	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NE	-

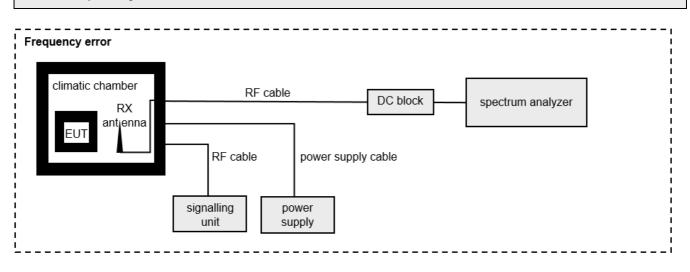
2021-05-02

6.2 AC conducted

2021-05-02

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)


 $\frac{Example \ calculation:}{FS \ [dB\muV/m] = 37.62 \ [dB\muV/m] + 9.90 \ [dB] + 0.23 \ [dB] = 47.75 \ [dB\muV/m] \ (244.06 \ \muV/m)}$

List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.		Kind of Calibration	Last / Next Calibration
1	Open Switch and Control Platform	Rohde & Schwarz	OSP-B200S2	101443	LAB000239	ZW	$2020-07-07 \rightarrow 12M \rightarrow 2021-07-07$
2	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	К	$2020\text{-}06\text{-}03 \rightarrow 12\text{M} \rightarrow 2021\text{-}06\text{-}03$
3	Two-Line V-Network	Rohde & Schwarz	ENV216	102597	LAB000220	К	$2020\text{-}09\text{-}17 \rightarrow 24\text{M} \rightarrow 2022\text{-}09\text{-}17$

6.3 Frequency error

2021-05-02

List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.		Kind of Calibration	Last / Next Calibration
1	Coaxial Cable	Huber & Suhner	ST18/48"	2276454-01	LAB000157	ZW	$2020\text{-}07\text{-}03 \to 12 M \to 2021\text{-}07\text{-}03$
2	Spectrum Analyser	Rohde & Schwarz	FSW50	101450	LAB000111	К	$2020\text{-}05\text{-}05 \to 12 \text{M} \to 2021\text{-}05\text{-}05$
3	Loop antenna	IBL	-	-	-	NE	_

7 Measurement procedures

7.1 Radiated spurious emissions from 9 kHz to 30 MHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
- In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- For each turntable step the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated with special 3D adapter set to find maximum level of emissions.
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table
 position and settings of measuring equipment is recorded.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

7.2 Radiated spurious emissions from 30 MHz to 1 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table. In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

8 SUMMARY OF TEST RESULTS

Test specification

FCC 47 CFR Part 15 RSS-210 / RSS-Gen

Clause	Requirement / Test case	Test Conditions	Result / Remark	Verdict
§15.225 (a) – (c) RSS-210, B.6 a	Field strength of emissions (transmitter spectrum mask)	Normal	61.9 dBµV/m @3m	Р
§15.225(d) / §15.209(a) // RSS-210, B.6 a RSS-Gen	Field strength of emissions (spurious & harmonics)	Normal	< limit	Р
§15.225(e) RSS-210, B.6 b	Frequency tolerance	Extreme	< 0.002 % < 20 ppm	Р
§15.207 RSS-Gen, 8.8	Conducted limits	Normal	< limit	Р
§15.215(c) RSS-Gen, 6.7	20 dB bandwidth Occupied bandwidth	Normal	427.6 kHz 552.6 kHz	Р

Notes

none

Comments and observations

none

9 TEST RESULTS

9.1 Field strength of emissions (transmitter spectrum mask)

Description / Limits

§15.225

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15848 microvolts/meter at 30 meters (84 dB μ V/m).

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters ($50.5 \text{ dB}\mu\text{V/m}$).

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters (40.5 dBV/m).

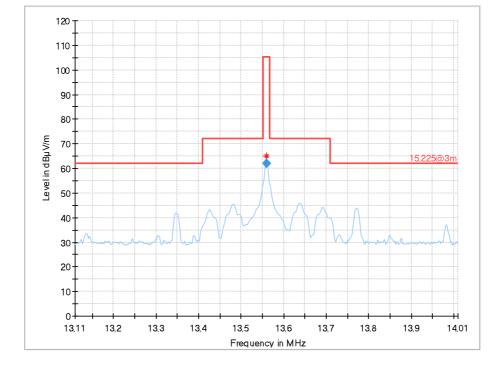
Test procedure

§15.31 (m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range	Number of frequencies	Location
< 1MHz bandwidth	1	middle
1 – 10 MHz bandwidth	2	1 near bottom and 1 near top
> 10 MHz bandwidth	3	1 near bottom / middle / top

§15.35 (a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrumentation using the CISPR quasi-peak detector can be found in ANSI C63.4-2014, clause 4 (incorporated by reference, see §15.38). As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function as long at the same bandwidth as indicated for CISPR quasi-peak measurements are employed.

Test setup: see 6.1


Test results

Channel / Mode	Frequency [MHz]	Detector	Test distance [m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Test mode with 25% DC	13.56	QP	3	61.9	105.4	43.5

Testing was performed with high duty cycle for testing purpose (DC = 25 %)

2021-05-02

Plot no. 1: Transmitter Spectrum Mask (TSM), loop antenna

Final Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(deg)	(dB/m)
13.560000	61.91	105.40	43.49	100.0	9.000	86.0	20.5

Limit

[dBµV/m]

105.4

40.00

40.00

40.00

43.50

43.50

46.00

46.00

46.00

9.2 Field strength of emissions (spurious and harmonics)

Description / Limits

§15.225 (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209:

Frequency	Field Strength	Measurement distance
0.009 – 0.490 MHz	2400/F[kHz] μV/m	300 m
0.490 – 1.705 MHz	24000/F[kHz] μV/m	30 m
1.705 – 30.0 MHz	30.0 µV/m / 29.5 dBµV/m	30 m
30 – 88 MHz	100 µV/m / 40.0 dBµV/m	3 m
88 – 216 MHz	150 μV/m / 43.5 dBμV/m	3 m
216 – 960 MHz	200 µV/m / 46.0 dBµV/m	3 m
960 – 100 000 MHz	500 μV/m / 54.0 dBμV/m	3 m

Test procedure

§15.31 (m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range	Number of frequencies	Location
< 1MHz bandwidth	1	middle
1 – 10 MHz bandwidth	2	1 near bottom and 1 near top
> 10 MHz bandwidth	3	1 near bottom / middle / top

§15.35 (a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrumentation using the CISPR quasi-peak detector can be found in ANSI C63.4-2014, clause 4 (incorporated by reference, see §15.38). As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function as long at the same bandwidth as indicated for CISPR quasi-peak measurements are employed.

3

3

16.49

15.82

Test setup: see 6.1

Test results Channel / Frequency Detector **Test distance** Level Mode [dBµV/m] [MHz] [m] 13.560000 QP 3 61.9 40.675000 QP 3 35.11 54.225000 QP 3 36.78 67.800000 QP 3 33.41 Test mode 116.87500 QP 3 28.33 with 25% DC QΡ 3 118.45000 22.88 244.07500 QP 3 36.20

QP

QΡ

Note:

Testing was performed with high duty cycle for testing purpose (DC = 25 %)

662.65000

668.55000

Margin

[dB]

43.5

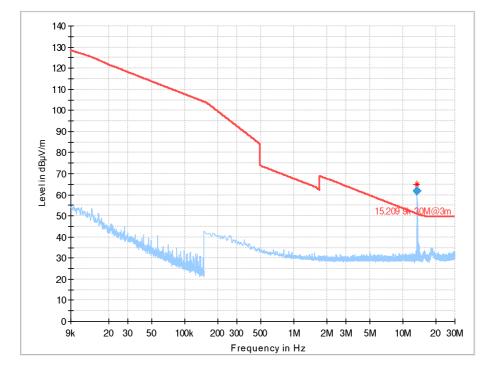
4.89

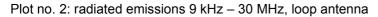
3.22

6.59

15.17

20.62

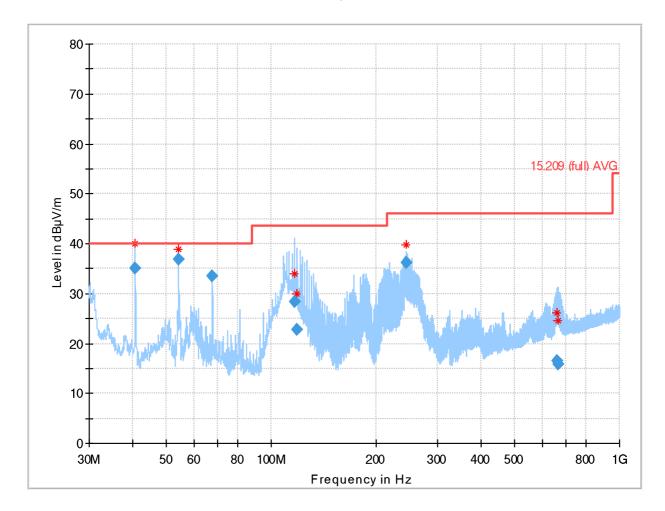

9.80


29.51

30.18

2021-05-02

Final_Result


Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(deg)	(dB/m)
13.560000	61.91	50.94	-10.97	100.0	9.000	86.0	20.5

Note:

Please see previous lot for transmitter spectrum mask (TSM)!

2021-05-02

Plot no. 3: radiated emissions 30 MHz - 1 GHz, hor./vert. polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
40.675000	35.11	40.00	4.89	100.0	120.000	233.0	V	78.0
54.225000	36.78	40.00	3.22	100.0	120.000	105.0	V	19.0
67.800000	33.41	40.00	6.59	100.0	120.000	127.0	V	192.0
116.875000	28.33	43.50	15.17	100.0	120.000	133.0	V	130.0
118.450000	22.88	43.50	20.62	100.0	120.000	100.0	V	99.0
244.075000	36.20	46.00	9.80	100.0	120.000	100.0	V	267.0
662.650000	16.49	46.00	29.51	100.0	120.000	233.0	V	70.0
668.550000	15.82	46.00	30.18	100.0	120.000	104.0	V	37.0

9.3 Frequency tolerance

Description / Limits

§15.225 (e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

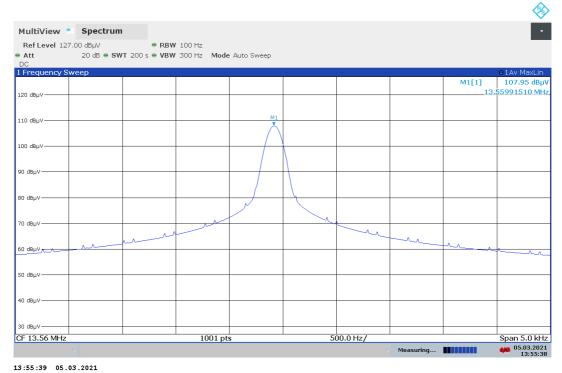
Test setup: see 6.3

Test results

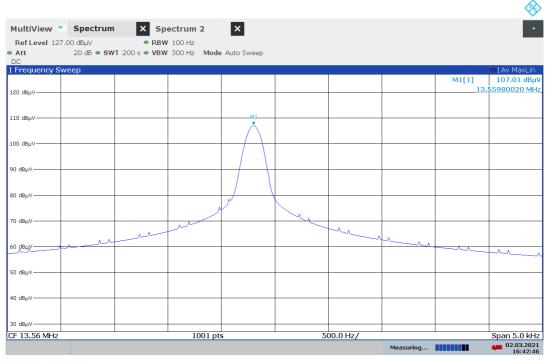
ootroodito					
EUT mode	Test conditions	Declared	Measured	Deviation	Deviation
		frequency [MHz]	frequency [MHz]	[%]	[ppm]
Тx	-20 °C	13.56	13.559915	-0.000627	-6.27
Tx	+20 °C	13.56	13.559800	-0.001475	-14.75
Tx	+50 °C	13.56	13.559775	-0.001659	-16.59

With voltage variation ± 15%:

Input voltage variation 110 V AC ±15% does not affect the transmitted signal.

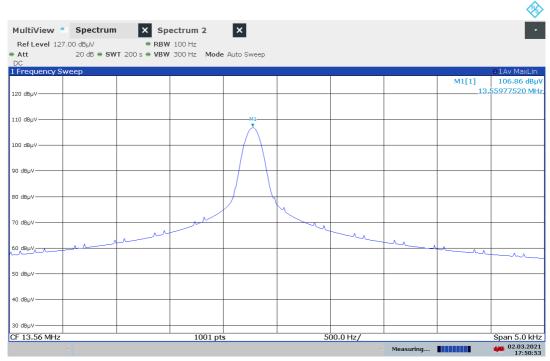

Note:

Testing was performed with high duty cycle for testing purpose (DC = 25 %)


2021-05-02

Plot no. 4: frequency tolerance @ -20 °C

Plot no. 5: frequency tolerance @ +20 °C



16:42:47 02.03.2021

Plot no. 6: frequency tolerance @ +50 °C

17:50:53 02.03.2021

9.4 Conducted emissions

Description / Limits

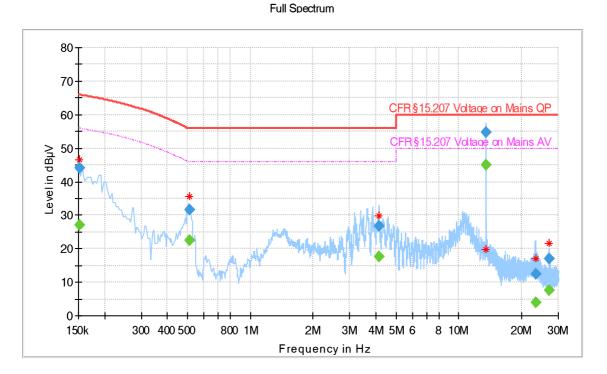
§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission	Conducted	Conducted limit [dBµV]				
[MHz]	Quasi-Peak	Average				
0.15 – 0.5	66 to 56*	56 to 46*				
0.5 – 5.0	56	46				
5.0 - 30 60 50						
*Decreases with the logarithm of the frequency.						

§15.207 (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Test setup: see 6.2

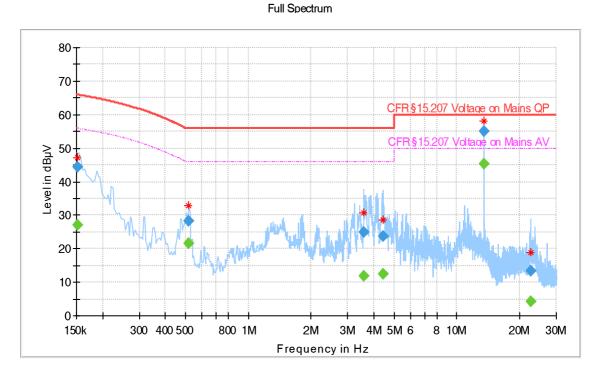
Test results


See next pages!

Note:

Testing was performed with high duty cycle for testing purpose (DC = 25 %)

2021-05-02


Plot no. 7: conducted emissions, line L1

Final_Result

QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
	27.15	55.97	28.82	15000.0	9.000	L1	10.7
44.01		65.97	21.95	15000.0	9.000	L1	10.7
	22.51	46.00	23.49	15000.0	9.000	L1	10.1
31.57		56.00	24.43	15000.0	9.000	L1	10.1
	17.59	46.00	28.41	15000.0	9.000	L1	9.9
26.77		56.00	29.23	15000.0	9.000	L1	9.9
	44.97	50.00	5.03	15000.0	9.000	L1	10.3
54.80		60.00	5.20	15000.0	9.000	L1	10.3
	3.97	50.00	46.03	15000.0	9.000	L1	10.5
12.43		60.00	47.57	15000.0	9.000	L1	10.5
	7.61	50.00	42.39	15000.0	9.000	L1	10.6
17.11		60.00	42.89	15000.0	9.000	L1	10.6
	(dBµV) 44.01 31.57 26.77 54.80 12.43 	(dBµV) (dBµV) 27.15 44.01 22.51 31.57 17.59 26.77 44.97 54.80 3.97 12.43 7.61	(dBμV) (dBμV) (dBμV) 27.15 55.97 44.01 65.97 22.51 46.00 31.57 56.00 17.59 46.00 26.77 56.00 44.97 50.00 54.80 60.00 3.97 50.00 12.43 60.00	(dBµV) (dBµV) (dBµV) (dB) 27.15 55.97 28.82 44.01 65.97 21.95 22.51 46.00 23.49 31.57 56.00 24.43 17.59 46.00 28.41 26.77 56.00 29.23 44.97 50.00 5.03 54.80 60.00 5.20 3.97 50.00 46.03 12.43 60.00 47.57 7.61 50.00 42.39	(dBµV) (dBµV) (dBµV) (dB) (ms) 27.15 55.97 28.82 15000.0 44.01 65.97 21.95 15000.0 22.51 46.00 23.49 15000.0 31.57 56.00 24.43 15000.0 17.59 46.00 28.41 15000.0 26.77 56.00 29.23 15000.0 44.97 50.00 5.03 15000.0 54.80 60.00 5.20 15000.0 3.97 50.00 46.03 15000.0 12.43 60.00 47.57 15000.0 7.61 50.00 42.39 15000.0	(dBµV) (dBµV) (dBµV) (dB) (ms) (kHz) 27.15 55.97 28.82 15000.0 9.000 44.01 65.97 21.95 15000.0 9.000 22.51 46.00 23.49 15000.0 9.000 31.57 56.00 24.43 15000.0 9.000 17.59 46.00 28.41 15000.0 9.000 26.77 56.00 29.23 15000.0 9.000 44.97 50.00 5.03 15000.0 9.000 54.80 60.00 5.20 15000.0 9.000 3.97 50.00 46.03 15000.0 9.000 12.43 60.00 47.57 15000.0 9.000	(dBµV) (dBµV) (dBµV) (dB) (ms) (kHz) 27.15 55.97 28.82 15000.0 9.000 L1 44.01 65.97 21.95 15000.0 9.000 L1 22.51 46.00 23.49 15000.0 9.000 L1 31.57 56.00 24.43 15000.0 9.000 L1 17.59 46.00 28.41 15000.0 9.000 L1 17.59 46.00 28.41 15000.0 9.000 L1 26.77 56.00 29.23 15000.0 9.000 L1 44.97 50.00 5.03 15000.0 9.000 L1 3.97 50.00 46.03 15000.0 9.000 L1 3.97 50.00 47.57 15000.0 9.000 L1 12.43 60.00 47.57 <td< td=""></td<>

2021-05-02

Plot no. 8: conducted emissions, neutral N

Final_Result

(MHz) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dB) (ms) (kHz) (dE) (dE) 0.151741 27.21 55.95 28.75 15000.0 9.000 N 10 0.151741 44.50 65.95 21.45 15000.0 9.000 N 10 0.519477 21.64 46.00 24.36 15000.0 9.000 N 10 0.519477 28.43 56.00 27.57 15000.0 9.000 N 10 3.571507 11.91 46.00 34.09 15000.0 9.000 N 9 3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 1500.0 9.000 N 10 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
0.151741 27.21 55.95 28.75 15000.0 9.000 N 10 0.151741 44.50 65.95 21.45 15000.0 9.000 N 10 0.519477 21.64 46.00 24.36 15000.0 9.000 N 10 0.519477 28.43 56.00 27.57 15000.0 9.000 N 10 3.571507 11.91 46.00 34.09 15000.0 9.000 N 9 3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
0.151741 44.50 65.95 21.45 15000.0 9.000 N 10 0.519477 21.64 46.00 24.36 15000.0 9.000 N 10 0.519477 28.43 56.00 27.57 15000.0 9.000 N 10 3.571507 11.91 46.00 34.09 15000.0 9.000 N 9 3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.519477 21.64 46.00 24.36 15000.0 9.000 N 10 0.519477 28.43 56.00 27.57 15000.0 9.000 N 10 3.571507 11.91 46.00 34.09 15000.0 9.000 N 9 3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	0.151741		27.21	55.95	28.75	15000.0	9.000	Ν	10.7
0.519477 28.43 56.00 27.57 15000.0 9.000 N 10 3.571507 11.91 46.00 34.09 15000.0 9.000 N 9 3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	0.151741	44.50		65.95	21.45	15000.0	9.000	Ν	10.7
3.571507 11.91 46.00 34.09 15000.0 9.000 N 9 3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	0.519477		21.64	46.00	24.36	15000.0	9.000	Ν	10.1
3.571507 24.94 56.00 31.06 15000.0 9.000 N 9 4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	0.519477	28.43		56.00	27.57	15000.0	9.000	Ν	10.1
4.430094 12.43 46.00 33.57 15000.0 9.000 N 10 4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	3.571507		11.91	46.00	34.09	15000.0	9.000	Ν	9.9
4.430094 23.80 56.00 32.20 15000.0 9.000 N 10	3.571507	24.94		56.00	31.06	15000.0	9.000	Ν	9.9
	4.430094		12.43	46.00	33.57	15000.0	9.000	Ν	10.0
13.559930 45.26 50.00 4.74 15000.0 9.000 N 10	4.430094	23.80		56.00	32.20	15000.0	9.000	Ν	10.0
	13.559930		45.26	50.00	4.74	15000.0	9.000	Ν	10.3
13.559930 55.13 60.00 4.87 15000.0 9.000 N 10	13.559930	55.13		60.00	4.87	15000.0	9.000	Ν	10.3
<u>22.679533</u> <u>4.28</u> <u>50.00</u> <u>45.72</u> <u>15000.0</u> <u>9.000</u> <u>N</u> <u>10</u>	22.679533		4.28	50.00	45.72	15000.0	9.000	Ν	10.6
22.679533 13.41 60.00 46.59 15000.0 9.000 N 10	22.679533	13.41		60.00	46.59	15000.0	9.000	Ν	10.6

9.5 20 dB bandwidth / occupied bandwidth

Description

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation . process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test procedure

ANSI C63.10, 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

2021-05-02

Note

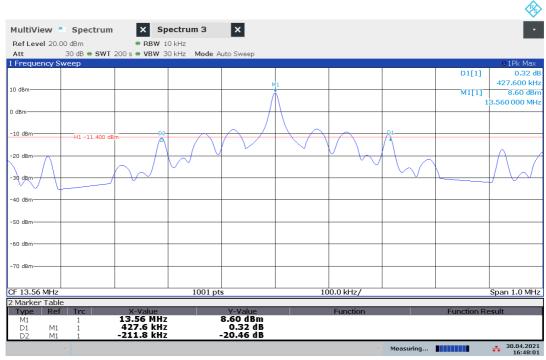
Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.10).

Test Parameters:

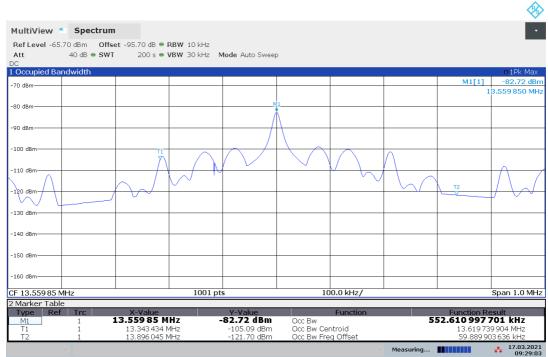
Detector	Pos-Peak (worst-case)				
Trace-mode	Max Hold				
Resolution bandwidth RBW	10 kHz				
Video bandwidth	≥ RBW				
Span	see plots				
Sweep time	see plots				
Measurement uncertainty	±1 x 10 ⁻⁷				
Test environment	Normal and extreme				
Test set-up	□ Conducted □ Radiated □ Test Fixture				

Test Results:

С	hannel		Min. Frequency F∟ [MHz]	20 dB bandwidth [kHz]	
	1		13.3482	13.7758	427.6
С	hannel		Min. Frequency F∟ [MHz]	Max. frequency F _H [MHz]	Occupied bandwidth (99%) [kHz]
	1		13.343434	13.896045	552.6
Where:	F∟ Fн	= =	is the lower edge of the OB ¹ is the upper edge of the OB		


Verdict	- PASS -	Measurement plot(s) see next page(s).
---------	----------	---------------------------------------

Comment	


2021-05-02

Plot No. 9:

16:48:01 30.04.2021

Plot No. 10:

09:29:04 17.03.2021

10 MEASUREMENT UNCERTAINTIES

Radio frequency	≤ ± 10 ppm
Radiated emission	≤ ± 6 dB
Temperature	≤±1°C
Humidity	≤ ± 5 %
DC and low frequency voltages	≤ ± 3 %

The indicated expanded measurement uncertainty corresponds to the standard measurement uncertainty for the measurement results multiplied by the coverage factor k = 2. It was determined in accordance with EA-4/02 M:2013. The true value is located in the corresponding interval with a probability of 95 %.

End of Test Report