

FCC Measurement/Technical Report on CDL0236

TeraTron

FCC ID: QLXCDL0236

IC: 4430A-CDL0236

Report Reference: MDE_TERA_1904_FCC_01_rev01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

TABLE OF CONTENTS

1	Applied Standards and Test Summary	3
1 M	.1 Applied Standards .2 FCC-IC Correlation table easurement Summary /Signatures evision History	3 4 5 5
2	Administrative Data	6
2	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
3	Test object Data	7
3	General EUT Description EUT Main components EUT Setups Operating Modes Product labelling	7 8 9 9
4	Test Results	10
4	Field strength of Fundamental / Radiated power output Field Strength of Harmonics / Spurious radiated emissions Occupied bandwidth	10 12 21
5	Test Equipment	24
6	Antenna Factors, Cable Loss and Sample Calculations	26
6 6 6	LISN R&S ESH3-Z5 (150 kHz - 30 MHz) Antenna R&S HFH2-Z2 (9 kHz - 30 MHz) Antenna R&S HL562 (30 MHz - 1 GHz) Antenna R&S HF907 (1 GHz - 18 GHz) Antenna EMCO 3160-09 (18 GHz - 26.5 GHz) Antenna EMCO 3160-10 (26.5 GHz - 40 GHz)	26 27 28 29 30 31
7	Photo Report	31
8	Setup Drawings	32
9	Measurement Uncertainties	33

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Edition of FCC Rules: October 1, 2018

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.249 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

Note: ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0 Measurement Summary / Signatures.

Test report Reference: MDE_TERA_1904_FCC_01_rev01 Page 3 of 33

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC $\,$

Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Transmitter spurious radiated emissions	§ 15.209	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-210 Issue 9: 2.5
Field strength of Fundamental	§ 15.249	RSS-210 Issue 9: 2.5.1 RSS-Gen Issue 5: 6.12, 8.9
Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.	§15.249	RSS-210, Issue 9: Annex B

MEASUREMENT SUMMARY / SIGNATURES

FCC Part 15, Subpart C

§ 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.10

2013

OP-Mode

Setup

Port

Final Result

AC Port (power line)

N/A

FCC Part 15, Subpart C

§ 15.249 (a)

Field strength of Fundamental / Radiated power output The measurement was performed according to ANSI C63.10

OP-Mode Setup Port

2013 **Final Result**

op-mode 1

Setup 01

Enclosure

passed

FCC Part 15, Subpart C

§ 15.249 (a), § 15.35 (b), § 15.209 Field Strength of Harmonics / Spurious radiated emissions

2013

The measurement was performed according to ANSI C63.10 **OP-Mode**

Setup

Port

Final Result

op-mode 1

Setup 01

Enclosure

passed *

N/A

not applicable (the EUT is powered by DC)

Revision History

Report version control				
Version Release date Change Description Version validity				
2020-02-05		invalid		
2020-02-11	-Correction FCC Rules on page 3	valid		
	2020-02-05	Release date Change Description 2020-02-05		

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report)

M.Sc. Joel Asongwe

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

_		
つ 1	TESTING LABORATORY	
Z.1	ILSTING LADORATORT	

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01

D-PL-12140-01-02 D-PL-12140-01-03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

2.2 PROJECT DATA

Responsible for testing and report: M.Sc. Joel Asongwe

Date of Report: 2020-02-11

Testing Period: 2019-11-13 to 2020-01-09

2.3 APPLICANT DATA

Company Name: TeraTron GmbH

Address: Martin-Siebert-Str. 5

51647 Gummersbach

Germany

Contact Person: Mr. Markus Schmidt

2.4 MANUFACTURER DATA

Company Name: Please see Applicant Data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	SRD Transceiver, Central Door Lock, operating in 916.5 MHz frequency band
Product name	CDL0236
Туре	TeraTron
Declared EUT data by	the supplier
Voltage Type	DC
Normal Voltage	12.0 V
Low Voltage	7.0 V
High Voltage	32.0 V
Normal Temperature	25 °C
Low Temperature	-40 °C
High Temperature	+85 °C
Specific product description for the EUT	The EUT is a Central Lock Door device used to lock or unlock all the doors of a vehicle
The EUT provides the following ports:	Enclosure
Special software used for testing	Provided by the manufacturer
Antenna type / gain	Internal PCB loop antenna / -15dBi
Transmitter operating frequencies	916.5 MHz

The main components of the EUT are listed and described in Chapter 3.2.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1400000bb02	radiated sample
Sample Parameter	Value	
Serial No.	DUT916MHz_2	
HW Version	0236.01.05	
SW Version	Aktuell_F210_EMC_FUNK_916_5MHz	
Comment	Used for all measurements	

General description of ancillary equipment

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using

General description of auxiliary equipment

Device	Details (Manufacturer, HW, SW, S/N)	Description

3.3 EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A	Setup for radiated measurements: Output power and Spurious emissions bellow 30 MHz, 30 MHz to 1 GHz and 1 to 10 GHz. Setup for Occupied BW

3.4 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Single burst	Transmitter sends continuously
		modulated signals

3.5 PRODUCT LABELLING

3.5.1 FCC ID label

Please refer to the documentation of the applicant.

3.5.2 IC Label

Please refer to the documentation of the applicant.

3.5.3 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 FIELD STRENGTH OF FUNDAMENTAL / RADIATED POWER OUTPUT

Standard FCC Part 15, Subpart C

The test was performed according to ANSI C63.10-2013

4.1.1 TEST DESCRIPTION

Please refer to the description at sub-clause 4.2.1 esp. item no. 3.

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.249

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50 (94.0 dBμV/m)	500 (54.0 dBμV/m)
2400-2483.5 MHz	50 (94.0 dBμV/m)	500 (54.0 dBμV/m)
5725-5875 MHz	50 (94.0 dBμV/m)	500 (54.0 dBμV/m)
24.0-24.25 GHz	250 (108.0 dBμV/m)	2500 (68.0 dBµV/m)

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

- (c) Field strength limits are specified at 3 meters.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.1.3 TEST PROTOCOL

Temperature: 24 °C Air Pressure: 1017 hPa Humidity: 34 %

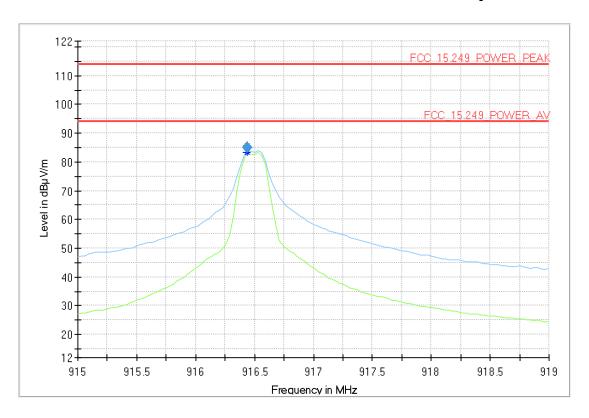
Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Frequency [MHz]		Limit [dBµV/m]	Margin to Limit [dB]	Remarks
916.44	85.05	94	x us	Maximum radiated field strength at fundamental frequency

Notes: The EUT transmitted continuously modulated carrier.

Tests were performed with the radiated sample.

4.1.4 TEST RESULT:


MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 1	passed	

4.1.5 MEASUREMENT PLOTS

4.1.5.1 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/ m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimu th (deg)
916.440000	85.63	-	114	28.37	1000.0	100.000	100.0	Н	113.0
916.440000	-	85.05	94	8.95	1000.0	100.000	100.0	Н	113.0

4.2 FIELD STRENGTH OF HARMONICS / SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to ANSI C63.10-2013

4.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30--1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

Test report Reference: MDE_TERA_1904_FCC_01_rev01 Page 12 of 33

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

Anechoic chamberAntenna distance: 3 mDetector: Peak-Maxhold

• Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

IF-Bandwidth: 0.2 kHz and 9 kHz

• Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

Open area test side

• Antenna distance: according to the Standard

• Detector: Quasi-Peak

• Frequency range: 0.009 – 30 MHz

Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m

- Antenna distance. 5 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms - Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 1 MHzMeasuring time: 1 s

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.249

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50 (94.0 dBµV/m)	500 (54.0 dBµV/m)
2400-2483.5 MHz	50 (94.0 dBµV/m)	500 (54.0 dBµV/m)
5725-5875 MHz	50 (94.0 dBuV/m)	500 (54.0 dB _u V/m)
24.0-24.25 GHz	250 (108.0 dBµV/m)	2500 (68.0 dBµV/m)

Used conversion factor: Limit ($dB\mu V/m$) = 20 log (Limit ($\mu V/m$)/1 $\mu V/m$)

- (c) Field strength limits are specified at a distance of 3 meters.
- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

-								
	Frequency	Limit (µV/m)	Measurement	Calculate	Limit (dBµV/m)			
	(MHz)		distance (m)	Limit (dBµV/m @10m)	@10m			
	0.009 - 0.49	2400/F (kHz)	300	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9			
	0.49 - 1.705	24000/F (kHz)	30	(33.8 - 23.0) + 19.1 dB	52.9 - 42.1			
	1.705 - 30	30	30	29.5 + 19.1 dB	39.5			

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

 $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which

Test report Reference: MDE_TERA_1904_FCC_01_rev01 Page 15 of 33

the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of $\S15.231(b)(3)$ is overruled by $\S15.205/209$, therefore within the restricted bands the limits defined at $\S15.205/209$ and outside the restricted bands the limits defined at $\S15.231(b)$ resp. $\S15.231(e)$ are applied.

4.2.3 TEST PROTOCOL

4.2.3.1 MEASUREMENT UP TO 30 MHz

Temperature: 24 °C Air Pressure: 1017 hPa Humidity: 34 %

Op. Mode		Setu	р		Port				
op-mode 1	p-mode 1		Setup_01		Enclosure				
Measuring Antenna	Spurious Emission Frequency	Corrected value [dBµV/m]		Limit [dBµV/m]	Limit [dBµV/m]	Limit [dBµV/m]	Margin to limit [dB]	Margin to limit [dB]	
Polarisation	[MHz]	QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
X-axis*									
Y-axis*									
Z-axis*									

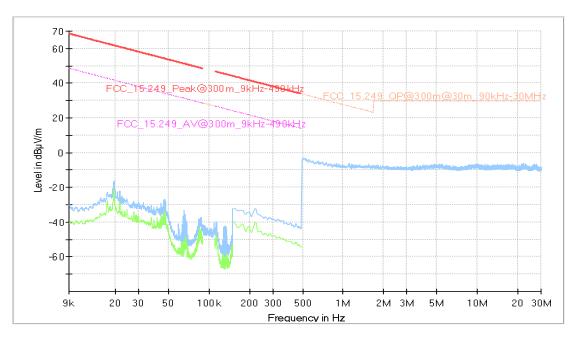
Remark: In step 1 no spurious emissions in the range 20 below the limit were found, using a peak detector, therefore step 2 (using a QP-detector) was not performed. For this test the EUT was sending a continuously modulated signal. Please see the measurement plots.

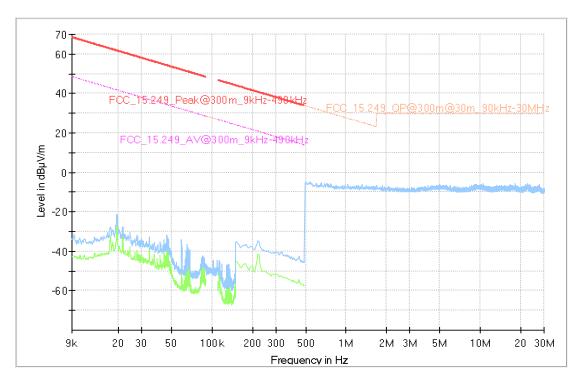
4.2.3.2 MEASUREMENT ABOVE 30 MHz TO 10 GHz

Temperature: 22 °C Air Pressure: 1009 hPa Humidity: 32 %

Op. Mode Setup		Port		
op-mode 1	Setup 01	Enclosure		

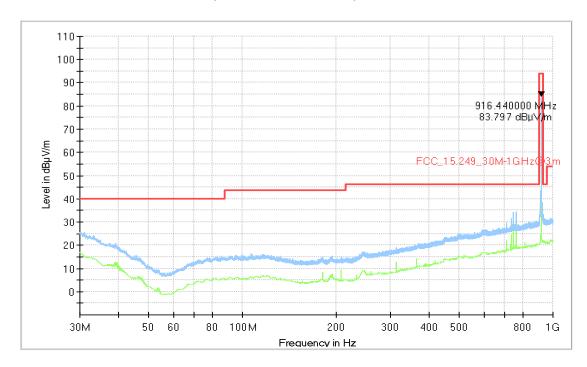
Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarisation
3666.000		39.8	53.98	14.22	1000.0	1000.000	150.0	Н
3666.000	60.2		73.98	13.80	1000.0	1000.000	150.0	Н
5498.800		39.2	53.98	14.83	1000.0	1000.000	150.0	Н
5499.200	55.7		73.98	18.31	1000.0	1000.000	150.0	H


^{*} See CISPR16-1-4 for the definition of the axis

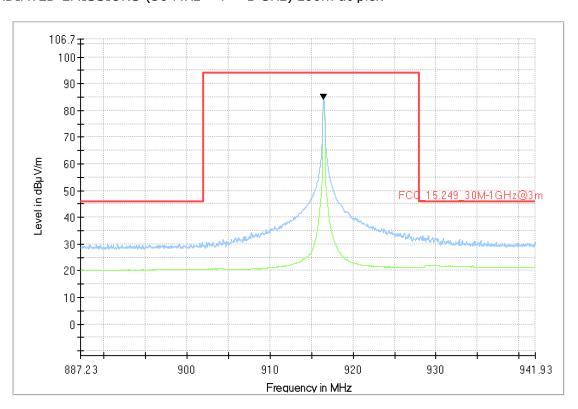

4.2.4 MEASUREMENT PLOTS

4.2.4.1 RADIATED EMISSIONS (f < 30 MHz)

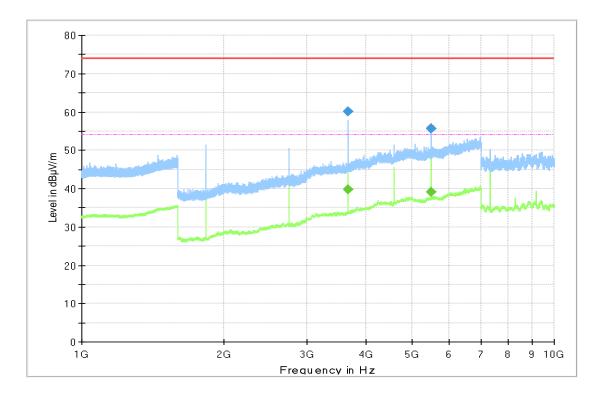
X,Y-Axis



Z-Axis



4.2.4.2 RADIATED EMISSIONS (30 MHz < f < 1 GHz)



RADIATED EMISSIONS (30 MHz < f < 1 GHz) zoom at pick

4.2.4.3 RADIATED EMISSIONS (1 GHz < f < 10 GHz)

4.3 OCCUPIED BANDWIDTH

Standard FCC Part 15 Subpart C

The test was performed according to ANSI C63.10-2013

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyser settings please see the measurement plots.

4.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit.

4.3.3 TEST PROTOCOL

Temperature: 22 °C Air Pressure: 1009 hPa Humidity: 32 %

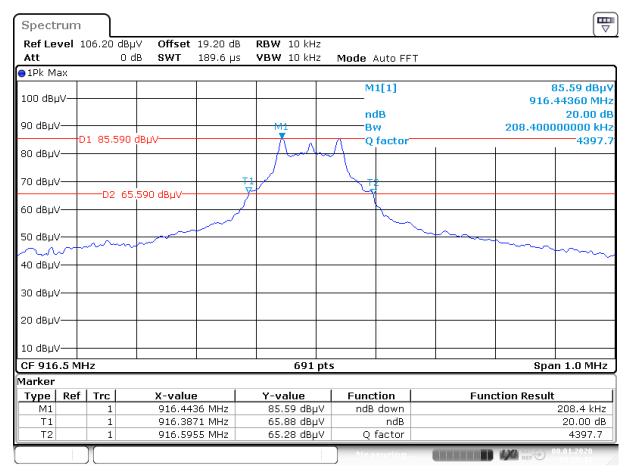
Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Cannel Frequency [MHz]	20 dB bandwidth [kHz]	99% bandwidth [kHz]
916.5	208.4	195.37

Remark: Please see the measurement plots.

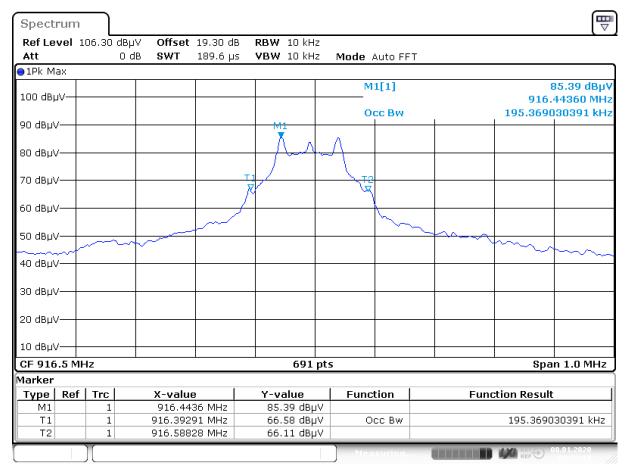
Tests were performed with the radiated sample.

4.3.4 TEST RESULT: OCCUPIED BANDWIDTH


FCC Part 15, Subpart C	Op. Mode	Result
-	op-mode 1	passed

Test report Reference: MDE_TERA_1904_FCC_01_rev01 Page 21 of 33

4.3.5 MEASUREMENT PLOTS OCCUPIED BANDWIDTH


20 dB occupied bandwidth between T1 and T2.

Date: 8.JAN.2020 09:58:41

99% bandwidth

Date: 8.JAN.2020 09:33:18

5 TEST EQUIPMENT

Radiated Emissions

Lab to perform radiated emission tests

		iated emission te		T	1	I
	Device Name	•	Manufacturer		Last Calibration	
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz GmbH & Co. KG	827753/006	2019-08	2020-08
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
1.3	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A		241515		
1.4	Opus10 TPR (8253.00)	ThermoAirpressure Datalogger 13	Lufft Mess- und Regeltechnik GmbH	ID 13936	2019-05	2021-05
1.5	ESW44	EMI Receiver / Spectrum Analyzer	& Co. KG	101603	2018-05 2019-12	2019-11 2021-12
1.6	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m		none	2018-06	2020-06
1.7	HL 562 ULTRALOG	Biconical-log-per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
1.8	5HC2700/12750- 1.5-KK	3	Trilithic	9942012		
1.9	kg	Antenna Mast	Maturo GmbH	-		
1.10	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001-PRB	2018-06	2020-06
1.11	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.12	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2019-08	2020-08
1.13	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
1.14	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.15	FSW 43	Spectrum Analyzer	Schwarz	103779	2019-02	2021-02
1.16	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH			
1.17	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
1.18	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
1.19	4HC1600/12750- 1.5-KK		Trilithic	9942011		
1.20	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.21	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.22	TT 1.5 WI	Turn Table	Maturo GmbH	-		

1.23	HL 562	Biconical-log-per	Rohde &	100609		
	ULTRALOG	Antenna (30 MHz	Schwarz GmbH			
		- 3 GHz)	& Co. KG			
1.24	HF 906	Double-ridged	Rohde &	357357/001	2018-03	2021-03
		horn	Schwarz			
1.25	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
1.26	5HC3500/18000- 1.2-KK	High Pass Filter	Trilithic	200035008		
1.27	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
1.28	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
1.29	Opus10 THI (8152.00)	ThermoHygro Datalogger 12	Lufft Mess- und Regeltechnik GmbH	ID 12482	2019-06	2021-06
1.30	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2020-01
1.31	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.32	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
1.33	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/3790709		
1.34	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/39371016/L	-	
1.35	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.36	AFS42-	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
1.37	AM 4.0	Antenna Mast 4 m		AM4.0/180/11920513		
1.38	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

2 Radio Lab

Conducted Radio Test Lab

Ref.	Device Name	Description	Manufacturer	Serial Number		Calibration
No.	CMD4004	C: I	D 1 1 0 C 1	107605	Calibration	
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
2.2	1575		API Weinschel, Inc.	4070		
2.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
2.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.5	WRD1920/1980- 5/22-5EESD	Tunable Band Reject Filter	Wainwright Instruments GmbH	11		
2.6	WRCD1879.8- 0.2/40-10EE	Notch Filter Ultra Stable	Wainwright Instruments GmbH	16		

2.7	FSIQ26	- 3	Rohde & Schwarz GmbH & Co. KG	840061/005	2019-06	2021-06
2.8	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
2.9	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2018-04	2020-04
2.10	A8455-4	4 Way Power Divider (SMA)		-		
2.11	Opus10 THI (8152.00)	T/H Logger 03	Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
2.12	Temperature Chamber VT 4002	Temperature Chamber Vötsch 05	Vötsch	58566080550010	2018-04	2020-04
2.13	WRCA800/960- 0.2/40-6EEK	Tunable Notch Filter	Wainwright Instruments GmbH	20		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency		Corr.
MHz		dB
0.15		10.1
5		10.3
7		10.5
10		10.5
12		10.7
14		10.7
16		10.8
18		10.9
20		10.9
22		11.1
24		11.1
26	-	11.2
28		11.2
30		11.3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Frequency AF HFH-Z2) Corr. MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -79.6 0.5 20.11 -39.6 0.8 20.10 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 <th>0.2 /1</th> <th></th> <th>105 111 112</th>	0.2 /1		105 111 112
Frequency HFH-Z2) Corr. MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 6 20.02			
MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.49001 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 6 20.02 -39.5 8 19.95			
0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	Frequency	HFH-Z2)	Corr.
0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	MHz	dB (1/m)	dB
0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.009	20.50	-79.6
0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5		20.45	-79.6
0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.015	20.37	-79.6
0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5		20.36	-79.6
0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.025	20.38	-79.6
0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.03	20.32	-79.6
0.1 20.20 -79.6 0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.05	20.35	-79.6
0.2 20.17 -79.6 0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.08	20.30	-79.6
0.3 20.14 -79.6 0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.1	20.20	-79.6
0.49 20.12 -79.6 0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.2	20.17	-79.6
0.490001 20.12 -39.6 0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.3	20.14	-79.6
0.5 20.11 -39.6 0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.49	20.12	-79.6
0.8 20.10 -39.6 1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.490001	20.12	-39.6
1 20.09 -39.6 2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.5	20.11	-39.6
2 20.08 -39.6 3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	0.8	20.10	-39.6
3 20.06 -39.6 4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	1	20.09	-39.6
4 20.05 -39.5 5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	2	20.08	-39.6
5 20.05 -39.5 6 20.02 -39.5 8 19.95 -39.5	3	20.06	-39.6
6 20.02 -39.5 8 19.95 -39.5		20.05	-39.5
6 20.02 -39.5 8 19.95 -39.5	5	20.05	-39.5
8 19.95 -39.5	6	20.02	-39.5
10 19.83 -39.4	8		-39.5
	10	19.83	-39.4
12 19.71 -39.4	12	19.71	-39.4
14 19.54 -39.4	14	19.54	-39.4
16 19.53 -39.3	16	19.53	-39.3
18 19.50 -39.3	18	19.50	-39.3
20 19.57 -39.3	20	19.57	-39.3
22 19.61 -39.3		19.61	
24 19.61 -39.3	24	19.61	
26 19.54 -39.3		19.54	
28 19.46 -39.2		19.46	-39.2
30 19.73 -39.1	30	19.73	-39.1

- (5 10112	30 11112)					
cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

(ULimit —	<i>y</i> ,	
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(di imit	=	10	m)

$(a_{Limit} = 1)$	10 m)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$ Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF	
	R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

	AF	
	R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

		,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Francis	AF EMCO	Co. 111
Frequency	3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-15.6	3	0.5
4.4				-15.6	3	0.5
4.5				-15.6	3	0.5
4.6				-15.6	3	0.5
4.7				-15.6	3	0.5
4.7				-15.6	3	0.5
4.8				-15.6	3	0.5
4.9				-15.6	3	0.5
5.0				-15.6	3	0.5
5.1				-15.6	3	0.5
5.1				-15.6	3	0.5
5.2				-15.6	3	0.5
5.3				-15.6	3	0.5
5.4				-15.6	3	0.5
5.5				-15.6	3	0.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

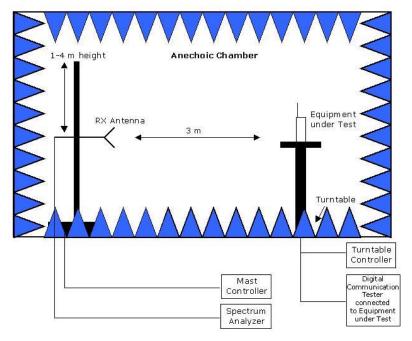
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

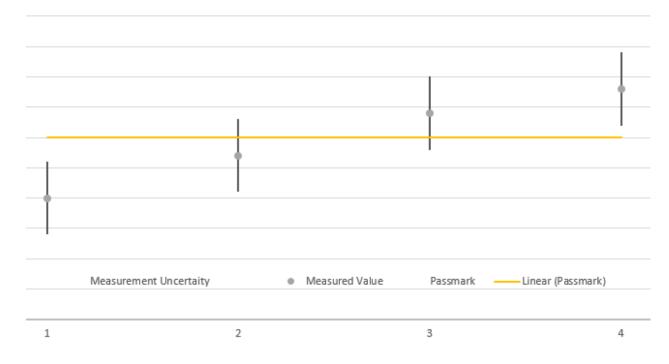
7 PHOTO REPORT

Photos are included in an external report.

8 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.



9 MEASUREMENT UNCERTAINTIES

Measurement Uncertainties

Parameter	Uncertainty
Antenna Power, Antenna Power Tolerance	± 1.2 dB
Frequency Tolerance	± 5.0 Hz
Transmitter Spurious Emissions, Limit on	± 2.5 dB
secondary radiated emissions	
Occupied bandwidth, Spread Bandwidth	± 825 kHz
Dwell time	± 30.0 µs
Temperature	± 0.3 °C
Humidity	± 3%
DC and low frequency voltages	± 1.5% + 2 digits
Time	± 5%
Antenna Gain and Pattern	± 1.8 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

Test report Reference: MDE_TERA_1904_FCC_01_rev01 Page 33 of 33