APPENDIX C. Calibration Data for Probe, Dipole and DAE

The SPEAG calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

 S
 Schweizerischer Kalibrierdienst

 C
 Service suisse d'étalonnage

 S
 Servizio svizzero di taratura

 Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cerpass (Auden)

Certificate No: EX3-3927_May14

Object	EX3DV4 - SN:392	27	
Calibration procedure(s)	QA CAL-25.v6	A CAL-12.v9, QA CAL-14.v4, QA dure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	May 23, 2014		
	ucted in the closed laboratory	obability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}C$ a	
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
	014. 00120 (000)	03-Apr-14 (NO. 217-01920)	
Reference 30 dB Attenuator	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
Reference 30 dB Attenuator Reference Probe ES3DV2			Dec-14 Dec-14
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: 3013 SN: 660	30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: 3013 SN: 660	30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Dec-14 Scheduled Check
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: 3013 SN: 660 ID US3642U01700	30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Dec-14 Scheduled Check In house check: Apr-16
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: 3013 SN: 660 ID US3642U01700 US37390585 Name	30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14

Certificate No: EX3-3927_May14

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s

- Service suisse d'étalonnage
- С Servizio svizzero di taratura s
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ o rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3927_May14

Page 2 of 11

May 23, 2014

Probe EX3DV4

SN:3927

Manufactured: Calibrated: March 8, 2013 May 23, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3927_May14

Page 3 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.57	0.33	0.61	± 10.1 %
DCP (mV) ^B	96.7	96.5	92.4	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	133.2	±3.3 %
		Y	0.0	0.0	1.0		148.7	
		Z	0.0	0.0	1.0		135.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Certificate No: EX3-3927_May14

Page 4 of 11

^a Numerical linearization parameter: uncertainty not required. ^b Numerical linearization parameter: uncertainty not required. ^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	11.02	11.02	11.02	0.15	1.30	± 13.3 %
850	41.5	0.92	10.23	10.23	10.23	0.43	0.81	± 12.0 %
1750	40.1	1.37	8.55	8.55	8.55	0.40	0.90	± 12.0 %
1900	40.0	1.40	8.31	8.31	8.31	0.60	0.66	± 12.0 %
2100	39.8	1.49	8.47	8.47	8.47	0.56	0.65	± 12.0 %
2450	39.2	1.80	7.48	7.48	7.48	0.68	0.59	± 12.0 %
5200	36.0	4.66	5.35	5.35	5.35	0.30	1.80	± 13.1 %
5500	35.6	4.96	4.97	4.97	4.97	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.78	4.78	4.78	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.65	4.65	4.65	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Above 5 GHz frequency validity can be extended to ± 110 MHz. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

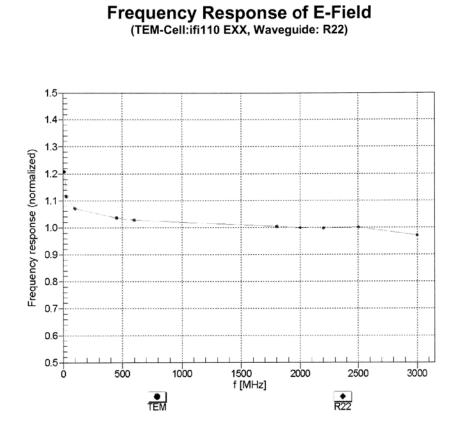
Certificate No: EX3-3927_May14

Page 5 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	11.67	11.67	11.67	0.10	1.20	± 13.3 %
850	55.2	0.99	9.91	9.91	9.91	0.28	1.18	± 12.0 %
1750	53.4	1.49	8.45	8.45	8.45	0.71	0.64	± 12.0 %
1900	53.3	1.52	8.10	8.10	8.10	0.38	0.91	± 12.0 %
2100	53.2	1.62	8.40	8.40	8.40	0.40	0.87	± 12.0 %
2450	52.7	1.95	7.63	7.63	7.63	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.61	4.61	4.61	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.30	4.30	4.30	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.23	4.23	4.23	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.25	4.25	4.25	0.45	1.90	± 13.1 %

Calibration Parameter	Determined in Boo	ly Tissue Simulating Media

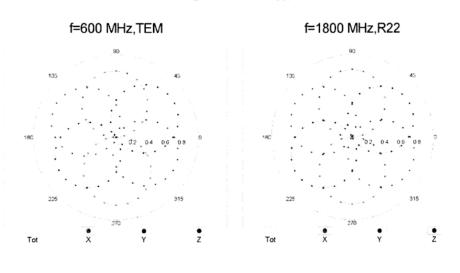

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Above 5 GHz frequency validity can be extended to ± 110 MHz. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

diameter from the boundary.

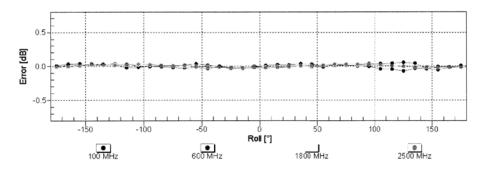
Certificate No: EX3-3927_May14

Page 6 of 11

May 23, 2014

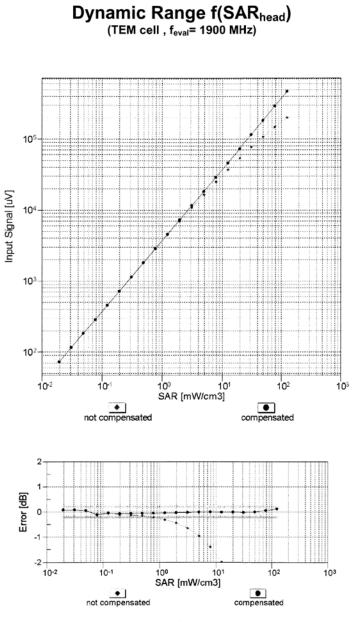


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3927_May14

Page 7 of 11

May 23, 2014

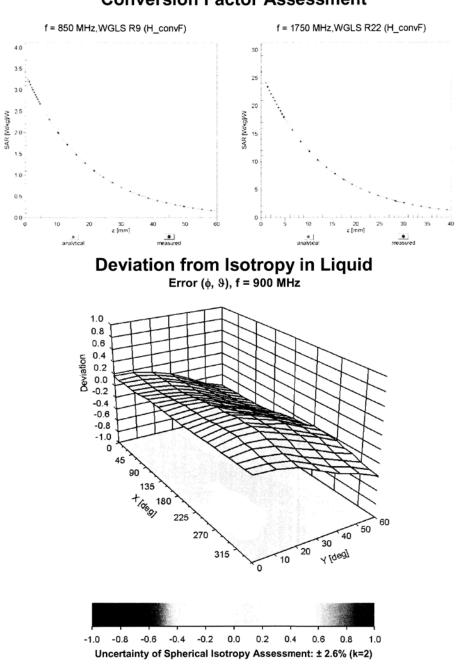


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3927_May14

Page 8 of 11

May 23, 2014



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3927_May14

Page 9 of 11

May 23, 2014

Conversion Factor Assessment

Certificate No: EX3-3927_May14

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	25.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3927_May14

Page 11 of 11

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates	 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Centre Centre CALIBRATION CERTIFICATE Diget D2450V2 - SN: 914 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits Calibration date: June 07, 2013 This calibration certificate documents the traceability to national standards, which realize the physical the measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards D # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01736) Power meter EPM-442A SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01736) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) SN: 601 25-Apr-13 (No. DAE-40-L_Apr13) Sa: 601 Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02	ation No.: SCS 108
CALIBRATION CERTIFICATE Object D2450V2 - SN: 914 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits Calibration date: June 07, 2013 This calibration certificate documents the traceability to national standards, which realize the physica The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards D # Cal Date (Certificate No.) Power sensor HP 8481A US37282783 01-Nov-12 (No. 217-01640) Reference 20 dB Attenuator Type-N misatch combination Reference Probe ES3DV3 SN: 5068 (20k) 04-Apr-13 (No. 217-01739) SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards D # Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) Reference Probe ES3DV3 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-01 (in house check Oct-11) RF generator R&S SMT-06 US37390585 S4206 18-Oct-01 (in house check Oct-12) Name<	
Object D2450V2 - SN: 914 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits Calibration date: June 07, 2013 This calibration certificate documents the traceability to national standards, which realize the physics The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Power sensor HP 8481A US 37292783 01-Nov-12 (No. 217-01640) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01739) Reference Probe ES3DV3 SN: 5058 (20k) 04-Apr-13 (No. 217-01739) Reference Probe ES3DV3 SN: 5058 (20k) 04-Apr-13 (No. 217-01739) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-12) Name	te No: D2450V2-914_Jun13
Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits Calibration date: June 07, 2013 This calibration certificate documents the traceability to national standards, which realize the physical The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) SN: 5047.3 / 06327 04-Apr-13 (No. 217-01740) Reference Probe ES3DV3 SN: 601 25-Apr-13 (No. 217-01739) SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-12) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: <td< td=""><td></td></td<>	
Calibration procedure for dipole validation kits Calibration date: June 07, 2013 This calibration certificate documents the traceability to national standards, which realize the physical The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) SN: 5047.3 / 06327 04-Apr-13 (No. 217-01736) SN: 3205 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Laboratory Technician Calibrated by: Leff Klysner Laboratory Technician	
This calibration certificate documents the traceability to national standards, which realize the physical The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Power meter EPM-442A GB37480704 Power sensor HP 8481A US37292783 Reference 20 dB Attenuator SN: 5058 (20k) Type-N mismatch combination SN: 5058 (20k) Power sensor HP 8481A ID # Check Date (in house) SN: 601 Power sensor HP 8481A MY41092317 Reference Ration HP 8481A MY41092317 Reference HP 8481A MY41092317 Reference Ration HP 8481A MY41092317 Reference Ration HP 8481A MY41092317 Reference Ration HP 8481A MY41092317 Reference HP 8481A MY41092317 Reference HP 8481A MY41092317 Reference Ration Ration Name	above 700 MHz
The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 O1-Nov-12 (No. 217-01640) Power sensor HP 8481A US37292783 O1-Nov-12 (No. 217-01640) Reference 20 dB Attenuator SN: 5058 (20k) SN: 5058 (20k) O4-Apr-13 (No. 217-01736) Type-N mismatch combination SN: 5047.3 / 06327 Reference Probe ES3DV3 SN: 3205 DAE4 SN: 601 Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 RF generator R&S SMT-06 100005 Network Analyzer HP 8753E US37390585 S4206 Name Function Laboratory Technician	
Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01736) Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Laboratory Technician Laboratory Technician	
Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Laboratory Technician Laboratory Technician	Scheduled Calibration
Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Type-N mismatch combination SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Reference Probe ES3DV3 SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Laboratory Technician Leff Klysner	Oct-13
Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Laboratory Technician Leff Klysner	Oct-13
Reference Probe ES3DV3 DAE4 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) SN: 601 Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: Leff Klysner Laboratory Technician	Apr-14
DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: Leif Klysner Laboratory Technician	Apr-14 Dec-13
Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: Leif Klysner Laboratory Technician	Apr-14
Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: Leif Klysner Laboratory Technician	
RF generator R&S SMT-06 Network Analyzer HP 8753E 100005 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: Leif Klysner Laboratory Technician	Scheduled Check
Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Calibrated by: Left Klysner	In house check: Oct-13
Name Function Calibrated by: Leif Klysner Laboratory Technician	In house check: Oct-13 In house check: Oct-13
Calibrated by: Left Klysner Laboratory Technician	in house check. Our is
	Signature
Approved by: Katja Pokovic Technical Manager	Sed Eller
	dity
This calibration certificate shall not be reproduced except in full without written approval of the laboral	Issued: June 7, 2013 Itory.

Certificate No: D2450V2-914_Jun13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-914_Jun13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)
010		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-914_Jun13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.0 Ω + 1.9 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 3.5 jΩ
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 19, 2012

Certificate No: D2450V2-914_Jun13

Page 4 of 8

1

DASY5 Validation Report for Head TSL

Date: 07.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 914

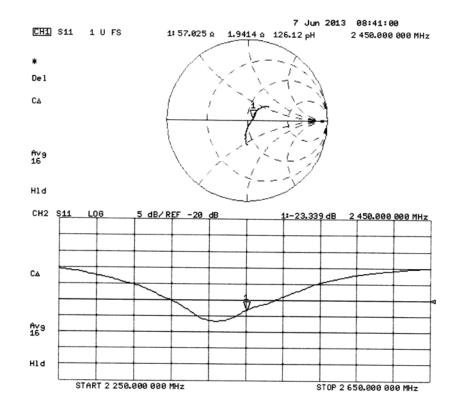
Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.695 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg Maximum value of SAR (measured) = 17.6 W/kg



0 dB = 17.6 W/kg = 12.46 dBW/kg

Certificate No: D2450V2-914_Jun13

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-914_Jun13

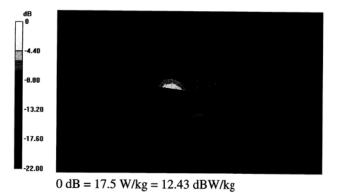
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 07.06.2013

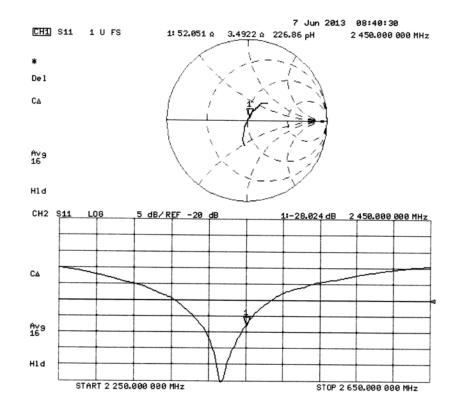
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 914


Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 50.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.695 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.6 W/kg **SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.07 W/kg** Maximum value of SAR (measured) = 17.5 W/kg

Certificate No: D2450V2-914_Jun13

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-914_Jun13

Page 8 of 8

hmid & Partner Engineering AG ghausstrasse 43, 8004 Zurici	y of h, Switzerland	C V Z S	Service suisse d'étalonnage Servizio svizzero di taratura
credited by the Swiss Accredita a Swiss Accreditation Service Itilateral Agreement for the re	e is one of the signatories	to the EA	n No.: SCS 108
ent Cerpass (Aude	ENPRICES IN THE OWNER OF A MERICAN		lo: D5GHzV2-1156_Jun13
CALIBRATION C	ERTIFICATE		
Deject	D5GHzV2 - SN: 1	156	
Calibration procedure(s)	QA CAL-22.v2 Calibration proceed	dure for dipole validation kits be	otween 3-6 GHz
Calibration date:	June 20, 2013		
The measurements and the unco	artainties with confidence pr	onal standards, which realize the physical u robability are given on the following pages a γ facility: environment temperature (22 ± 3)	and are part of the certificate.
The measurements and the unce NI calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pr	robability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce VI calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ertainties with confidence proceed in the closed laborator TE critical for calibration)	robability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13 Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	robability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13 Oct-13 Apr-14
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13 Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	robability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	artainties with confidence provide the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A	ertainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID #	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ertainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	artainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
The measurements and the unco	ertainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. EX3-3503_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1156_Jun13

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.0 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1156_Jun13

Page 3 of 13

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.16 W/kg

Certificate No: D5GHzV2-1156_Jun13

Page 4 of 13

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.3 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

The following parameters and calculations were applied	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1156_Jun13

Page 5 of 13

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	6.28 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.29 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.01 W/kg

Certificate No: D5GHzV2-1156_Jun13

Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.2 Ω - 7.8 jΩ
Return Loss	- 22.2 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	56.4 Ω - 3.0 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	58.3 Ω - 4.0 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.1 Ω - 5.5 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	55.8 Ω - 1.7 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	58.9 Ω - 3.1 jΩ
Return Loss	- 21.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 20, 2012

Certificate No: D5GHzV2-1156_Jun13

Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 20.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

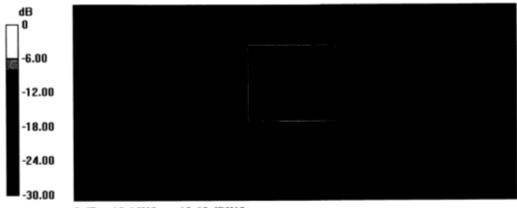
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1156

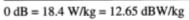
Communication System: UID 0 - CW ; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 4.47 S/m; ϵ_r = 36; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.76 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.07 S/m; ϵ_r = 35.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

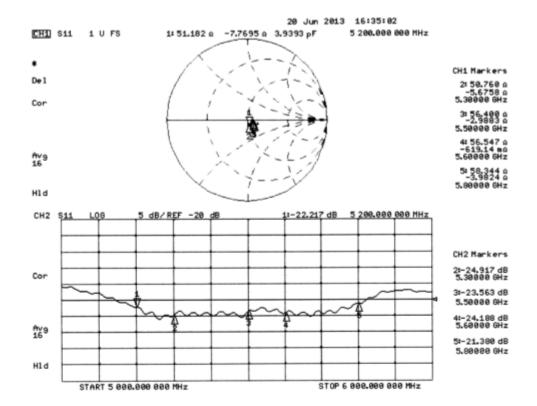

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.002 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 17.8 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.370 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.501 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1156_Jun13

Page 8 of 13



Certificate No: D5GHzV2-1156_Jun13

Page 9 of 13

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1156_Jun13

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 18.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

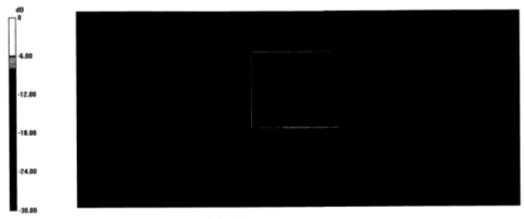
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1156

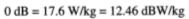
Communication System: UID 0 - CW ; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 5.46 S/m; ε_r = 49.3; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.85 S/m; ε_r = 48.8; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.28 S/m; ε_r = 48.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

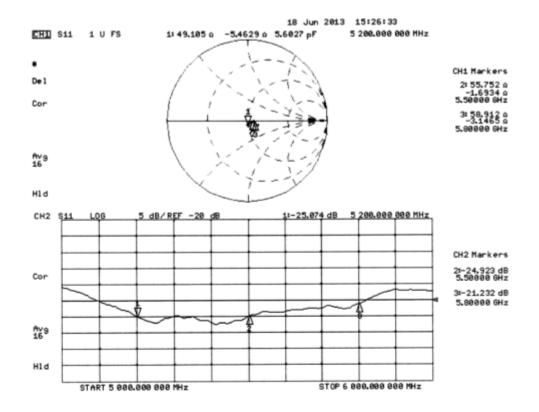

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.062 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.05 W/kg Maximum value of SAR (measured) = 16.7 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.696 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.075 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.29 W/kg; SAR(10 g) = 2.01 W/kg Maximum value of SAR (measured) = 17.6 W/kg

Certificate No: D5GHzV2-1156_Jun13

Page 11 of 13



Certificate No: D5GHzV2-1156_Jun13

Page 12 of 13

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1156_Jun13

Page 13 of 13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client	Cerpass	(Auden))
--------	---------	---------	---

Certificate No: D5GHzV2-1156_May14

Accreditation No.: SCS 108

Object	D5GHzV2 - SN:	1156	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits be	tween 3-6 GHz
Calibration date:	May 22, 2014		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical ur robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^\circ$	nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Reference 20 dB Attenuator		00 4	
	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327 SN: 3503	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. EX3-3503_Dec13)	Apr-15 Dec-14
Type-N mismatch combination Reference Probe EX3DV4		,	
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 3503 SN: 601	30-Dec-13 (No. EX3-3503_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Dec-14 Apr-15
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 3503 SN: 601 ID #	30-Dec-13 (No. EX3-3503_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Dec-14 Apr-15 Scheduled Check
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 3503 SN: 601 ID # 100005	30-Dec-13 (No. EX3-3503_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function	Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14 Signature
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 3503 SN: 601 ID # 100005 US37390585 S4206	30-Dec-13 (No. EX3-3503_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function	Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14 Signature
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 3503 SN: 601 ID # 100005 US37390585 S4206 Name	30-Dec-13 (No. EX3-3503_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function	Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D5GHzV2-1156_May14

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C. C. Z P. BRATO

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1156_May14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5600 MHz ± 1 MHz	

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.96 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition		
SAR measured	100 mW input power	8.34 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	82.8 W/kg ± 19.9 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.31 W/kg	

Certificate No: D5GHzV2-1156_May14

Appendix

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.8 Ω - 1.4 jΩ
Return Loss	- 23.8 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.6 Ω + 2.7 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

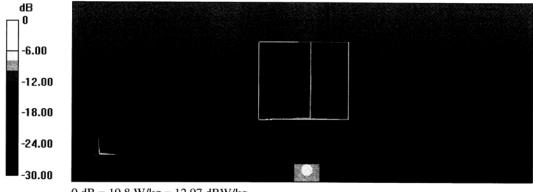
Manufactured by	SPEAG	
Manufactured on	September 20, 2012	

Certificate No: D5GHzV2-1156_May14

DASY5 Validation Report for Head TSL

Date: 22.05.2014

Test Laboratory: SPEAG, Zurich, Switzerland

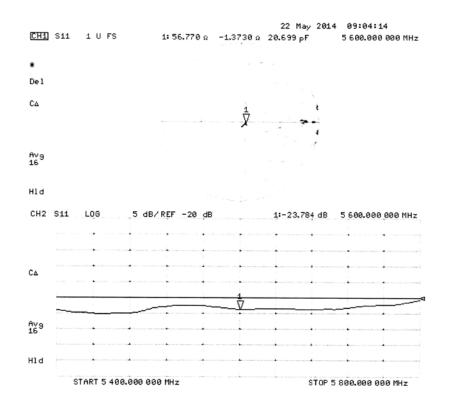

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1156

Communication System: UID 0 - CW; Frequency: 5600 MHz Medium parameters used: f = 5600 MHz; $\sigma = 4.96$ S/m; $\varepsilon_r = 35$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.88 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.57 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 19.8 W/kg



0 dB = 19.8 W/kg = 12.97 dBW/kg

Certificate No: D5GHzV2-1156_May14

Page 5 of 8

Impedance Measurement Plot for Head TSL

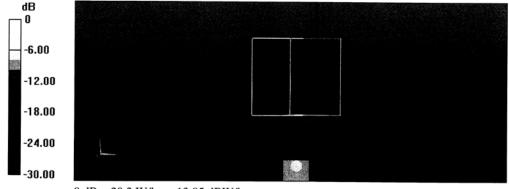
Certificate No: D5GHzV2-1156_May14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.05.2014

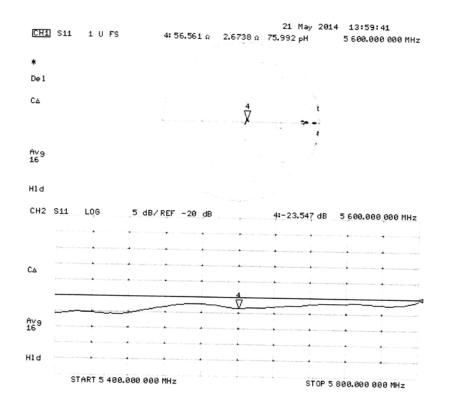
Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1156

Communication System: UID 0 - CW; Frequency: 5600 MHz Medium parameters used: f = 5600 MHz; $\sigma = 5.98$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.44 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 37.1 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

Certificate No: D5GHzV2-1156_May14

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1156_May14

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cerpass (Auden)

Certificate No: DAE4-1379_May14

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D0	04 BJ - SN: 1379	
Calibration procedure(s)	QA CAL-06.v26 Calibration proced	lure for the data acquisition electror	nics (DAE)
Calibration date:	May 19, 2014		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical units of obability are given on the following pages and are facility: environment temperature $(22 \pm 3)^{\circ}C$ and	e part of the certificate.
Calibration Equipment used (M&	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No:13976)	Oct-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Technician	20-
Approved by:	Fin Bomholt	Deputy Technical Manager	.v. B. Mum
			Issued: May 19, 2014
This calibration certificate shall r	not be reproduced except in	full without written approval of the laboratory.	-

Certificate No: DAE4-1379_May14

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S Schwei C Service Service Service

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1379_May14

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec				

Calibration Factors	x	Y	Z
High Range	403.805 ± 0.02% (k=2)	404.075 ± 0.02% (k=2)	404.011 \pm 0.02% (k=2)
Low Range	3.99838 ± 1.50% (k=2)	3.99504 ± 1.50% (k=2)	4.00152 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	149.5 ° ± 1 °

Certificate No: DAE4-1379_May14

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.29	-1.98	-0.00
Channel X	+ Input	19999.30	-1.30	-0.01
Channel X	- Input	-19998.41	2.90	-0.01
Channel Y	+ Input	199996.73	0.29	0.00
Channel Y	+ Input	19996.72	-3.84	-0.02
Channel Y	- Input	-20001.24	-0.12	0.00
Channel Z	+ Input	199995.04	-1.34	-0.00
Channel Z	+ Input	19998.92	-1.47	-0.01
Channel Z	- Input	-20002.08	-0.85	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.97	1.11	0.06
Channel X	+ Input	201.61	0.19	0.10
Channel X	- Input	-198.88	-0.22	0.11
Channel Y	+ Input	2001.25	0.31	0.02
Channel Y	+ Input	201.42	0.07	0.03
Channel Y	- Input	-199.14	-0.59	0.30
Channel Z	+ Input	2001.40	0.60	0.03
Channel Z	+ Input	199.50	-1.64	-0.82
Channel Z	- Input	-199.24	-0.49	0.25

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-17.61	-19.05
	- 200	20.93	18.82
Channel Y	200	-4.43	-4.39
	- 200	4.21	4.00
Channel Z	200	-10.49	-10.31
	- 200	8.62	8.36

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-0.60	-5.10
Channel Y	200	8.15	-	0.34
Channel Z	200	10.42	5.32	-

Certificate No: DAE4-1379_May14

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16034	13894
Channel Y	16256	12489
Channel Z	15825	15529

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-1.79	-3.29	-0.79	0.47
Channel Y	-0.21	-2.44	1.81	0.71
Channel Z	-0.03	-1.33	2.40	0.79

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

•	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1379_May14