

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 1 of 74

FCC/IC SAR TEST REPORT

Client Name : ATEN Technology INC. DBA IOGEAR

Address : 15365 Barranca Parkway, Irvine, CA. 92618 USA


Product Name : 4K Wireless HD TV Connection Kit

Date : Nov. 10, 2021

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek
Product Sefety

* Approved *

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 2 of 74

Contents

1.	State	ement of Compliance		1001s	VLT.	······································	¥	6
2.	Gen	eral Information	Wills.	Knbotek	- hupo	Mr. Pres		7
	2.1.	Client Information	- Aupo.	, hotels	Anboh	P.L.		7
	2.2.	Testing Laboratory Information	Anhote	Vu.	(A)	o _{f C /r}	rupo	7
	2.3.	Description of Equipment Under Test (I	EUT)	Anbo		494000	Hupogo	7
	2.4.	Device Category and SAR Limits	100	,19 ^N	por I	77		9
	2.5.	Applied Standard	oo, by	d\r	Wipoles.	Anb		9
	2.6.	Environment of Test Site						
	2.7.	Test Configuration		Anbo.		do _{st}	O. C.	9
3.	Spec	cific Absorption Rate (SAR)		Aupore	P.U.,	,	nbotek	10
	3.1.	Introduction		Eupok	er And		potek	10
	3.2.	SAR Definition	VID VID		4 ⁹ 90	Upos.		10
4.	SAR	Measurement System	otek Anbe		- Hotok	pupoje.	Arriv	11
	4.1.	E-Field Probe						
	4.2.	Data Acquisition Electronics (DAE)						
	4.3.	Robot	And	, thotek	Anbo	br.	Yay	13
	4.4.	Measurement Server	Anbo,	Pro.	K Popo	Ver. V		13
	4.5.	Phantom	k Aupore	Po.,	1675	hoter.	Anbe	15
	4.6.	Device Holder						
	4.7.	Data Storage and Evaluation		ootek l	Tupo, T	bu.		17
5.	Test	Equipment List	upo, bu	otek	Mpote	Van	الأق	19
6.	Tissu	ue Simulating Liquids	Anbor	Pri.	, bolen	Vu _D		20
7.	Syst	em Verification Procedures	popoler	Anbo	ا	ek Ar	po,	22
8.	EUT	Testing Position	botek	Anbor		1949k	Mpoter	24
	8. 1.	Body Worn Position		y y	o _{fer} bu		· whote	24
9.	Mea	surement Procedures	Ne. Wire		abolek	Aupo.	he	25
	9. 1.	Spatial Peak SAR Evaluation	spoten Ani		Jootek	Anbore	77. b70.	25
	9. 2.	Power Reference Measurement						26
	9. 3.	Area Scan Procedures	P. Hotek	- Aupote,	Anv		notek	26
	9. 4.	Zoom Scan Procedures	Ariv Mak	bołek	Anbo		otel ^k	27
	9. 5.	Volume Scan Procedures	Anbe	V	tek ant	Jose .	D/11	28
	9. 6.	Power Drift Monitoring	isk Anbor		votel ^k	unboter.	AMD	28
10	.Cond	ducted Power	otek tup	otes. M	hr.	abotek	Anb	29
		nna Location	· Velk	obotek	Pupo.	r.	t	31
		Test Results Summary	Mupo	botek	Anbore	P.D.	otek.	32
		Body SAR Results		bu.	anbote	V. Vul		32
13		surement Uncertainty		Vun	, do	otek	Nupo,	34
		x A. EUT Photos and Test S		Anbo		hotek	Anbote	36
1,470	7.	x B. Plots of SAR System Ch	-	itek An	por 1	atek	daa	37
-	1657	Anbotek Compliance Laboratory L		notek	Anboier	And	4	nbotek

Report No.: 18	3220WC102115802	FCC ID: QLE-GWTX4K	IC: 8740A-GWTX4K	Page 3 of 74
Appendix C.	Plots of SAR Tes	st Data	All cold	40
Appendix D.	DASY System C	alibration Certificate		43

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 4 of 74

TEST REPORT

Applicant : ATEN Technology INC. DBA IOGEAR

Manufacturer : ATEN Technology INC. DBA IOGEAR

Product Name : 4K Wireless HD TV Connection Kit

Model No. : GWKIT4KT

Trade Mark : IOGEAR

Rating(s) : Input: DC 5V, 1A

Test Standard(s) : IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2 (2.1093:2013);

ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227;

KDB 616217, RSS 102 Issue 5:2015

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC 62209-2:2010, IEEE 1528:2013, FCC 47 CFR Part 2 (2.1093:2013), ANSI/IEEE C95.1:2005, RSS 102 Issue 5:2015 and Reference KDB 447498, KDB 248227, KDB 616217 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt	Sept. 22, 2021
Date of Test	Nov. 09, 2021
	Illa Liang
Prepared By	anbotek anbotek
	(Ella Liang)
	ek abotek Anbotek Anbotek Anbotel
	(ingkonf)in
Approved & Authorized Signer	(1)
	(Kingkong lin)

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 5 of 74

Version

Version No.	Date	Description
01 Ant	Nov.10, 2021	Original
tek vupotek	Anbores And shotek	Anbotek Anborrek Anborek Anbore
botek Anbotek	Anbottek Anbott	Anbores Anborek Anborek Anborek
anbotek Anbotes	k abotek Ant	otek Anborek Anborek Anborek Anbore
Anbotek Anbote	otek Anbotek	nborate Anbortek Anbortek Anbortek An
Anboron And	botek Anbotek	Anborek Anborek Anborek Anborek

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 6 of 74

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

Eroguanay Band	Highest Reported 1g-SAR(W/Kg) Body-worn(5mm)			SAR Test Limit
Frequency Band				(W/Kg)
WIFI 5.1G	Pulpo Par	0.418	Aur otek V	mbot of Ambo
WIFI 5.8G	Vupo, ak	0.388	And	Anborek 1.6
Test Result	Anbore	An otek Anboi	PASS	-botek Anbore

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and IEC 62209-2:2010

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 7 of 74

2. General Information

2.1. Client Information

Applicant	: ATEN TECHNOLOGY INC, DBA IOGEAR	p.º
Address	: 15365 Barranca Parkway, Irvine, CA. 92618 USA	
Manufacturer	: ATEN TECHNOLOGY INC, DBA IOGEAR	NOK.
Address	: 15365 Barranca Parkway, Irvine, CA. 92618 USA	nboi
Factory	: ATEN TECHNOLOGY INC, DBA IOGEAR	P.C
Address	: 15365 Barranca Parkway, Irvine, CA. 92618 USA	4

2.2. Testing Laboratory Information

Test Site:	• •	nenzhen Anbotek Compliance Laboratory Limited			
Address:	:	1/F, Building D, Sogood Science and Technology Park, Sanwei community,			
		Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102			

2.3. Description of Equipment Under Test (EUT)

Product Name	:	4K Wireless HD TV Connec	ction Kit
Model No.	:	GWKIT4KT	tek Anbotek Anbotek Anbotek
Trade Mark	:	IOGEAR	hou Anbotek Anbotek Anbotek
Test Power Supply	:	DC 5V via PC	bolek Anbole And tek anbolek
Test Sample No.	:	1-2-2(Normal Sample)	Anbotek Anbotek Anbotek Anbotek
5		Operation Frequency:	WiFi 5.1G: 5180MHz~5240MHz WiFi 5.8G: 5745MHz~5825MHz z
Product Description	:	Number of Channel:	WiFi 5.1G: 4 Channels for 802.11a 4 Channels for 802.11n(HT20) 4 Channels for 802.11ac(HT20) 2 Channels for 802.11n(HT40) 2 Channels for 802.11ac(HT40) 1 Channels for 802.11ac(HT80) WiFi 5.8G: 5 Channels for 802.11a 5 Channels for 802.11n(HT20)

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 8 of 74 5 Channels for 802.11ac(HT20) 2 Channels for 802.11n(HT40) 2 Channels for 802.11ac(HT40) 1 Channels for 802.11ac(HT80) WiFi 5.1G: OFDM with BPSK/QPSK/16QAM/64QAM/256QAM Modulation Type: WiFi 5.8G: OFDM with BPSK/QPSK/16QAM/64QAM/256QAM Antenna Type: Columnar Antenna WiFi 5.1G: 1.80dBi Antenna Gain(Peak): WiFi 5.8G: 1.54dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 9 of 74

2.4. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.5. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- · IEEE 1528-2013
- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- · IEC 62209-2:2010
- RSS 102 Issue 5:2015
- KDB 447498
- KDB 248227
- · KDB 616217

2.6. Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.7. Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 10 of 74

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

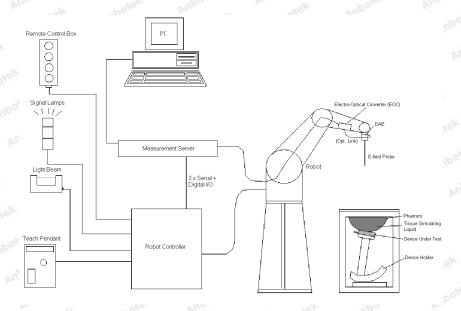
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K

4. SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid

Tel:(86) 755-26066440 Fax: (86) 755-26014772

Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 12 of 74

4.1. E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB				
Directivity	± 0.3 dB in HSL (rotation around probe axis)± 0.5 dB in tissue material (rotation normal to probe axis)				
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)				
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm				

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 13 of 74

Photo of DAE

4.3. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 14 of 74 detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 15 of 74

4.5. Phantom

<SAM Twin Phantom>

Chall Thiskness	2 + 0.2 mm	aboter pro
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	The Table
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	
Measurement	Left Hand, Right Hand, Flat	
Areas	Phantom	
	Anbotek Anbotek Anbotek	upor An-
	otek Anbotek Anbotek Anbotek	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	Vupo.			Vi-	~Ote.	
Filling Volume	Approx. 30 liters	P					
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm	otel.	F	* *	* *		nbc nbc
	Anbotek	Anb.	Photo	of EL	I4 Pha	ntom	otek

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 16 of 74

4.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 17 of 74

4.7. Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

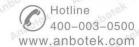
Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf


Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 18 of 74

The formula for each channel can be given as:

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i = x, y, z)

Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

a_{ij}= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel i in V/m

H_i= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 19 of 74

5. Test Equipment List

Manufactura	None of Frankrauent	Towns (Mandal	Serial	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Number	Last Cal.	Due Date
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02, 2021	Oct. 01, 2024
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.06,2021	Sept.05,2022
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2021	May 05,2022
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2021	Oct.25, 2022
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Meter	N1914A	MY50001102	Oct.26, 2021	Oct.25, 2022
Agilent	Power Sensor	N8481H	MY51240001	Oct.26, 2021	Oct.25, 2022
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.26, 2021	Oct.25, 2022
Agilent	Signal Generation	N5182A	MY48180656	Oct.26, 2021	Oct.25, 2022
Worken	Directional Coupler	0110A05601O- 10	COM5BNW1A 2	Oct.26, 2021	Oct.25, 2022

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 20 of 74

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

Frequency (MHz)	Wate r (%)	Sugar (%)	Cellulose (%)	Salt (%)	Prevento I (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Boo	dy			
5200	78.6	An Ores	10.7	e O solo	10.7	0	5.27	49.0
5800	78.5	0 pope	10.8	nek 0	10.7	O k	6.00	48.2

The following table gives the recipes for tissue simulating liquid.

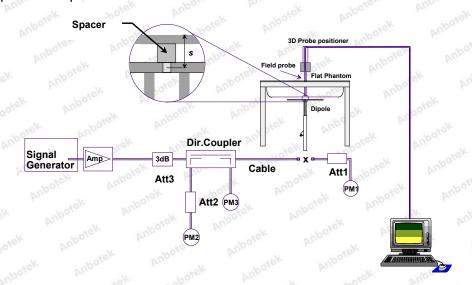
Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 21 of 74

The following table shows the measuring results for simulating liquid.

0		Measured	Target ⁻	Tissue		Measure					
600	Tissue Type	Frequenc y (MHz)	٤r	σ	٤r	Dev. (%)	б	Dev. (%)	Liquid Temp.	Test Data	
N	5200MSL	5200	49.00	5.27	48.51	-1.00	5.04	-4.36	21.9	11/09/2021	
,0	5800MSL	5800	48.20	6.00	48.76	1.16	5.79	-3.50	21.7	11/09/2021	

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 22 of 74

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 23 of 74

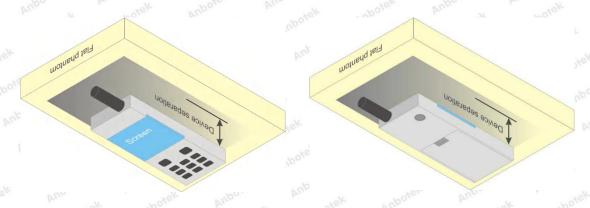
Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Frequency (MHz)	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	SAR SAR		Deviation (%)	Date
5200	Body	100 mbon	76.5	7.56	75.6	-1.19	10/09/2021
5800	Body	botek 100 Ant	78	7.73	77.3 M	-0.91	10/09/2021

Target and Measurement SAR after Normalized


Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 24 of 74

8. EUT Testing Position

8.1. Body Worn Position

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body Worn Position

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 25 of 74

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9. 1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 26 of 74

(f) Calculation of the averaged SAR within masses of 1g and 10g

9. 2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9. 3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		26
	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 27 of 74

9. 4. Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
"yek "upo.	10	rak apole	Nu Wek	VUp.
Maximum zoom scan s	patial reso	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta$	z _{Zoom} (n-1)
Minimum zoom scan x, y, z			≥ 30 mm	3 – 4 GHz; ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 28 of 74

9.5. Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9. 6. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 29 of 74

10. Conducted Power

<WIFI 5GHz Conducted Power>

N	lode .	Channel	Frequency (MHz)	Conducted Average Power(dBm)	Tune-up (dBm)
	802.11 a	36	5180	12.49	12.50
	802.11 a	40 M	5200	12.07	12.50
	802.11 a	48	5240	12.18	12.50
	802.11n20	36	5180	12.40	12.50
	802.11n20	40	5200	11.85	12.50
	802.11n20	48	5240	12.21	12.50
WIFI	802.11ac20	36	5180	12.39	12.50
5.1GHz	802.11ac20	40 000	5200	11.94	12.50
	802.11ac20	48	5240	12.28	12.50
	802.11 n40	38	5190	12.08	12.50
	802.11 n40	46	5230	12.20	12.50
	802.11ac40	38	5190	11.17	12.50
	802.11ac40	46	5230	12.14	12.50
	802.11 ac80	42	5210	12.43	12.50

N	Mode	Channel	Frequency (MHz)	Conducted Average Power(dBm)	Tune-up (dBm)
	802.11 a	149	5745	11.95	12.00
	802.11 a	157	5785	11.68	12.00
	802.11 a	165	5825	11.93	12.00
	802.11n20	149	5745	11.85	12.50
	802.11n20	157	5785	12.20	12.50
	802.11n20	165	5825	12.18	12.50
WIFI	802.11ac20	149	5745	12.32	12.50
5.8GHz	802.11ac20	157	5785	12.27	12.50
	802.11ac20	165	5825	12.30	12.50
	802.11 n40	151	5755	12.34	12.50
	802.11 n40	159	5795	12.24	12.50
	802.11ac40	151	5755	11.91	12.50
	802.11ac40	159	5795	12.24	12.50
	802.11 ac80	155	5775	12.23	12.50

Note:

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 30 of 74

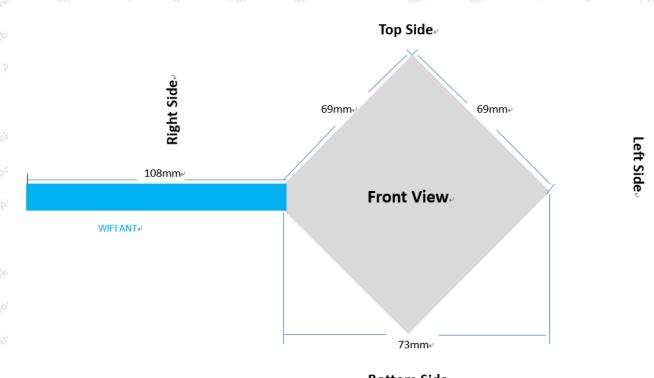
1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance,

mm)] · [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation


- 2. Base on the result of note1, RF exposure evaluation of WIFI 5.1G and 5.8G mode are required.
- Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is $\leq 1.2 \, \text{W/kg}$, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 31 of 74

11. Antenna Location

Bottom Side

EUT FRONT VIEW

	Distance of The Antenna to the EUT surface and edge										
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side					
WIFI ANT	WIFI ANT <25mm <25mm >25mm >25mm >25mm										

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 32 of 74

12. SAR Test Results Summary

12.1. Body SAR Results

General Note:

1. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

2. Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

<WIFI 5GHz>

Plot No.	Band	Mode	Test Position	Gap (mm)	l Ch.	Freq. (MHz)	Averag e Power (dBm)	Up Limit	Scalin g Factor	Power Drift (dB)	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
nabot	WIFI 5.1GHz	802.11a	Front	5	36	5180	12.49	12.50	1.002	0.03	0.183	0.183
-	WIFI 5.1GHz	802.11a	Back	510	36	5180	12.49	12.50	1.002	0.09	0.139	0.139
by.	WIFI 5.1GHz	802.11a	Left Side	5	36	5180	12.49	12.50	N/A	N/A	N/A	N/A
#1	WIFI 5.1GHz	802.11a	Right Side	5	36	5180	12.49	12.50	1.002	0.08	0.417	0.418
otek	WIFI 5.1GHz	802.11a	Top Side	5	36	5180	12.49	12.50	N/A	N/A	N/A	N/A
Anborr	WIFI 5.1GHz	802.11a	Bottom Side	5	36	5180	12.49	12.50	N/A	N/A	N/A	N/A
Vis.	WIFI 5.1GHz	802.11a	Tip Side	5	36	5180	12.49	12.50	1.002	0.05	0.311	0.312

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 33 of 74

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq.	Averag e Power (dBm)	Up Limit	Scalin g Factor	Power Drift (dB)	Measure d SAR1g (W/kg)	Reporte d SAR1g (W/kg)
Un	WIFI 5.8GHz	802.11ac20	Front	5	149	5745	12.32	12.50	1.042	0.07	0.132	0.138
Vup.	WIFI 5.8GHz	802.11ac20	Back	5	149	5745	12.32	12.50	1.042	0.11	0.093	0.097
p2	WIFI 5.8GHz	802.11ac20	Left Side	5	149	5745	12.32	12.50	N/A	N/A	N/A	N/A
#2	WIFI 5.8GHz	802.11ac20	Right Side	5	149	5745	12.32	12.50	1.042	-0.06	0.372	0.388
No.	WIFI 5.8GHz	802.11ac20	Top Side	5	149	5745	12.32	12.50	N/A	N/A	N/A	N/A
Anbo'	WIFI 5.8GHz	802.11ac20	Bottom Side	, 5 T	149	5745	12.32	12.50	N/A	N/A	N/A	N/A
D.C	WIFI 5.8GHz	802.11ac20	Tip Side	5	149	5745	12.32	12.50	1.042	-0.11	0.309	0.322

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 34 of 74

13. Measurement Uncertainty

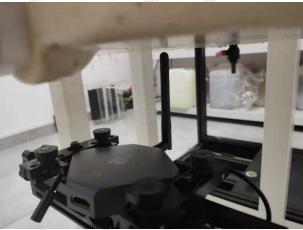
Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis described in IEC 62209-2:2010 is not required in SAR reports submitted for equipment approval.

NO	Source	Uncert.	Prob. Dist.	Div.	ci (1g)	ci (10g)	Stand.U ncert. ui (1g)	Stand.U ncert. ui (10g)	Veff
rek1	Repeat	0.4	sk N Mul	1	1	1 _{abotek}	0. 4	0. 4	9
Instru	ıment		-50"		ı			3637	107
2	Probe calibration	o ^{tek} 7	Aupor N	2	bol1 ^k	1 Ant	3.5	3.5	,∞,otek
3	Axial isotropy	4.7	R.bote	$\sqrt{3}$	0.7	0.7	1.9	1.9	ek «Anbo
4	Hemispherical isotropy	9.4	otel ^k R	$\sqrt{3}$	0.7	0.7	3.9	3.9	sotek
A75	Boundary effect	1.0	R	$\sqrt{3}$	potek	1 _{Anb}	0.6	0.6	Al∞ otek
6	Linearity	4.7	Rootel	$\sqrt{3}$	Anboter	ek 1	2.7	2.7	∞ ∞
7 100 m	Detection limits	1.0	R Anbr	$\sqrt{3}$	1 _A	oolek 1	0.6	% 0.6 An	o ^{tek} ∞
8	Readout electronics	0.3	oboteN	putooti	1	Anbox	0.3	0.3	Ambore ∞
9	Response time	0.8	AnbR etek	$\sqrt{3}$	or 1,ek	1 A	0.5	0.5	Anbott Anbott
10	Integration time	2.6	R _{Anbo}	$\sqrt{3}$	PI ^{loot}	ak 1 otek	1.5	1.5	∞ Ant
11	Ambient noise	3.0	R Ar	$\sqrt{3}$	μ. 1	Anb Diek	1.7	1.7	∞
12	Ambient reflections	3.0	Anb R ^{JK}	$\sqrt{3}$	orek 1	Aupo	1.7	1.7	M ∞
13	Probe positioner mech. restrictions	0.4	R	$\sqrt{3}$	arloof	1	0.2	0.2	Amb ∞ Amb

Repo	rt No.: 18220WC1021158	02 FC	C ID: QLE-	-GWT	X4K	IC: 87	40A-GWT	X4K	Page 35 of
14	Probe positioning with respect to phantom shell	2.9	Anb R	$\sqrt{3}$	otek 1 Inbotek	Anbo 1 Ar	1.7	1.7	Anborek Anbor
15	Max.SAR evaluation	1.0	Rimbot	$\sqrt{3}$	Anbo.	o ^{tel}	0.6	0.6	∞ ∞
est	sample related	1.0	871			- 52			
16	Device positioning	3.8	Anboten Notek	Anb 1	nbo'l ^{ok}	1 80	3.8	3.8	99
17	Device holder	5.1	Napot	1	Anboro	otel1	5.1	5.1	5
18	Drift of output power	5.0	potek R	$\sqrt{3}$	1	nbotek	2.9	2.9	N potek ∞
har	tom and set-up				2	200		X2	
19	Phantom uncertainty	4.0	Arribotes R	$\sqrt{3}$	Andote	1	2.3	2.3	∞ _M /p
20	Liquid conductivity (target)	5.0	R And	$\sqrt{3}$	0.64	0.43	1.8	1.2	N DOLEN SO
21	Liquid conductivity (meas)	2.5	Inpostik	P1 ⁰⁰⁰	0.64	0.43	1.6	1.2	Anbotel Anbotel
22	Liquid Permittivity (target)	5.0	Rootel	√3	0.6	0.49	1.7 ^k	1.5	× ∞ Milos
23	Liquid Permittivity (meas)	2.5	Helk N Pr	ipot ^{ek}	0.6	0.49	1.5	1.2	w w
Combined standard		obotek o	RSS	U_{c}	$= \sqrt{\sum_{i=1}^{n} C}$	$u^2U_i^2$	11.4%	11.3%	236
-	anded ertainty(P=95%)	Anborel	$U = k \tau$	ر ,k=	2 Anbo	lpotek le	22.8%	22.6%	Ukotek Pu

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 36 of 74

Appendix A. EUT Photos and Test Setup Photos


Front Side(5mm)

Back Side(5mm)

Right Side(5mm)

Tip Side(5mm)

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 37 of 74

Appendix B. Plots of SAR System Check

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 38 of 74

5200MHz Head System Check

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0, CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 5.04$ S/m; $\epsilon_r = 48.51$; $\rho = 1000$ kg/m²

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2021;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.2 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.388 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.7 W/kg

SAR(1 g) = 7.56 W/kg; SAR(10 g) = 2.37 W/kgMaximum value of SAR (measured) = 20.9 W/kg

Date:11/09/2021

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 39 of 74

Date: 11/09/2021

5800MHz Body System Check

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: D2450V2 - SN:1160

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; σ = 5.79 S/m; ϵ_r = 48.76; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2021;

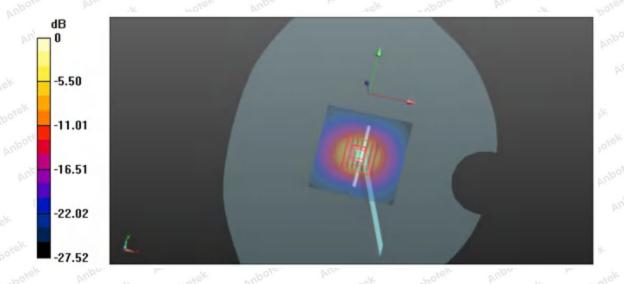
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.6 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.080 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 40 of 74

Appendix C. Plots of SAR Test Data

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 41 of 74

#1 Date: 11/09/2021

WIFI 5.2G_Body Right_Ch36

Communication System: UID 0, wifi (fcc) (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5180 MHz; $\sigma = 5.04 \text{ S/m}$; $\epsilon r = 48.51$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2021;

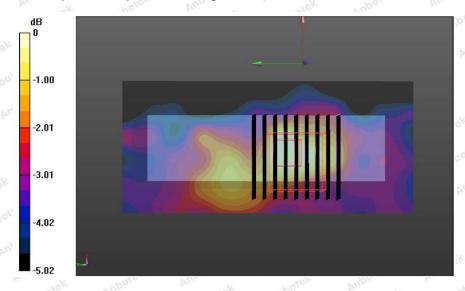
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/Right/Area Scan (111x51x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (measured) = 0.635 W/kg


BODY/BACK/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 7.824 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.687 W/kg

SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.205W/kg

Maximum value of SAR (measured) = 0.651 W/kg

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 42 of 74

#2 Date: 11/09/2021

WIFI 5.8G Body Right Ch149

Communication System: UID 0, wifi (fcc) (0); Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.79$ S/m; $\epsilon r = 48.76$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(4.52,4.52, 4.52); Calibrated: May 06, 2021;

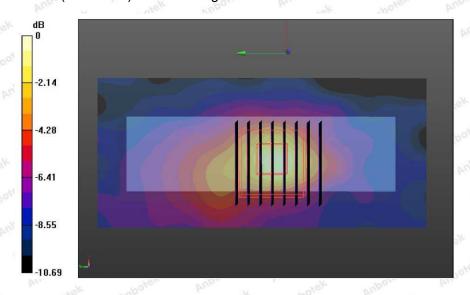
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/ Right /Area Scan (111x51x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (measured) = 0.502 W/kg


BODY/ Right /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.732 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.569 W/kg

SAR(1 g) = 0.372W/kg; SAR(10 g) = 0.162 W/kg

Maximum value of SAR (measured) = 0.524 W/kg

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 43 of 74

Appendix D. DASY System Calibration Certificate

Schmid & Partner Engineering AG

s p e a q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

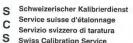
Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009



Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 44 of 74

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Anbotek (Auden) Certificate No: DAE4-387_Sep10 **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 387 Calibration procedure(s) QA CAL-06 v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 06, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 15-Aug-20 (No:21092) Aug-21 Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 05-Jan-21 (in house check) In house check: Jan-22 Calibrator Box V2.1 SE UMS 006 AA 1002 05-Jan-21 (in house check) In house check: Jan-22 Name Function Calibrated by: Dominique Steffen Laboratory Technician Sven Kühn Approved by: Deputy Manager Issued: September 06, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-387_Sep10 Page 1 of 5

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 45 of 74

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-387_Sep10

Page 2 of 5

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 46 of 74

DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB =

 $6.1 \mu V$, 61 n V , full range = -100...+300 mV Low Range: 1LSB = full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	Z
High Range	404.489 ± 0.02% (k=2)	404.852 ± 0.02% (k=2)	404.862 ± 0.02% (k=2)
Low Range	3.97827 ± 1.50% (k=2)	3.95875 ± 1.50% (k=2)	3.97982 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	53.0 ° ± 1 °
	55.0 ± 1

Certificate No: DAE4-387_Sep10

Page 3 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 47 of 74

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200032.85	-3.31	-0.00
Channel X + Input	20007.64	1.88	0.01
Channel X - Input	-20003.48	1.18	-0.01
Channel Y + Input	200034.23	-1.43	-0.00
Channel Y + Input	20006.60	0.91	0.00
Channel Y - Input	-20004.04	0.72	-0.00
Channel Z + Input	200035.38	-0.83	-0.00
Channel Z + Input	20003.69	-2.11	-0.01
Channel Z - Input	-20006.38	-1.59	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2001.63	0.08	0.00
Channel X + Input	202.29	0.70	0.35
Channel X - Input	-197.90	0.60	-0.30
Channel Y + Input	2001.33	-0.07	-0.00
Channel Y + Input	200.86	-0.60	-0.30
Channel Y - Input	-199.87	-1.23	0.62
Channel Z + Input	2001.61	0.27	0.01
Channel Z + Input	200.60	-0.70	-0.35
Channel Z - Input	-199.51	-0.85	0.43

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.50	11.56
	- 200	-8.64	-11.18
Channel Y	200	-0.81	-1.28
	- 200	1.05	0.09
Channel Z	200	7.17	6.91
	- 200	-9.46	-9.01

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	2	-1.70	0.33
Channel Y	200	10.70	-	-0.38
Channel Z	200	7.11	7.89	-

Certificate No: DAE4-387_Sep10

Page 4 of 5

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 48 of 74

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	17466
Channel Y	15661	16162
Channel Z	15990	16190

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.73	-2.58	3.29	0.62
Channel Y	0.41	-0.49	1.23	0.40
Channel Z	-0.80	-1.88	0.30	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-387_Sep10

Page 5 of 5

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 49 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Anbotek (Auden)

Certificate No: Z21-98671

CNAS L0570

CALIBRATION CERTIFICATE

Client

Object EX3DV4 - SN:7396

Calibration Procedure(s) FF-Z12-006-08

Calibration Procedures for Dosimetric E-field Probes

Calibration date: May 06, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

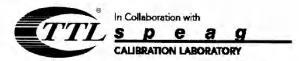
All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter N	IRP2	101919	20-Jun-20 (CTTL, No.J20X07447)	Jun-21
Power sensor N	IRP-Z91	101547	20-Jun-20 (CTTL, No.J20X07447)	Jun-21
Power sensor N	IRP-Z91	101548	20-Jun-20 (CTTL, No.J20X07447)	Jun-21
Reference10dBA	ttenuator	18N50W-10dB	13-Mar-21 (CTTL,No.J21X01547)	Mar-22
Reference20dBA	ttenuator	18N50W-20dB	13-Mar-21 (CTTL, No.J21X01548)	Mar-22
Reference Probe	EX3DV4	SN 7433	26-Sep-20(SPEAG,No.EX3-7433_Sep20)	Sep-21
DAE4		SN 549	13-Dec-20(SPEAG, No.DAE4-549_Dec20)	Dec -21
Secondary Stand	ards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorN	MG3700A	6201052605	27-Jun-20 (CTTL, No.J20X04776)	Jun-21
Network Analyzer	r E5071C	MY46110673	13-Jan-21 (CTTL, No.J21X00285)	Jan -22
April 2 Marie 1		Name	Function	Signature
Calibrated by:		Yu Zongying	SAR Test Engineer	E
Reviewed by:		Lin Hao	SAR Test Engineer	林梅
Approved by:		Qi Dianyuan	SAR Project Leader	2002

Issued: May06, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.


Certificate No: Z21-98671 Page 1 of 11

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 50 of 74

Add: No.51 Xueyuan Road. Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx, y, z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

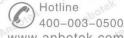
Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:


- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z21-98671

Shenzhen Anbotek Compliance Laboratory Limited

Page 2 of 11

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 51 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2021

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z21-98671

Page 3 of 11

Report No.: 18220WC102115802 IC: 8740A-GWTX4K Page 52 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(k=2)
0	cw	Х	0.0	0.0	1.0	0.00	199.9	±2.4%
		Υ	0.0	0.0	1.0		203.3	
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-98671

Page 4 of 11

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 53 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191. China Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl:@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

 $^{^{}m c}$ Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z21-98671

Page 5 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 54 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

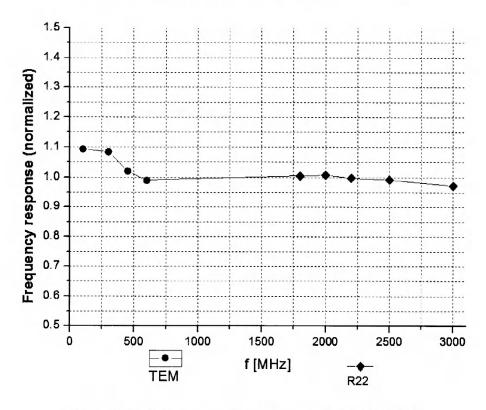
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z21-98671

Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 55 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tcl: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

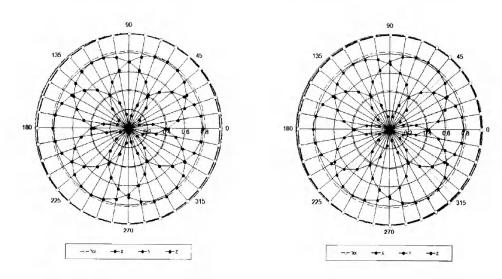
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

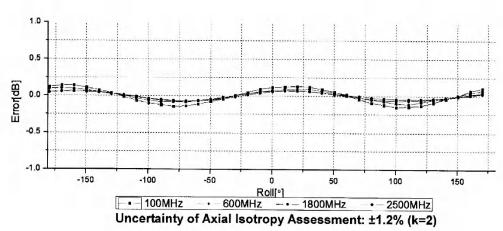
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z21-98671

Page 7 of 11

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 56 of 74




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Receiving Pattern (Φ), θ =0°

f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z21-98671

Page 8 of 11

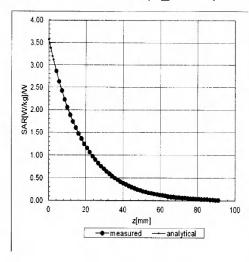
Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 57 of 74

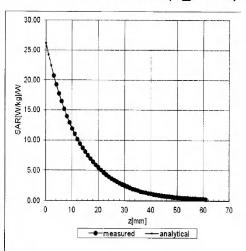
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 105 Input Signal[μV] 104 103 10² 10-2 100 10 10 10² SAR[mW/cm3] not compensated compensated Error[dB] -1 -2 SAR[mW/cm3 not compensated Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z21-98671 Page 9 of 11

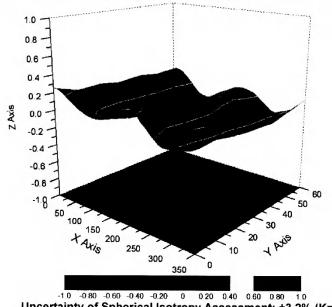
Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC102115802 IC: 8740A-GWTX4K Page 58 of 74




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z21-98671 Page 10 of 11

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 59 of 74

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z21-98671

Page 11 of 11

FCC ID: QLE-GWTX4K Report No.: 18220WC102115802 IC: 8740A-GWTX4K Page 60 of 74

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Anbotek (Auden)

Certificate No: D5GHzV2-1160_Oct11

CALIBRATION CERTIFICATE

D5GHzV2 - SN: 1160 Object

QA CAL-22.v2 Calibration procedure(s)

Calibration procedure for dipole validation kits between 3-6 GHz

October 02, 2021 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scrieduled Galibration
Power meter EPM-442A	GB37480704	07-Oct-17 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-20 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-20 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-21 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-21 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec14)	Dec-15
DAE4	SN: 601	17-Aug-21 (No. DAE4-601_Aug15)	Aug-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	18-Jun-21 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	15-Oct-20 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature

Laboratory Technician

Technical Manager Approved by: Katja Pokovic

Leif Klysner

Issued: October 6, 2021

Calibrated by:

Hotline 400-003-0500 www.anbotek.com

FCC ID: QLE-GWTX4K Report No.: 18220WC102115802 IC: 8740A-GWTX4K Page 61 of 74

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1160_Oct11

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 62 of 74

Measurement Conditions

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 63 of 74

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	***

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

on parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Oct11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 64 of 74

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.26 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	News

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Oct11

Page 5 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 65 of 74

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	5.35 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Oct11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 66 of 74

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.27 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Body TSI parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Oct1

Page 7 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 67 of 74

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.1 Ω - 8.5 jΩ
Return Loss	- 21.0 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω - 5.2 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.8 Ω - 2.5 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.0 Ω - 3.0 jΩ
Beturn Loss	- 27.7 dB

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 68 of 74

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.6 Ω - 6.8 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.0 Ω - 4.2 jΩ
Return Loss	- 27.1 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.2 Ω - 0.7 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω - 1.7 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 06, 2013

Shenzhen Anbotek Compliance Laboratory Limited

Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 69 of 74

DASY5 Validation Report for Head TSL

Date: 24.09.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz; $\sigma=4.57$ S/m; $\epsilon_r=36.4$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.68$ S/m; $\epsilon_r=36.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.03$ S/m; $\epsilon_r=35.7$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.26$ S/m; $\epsilon_r=35.3$; $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2021, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2021, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2021, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2021,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1,4mm

Reference Value = 64.41 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.31 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.39 W/kgMaximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.34 V/m; Power Drift = 0.03 dB

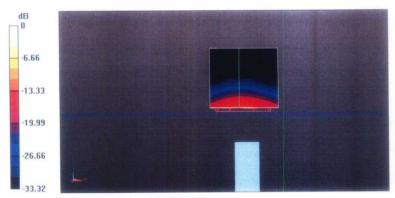
Peak SAR (extrapolated) = 34.7 W/kg

SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.47 W/kgMaximum value of SAR (measured) = 21.0 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 10 of 15

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 70 of 74


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.41 V/m; Power Drift = 0.03 dB

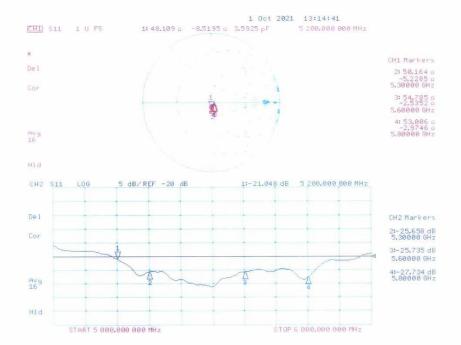
Peak SAR (extrapolated) = 34.5 W/kg

SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 20.5 W/kg

0 dB = 18.7 W/kg = 12.72 dBW/kg

Certificate No: D5GHzV2-1160_Oct11

Page 11 of 15



Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K

IC: 8740A-GWTX4K

Page 71 of 74

Impedance Measurement Plot for Head TSL

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 72 of 74

DASY5 Validation Report for Body TSL

Date: 05.10.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600

MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.35$ S/m; $\epsilon_r = 47.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.27$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2021, ConvF(4.78, 4.78, 4.78); Calibrated: 30.12.2021; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2021, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.32 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.22 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.36 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 36.6 W/kg

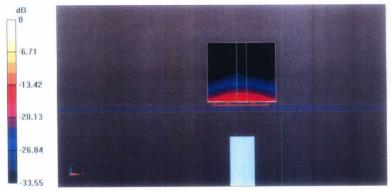
SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 13 of 15

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 73 of 74


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.22 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 37.1 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kgMaximum value of SAR (measured) = 19.7 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: D5GHzV2-1160_Oct11

Page 14 of 15

Report No.: 18220WC102115802 FCC ID: QLE-GWTX4K IC: 8740A-GWTX4K Page 74 of 74 Impedance Measurement Plot for Body TSL 2 Oct 2021 11:12:20 -6.8105 a 4.4940 pF CHI S11 CH1 Markers fivg 16 Hld CH2 Markers 2:-27.128 dB 5.30000 GHz 3:-24,619 dB 5.60000 GHz 4:-24.764 dB 5.80000 GHz AV9 STOP 6 000.000 000 MHz START 5 000.000 000 MHz

Certificate No: D5GHzV2-1160_Oct11

Page 15 of 1:

*****END OF REPORT****

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

