

FCC & ISED CANADA CERTIFICATION TEST REPORT

for the

GUIDELINE GEO AB MIRA COMPACT

FCC ID: QLA-MIRA500 IC ID: 25943-MIRA500

WLL REPORT# 18262-01 REV 1

Prepared for:

Guideline Geo AB Hemvärnsgatan 9 SE-171 54 Solna, Stockholm, Sweden

Prepared By:

Washington Laboratories, Ltd. 4840 Winchester Boulevard. Suite #5 Frederick, Maryland 21703, USA

C

Certificates and reports shall not be reproduced except in full, without the written permission of Washington Laboratories, Ltd

FCC & ISED Canada Certification Test Report

for the

Guideline Geo AB QLA-MIRA500

FCC ID: QLA-MIRA500 ISED ID: 25943-MIRA500

July 27, 2023 WLL Report# 18262-01 Rev 1

Prepared by:

216

Ryan Mascaro RF Test Engineer

Reviewed by:

uw

Samuel Violette Vice President

Abstract

This report has been prepared on behalf of Guideline Geo AB to support the attached Application for Equipment Authorization. The test report and application are submitted for an Intentional Radiator under Part 15.509 of the FCC Rules and Regulations current at the time of testing and Innovation, Science and Economic Development (ISED) Canada Spectrum Management and Telecommunications Policy RSS-220, Issue 1 (3/2009). This Certification Test Report documents the test configuration and test results for the Guideline Geo AB Ultra-Wideband (UWB) Transmitter (FCC ID: QLA-MIRA500 // ISED ID: 25943-MIRA500). The information provided on this report is only applicable to device herein documented, as the EUT.

Radiated testing was performed in the Free-space Anechoic Chamber Test-site (FACT) 3m chamber of Washington Laboratories, Ltd., located at 4840 Winchester Boulevard, Suite #5. Frederick, MD 21703. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD.

Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Certificate AT-1448 as an independent FCC test laboratory (ISED Canada number 3035A).

The Guideline Geo AB, MIRA Compact complies with the requirements for an Intentional Radiator under FCC Part 15.509 and RSS-220 Issue 1 (3/2009).

Revision History	Description of Change	Date
Rev 0	Initial Release	July 27, 2023
Rev 1	TCB Comments, Dated: 9/22/2023	September 25, 2023

Table of Contents

Abstra	ct	iii
Table	of Contents	iv
List of	Tables	v
List of	Figures	v
1	Introduction	
1.1	Compliance Statement	6
1.2	Test Scope	6
1.3	Contract Information	
1.4	Test and Support Personnel	6
1.5	Test Dates	6
2	Equipment Under Test	
2.1	EUT Identification and Technical Details	7
2.2	EUT Description	8
2.3	Testing Algorithm	
2.4	Testing Configuration	
2.5	Test Location	8
2.6	Measurements	
2.7	Measurement Uncertainty	11
3	Test Sequence and Results Summary	
4	Test Results	
4.1	§15.509(a) and RSS-220, 6.2.1(a) – UWB GRP Operates Below 10.6 GHz	
4.2	§15.509(a), §2.1049, and RSS-220, 6.2.1(a) – Occupied Bandwidth	
4.3	§15.509(b) and RSS-220, 6.2 – Standard Specifications	
4.4	§15.509(d) and RSS-220, 6.2.1(c) and 6.2.1(d) – Radiated Emissions	
4.5	§15.509(e) and RSS-220, 6.2.1(e) – Radiated Emissions, GNSS Bands	
4.6	RSS-210, 6.2.1(g) – Peak EIRP Transmitter Requirements	
4.7	AC Powerline Conducted Emissions	
5	Test Equipment	

List of Tables

Table 1: Device Summary	7
Table 2: System Configuration List	
Table 3: Support Equipment	
Table 4: Cable Configuration	
Table 5: Expanded Uncertainty List	
Table 6: Transmitter Testing Summary	
Table 7: Occupied Bandwidth Test Results (Worst-Case)	
Table 9: Test Equipment List.	

List of Figures

Figure 1: EUT Testing Configuration (Example Only)	9
Figure 2: UWB Transmitter Emissions – Vertical	15
Figure 3: UWB Transmitter Emissions – Horizontal	16
Figure 4: 10dB Occupied Bandwidth – Vertical	19
Figure 5: 10dB Occupied Bandwidth – Horizontal	20
Figure 6: Worst-Case 99% Occupied Bandwidth	21
Figure 7: Radiated Emissions Test Data, 10.6 GHz to 18 GHz	29
Figure 8: Investigation of EUT Emissions within the GNSS Band	34
Figure 9: Peak Field Strength – Vertical (Uncorrected)	37
Figure 10: Peak Field Strength – Horizontal (Uncorrected)	38

1 Introduction

1.1 Compliance Statement

The Guideline Geo AB, MIRA Compact complies with the requirements for an Intentional Radiator under FCC Part 15.509 and RSS-220 Issue 1 (3/2009).

1.2 Test Scope

Tests for radiated emissions were performed. All measurements were performed in accordance with ANSI C63.10. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer:	Guideline Geo AB
Purchase Order Number:	45066
Quotation Number:	74062B

1.4 Test and Support Personnel

Washington Laboratories, LTD	Ryan Mascaro
Customer Representative	Per Westholm and Johan Friborg

1.5 Test Dates

The MIRA Compact, UWB Ground Penetrating Radar (GPR) was tested during the following dates: 7/20/2023 to 7/25/2023.

2 Equipment Under Test

2.1 EUT Identification and Technical Details

Manufacturer:	Guideline Geo AB		
FCC ID:	QLA-MIRA500		
ISED ID:	25943-MIRA500		
HVIN:	21-005995		
Rule Parts:	FCC: §15.509	ISED: RSS-220	
FCC Emission Designator:	373MDXN		
IC Emission Designator:	643MDXN		
	FL	34.40 MHz	
UWB Transmit Frequencies (worst-case)	F _M	220.46 MHz	
(worst-case)	F _H	547.60 MHz	
Occupied Bandwidth:	10dB	373.30 MHz (minimum)	
	99%	642.8 MHz (maximum)	
Keying:	Automatic		
Modulation or Protocol:	Impulse Excitation (UWB)		
Type of Information:	Imaging, Radar		
3m Radiated Field Strength:	Peak: 58.55 dBuV/m		
3m EIRP (from FS):	Peak: -36.70 dBm/MHz		
Worst-Case Unwanted Emission:	319.97 MHz, 45.083 dBuV/m Quasi-Peak (0.917 dB under the limit)		
Power Density for Canada:	.00000043 W/m ² (calculated)		
Antenna Type:	Guideline Geo AB, P/N: 13-002329-1		
Maximum Antenna Gain:	Not Declared by Applicant		
Test Software/Firmware:	MIRA Control 1.4.23.609, MCU 0x60000096, FPGA 0x41 (RX) 0x40		
Power Source & Voltage:	Battery Powered, via 14.4VDC Rechargeable Batteries		

Table 1: Device Summary

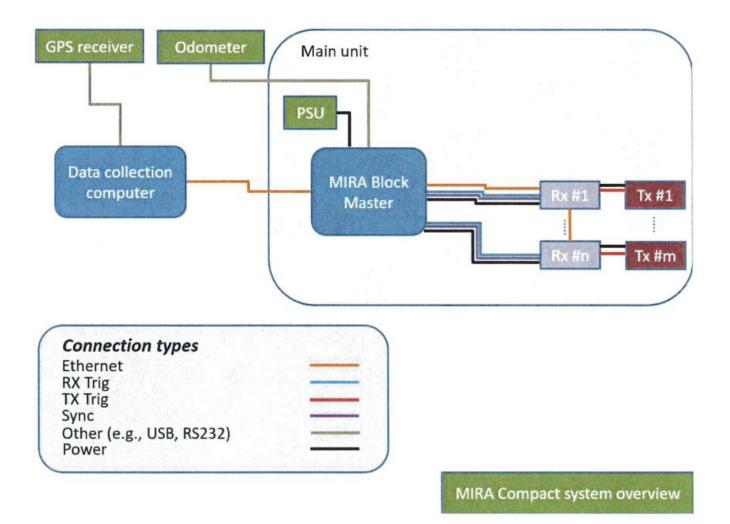
2.2 EUT Description

The Guideline Geo AB, QLA-MIRA500 is an Ultra-Wideband Ground Penetrating Radar array system that is used for detailed 3D mapping of the subsurface. Typical application areas include infrastructure and/or archaeology. The EUT is powered by rechargeable batteries. The charging station is coupled to the AC Public Mains Network but cannot power the EUT. The batteries cannot charge and allow the EUT to transmit simultaneously.

2.3 Testing Algorithm

The EUT was tested in a powered-on, steady state, with the transmitter enabled as appropriate. Please note that all of the UWB transmitter testing was performed via 3-meter radiated testing. There is not a single azimuth (i.e., turn-table degree) that yields a wort-case fundamental amplitude. Rather, the turntable must be rotated to a variety of degrees (from 0 to 360) to properly characterize the worst-case emissions signature. All of the test data provided in this report represents the absolute worst-case emissions from the EUT. Care was taken to ensure that all of the UWB transmit energy was captured and reported correctly. The EUT was oriented on the testing site in accordance with the use-case positioning.

2.4 Testing Configuration


The QLA-MIRA500 was tested in an active measurement/imaging mode. The EUT was controlled via a support laptop. The laptop was used to command the EUT into a transmit enabled state. The laptop was not introduced onto the testing site. For all radiated emissions testing, the alternative test site configuration defined in Section 10.2.2 of ANSI C63.10-2013 was employed.

2.5 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Frederick, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The ISED Canada number for Washington Laboratories, Ltd. is 3035A. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent FCC test laboratory.

Figure 1: EUT Testing Configuration (Example Only)

Table 2: System Configuration List

Name / Description	Model Number	Part Number	Serial Number	Revision
MIRA Compact	21-005992	N/A	Unit 1	1
Li-Ion Batteries	30-003049	N/A	N/A	N/A

Table 3: Support Equipment

Item	Model/Part Number	Serial Number
Laptop	Dell, Toughbook	N/A
Ethernet Cable	N/A	N/A

Table 4: Cable Configuration

Port Identification	Port on EUT	Description	Qty.	Length (meters)	Shielded (Y/N)
1	Encoder	N/A	1	N/A	No
2	Ext. Antenna	N/A	1	N/A	No
3	Power In	N/A	1	N/A	No
4	Power Out	N/A	1	N/A	No
5	Ethernet	Data	1	3	Yes

2.6 Measurements

2.6.1 References

ANSI C63.2 (Jan-2016) Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 (Jan 2014) American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ANSI C63.10 (Jun 2013) American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

2.6.2 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antennas and other measurement accessories. These factors are included into the antenna factor (AF) column of the table and in the cable factor (CF) column of the table. The AF (in dB/m) and the CF (in dB) is algebraically added to the raw Spectrum Analyzer Voltage in dB μ V to obtain the Radiated Electric Field in dB μ V/m. This logarithm amplitude is converted to a linear amplitude, then compared to the limit.

Example:

Spectrum Analyzer Voltage:	VdBµV (SA)
Antenna Correction Factor:	AFdB/m
Cable Correction Factor:	CFdB
Pre-Amplifier Gain (if applicable):	GdB
Electric Field:	$EdB\mu V/m = V dB\mu V (SA) + AFdB/m + CFdB - GdB$
To convert to linear units of measure:	Inv Log (EdBµV/m/20)

2.7 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 (R2002) with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

where:

where.	
uc	= standard uncertainty
a, b, c,	= individual uncertainty elements
Diva, b, c	= the individual uncertainty element divisor based on the
	probability distribution
Divisor	= 1.732 for rectangular distribution
Divisor	= 2 for normal distribution
Divisor	= 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

where:

U	= expanded uncertainty
k	= coverage factor
k	\leq 2 for 95% coverage (ANSI/NCSL Z540-2 Annex G)
uc	= standard uncertainty
	e (

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is not used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 5 below.

Table 5: Expanded	Uncertainty List
-------------------	------------------

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR32, CISPR14, FCC Part 15	$\pm 2.63 \text{ dB}$
Radiated Emissions	CISPR11, CISPR22, CISPR32, CISPR14, FCC Part 15	± 4.55 dB

3 Test Sequence and Results Summary

Table 6: Transmitter Testing Summary

FCC Rule Part	ISED Rule Part	Summary Description	Result	
§15.509(a)	RSS-220, 6.2.1(a)	GRP Operates Below 10.6 GHz, and is Wholly Contained Below 960 MHz	Pass	
§15.509(a) §2.1049	RSS-220, 6.2.1 RSS-220, Annex(2)	10dB Occupied Bandwidth \ge 500 MHz or the Fractional Bandwidth is \ge 0.2	Pass	
§15.509(b)(1)	N/A	Parties Operating this Equipment Must be Eligible for Licensing Under the Provisions of FCC Part §90	Managed by Applicant	
§15.509(b)(2)	N/A	Operation of Imaging Systems Under this Section Requires Coordination, as detailed in FCC Part §15.525	Pass	
§15.509(c)	RSS-220, 6.2.1(b)	Handheld GPRs: Cessation of Operation, 10-seconds	N/A	
\$15.509(d) \$15.209	RSS-220, 6.2.1(c) RSS-GEN	Radiated Emissions and EIRP Requirements < 960 MHz	Pass	
\$15.509(d) \$15.209	RSS-220, 6.2.1(d) RSS-GEN	Radiated Emissions and EIRP Requirements > 960 MHz	Pass	
§15.509(e)	RSS-220, 6.2.1(e)) Radiated Emissions with the GNSS Bands		
§15.509(f)	N/A	Fundamental Transmitters Above 960 MHz	N/A	
N/A	RSS-220, 6.2.1(g) RSS-220, Annex(4)			
§15.107(a)	RSS-GEN	AC Powerline Conducted Emissions P		

4 Test Results

4.1 §15.509(a) and RSS-220, 6.2.1(a) – UWB GRP Operates Below 10.6 GHz

Under this provision, the UWB shall operate below 10.6 GHz and the 10dB OBW shall be wholly contained below 960 MHz. The EUT fundamental UWB transmit signal was evaluated for compliance under this rule part. The testing site and measurement method were maintained in accordance with ANSI C63.10-2013, Section 10.

The test results are provided below.

Vertical Testing Summary:

- $f_{\rm L}$ 34.40 MHz
- *f*_C 291.00 MHz
- *f*_M 222.74 MHz
- *f*_H 547.60 MHz

Horizontal Testing Summary:

- $f_{\rm L}$ 75.50 MHz
- *f*_C 262.15 MHz
- *f*_M 220.46 MHz
- *f*_H 448.80 MHz

where:

- $f_{\rm M}$ is the frequency of maximum UWB transmission
- $f_{\rm H}$ is the highest frequency at which the power spectral density of the UWB transmission is -10 dB relative to $f_{\rm M}$
- $f_{\rm L}$ is the lowest frequency at which the power spectral density of the UWB transmission is -10 dB relative to $f_{\rm M}$
- $f_{\rm C} = (f_{\rm H} + f_{\rm L}) \div 2$ is the center frequency of the -10 dB bandwidth.

Figure 2: UWB Transmitter Emissions - Vertical

Figure 3: UWB Transmitter Emissions - Horizontal

4.2 §15.509(a), §2.1049, and RSS-220, 6.2.1(a) – Occupied Bandwidth

According to the rules for UWB devices, outlined in FCC Rule Part 15F, RSS-220, Section 2, and as defined in ANSI C63.10-2013, Section 10.1 - a UWB transmitter is defined as "an intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or great than 500 MHz, regardless of the fractional bandwidth.

The -10dB Occupied Bandwidth (OBW) was evaluated in accordance with the following method:

The frequency at which the maximum power level is measured with the peak detector is designated $f_{\rm M}$. The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 MHz resolution bandwidth and a video bandwidth of 1 MHz or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 MHz segments above and below $f_{\rm M}$, where the peak power falls by 10 dB relative to the level at $f_{\rm M}$, are designated as $f_{\rm H}$ and $f_{\rm L}$, respectively:

- a) For the lowest frequency bound f_L , the emission is searched from a frequency lower than f_M that has, by inspection, a peak power much lower than 10 dB less than the power at f_M and increased toward f_M until the peak power indicates 10 dB less than the power at f_M . The frequency of that segment is recorded.
- b) This process is repeated for the highest frequency bound $f_{\rm H}$, beginning at a frequency higher than $f_{\rm M}$ that has, by inspection, a peak power much lower than 10 dB below the power at $f_{\rm M}$. The frequency of that segment is recorded.
- c) The two recorded frequencies represent the highest $f_{\rm H}$ and lowest $f_{\rm L}$ bounds of the UWB transmission, and the -10 dB bandwidth (B 10) is defined as $(f_{\rm H} f_{\rm L})$.⁸² The center frequency $(f_{\rm c})$ is mathematically determined from $(f_{\rm H} f_{\rm L}) / 2$.
- d) The fractional bandwidth is defined as $2(f_H f_L) / (f_H + f_L)$.
- e) Determine whether the -10 dB bandwidth $(f_H f_L)$ is ≥ 500 MHz, or whether the fractional bandwidth $2(f_H f_L) / (f_H + f_L)$ is ≥ 0.2 .

The final OBW test results are provided below.

Under the provisions of RSS-GEN, Section 6.7, the 99% bandwidth was also recorded.

Receive Antenna	-10dB Bandwidth	Required OBW (Minimum)	Results
Vertical	513.20 MHz	500 MHz	Pass
Horizontal	373.30 MHz	500 MHz	Pass *

 Table 7: Occupied Bandwidth Test Results (Worst-Case)

* When the EUT is evaluated with the testing antenna in a Horizontal polarity, the 10dB OBW of the UWB transmitter is less than 500 MHz. As such, the Fractional Bandwidth must be calculated to demonstrate compliance.

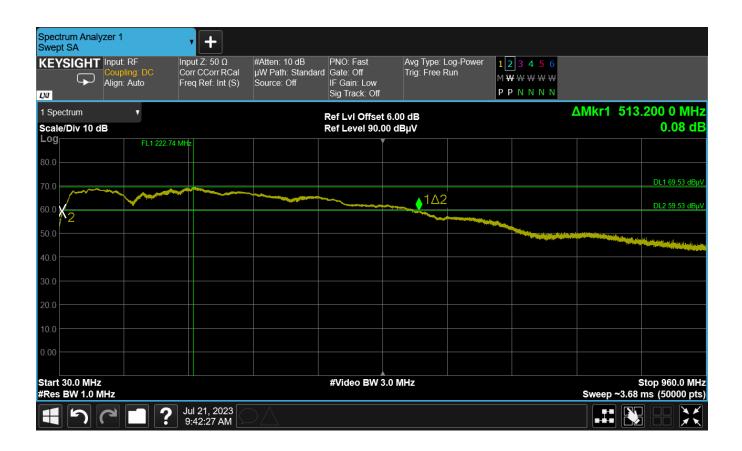
Fractional BW = $2(f_H - f_L) \div (f_H + f_L)$

where

$f_{ m L}$	= 75.50 MHz

 $f_{\rm H}$ = 448.80 MHz

therefore


Fractional BW = $2(448.8 - 75.5) \div (448.8 + 75.5)$ = $2(373.3) \div (524.3)$ = 1.424 is the Fractional BW

finally

Because 1.42 is \geq 0.2, the EUT meets the requirements of this section.

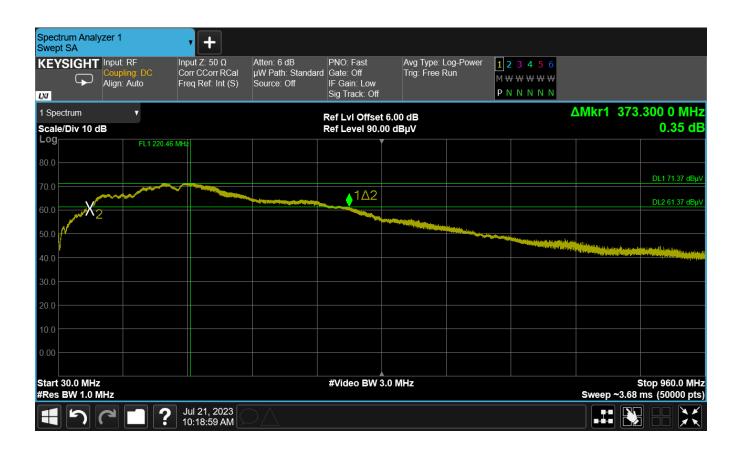


Figure 4: 10dB Occupied Bandwidth - Vertical

Figure 5: 10dB Occupied Bandwidth - Horizontal

Figure 6: Worst-Case 99% Occupied Bandwidth

Spectrum		yzer 1		,	+									
KEYSI		Input: Coup Align:	ling: DC	Cor	ut Z: 50 Ω rr CCorr RCal iq Ref: Int (S)	Atten: 0 dB µW Path: Standard	Trig: Free Run d Gate: Off #IF Gain: Low	/	Center Fred Avg Hold:> Radio Std:		lz			
1 Graph			•											00000 MHz
Scale/Di	v 10.0	dB					Ref Value 90.	00 dB	βμV			,		49.65 dBµV
Log 80.0														
70.0	1.2	m		~	\sim									
50.0						~~							Transferration of the local division of the	
40.0														
20.0														
10.0														
0.00														
Center 4 #Res BW			z				#Video BW 3.0	0000 N	MHZ				Sweep 1.33	Span 850 MHz ms (20000 pts)
2 Metrics			•											
		0	ccupied Ban	hwid	łth					Measure Trace	;	Trace 1		
					42.79 MHz					Total Power			90.1 dBµV	
			ansmit Freq			9.072 MHz				% of OBW Pov	ver		99.00 %	
		X	dB Bandwidt	h		512.9 MHz				x dB			-10.00 dB	
	う	2	2	Ju 9:	il 25, 2023 :44:35 AM									

For the 99% bandwidth, the UWB transmitter emissions were maximized until the -10dB metric aligned with the measurement provided in Table 7 of this report. That is, when the -10dB bandwidth is equal to 513 MHz (as noted above) the 99% bandwidth shall be recorded.

In this case, the worst-case 99% bandwidth is 642.8 MHz. (radiated at 3-meters)

This plot is not a corrected representation of amplitude.

4.3 §15.509(b) and RSS-220, 6.2 – Standard Specifications

Under this provision, UWB GPRs shall be operated for purposes associated with law enforcement, firefighting, emergency rescue, scientific research, commercial mining, or construction.

The EUT complies with this requirement, as the applicant has declared that the MIRA Comact GPR array system shall be used for infrastructure/construction and archaeology research.

Additionally, under the provisions of \$15.509(b)(1) and \$15.509(b)(2) the applicant shall ensure that parties operating this equipment are eligible for licensing under the provisions of FCC Rule Part \$90, and that the coordination requirements of \$15.252 are satisfied.

4.4 §15.509(d) and RSS-220, 6.2.1(c) and 6.2.1(d) – Radiated Emissions

The radiated emissions at, or below, 960 MHz from a device operating under the provisions of this section shall not exceed the emission limits in FCC Rule Part §15.209, nor shall they exceed the emission limits of RSS-220 Section 3.4.

	FCC Rule Part §15.209						
Frequency (MHz)	Field Strength Limit (uV/m)	Measurement Distance (meters)	EIRP Limit (dBmW)				
30 - 88	100	3	N/A				
88-216	150	3	N/A				
216 - 960	200	3	N/A				
> 960	500	3	N/A				

	ISED Canada, RSS-220 Section 3.4						
Frequency (MHz)	Field Strength Limit (uV/m)	Measurement Distance (meters)	EIRP Limit (dBmW)				
.009490	2400/F _{kHz}	300	$10LOG(17.28/F_{kHz}^2)$				
.490 - 1.705	24,000/F _{kHz}	30	$10LOG(17.28/F_{kHz}^2)$				
1.705 - 30	30	30	-45.7				
30-80	100	3	-55.2				
88-216	150	3	-51.7				
216 - 960	200	3	-49.2				

Additionally, the radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following Average EIRP limits, when measured using a RBW of 1 MHz.

Frequency (MHz)	EIRP Limit (dBm)
960 - 1610	-65.3
1610 – 1990	-53.3
1990 - 3100	-51.3
3100 - 10600	-41.3
> 10600	-51.3

The above noted EIRP limits shall be converted to Field Strength via the following:

$FS_{dBuV/m}$	= EIRP _{dBm} $-$ 20LOG(D _m) $+$ 104.8 (<i>reference: ANSI C63.26-2015, Section 5.2.7</i>)
where	D _m is the measurement distance in meters
therefore	$FS_{dBuV/m} = EIRP_{dBm} - 20LOG(3) + 104.8$
$FS_{dBuV\!/\!m}$	= -65.3 - 20LOG(3) + 104.8
$FS_{dBuV/m}$	= 29.95 Average Limit (shall be rounded to 30 dBuV/m)

4.4.1 Test Procedure Summary

The requirements of this test call for the EUT to be placed on an 80cm high, 1m X 1.5m non-conductive motorized turntable for radiated testing of frequencies at, or below, 960 MHz. For radiated testing of frequencies above 960 MHz, the height of the EUT shall be raised to 150cm. All radiated emissions measured during this testing, were performed at a distance of 3-meters. The conditions of the testing site were maintained in accordance with ANSI C63.10-2013, Section 10.2.2 and RSS-220, Section 7.

An initial pre-scan of the EUT was performed to identify any emissions that exceed, or come within 6dB of, the applicable limit. This pre-scan was performed a with the employment of a spectrum analyzer peak detector function. The highest amplitude (worst-case) emissions noted during the pre-scan were selected for final compliance measurements.

The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Broadband log periodic and double-ridged horn antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The output of the antenna was connected to the input of the spectrum analyzer and the emissions in the frequency range of 30 MHz to 18 GHz were measured. The EUT peripherals were placed on the table in accordance with ANSI C63.4. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured. The detector function was set to quasi-peak for measurements below 1 GHz. The measurement bandwidth of the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth. For measurements above 1 GHz, the average levels are recorded, using a measurement bandwidth of 1 MHz with a video bandwidth setting of 10 Hz, in the case of video averaging. Otherwise, an AVG RMS detector shall be employed.

Environmental Conditions During Radiated Emissions Testing

Ambient Temperature:	19 °C
Relative Humidity:	44 %

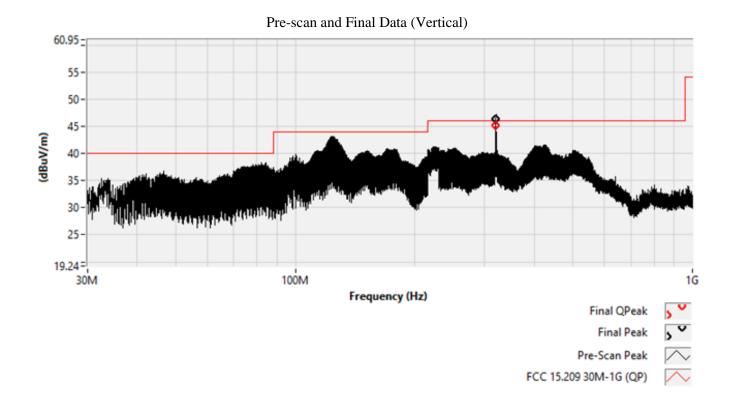
4.4.2 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antenna(s) and other measurement equipment. These factors include the antenna factor ((AF)(in dB/m)), cable loss factors ((CF)(in dB)), and the pre-amplifier gain [if applicable] ((G)(in dB)). These correction values are algebraically added to the raw Spectrum Analyzer Voltage (in dB μ V) to obtain the corrected radiated electric field, which shall be the final corrected logarithm amplitude ((Corr. Meas.)(in dB μ V/m)). This logarithm amplitude is then compared to the FCC limit, which has been converted to a unit of log in dB μ V/m.

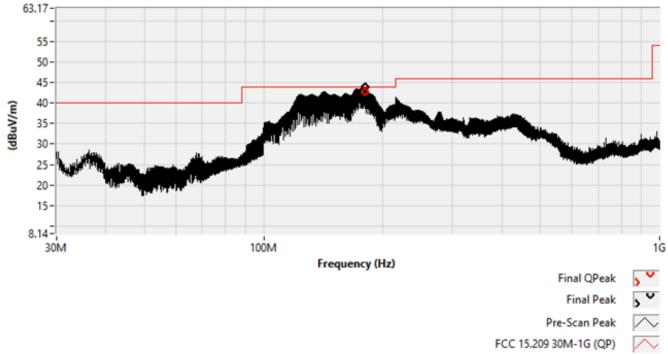
Example:

Spectrum Analyzer Voltage:	VdBµV (SA)
Antenna Correction Factor:	AFdB/m
Cable Correction Factor:	CFdB
Pre-Amplifier Gain (if applicable):	GdB
Electric Field:	$EdB\mu V/m = V \ dB\mu V \ (SA) + AFdB/m + CFdB - GdB$
To convert from linear units of measure:	dBuV/m = 20LOG(uV/m)

4.4.3 Test Data


The EUT complies with the Radiated Emissions requirements. The EUT was scanned from 30 MHz to 18 GHz. The worst-case emissions are reported.

	3-meter Radiated Emissions < 960 MHz (120kHz RBW)							
Frequency (MHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)		
100.00	Peak	43.979			280	Horiz, 110		
180.00	QP	42.741	44	-1.259	280	Horiz, 110		
† 319.97	Peak	46.420			200	Vert, 100		
1 519.97	QP	45.083	46	-0.917	200	Vert, 100		


† please note that the emission marked at 319.97 MHz is a [discrete] ambient condition that inadvertently coupled to the pre-amp portion of the measurement system. This signal was marked for compliance to ensure that it passed the Class B limits, because at the time of testing it was unclear whether the emission was a product of the EUT. However, further investigation revealed that the spur at 319.97 MHz is an ambient condition, and not from the EUT. Please see Figure 9 of this test report for clarification. It can be seen that this emission is not part of the EUT Transmitter waveform signature.

	3-meter Radiated Emissions > 960 MHz (1MHz RBW)							
Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)		
1.010	Peak	39.273	50	-10.727	220	Horiz, 155		
1.010	AVG	22.850	30	-7.150	220	Horiz, 155		
1.336	Peak	47.253	50	-2.747	265	Horiz, 165		
1.550	AVG	25.176	30	-4.824	260	Horiz, 170		
+ 2.006	Peak	44.632	64	-19.368	260	Horiz, 140		
\$ 3.096	AVG	30.291	44	-13.709	265	Horiz, 165		
+ 6061	Peak	55.492	74	-18.508	260	Vert, 160		
‡ 6.961	AVG	41.646	54	-12.354	260	Vert, 165		
+ 7 202	Peak	57.383	74	-16.617	265	Horiz, 155		
‡ 7.302	AVG	41.561	54	-12.439	260	Horiz, 170		
	‡ the measurement was made at the noise-floor (ambient)							

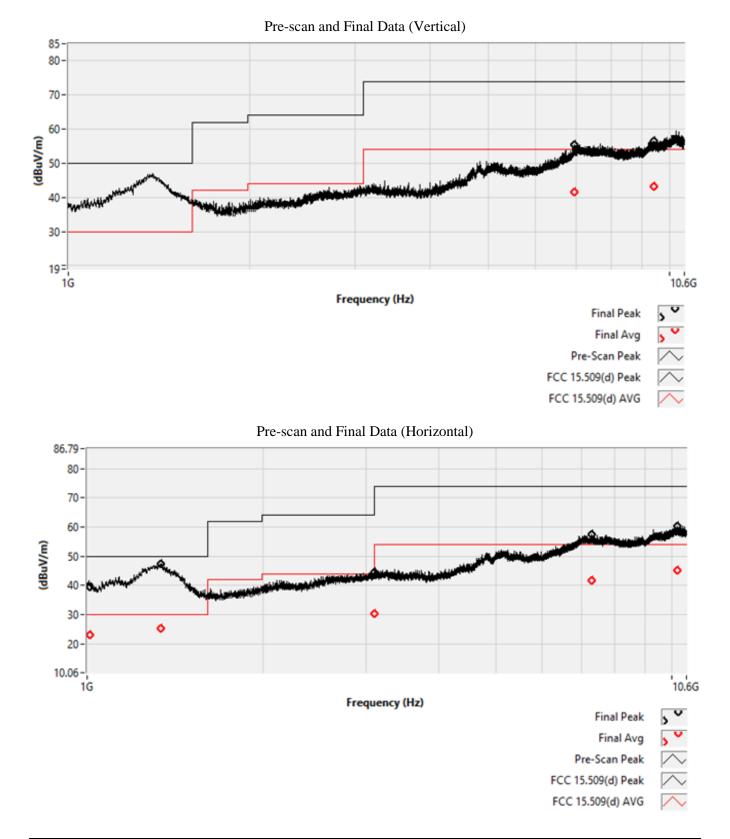


Figure 7: Radiated Emissions Test Data, 10.6 GHz to 18 GHz

Spectrum Swept SA	Analyzer	1	• +										
KEYSI		ut: RF upling: DC gn: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 0 dB µW Path: Standard Source: Off	PNO: Fast Gate: Off IF Gain: High Sig Track: Off		vg Type: L rig: Free F	og-Power tun	МM	3456 WWWW NNNN			
1 Spectru Scale/Div		•			Ref LvI Offse Ref Level 90.								
Log 80.0													
70.0													
60.0 50.0			And Constants States	evente de la colorie			in some			a da da si da si da si	An order of a second of	al la genera	, dat,
40.0													
30.0													
10.0													
0.00													
Start 10.6 #Res BW					#Video BW	3.0 MH	z				Sweep ~15.8	top 18.000 ms (10000	
•	2 3	2 ?	Jul 24, 2023 8:18:26 AM										X

* No Emissions from the EUT were Detected.

Trace 1 = Ambient

Trace 2 = EUT Transmitting

4.5 §15.509(e) and RSS-220, 6.2.1(e) – Radiated Emissions, GNSS Bands

Under this provision, radiated emissions shall not exceed the following Average limits when measured using a resolution bandwidth of no less than 1 kHz. The measurements shall demonstrate compliance with the stated limits at whatever resolution bandwidth is used.

Frequency (MHz)	EIRP Limit (dBm)
1164 – 1240	-75.3
1559 – 1610	-75.3

The above noted EIRP limits shall be converted to Field Strength via the following:

$FS_{dBuV\!/\!m}$	= EIRP _{dBm} $-$ 20LOG(D _m) $+$ 104.8 (reference: ANSI C63.26-2015, Section 5.2.7)
where	D _m is the measurement distance in meters
therefore	$FS_{dBuV/m} = EIRP_{dBm} - 20LOG(3) + 104.8$
$FS_{dBuV\!/\!m}$	= -75.3 - 20LOG(3) + 104.8
$FS_{dBuV/m}$	= 19.95 Average Limit (shall be rounded to 20 dBuV/m)

4.5.1 Test Procedure Summary

The requirements of this test call for the EUT to be placed on an 150cm high, 1m X 1.5m non-conductive motorized turntable. All radiated emissions measured during this testing, were performed at a distance of 3-meters. The conditions of the testing site were maintained in accordance with ANSI C63.10-2013, Section 10.2.2 and RSS-220, Section 7.

An initial pre-scan of the EUT was performed to identify any emissions that exceed, or come within 6dB of, the applicable limit. This pre-scan was performed a with the employment of a spectrum analyzer peak detector function. The highest amplitude (worst-case) emissions noted during the pre-scan were selected for final compliance measurements.

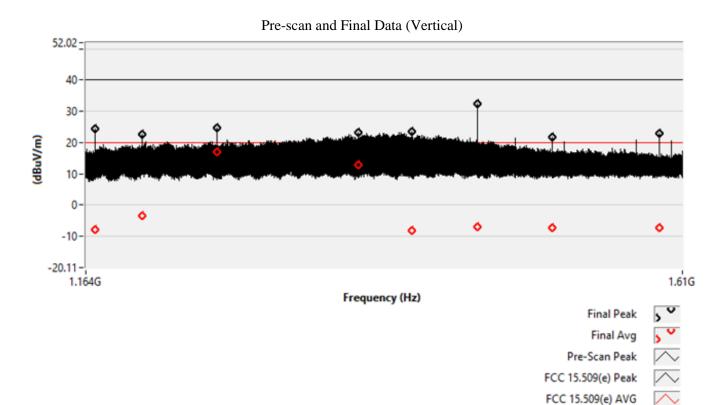
The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. A broadband double-ridged horn antenna was mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The output of the antenna was connected to the input of the spectrum analyzer and the emissions in the frequency range of 1164 MHz to 1610 MHz were measured. The EUT peripherals were placed on the table in accordance with ANSI C63.4. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

For the initial pre-scan and final Peak measurements, a RBW setting of 9 kHz was employed. This is a worst-case scenario as the requirements call for a 1 kHz RBW. That is, the Peak energy captured in any 9 kHz, complies with the EIRP_{dBm}/1kHz limitations.

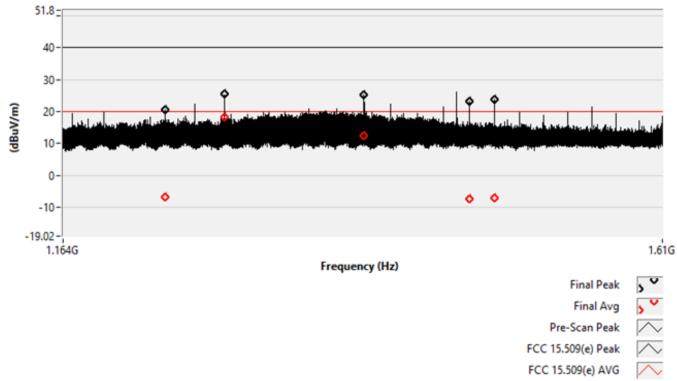
For the final Average compliance measurements, a RBW setting of 1 kHz and a detector function of AVG RMS was employed.

4.5.2 Test Data

The EUT complies with the Radiated Emissions requirements.


The EUT was scanned from 1164 MHz to 1610 MHz.

The worst-case emissions are reported below.



3-meter Radiated Emissions (GNSS Band) – 15.509(e)							
Frequency (MHz)	Detector	RBW (kHz)	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1100.00	Peak	9	24.536	40	-15.464	260	Vert, 160
1100.00	AVG	1	-8.051	20	-28.051	260	Vert, 160
1200.00	Peak	9	22.562	40	-17.438	220	Vert, 155
1200.00	AVG	1	-3.499	20	-23.499	22	Vert, 155
1220.00	Peak	9	20.522	40	-19.478	225	Horiz, 170
1230.00	AVG	1	-6.862	20	-26.862	225	Horiz, 170
1250.00	Peak	9	24.769	40	-15.231	260	Vert, 160
1250.00	AVG	1	17.107	20	-2.893	260	Vert, 160
1270.00	Peak	9	25.618	40	-14.382	220	Horiz, 155
1270.00	AVG	1	18.256	20	-1.744	220	Horiz, 155
1250.00	Peak	9	23.124	40	-16.876	260	Vert, 160
1350.00	AVG	1	12.72	20	-7.280	260	Vert, 160
1270.00	Peak	9	25.195	40	-14.805	225	Horiz, 170
1370.00	AVG	1	12.371	20	-7.629	225	Horiz, 170
1200.00	Peak	9	23.389	40	-16.611	260	Vert, 160
1390.00	AVG	1	-8.094	20	-28.094	260	Vert, 160
1440.00	Peak	9	32.51	40	-7.490	260	Vert, 170
1440.00	AVG	1	-6.927	20	-26.927	260	Vert, 170
1450.00	Peak	9	23.329	40	-16.671	225	Horiz, 170
1450.00	AVG	1	-7.224	20	-27.224	225	Horiz, 170
1 470 00	Peak	9	23.876	40	-16.124	225	Horiz, 170
1470.00	AVG	1	-7.134	20	-27.134	225	Horiz, 170
1500.00	Peak	9	21.808	40	-18.192	260	Vert, 160
1500.00	AVG	1	-7.312	20	-27.312	260	Vert, 160
1500.00	Peak	9	22.938	40	-17.062	260	Vert, 155
1590.00	AVG	1	-7.402	20	-27.402	260	Vert, 155

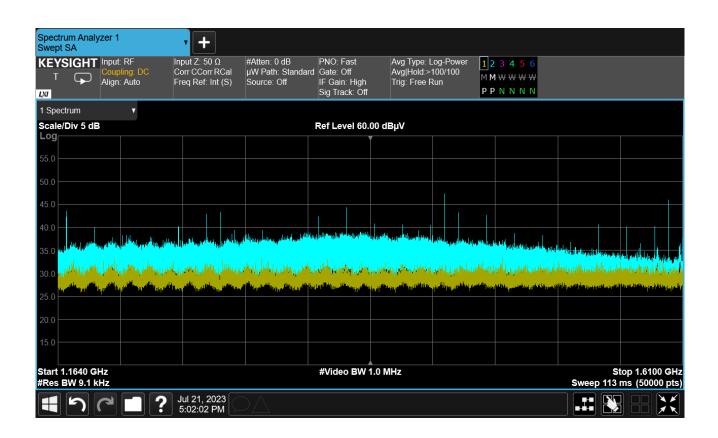


Figure 8: Investigation of EUT Emissions within the GNSS Band

* this plot is provided for reference only, the levels are uncorrected

Trace 1 = Ambient

Trace 2 = EUT Transmitting

4.6 RSS-210, 6.2.1(g) – Peak EIRP Transmitter Requirements

4.6.1 Requirements

Under this provision, Peak measurements shall be made in addition to average measurements. Only the 50 MHz bandwidth, centered on the frequency $f_{\rm M}$ where the highest power occurs, needs to be measured to satisfy the peak requirements for all frequencies. The Peak level of the UWB transmissions shall not exceed the Peak equivalent of the average limit contained within any 50 MHz bandwidth, as defined in Section 4(c) of the Annex, contained within RSS-220.

Peak UWB transmissions shall not exceed 0 dBm EIRP in any 50 MHz bandwidth, when the Average limit is -41.3 dBm/MHz. This is the equivalent peak limit as calculated by combining the 6 dB peak-to-average conversion with a resolution bandwidth (RBW) scaling factor of 20LOG(1MHz/50MHz).

A different resolution bandwidth and a correspondingly different peak limit may also be used, in which case the RBW may be set anywhere between 1 MHz and 50 MHz.

The different peak EIRP limit is then calculated from:

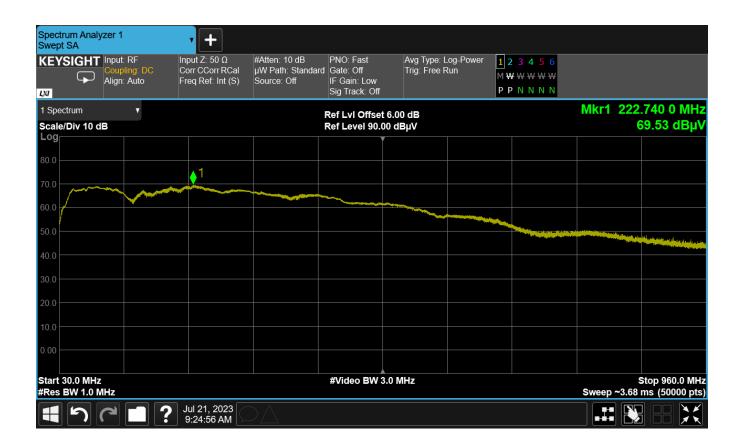
Peak Limit in EIRP _{dBm}	= 20LOG(RBW/50)
where	RBW is the setting employed during the measurement in MHz

4.6.2 Testing Procedure Summary

The requirements of this test call for the EUT to be placed on an 80cm high, 1m X 1.5m non-conductive motorized turntable. All radiated emissions measured during this testing, were performed at a distance of 3-meters. The conditions of the testing site were maintained in accordance with ANSI C63.10-2013, Section 10.2.2 and RSS-220, Section 7. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. A broadband log-periodic antenna was mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The output of the antenna was connected to the input of the spectrum analyzer and the emissions from the EUT were measured. The EUT peripherals were placed on the table in accordance with ANSI C63.4. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured. There is not a single azimuth (i.e., turn-table degree) that yields a worst-case fundamental signature. Rather, the turn-table must be rotated to a variety of degrees (from 0 to 360) to properly characterize the worst-case emissions.

4.6.3 Test Data

The UWB GPR transmit signal was measured using a RBW setting of 1 MHz. The worst-case transmit signal was identified to be 220.46 MHz, measuring 71.37 dBuV. This level is an uncorrected level. The following table provides the necessary correction factors and compliance comparison.


Frequency (MHz)	SA Level (dBuV)	Corr. Factors (dB/m)	Corr. Level (dBuV/m)	EIRP (dBm/MHz)	Peak Limit (dBm/MHz)	Delta (dB)	Result
220.46	71.37	-12.82	58.55	-36.70	-34.00	-2.70	Pass

Please note the following calculations, used to demonstrate compliance.

dBuV/m	$= dBuV + AF_{dB/m} + CL_{dB} - PG_{dB} \\$
EIRP _{dBm}	$= dBuV/m + 20LOG(D_m) - 104.8$
where	D_{m} is the measurement distance in meters
therefore	
EIRP _{dBm}	= 58.55 + 20LOG(3) - 104.8
EIRP _{dBm}	= -36.70
Peak Limit	= 20LOG(RBW/50)
Peak Limit	= 20LOG(1/50)
Peak Limit	= -33.97 (shall be rounded to -34 dBm)



Figure 9: Peak Field Strength – Vertical (Uncorrected)

Figure 10: Peak Field Strength – Horizontal (Uncorrected)

4.7 AC Powerline Conducted Emissions

4.7.1 Requirements

Compliance Standard: FCC Part 15.107, Class B

Powerline Emissions Compliance Limits					
Enguara Danga	Class B Digital Device				
Frequency Range	Quasi-peak	Average			
0.15 – 0.5 MHz	66 to 56 dBµV	56 to 46 dBµV			
0.5 – 5 MHz	56 dBµV	46 dBµV			
0.5 – 30 MHz	60 dBµV	50 dBµV			

4.7.2 AC Powerline Emissions Summary

Please note that the EUT cannot transmit while its batteries are charging. As such, the digital portion is covered by a Supplier's Declaration of Conformity (DOC).

Please see WLL Test Report # 18264-01 for the FCC 15B test results.

5 Test Equipment

Table 8 shows a list of the test equipment used for measurements along with the calibration information.

Table 8: Test Equipment List

Test Name:	Radiated Emissions	Test Date: 7/20/2023 to 7/25/	2023
Asset #	Manufacturer/Model	Description	Cal. Due
00644	SUNOL SCIENCES CORP. JB1	BICONALOG ANTENNA	11/7/2024
00626	ARA DRG-118/A	ANTENNA HORN	6/19/2024
00977	JUNKOSHA MWX322-06000	ARMORED COAXIAL CABLE	12/28/2023
00806	MINI-CIRCUITS CBL-6FT	SMA COAXIAL CABLE	12/28/2023
00834	ULTIFLEX UFA 2108-0-360	SMA COAXIAL CABLE 90CM	12/28/2023
00823	AGILENT/KEYSIGHT	SPECTRUM ANALYZER	6/7/2024
00065	HP 8447D	RF PRE-AMPLIFIER	5/9/2024
00066	BZ-01002650-401545-282525	HF PRE-AMPLIFIER 1-26.5GHZ	5/24/2024
00742	PENN ENGINEERING WR284	2.2-4.15GHZ BANDPASS FILTER	6/27/2025
00280	ITC 21C-3A1	WAVEGUIDE FILTER	6/27/2025
00281	ITC 21A-3A1	WAVEGUIDE FILTER 4.51-10.0GHZ	6/27/2025
00282	ITC 21X-3A1	WAVEGUIDE FILTER 6.8-15GHZ	6/27/2025