

APPENDIX 4 : System Validation Dipole (D2450V2,S/N: 713)

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

2450 MHz System Validation Dipole

Type:

D2450V2

Serial Number:

713

Place of Calibration:

Zurich

Date of Calibration:

November 15, 2002

Calibration Interval:

24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

D. Vetter

Approved by:

Alain Kast

**Schmid & Partner
Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 713

Manufactured: July 5, 2002

Calibrated: November 15, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative permittivity	38.0	$\pm 5\%$
Conductivity	1.87 mho/m	$\pm 10\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 5.0 at 2450 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250\text{mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm^3 (1 g) of tissue: **54.4 mW/g**

averaged over 10 cm^3 (10 g) of tissue: **24.2 mW/g**

3. Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.158 ns	(one direction)
Transmission factor:	0.997	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz: $\text{Re}\{Z\} = 51.3 \Omega$

$\text{Im } \{Z\} = 2.4 \Omega$

Return Loss at 2450 MHz $- 31.4 \text{ dB}$

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative permittivity	51.2	$\pm 5\%$
Conductivity	1.96 mho/m	$\pm 10\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 4.5 at 2450 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250\text{mW} \pm 3\%$. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: **51.6 mW/g**

averaged over 10 cm³ (10 g) of tissue: **24.0 mW/g**

6. Dipole impedance and return loss

The dipole was positioned at the flat phantom sections according to section 4 (with body tissue inside the phantom) and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz: **Re{Z} = 46.9 Ω**

Im {Z} = 3.6 Ω

Return Loss at 2450 MHz **- 26.1 dB**

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: SN713_SN1507_HSL2450_131102.da4

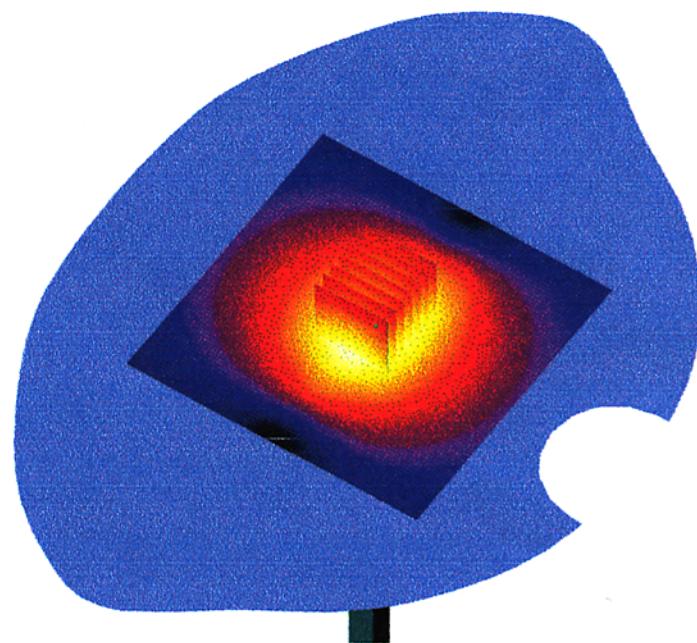
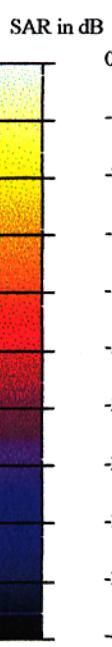
DUT: Dipole 2450 MHz Type & Serial Number: D2450V2 - SN713
Program: Dipole Calibration; Pin = 250 mW; d = 10 mm

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1
Medium: HSL 2450 MHz ($\sigma = 1.87 \text{ mho/m}$, $\epsilon = 38.03$, $\rho = 1000 \text{ kg/m}^3$)
Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5, 5, 5); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 - TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm



Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

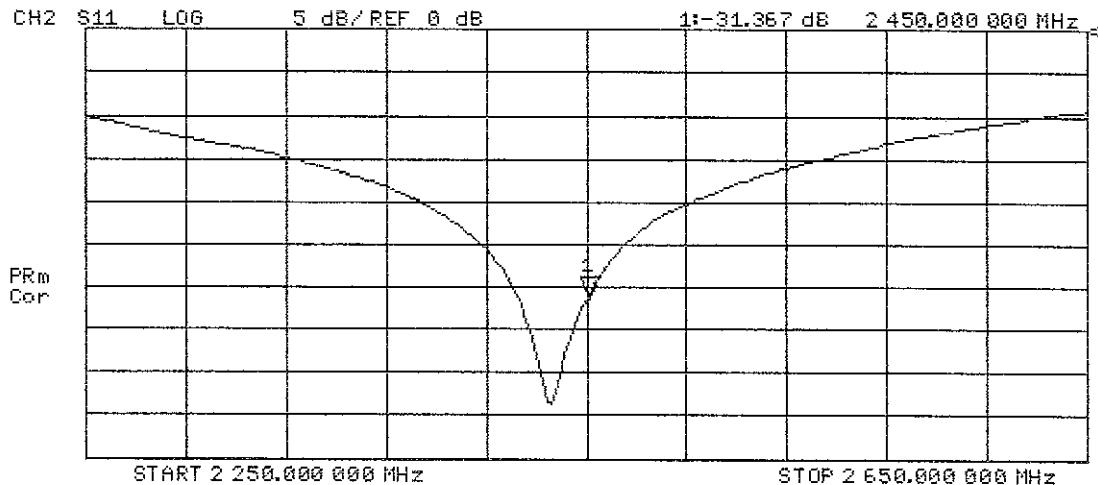
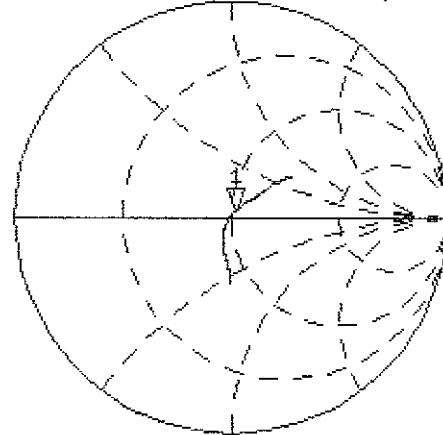
Reference Value = 94.4 V/m

Peak SAR = 29.6 mW/g

SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.04 mW/g

Power Drift = 0.01 dB

CH1 S11 1 U FS



1: 51.254 Ω 2.4414 Ω 158.60 pH
2 450.000 000 MHz

Page 44

De1

PRm

Cor
Avg
16

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: SN713_SN1507_M2450_141102.da4

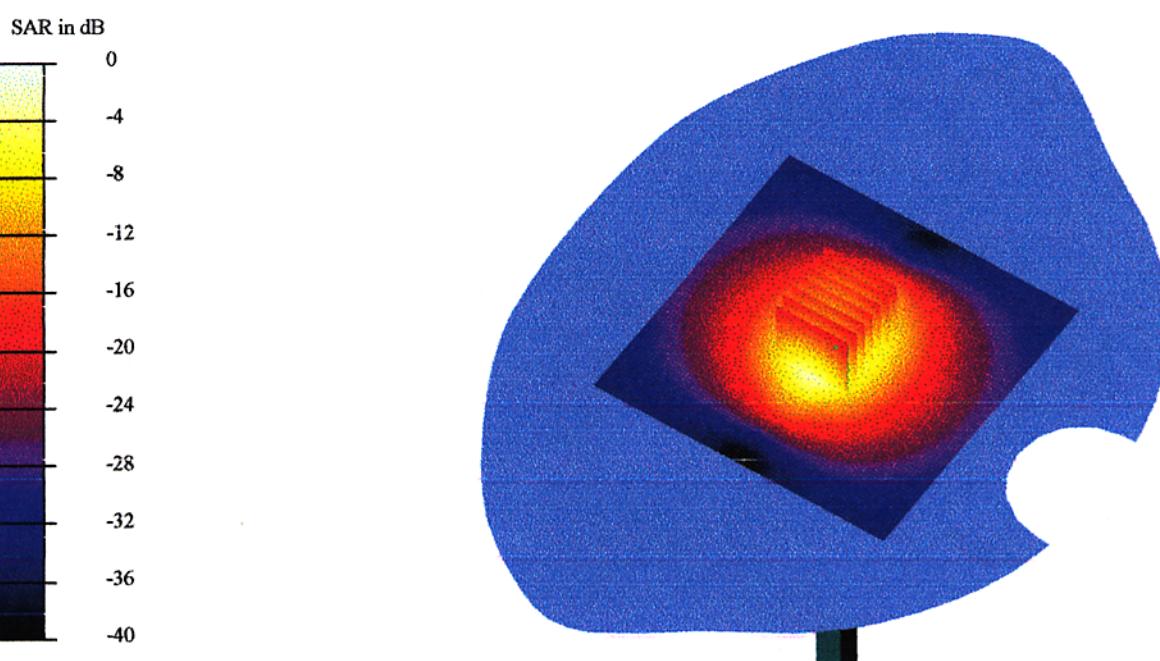
DUT: Dipole 2450 MHz Type & Serial Number: D2450V2 - SN713
Program: Dipole Calibration; Pin = 250 mW; d = 10 mm

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1
Medium: Muscle 2450 MHz ($\sigma = 1.96 \text{ mho/m}$, $\epsilon = 51.15$, $\rho = 1000 \text{ kg/m}^3$)
Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.5, 4.5, 4.5); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 - TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 95.2 V/m

Peak SAR = 25 mW/g

SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.99 mW/g

Power Drift = 0.02 dB

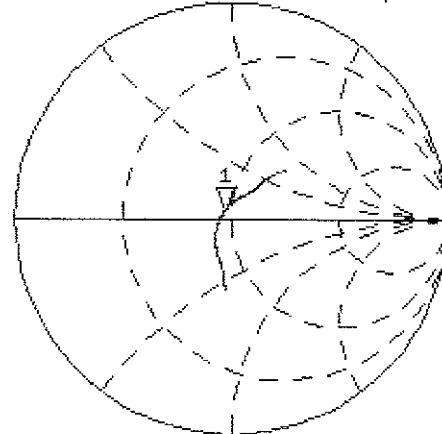
14 Nov 2002 21:43:06

CH1 S11 1 U FS

1: 46.896 Ω 3.6496 Ω 236.50 pH

2 450.000 000 MHz

Page 46

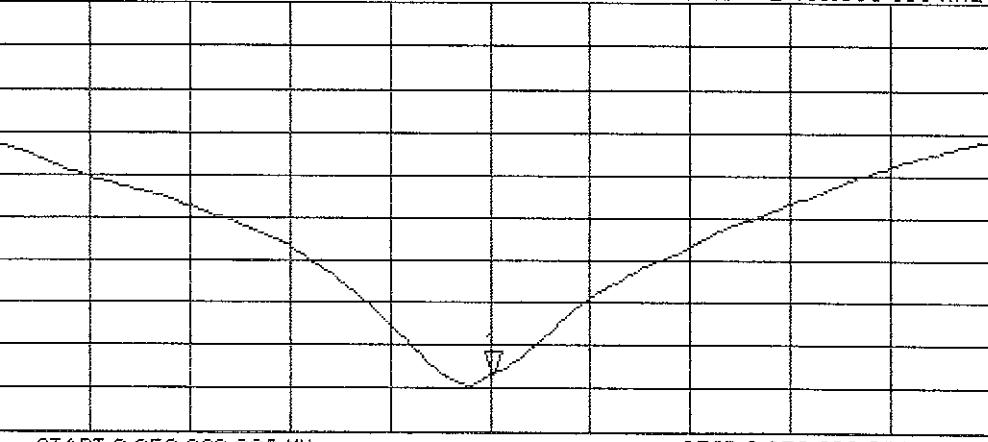

↑

Del

PRm

Cor
Avg
16

↑



CH2 S11 LOG 3 dB/REF 0 dB

1:-26.107 dB 2 450.000 000 MHz

PRm
Cor

↑

START 2 250.000 000 MHz

STOP 2 650.000 000 MHz