

	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

RF EXPOSURE EVALUATION

SPECIFIC ABSORPTION RATE

SAR TEST REPORT

FOR

FUJITSU TRANSACTION SOLUTIONS, INC.

**PORTABLE WIRELESS TRANSACTION TERMINAL
WITH
802.11b/g WLAN & BLUETOOTH**

Model Number	iPAD100-20
--------------	------------

FCC ID: QL9-IPAD100-20
(OET BULLETIN 65 SUPPLEMENT C)

IC: 4432A-IPAD20
(RSS-102 ISSUE 2)

Test Report Serial No.

071306QL9-T763-S15W

Test Report Revision(s)

Revision 1.0	Initial Release
Revision 1.1	Model Number
Revision 1.2	FCC & IC ID's
Revision 1.3	Response to TCB #3

Test Lab

**Celltech Compliance Testing & Engineering Lab
(Celltech Labs Inc.)
1955 Moss Court
Kelowna, BC
Canada
V1Y 9L3**

Test Report Prepared By: Cheri Frangiadakis Test Report Writer Celltech Labs Inc.	Test Report Reviewed By: Jonathan Hughes General Manager Celltech Labs Inc.
--	--

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20			Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth				
2006 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 1 of 34				

Test Report Serial No.:	071306QL9-T763-S15W		Test Report Issue Date:	August 03, 2006	
Date(s) of Evaluation:	July 17-18, 2006		Test Report Revision No.:	Revision 1.3	
Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

TABLE OF CONTENTS

1.0 INTRODUCTION	4
2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)	4
3.0 SAR MEASUREMENT SYSTEM	5
4.0 MEASUREMENT SUMMARY	6
5.0 DETAILS OF SAR EVALUATION	7
6.0 EVALUATION PROCEDURES	7
7.0 SYSTEM PERFORMANCE CHECK	8
8.0 SIMULATED EQUIVALENT TISSUES	9
9.0 SAR SAFETY LIMITS	9
10.0 ROBOT SYSTEM SPECIFICATIONS	10
11.0 PROBE SPECIFICATION (EX3DV4)	11
12.0 PLANAR PHANTOM	11
13.0 DEVICE HOLDER	11
14.0 TEST EQUIPMENT LIST	12
15.0 MEASUREMENT UNCERTAINTIES	13
MEASUREMENT UNCERTAINTIES (Cont.)	14
16.0 REFERENCES	15
APPENDIX A - SAR MEASUREMENT DATA	16
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	20
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	23
APPENDIX D - SAR TEST SETUP PHOTOGRAPHS	26
APPENDIX E - SYSTEM VALIDATION	32
APPENDIX F - PROBE CALIBRATION	33
APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY	34

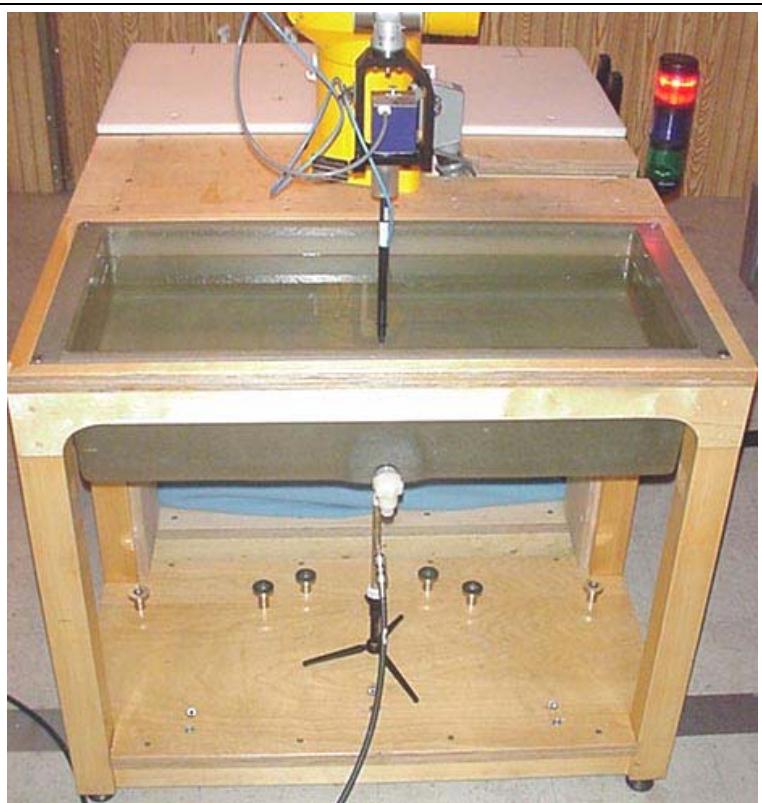
Test Report Serial No.:	071306QL9-T763-S15W		Test Report Issue Date:	August 03, 2006	
Date(s) of Evaluation:	July 17-18, 2006		Test Report Revision No.:	Revision 1.3	
Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

1.0 INTRODUCTION

This measurement report demonstrates that the FUJITSU TRANSACTION SOLUTIONS, INC. Model: iPAD100-20 Portable Wireless Transaction Terminal with internal 802.11b/g WLAN & Bluetooth FCC ID: QL9-IPAD100-20 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) for the General Population / Uncontrolled Exposure environment and Health Canada Safety Code 6 (see reference [2]). The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)

Test Requirement(s)	FCC Rule Part 47 CFR §2.1093							
	Health Canada Safety Code 6							
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (01-01)							
	Industry Canada RSS-102 Issue 2							
FCC Device Classification	Digital Transmission System (DTS)			15C				
IC Device Classification	Low Power License-Exempt Radiocommunication Device: Category 1 Equipment				RSS-210 Issue 6			
Device Description	Portable Wireless Transaction Terminal							
Internal Transmitter(s)	802.11b/g WLAN		Bluetooth					
Co-Transmit Operation	802.11b WLAN and Bluetooth transmitters can transmit simultaneously							
RF Exposure Category	General Population / Uncontrolled Exposure							
FCC IDENTIFIER	QL9-IPAD100-20							
IC IDENTIFIER	4432A-IPAD20							
Model Number	iPAD100-20							
Test Sample Serial No.	CA06178-A510			Production Unit				
Mode(s) of Operation	802.11b	DSSS		Direct Sequence Spread Spectrum				
	802.11g	OFDM		Orthogonal Frequency Division Multiplexing				
	Bluetooth	FHSS		Frequency Hopping Spread Spectrum				
Transmit Frequency Range(s)	2412 - 2462 MHz			802.11b/g				
	2402 - 2480 MHz			Bluetooth				
Max. RF Peak Conducted Output Power Measured	Transmitter	Frequency	Channel	Data Rate	Peak Conducted Power			
	802.11b WLAN	2412 MHz	1	1	89.1 mW 19.5 dBm			
	802.11b WLAN	2437 MHz	6	1	89.1 mW 19.5 dBm			
	802.11b WLAN	2462 MHz	11	1	87.1 mW 19.4 dBm			
	802.11b WLAN	2437 MHz	6	2	74.1 mW 18.7 dBm			
	802.11b WLAN	2437 MHz	6	5.5	60.3 mW 17.8 dBm			
	802.11b WLAN	2437 MHz	6	11	55.0 mW 17.4 dBm			
	802.11g WLAN	2437 MHz	6	6	77.6 mW 18.9 dBm			
	Bluetooth	2441 MHz	41	--	1.91 mW 2.81 dBm			
Battery Type(s) Tested	Lithium-ion		3.7 V	1700 mAh	P/N: CA50601-1000			
Antenna Type(s) Tested	Internal WLAN			Internal Bluetooth				
Body-Worn Accessories Tested	Plastic Swivel Belt-Clip with Metal Spring			P/N: R5566FTXS				
Audio Accessories Tested	Generic Ear-Microphone			P/N: n/a				


Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20			DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth			

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System & planar phantom

DASY4 SAR Measurement System with planar phantom and validation dipole

	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3	
Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

5.0 DETAILS OF SAR EVALUATION

The FUJITSU TRANSACTION SOLUTIONS, INC. Model: iPAD100-20 Portable Wireless Transaction Terminal with internal 802.11b/g WLAN & Bluetooth FCC ID: QL9-IPAD100-20 was compliant for localized Specific Absorption Rate based on the test provisions and conditions described below. Detailed test setup photographs are shown in Appendix D.

Test Configuration(s)

1. The DUT was tested for body-worn SAR with the back side placed parallel to the outer surface of the planar phantom. The belt-clip accessory was touching the planar phantom and provided a 2.4 cm spacing with the belt-clip bracket providing a 0.5 cm spacing for a total spacing of 2.9 cm from the back side bottom end of the DUT to the outer surface of the phantom. The back side top end of the DUT (antenna end) was touching the planar phantom with a 4.0 cm distance from the internal WLAN antenna to the planar phantom and a 1.8 cm distance from the internal Bluetooth antenna to the planar phantom.
2. The generic ear-microphone accessory was connected to the audio jack of the DUT for the duration of the tests.

Test Modes & Power Settings

3. The peak conducted power levels were measured prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
4. The DUT was put into test mode using internal test software provided by the manufacturer and tested at maximum power in modulated DSSS continuous transmit mode with 100% duty cycle. For the simultaneous co-transmit SAR evaluation, the Bluetooth transmitter was put in continuous transmit mode at maximum power with a modulated signal on a fixed frequency (frequency hopping disabled).

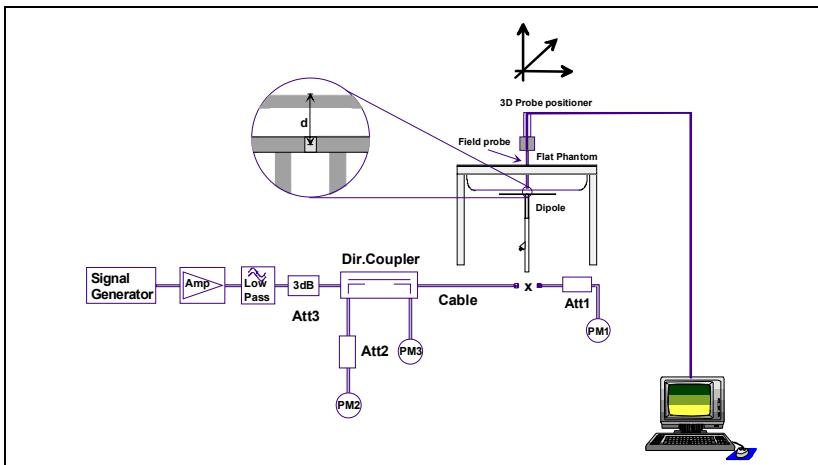
6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
(ii) For body-worn and face-held devices a planar phantom was used.

- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.


A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed using a planar phantom with a 2450MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B). See Table 1 below for the SAR system manufacturer's reference body SAR values from the DASY4 Operation Manual (see reference [6]).

Figure 1. System Performance Check Measurement Setup

Dipole Type	Distance [mm]	Frequency [MHz]	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Table 1. SAR system manufacturer's reference body SAR values

2450MHz Dipole Setup

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications	
Positioner:	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability:	0.02 mm
No. of axis:	6
Data Acquisition Electronic (DAE) System	
Cell Controller	
Processor:	AMD Athlon XP 2400+
Clock Speed:	2.0 GHz
Operating System:	Windows XP Professional
Data Converter	
Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
Software:	DASY4 software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock
DASY4 Measurement Server	
Function:	Real-time data evaluation for field measurements and surface detection
Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model:	EX3DV4
Serial No.:	3547
Construction:	Symmetrical design with triangular core
Frequency:	10 MHz to 6 GHz
Linearity:	±0.2 dB (30 MHz to 3 GHz)
Phantom(s)	
Type:	Planar Phantom
Shell Material:	Fiberglass
Thickness:	2.0 ±0.1 mm
Volume:	Approx. 70 liters

11.0 PROBE SPECIFICATION (EX3DV4)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. DGBE)
Calibration:	Basic Broadband Calibration in air: 10-3000 MHz
Frequency:	Conversion Factors (CF) for HSL 900 and HSL 1750
Directivity:	10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range:	10 μ W/g to >100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions:	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm)
Application:	Typical distance from probe tip to dipole centers: 1.0 mm High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better than 30%.

EX3DV4 E-Field Probe

12.0 PLANAR PHANTOM

The planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table (see Appendix G for dimensions and specifications of the planar phantom). The planar phantom was also utilized for the system performance check evaluation.

Planar Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

 Celltech <small>Testing and Engineering Services Ltd.</small>	Test Report Serial No.:	071306QL9-T763-S15W		Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006		Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT		ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE DATE
USED	DESCRIPTION				
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	N/A	N/A
x	-Robot	00046	599396-01	N/A	N/A
	-DAE4	00019	353	21Jun06	21Jun07
x	-DAE3	00018	370	08Feb06	08Feb07
	-ET3DV6 E-Field Probe	00016	1387	16Mar06	16Mar07
x	-EX3DV4 E-Field Probe	00125	3547	14Feb06	14Feb07
	-300MHz Validation Dipole	00023	135	25Oct05	25Oct06
	-450MHz Validation Dipole	00024	136	25Oct05	25Oct06
	-835MHz Validation Dipole	00022	411	Brain	28Mar06
				Body	27Mar06
	-900MHz Validation Dipole	00020	054	Brain	06Jun06
				Body	06Jun06
	-1800MHz Validation Dipole	00021	247	Brain	08Jun06
				Body	09Jun06
	-1900MHz Validation Dipole	00032	151	Brain	09Jun06
				Body	12Jun06
	-2450MHz Validation Dipole	00025	150	Brain	20Sep05
x				Body	24Apr06
	-5800MHz Validation Dipole	00126	1031	Brain	15Mar06
	-SAM Phantom V4.0C	00154	1033	N/A	N/A
x	-Barski Planar Phantom	00155	03-01	N/A	N/A
	-Plexiglas Side Planar Phantom	00156	161	N/A	N/A
	-Plexiglas Validation Planar Phantom	00157	137	N/A	N/A
x	ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
	Gigatronics 8652A Power Meter	00110	1835801	12Apr06	12Apr07
x	Gigatronics 8652A Power Meter	00007	1835272	03Feb06	03Feb07
	Gigatronics 80701A Power Sensor	00011	1833542	03Feb06	03Feb07
	Gigatronics 80701A Power Sensor	00012	1834350	12Sep05	12Sep06
x	Gigatronics 80701A Power Sensor	00013	1833713	03Feb06	03Feb07
x	Gigatronics 80701A Power Sensor	00014	1833699	07Sep05	07Sep06
x	HP 8753ET Network Analyzer	00134	US39170292	18Apr06	18Apr07
x	HP 8648D Signal Generator	00005	3847A00611	N/A	N/A
	Rohde & Schwarz SMR40 Signal Generator	00006	100104	06Apr06	06Apr07
x	Amplifier Research 5S1G4 Power Amplifier	00106	26235	N/A	N/A
	HP E4408B Spectrum Analyzer	00015	US39240170	02Feb06	02Feb07

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20			DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth			
2006 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 12 of 34				

15.0 MEASUREMENT UNCERTAINTIES

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V_i or V_{eff}
Measurement System						
Probe calibration	5.9	Normal	1	1	5.9	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	2.5	Normal	1	0.64	1.6	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	2.5	Normal	1	0.6	1.5	∞
Combined Standard Uncertainty					9.04	
Expanded Uncertainty (k=2)					18.08	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	Fujitsu Transaction Solutions, Inc.		FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20		DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth			
2006 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 14 of 34

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3	
Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] Schmid & Partner Engineering AG, "DASY4 Manual", V4.5: March 2005.
- [7] FCC TCB Council Workshop, "RF Exposure (RFx) Mobile and Portable Device Review and Approval Procedures, 802.11abg SAR Procedures (Proposed Testing Guidance)": October 2005.

Company:	Fujitsu Transaction Solutions, Inc.		FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20		DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth			
2006 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 15 of 34	

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

Date Tested: 07/18/2006

Body SAR - 802.11b - 1Mbps - Back Side of DUT - 2437 MHz

DUT: Fujitsu iPAD100-20; Type: Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth; Serial: CA06178-A510

Body-Worn Accessory: Plastic Swivel Belt-Clip with Metal Spring; Audio Accessory: Generic Ear-Microphone

Ambient Temp: 24.5 °C; Fluid Temp: 24.1 °C; Barometric Pressure: 101.1 kPa; Humidity: 31%

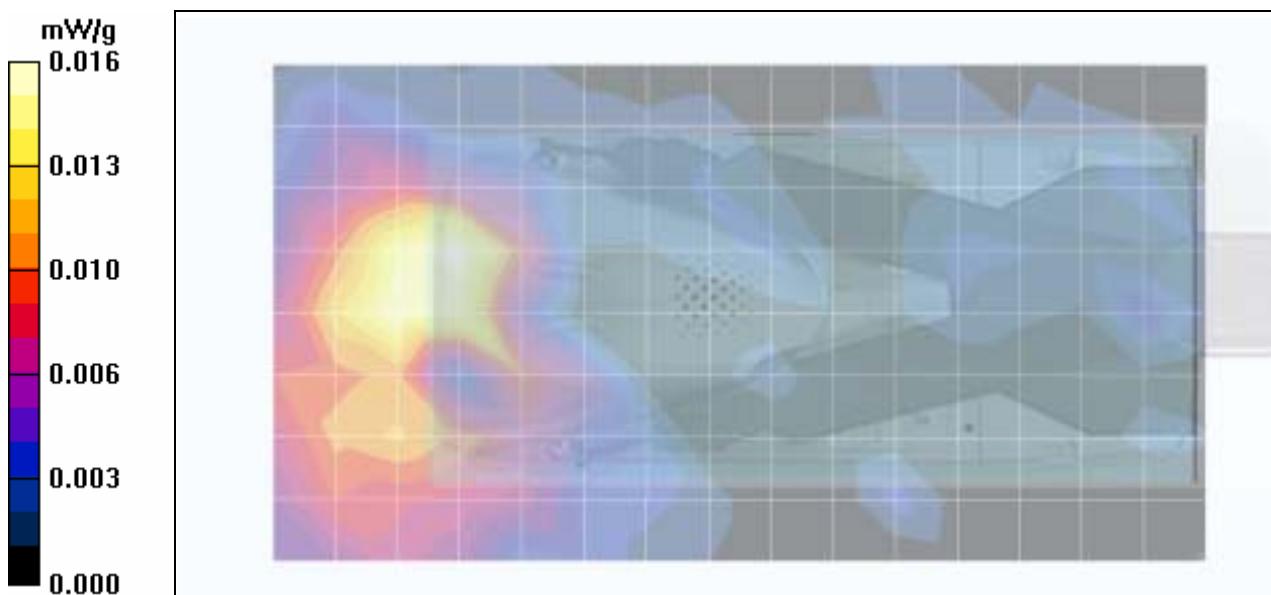
Communication System: DSSS WLAN

RF Output Power: 19.5 dBm (Peak Conducted)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:1

3.7V 1700mAh Li-ion Battery Pack (P/N: CA50601-1000)

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$)


- Probe: EX3DV4 - SN3547; ConvF(7.53, 7.53, 7.53); Calibrated: 14/02/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 08/02/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - 802.11b - 1 Mbps - 4.0 cm WLAN Antenna Distance to Planar Phantom - Mid Channel (2437 MHz)

Top End of DUT (Antenna end) Touching Planar Phantom (2.9 cm Belt-Clip Spacing at Bottom End)

Area Scan (9x16x1): Measurement grid: dx=15mm, dy=15mm

Maximum Peak Value of SAR (measured) = 0.016 mW/g

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

Date Tested: 07/18/2006

**Body SAR - 802.11b - 1Mbps - Back Side of DUT - 2437 MHz
Simultaneous Transmit with Co-located Bluetooth**

DUT: Fujitsu iPAD100-20; Type: Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth; Serial: CA06178-A510

Body-Worn Accessory: Plastic Swivel Belt-Clip with Metal Spring; Audio Accessory: Generic Ear-Microphone

Ambient Temp: 24.5 °C; Fluid Temp: 24.1 °C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: DSSS WLAN

RF Output Power: 19.5 dBm (Peak Conducted)

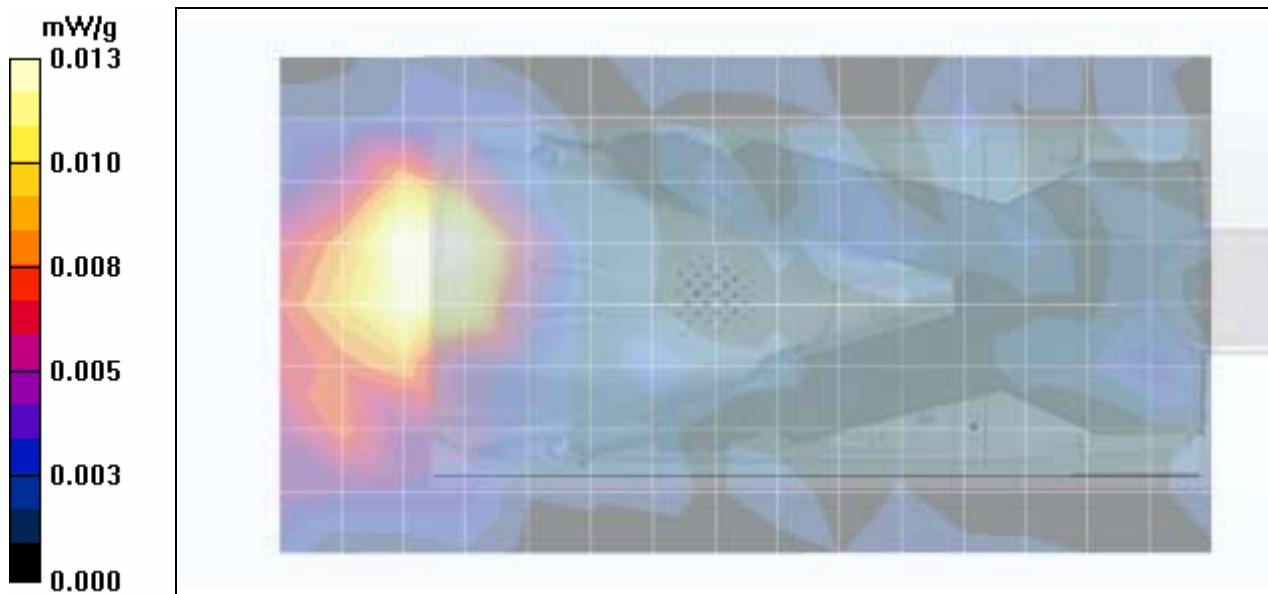
Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:1

3.7V 1700mAh Li-ion Battery Pack (P/N: CA50601-1000)

Frequency: 2441 MHz; Channel 41; Duty Cycle: 1:1 (Bluetooth)

RF Output Power: 2.81 dBm - Peak Conducted (Bluetooth)

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$)


- Probe: EX3DV4 - SN3547; ConvF(7.53, 7.53, 7.53); Calibrated: 14/02/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 08/02/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - 802.11b & Bluetooth - 4.0 cm WLAN & 1.8 cm Bluetooth Antenna Distance to Planar Phantom - Mid Channel (2437 MHz)

Top End of DUT (Antenna end) Touching Planar Phantom (2.9 cm Belt-Clip Spacing at Bottom End)

Area Scan (9x16x1): Measurement grid: dx=15mm, dy=15mm


Maximum Peak Value of SAR (measured) = 0.013 mW/g

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Fluid Depth (≥ 15 cm)

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

Date Tested: 07/17/2006

System Performance Check (Body) - 2450 MHz Dipole

DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150; Validation: 04/24/2006

Ambient Temp: 24.3 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 101.1 kPa; Humidity: 32%

Communication System: CW

Forward Conducted Power: 250 mW

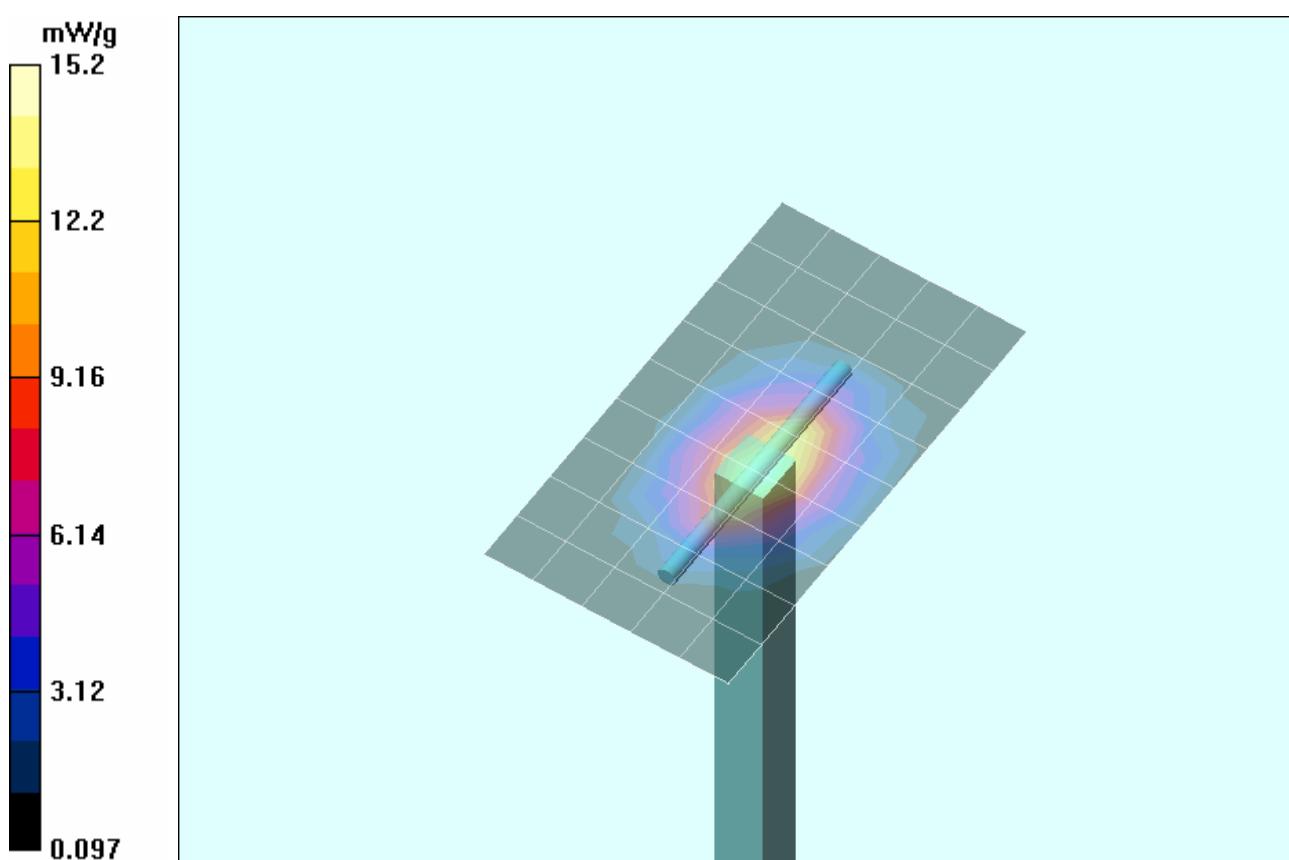
Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 ($\sigma = 1.99 \text{ mho/m}$; $\epsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: EX3DV4 - SN3547; ConvF(7.53, 7.53, 7.53); Calibrated: 14/02/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 08/02/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):

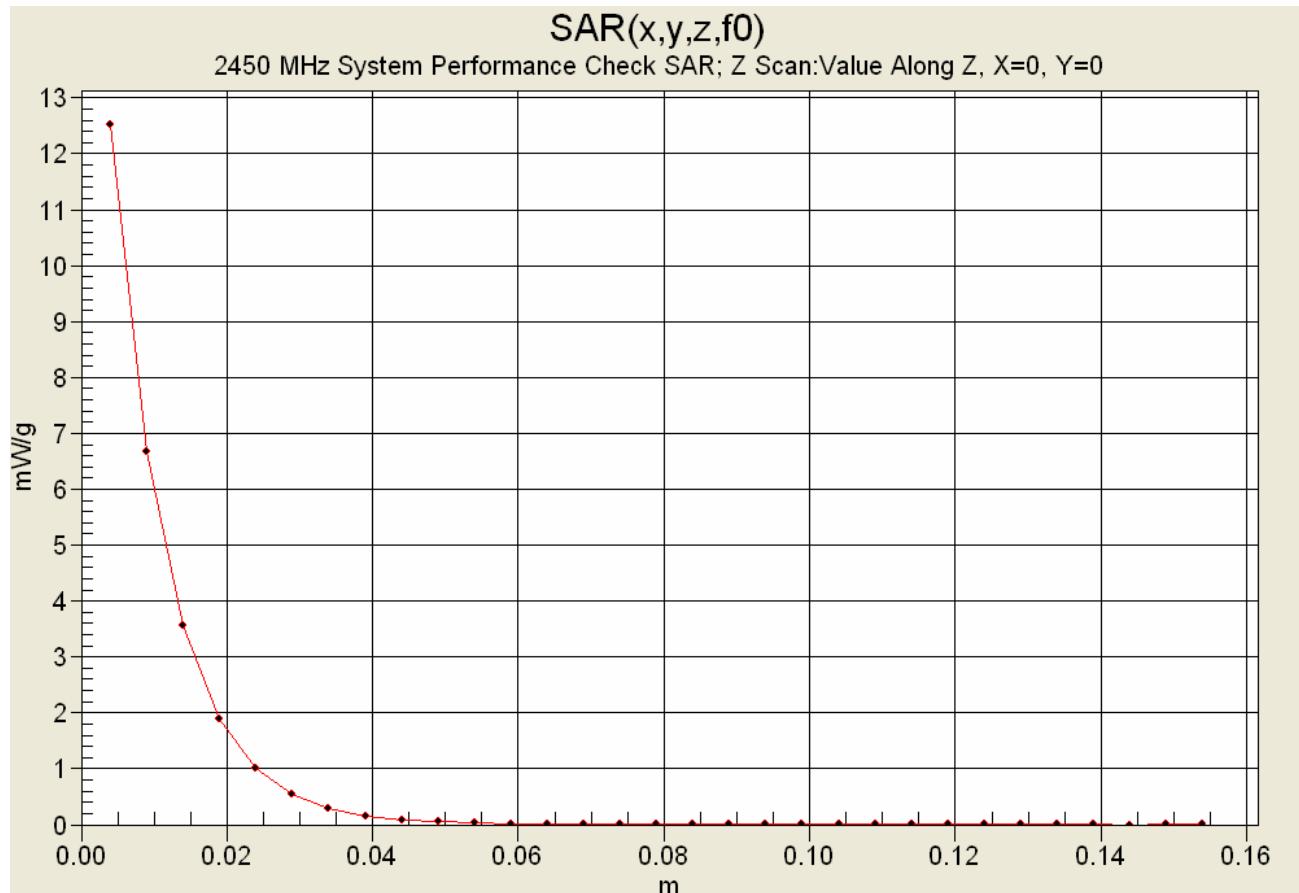
Measurement grid: dx=10mm, dy=10mm


2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.8 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 28.3 W/kg


SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6 mW/g

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.

Z-Axis Scan

 Testing and Engineering Services Lab	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

2450 MHz System Performance Check (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 17/Jul/2006

Frequency (GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
 FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.3500	52.83	1.85	50.67	1.87
2.3600	52.82	1.86	50.61	1.89
2.3700	52.81	1.87	50.58	1.90
2.3800	52.79	1.88	50.58	1.91
2.3900	52.78	1.89	50.35	1.92
2.4000	52.77	1.90	50.55	1.93
2.4100	52.75	1.91	50.30	1.93
2.4200	52.74	1.92	50.34	1.96
2.4300	52.73	1.93	50.31	1.97
2.4400	52.71	1.94	50.28	1.99
2.4500	52.70	1.95	50.20	1.99
2.4600	52.69	1.96	50.17	2.00
2.4700	52.67	1.98	50.26	2.01
2.4800	52.66	1.99	49.94	2.02
2.4900	52.65	2.01	50.05	2.06
2.5000	52.64	2.02	50.05	2.07
2.5100	52.62	2.04	49.96	2.08
2.5200	52.61	2.05	49.89	2.08
2.5300	52.60	2.06	49.98	2.10
2.5400	52.59	2.08	49.80	2.10
2.5500	52.57	2.09	49.75	2.12

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

 Celltech <small>Testing and Engineering Services Lab</small>	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

2450 MHz DUT Evaluation (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Tue 18/Jul/2006

Frequency (GHz)

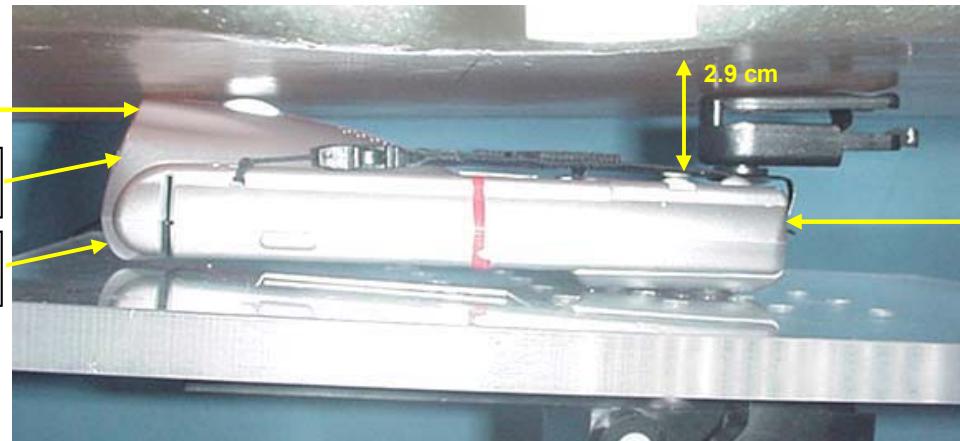
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
 FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM


Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.3500	52.83	1.85	50.47	1.88
2.3600	52.82	1.86	50.44	1.91
2.3700	52.81	1.87	50.38	1.90
2.3800	52.79	1.88	50.33	1.92
2.3900	52.78	1.89	50.39	1.92
2.4000	52.77	1.90	50.39	1.96
2.4100	52.75	1.91	50.40	1.95
2.4200	52.74	1.92	50.35	1.97
2.4300	52.73	1.93	50.30	1.99
2.4400	52.71	1.94	50.30	1.99
2.4500	52.70	1.95	50.18	2.01
2.4600	52.69	1.96	50.37	2.04
2.4700	52.67	1.98	50.22	2.04
2.4800	52.66	1.99	50.08	2.05
2.4900	52.65	2.01	50.23	2.07
2.5000	52.64	2.02	50.13	2.08
2.5100	52.62	2.04	50.04	2.09
2.5200	52.61	2.05	50.04	2.11
2.5300	52.60	2.06	50.02	2.12
2.5400	52.59	2.08	49.98	2.12
2.5500	52.57	2.09	50.01	2.15

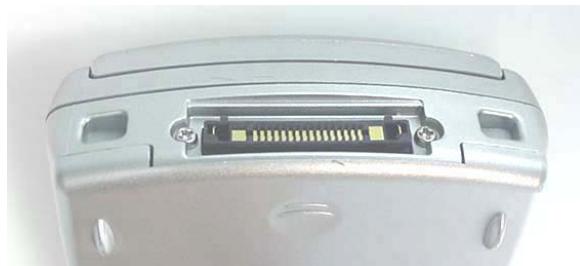
Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

Back-Side Top-End of DUT (Antenna End) Touching Planar Phantom
 4.0 cm WLAN & 1.8 cm Bluetooth Antenna Distance to Planar Phantom
 (DUT with Swivel Belt-Clip and Generic Ear-Microphone Accessories)

Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
Description of Tests:	RF Exposure SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

DUT PHOTOGRAPHS


Back Side of DUT (Belt-Clip Side)

Front Side of DUT

Top End of DUT

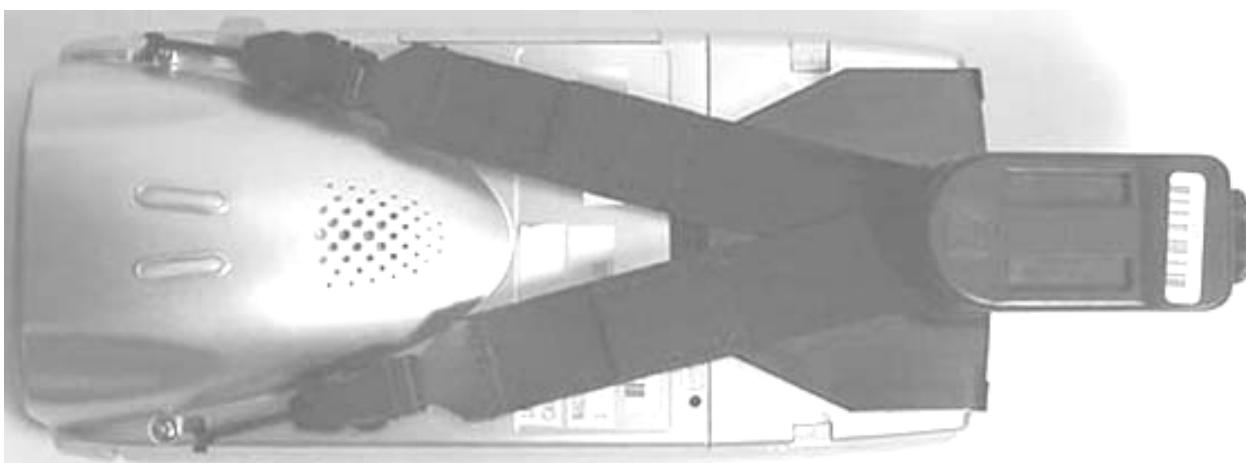
Bottom End of DUT

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

Test Report Serial No.:	071306QL9-T763-S15W		Test Report Issue Date:	August 03, 2006
Date(s) of Evaluation:	July 17-18, 2006		Test Report Revision No.:	Revision 1.3
Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

DUT PHOTOGRAPHS

DUT Battery Compartment



3.7 V 1700 mAh Li-ion Battery Pack

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					

Test Report Serial No.:	071306QL9-T763-S15W		Test Report Issue Date:	August 03, 2006
Date(s) of Evaluation:	July 17-18, 2006		Test Report Revision No.:	Revision 1.3
Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

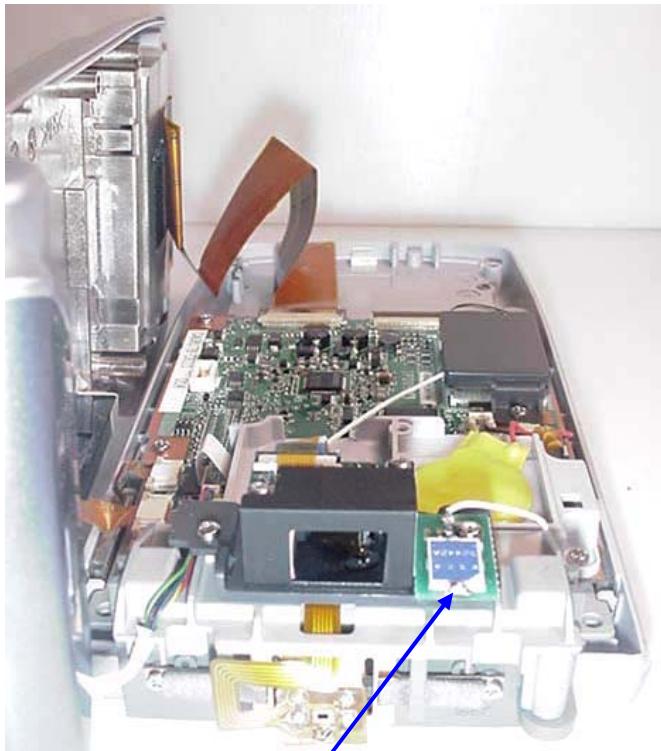
DUT PHOTOGRAPHS

Back Side of DUT with Swivel Belt-Clip accessory (P/N: R5566FTXS)

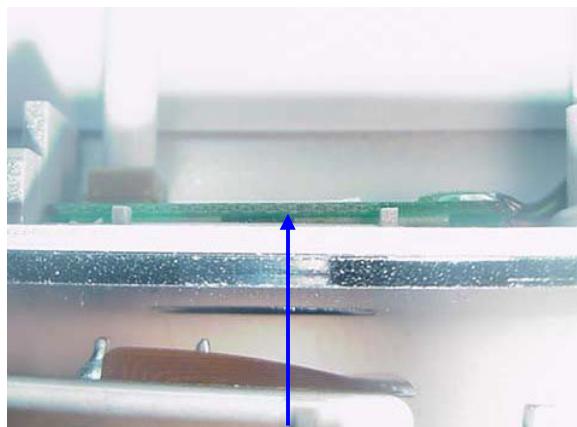
DUT with Swivel Belt-Clip accessory (P/N: R5566FTXS)

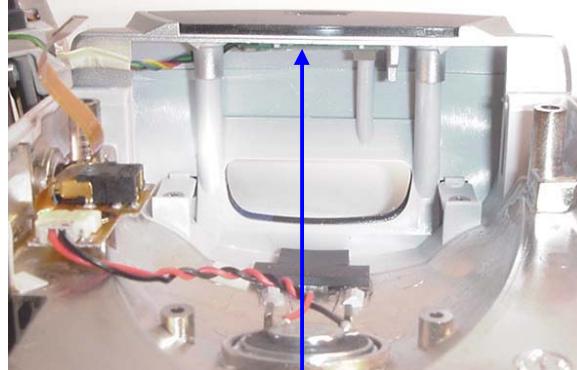
Swivel Belt-Clip accessory (P/N: R5566FTXS)
Plastic with Metal Spring (2.9 cm Spacing)

Company:	Fujitsu Transaction Solutions, Inc.			FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth					


2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.

Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
Description of Tests:	RF Exposure SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2


DUT PHOTOGRAPHS


Back Side of DUT with Belt Clip and Generic Ear-Microphone Accessories

Bluetooth Antenna Location (Top-End of DUT)

WLAN Antenna

WLAN Antenna Location (Front-Side Top-End of DUT)

Company:	Fujitsu Transaction Solutions, Inc.		FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20		
Model(s):	iPAD100-20		DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth				
2006 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 31 of 34				

 <small>Testing and Engineering Services Ltd.</small>	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz Body

2450 MHz SYSTEM VALIDATION DIPOLE

Type:

2450 MHz Validation Dipole

Asset Number:

00025

Serial Number:

150

Place of Validation:

Celltech Labs Inc.

Date of Validation:

April 24, 2006

Celltech Labs Inc. hereby certifies that the 2450 MHz System Validation (Body) was performed on the date indicated above.

Performed by:

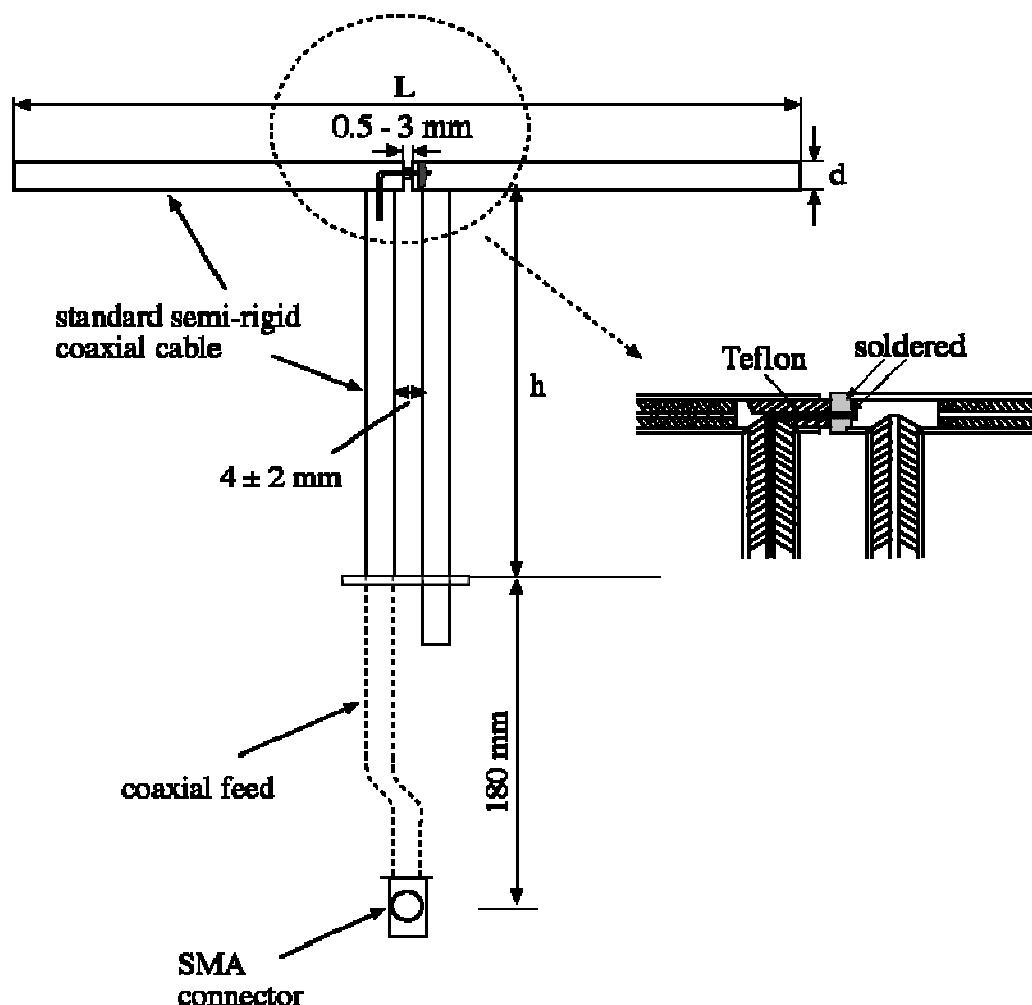
Sean Johnston

Approved by:

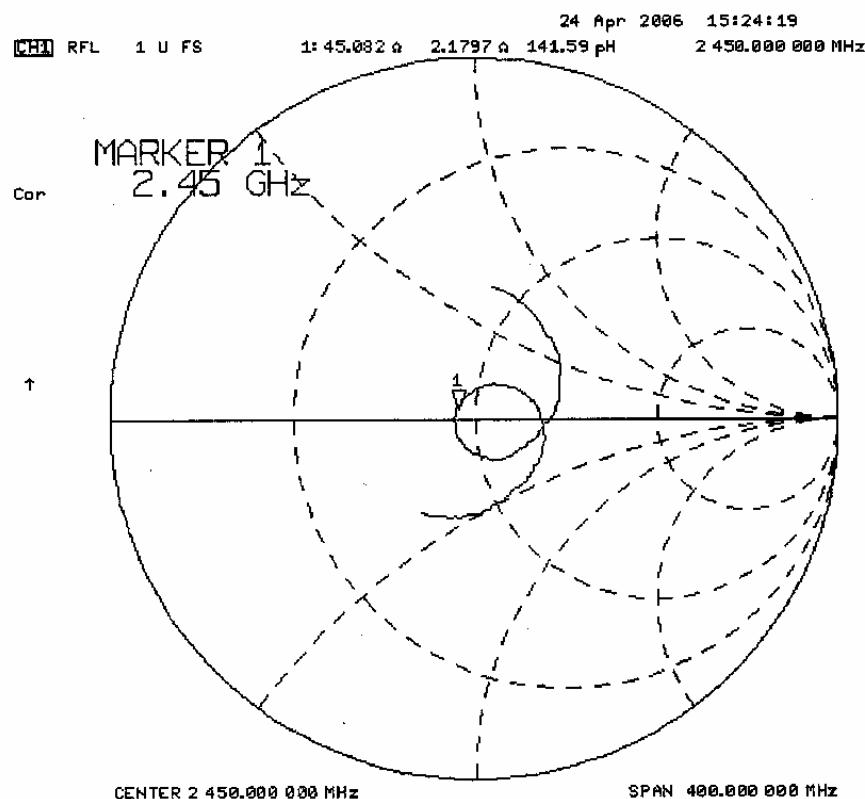
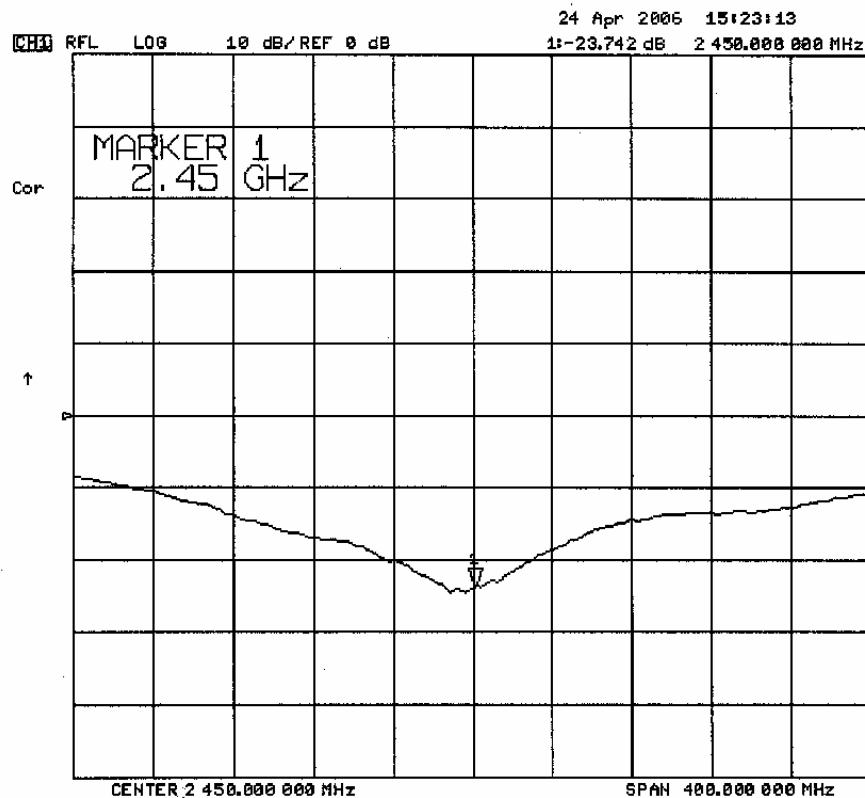
Spencer Watson

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 2450 MHz

$$\text{Re}\{Z\} = 45.082\Omega$$



$$\text{Im}\{Z\} = 2.1797\Omega$$

Return Loss at 2450 MHz

$$-23.742\text{dB}$$

2. Validation Dipole VSWR Data

 Celltech <small>Testing and Engineering Services Ltd.</small>	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: 2.0 ± 0.2 mm
Filling Volume: Approx. 72 liters
Dimensions: L) 94 cm x (W) 44 cm x (H) 22 cm

Celltech Testing and Engineering Services Ltd	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz Body

5. 2450 MHz System Validation Setup

Celltech Testing and Engineering Services Ltd	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz Body

6. 2450 MHz Dipole Setup

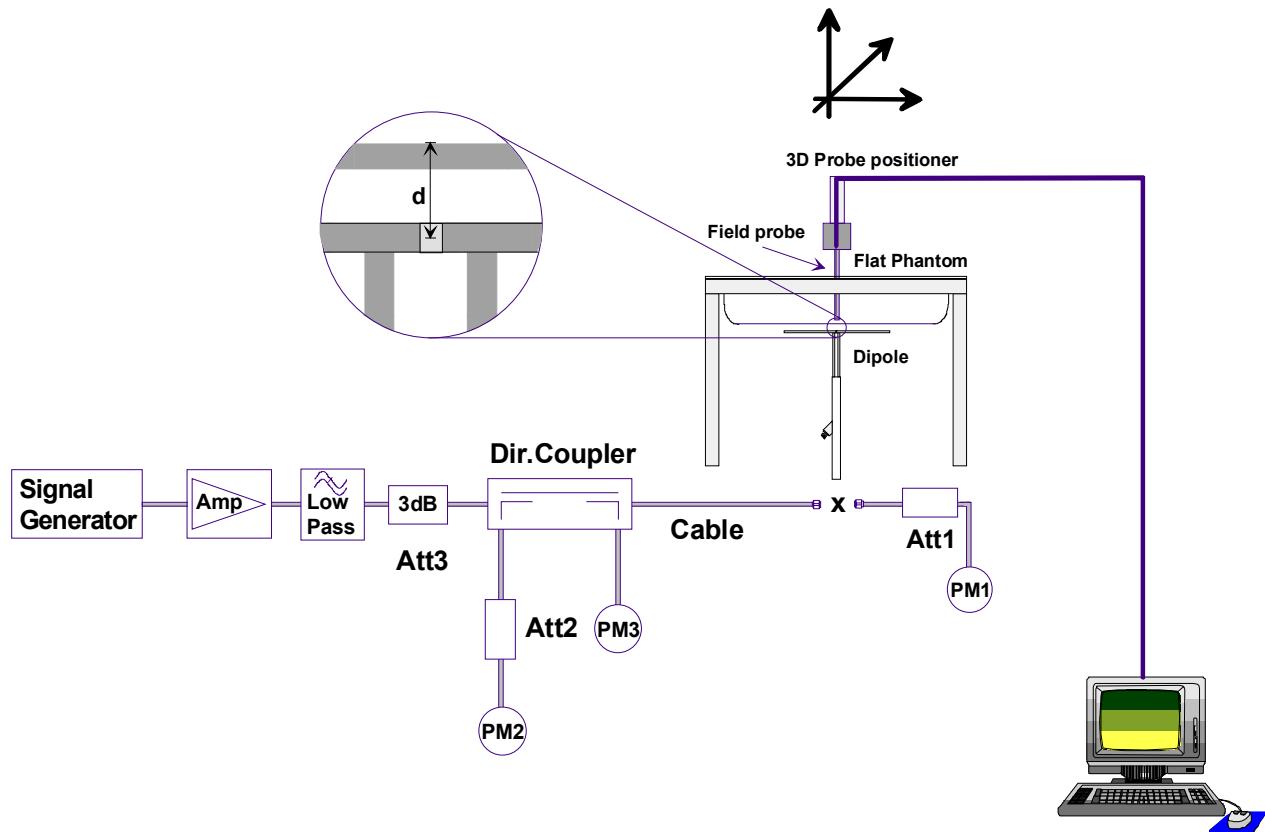
 Testing and Engineering Services Ltd.	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz Body

7. Measurement Conditions

The planar phantom was filled with 2450 MHz Body tissue simulant:

Relative Permittivity: 51.2 (-2.8% deviation from target)
 Conductivity: 1.89 mho/m (-3% deviation from target)
 Fluid Temperature: 23.9 °C
 Fluid Depth: ≥ 15.0 cm

Environmental Conditions:


Ambient Temperature: 24.9 °C
 Humidity: 30 %
 Barometric Pressure: 101.1 kPa

The 2450 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	69.98%
Glycol Monobutyl	30.00%
Salt	0.02%
Target Dielectric Parameters at 22°C	$\epsilon_r = 52.7 (+/-5\%)$ $\sigma = 1.95 \text{ S/m} (+/-5\%)$

8. SAR Measurement

Measurements were made at the planar section of the SAM phantom using a dosimetric E-field probe ET3DV6 (S/N: 1590, conversion factor 4.22). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

 Testing and Engineering Services Ltd.	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	12.7	50.80	5.87	23.48	14.40
Test 2	12.8	51.20	5.88	23.52	14.40
Test 3	12.6	50.40	5.81	23.24	14.10
Test 4	13.1	52.40	6.05	24.20	14.70
Test 5	12.7	50.80	5.84	23.36	14.20
Test 6	12.6	50.40	5.79	23.16	14.10
Test 7	12.9	51.60	6.00	24.00	14.50
Test 8	12.9	51.60	5.99	23.96	14.50
Test 9	13.1	52.40	6.09	24.36	14.80
Test10	13.2	52.80	6.09	24.36	14.90
Average Value	12.86	51.44	5.94	23.76	14.46

The results have been normalized to 1W (forward power) into the dipole.

Target SAR @ 1 Watt Input averaged over 1 gram (W/kg)	Measured SAR @ 1 Watt Input averaged over 1 gram (W/kg)	Deviation from Target (%)	Target SAR @ 1 Watt Input averaged over 10 grams (W/kg)	Measured SAR @ 1 Watt Input averaged over 10 grams (W/kg)	Deviation from Target (%)
51.2	+/- 10%	51.44	+0.47%	23.7	+/- 10%

Dipole Type	Distance [mm]	Frequency [MHz]	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

 Testing and Engineering Services Ltd.	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz Body

2450 MHz Dipole - System Validation (Body) - April 24, 2006

DUT: Dipole 2450 MHz; Model: D2450V2; Serial: 150; Validated: 04/24/2006
 Ambient Temp: 24.9 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 101.1 kPa; Humidity: 30%
 Communication System: CW
 Frequency: 2450 MHz; Duty Cycle: 1:1
 Medium: M2450 ($\sigma = 1.89$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³)
 - Probe: ET3DV6 - SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 20/05/2005
 - Sensor-Surface: 4mm (Mechanical Surface Detection)
 - Electronics: DAE4 Sn353; Calibrated: 15/06/2005
 - Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
 - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

2450 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

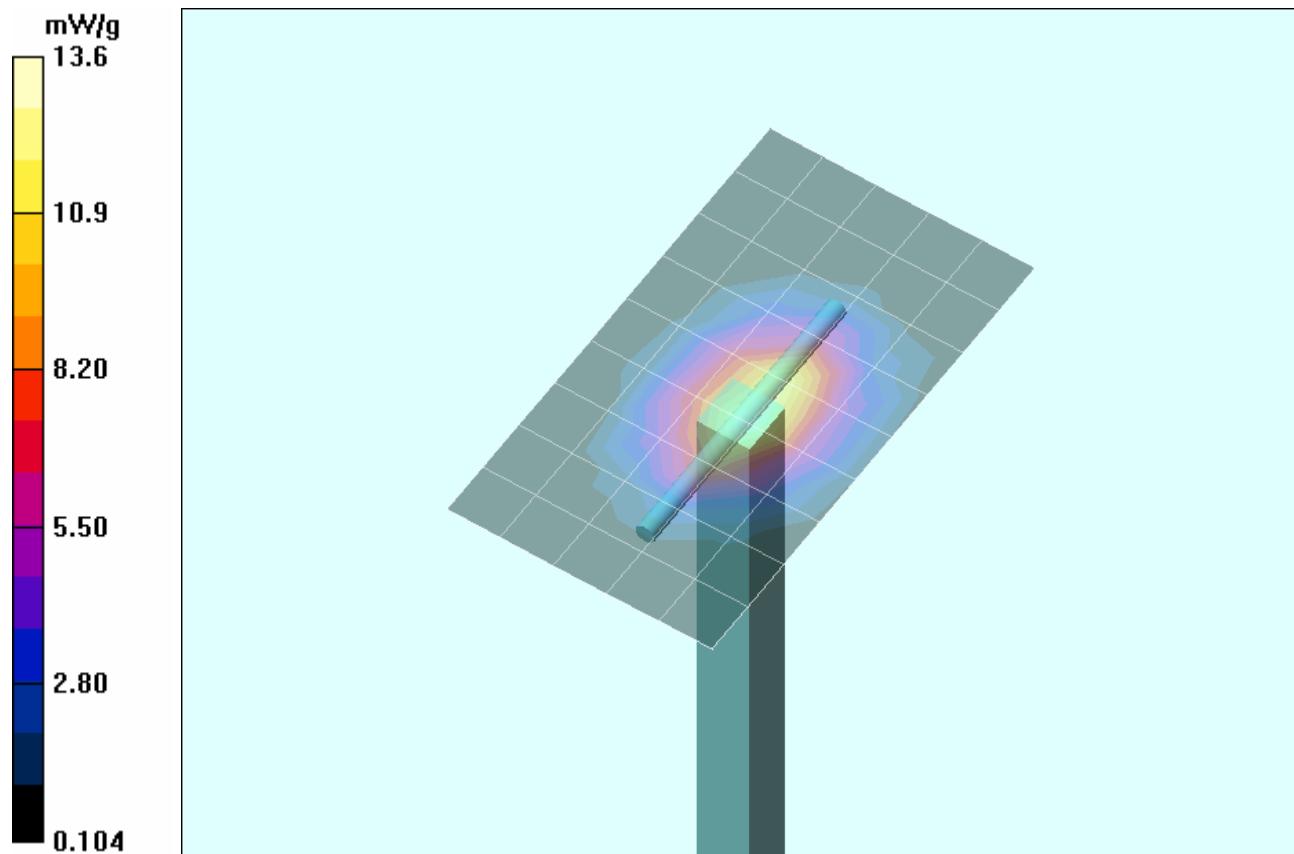
2450 MHz System Validation/Zoom Scan 1 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 84.0 V/m; Power Drift = -0.104 dB
SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.87 mW/g
 Maximum value of SAR (measured) = 14.4 mW/g

2450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 83.9 V/m; Power Drift = -0.070 dB
SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.88 mW/g
 Maximum value of SAR (measured) = 14.4 mW/g

2450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 84.1 V/m; Power Drift = -0.039 dB
SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.81 mW/g
 Maximum value of SAR (measured) = 14.1 mW/g

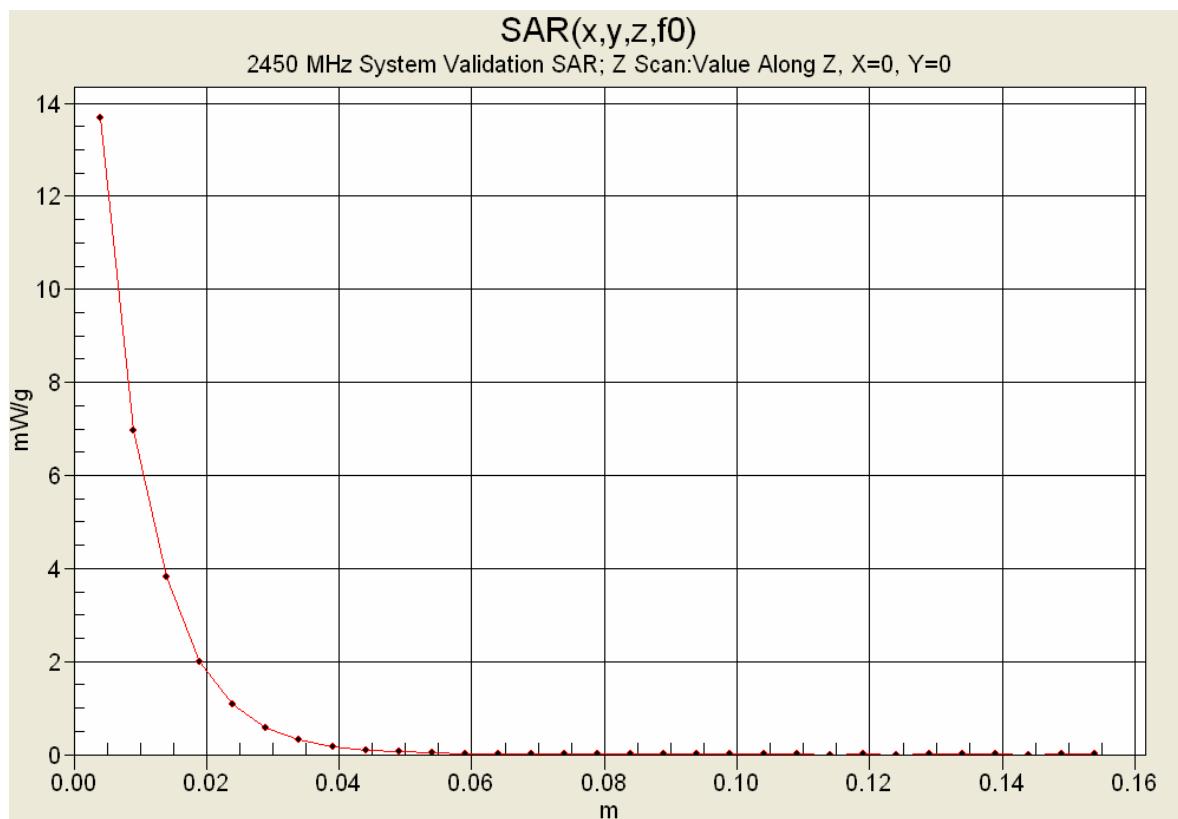
2450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 86.2 V/m; Power Drift = -0.026 dB
SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.05 mW/g
 Maximum value of SAR (measured) = 14.7 mW/g

2450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 83.3 V/m; Power Drift = 0.014 dB
SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.84 mW/g
 Maximum value of SAR (measured) = 14.2 mW/g


2450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 84.5 V/m; Power Drift = -0.037 dB
SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.79 mW/g
 Maximum value of SAR (measured) = 14.1 mW/g

2450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 89.0 V/m; Power Drift = -0.078 dB
SAR(1 g) = 12.9 mW/g; SAR(10 g) = 6 mW/g
 Maximum value of SAR (measured) = 14.5 mW/g

2450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 89.1 V/m; Power Drift = -0.069 dB
SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.99 mW/g
 Maximum value of SAR (measured) = 14.5 mW/g


2450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 89.8 V/m; Power Drift = -0.076 dB
SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.09 mW/g
 Maximum value of SAR (measured) = 14.8 mW/g

2450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 89.8 V/m; Power Drift = -0.013 dB
SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/g
 Maximum value of SAR (measured) = 14.9 mW/g

1 g average of 10 measurements: 12.86 mW/g

10 g average of 10 measurements: 5.94 mW/g

 Testing and Engineering Services Ltd.	Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
	Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

10. Measured Fluid Dielectric Parameters

2450 MHz System Validation (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 24/Apr/2006

Frequency(GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.3500	52.83	1.85	51.24	1.76
2.3600	52.82	1.86	51.30	1.78
2.3700	52.81	1.87	51.30	1.79
2.3800	52.79	1.88	51.28	1.81
2.3900	52.78	1.89	51.28	1.82
2.4000	52.77	1.90	51.22	1.81
2.4100	52.75	1.91	51.26	1.85
2.4200	52.74	1.92	51.13	1.85
2.4300	52.73	1.93	51.03	1.86
2.4400	52.71	1.94	51.10	1.86
2.4500	52.70	1.95	51.17	1.89
2.4600	52.69	1.96	51.07	1.92
2.4700	52.67	1.98	51.03	1.92
2.4800	52.66	1.99	51.04	1.92
2.4900	52.65	2.01	51.04	1.93
2.5000	52.64	2.02	51.04	1.93
2.5100	52.62	2.04	50.96	1.95
2.5200	52.61	2.05	50.94	1.97
2.5300	52.60	2.06	51.02	1.97
2.5400	52.59	2.08	50.97	1.99
2.5500	52.57	2.09	50.85	1.98

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Celltech Labs**

Certificate No: **EX3-3547_Feb06**

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3547
Calibration procedure(s)	QA CAL-01.v5 and QA CAL-14.v3 Calibration procedure for dosimetric E-field probes
Calibration date:	February 14, 2006
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
DAE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	Feb-07

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov 06

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: February 14, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001

Methods Applied and Interpretation of Parameters:

- NORM x,y,z :** Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f) $x,y,z = NORMx,y,z * frequency_response$** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z:** DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM $x,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3547

Manufactured:	July 5, 2004
Last calibrated:	January 21, 2005
Recalibrated:	February 14, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3547

Sensitivity in Free Space^A

NormX	0.399 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	0.423 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	0.475 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	92 mV
DCP Y	92 mV
DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL **900 MHz** **Typical SAR gradient: 5 % per mm**

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	3.5	1.1
SAR _{be} [%] With Correction Algorithm	0.1	0.4

TSL **1810 MHz** **Typical SAR gradient: 10 % per mm**

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	2.5	1.1
SAR _{be} [%] With Correction Algorithm	0.2	0.4

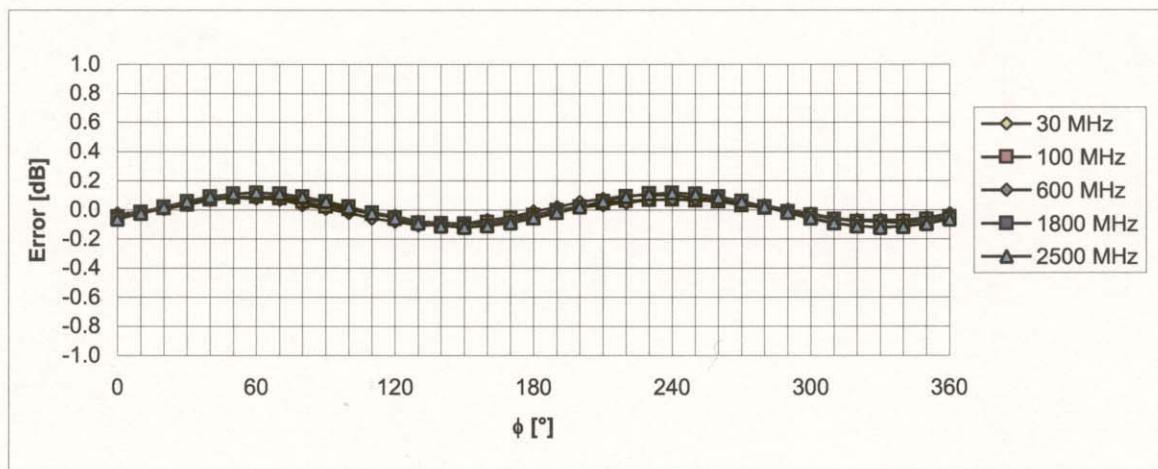
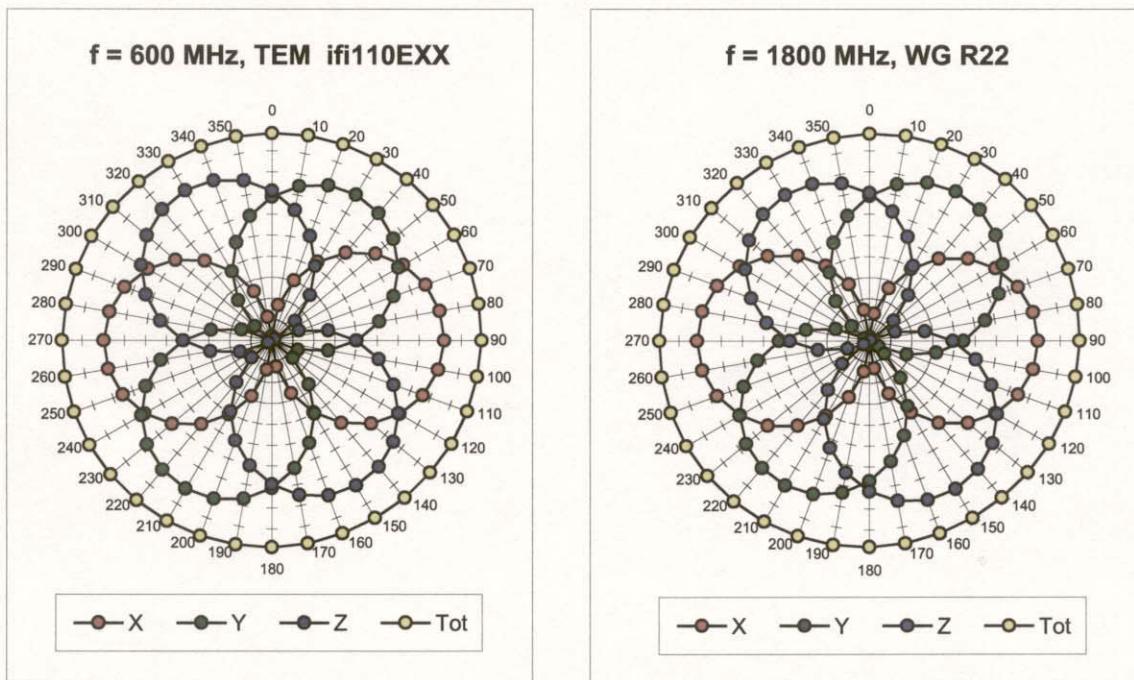
Sensor Offset

Probe Tip to Sensor Center **1.0 mm**


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

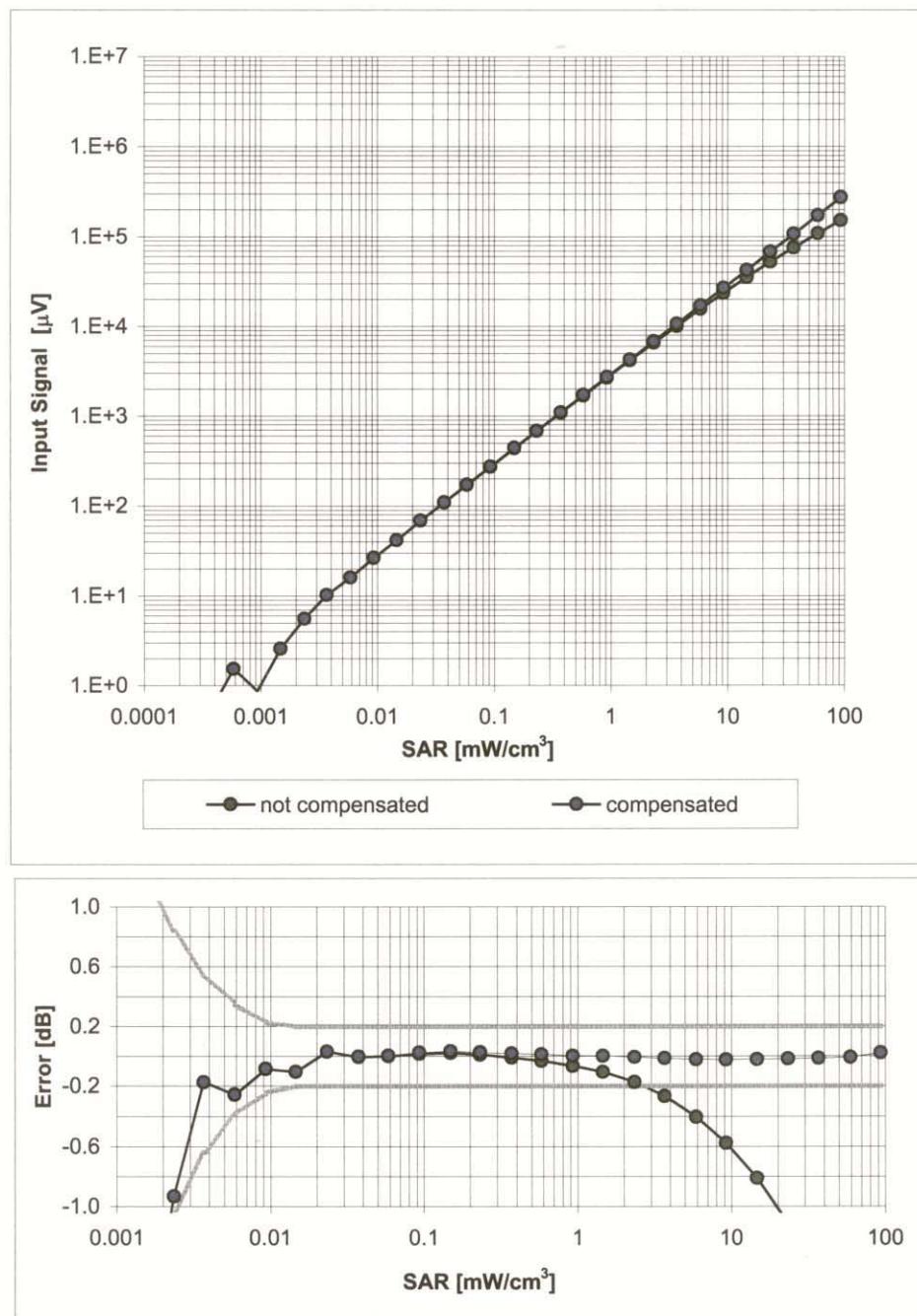
^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

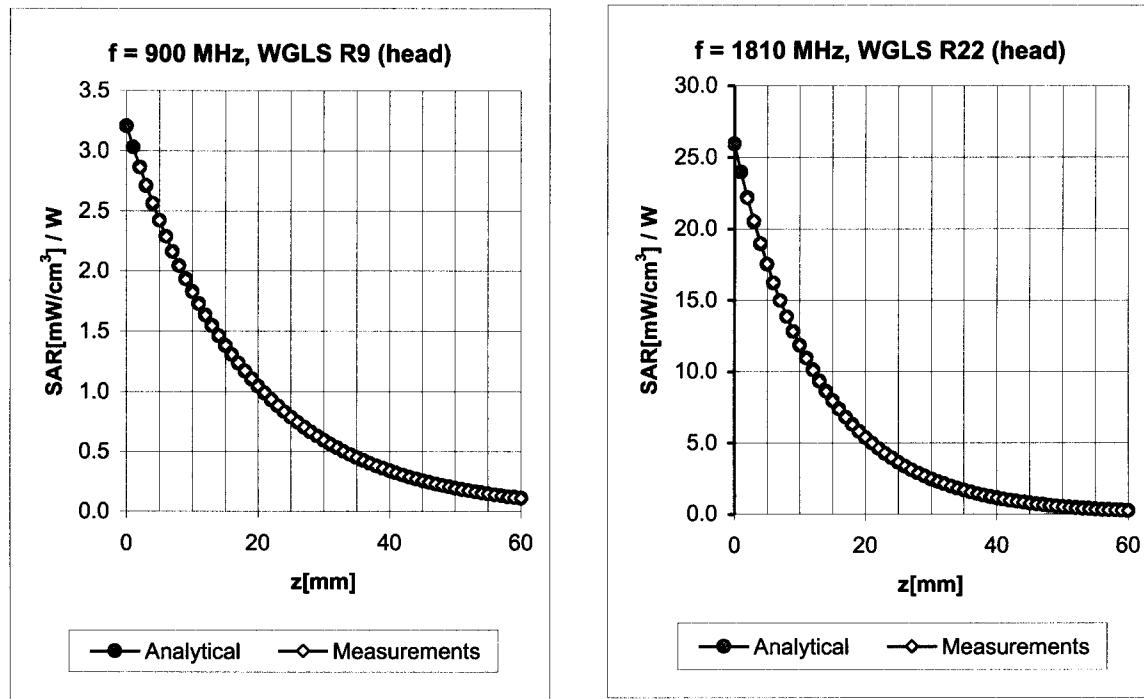


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^\circ$

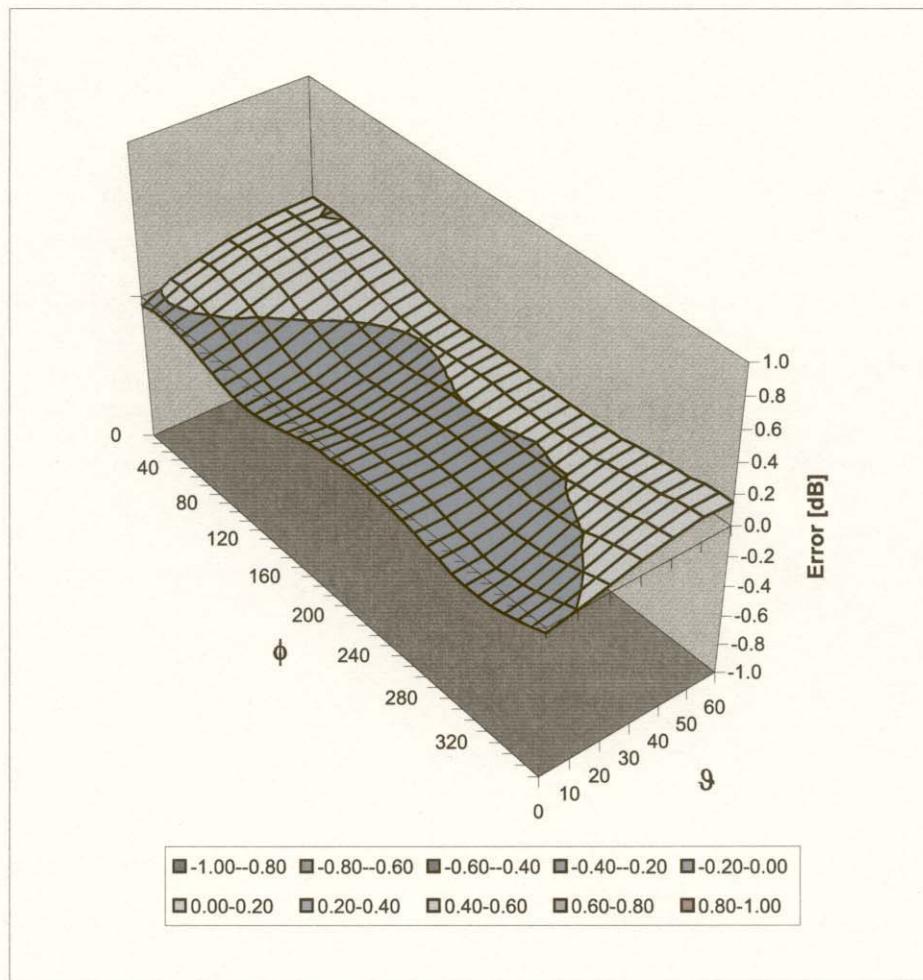
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)


Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.71	0.66	9.20	± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.42	0.73	8.20	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.55	0.56	7.41	± 11.8% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.58	0.93	4.79	± 13.1% (k=2)

900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.79	0.65	9.09	± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.10	4.00	7.84	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.58	0.54	7.53	± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.54	1.09	4.87	± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.57	0.96	4.57	± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.79	0.70	4.69	± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

	Test Report Serial No.:	071306QL9-T763-S15W	Test Report Issue Date:	August 03, 2006
	Date(s) of Evaluation:	July 17-18, 2006	Test Report Revision No.:	Revision 1.3
	Description of Tests:	RF Exposure	SAR	FCC 47 CFR §2.1093

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Company:	Fujitsu Transaction Solutions, Inc.		FCC ID:	QL9-IPAD100-20	IC ID:	4432A-IPAD20	
Model(s):	iPAD100-20	DUT Type:	Portable Wireless Transaction Terminal with 802.11b/g & Bluetooth				
2006 Celtech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celtech Labs Inc.					Page 34 of 34	

2378 Westlake Road
Kelowna, B.C. Canada
V1Z-2V2

Ph. # 250-769-6848
Fax # 250-769-6334
E-mail: barskiind@shaw.ca
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity < 5 Loss Tangent < 0.05

Conformity

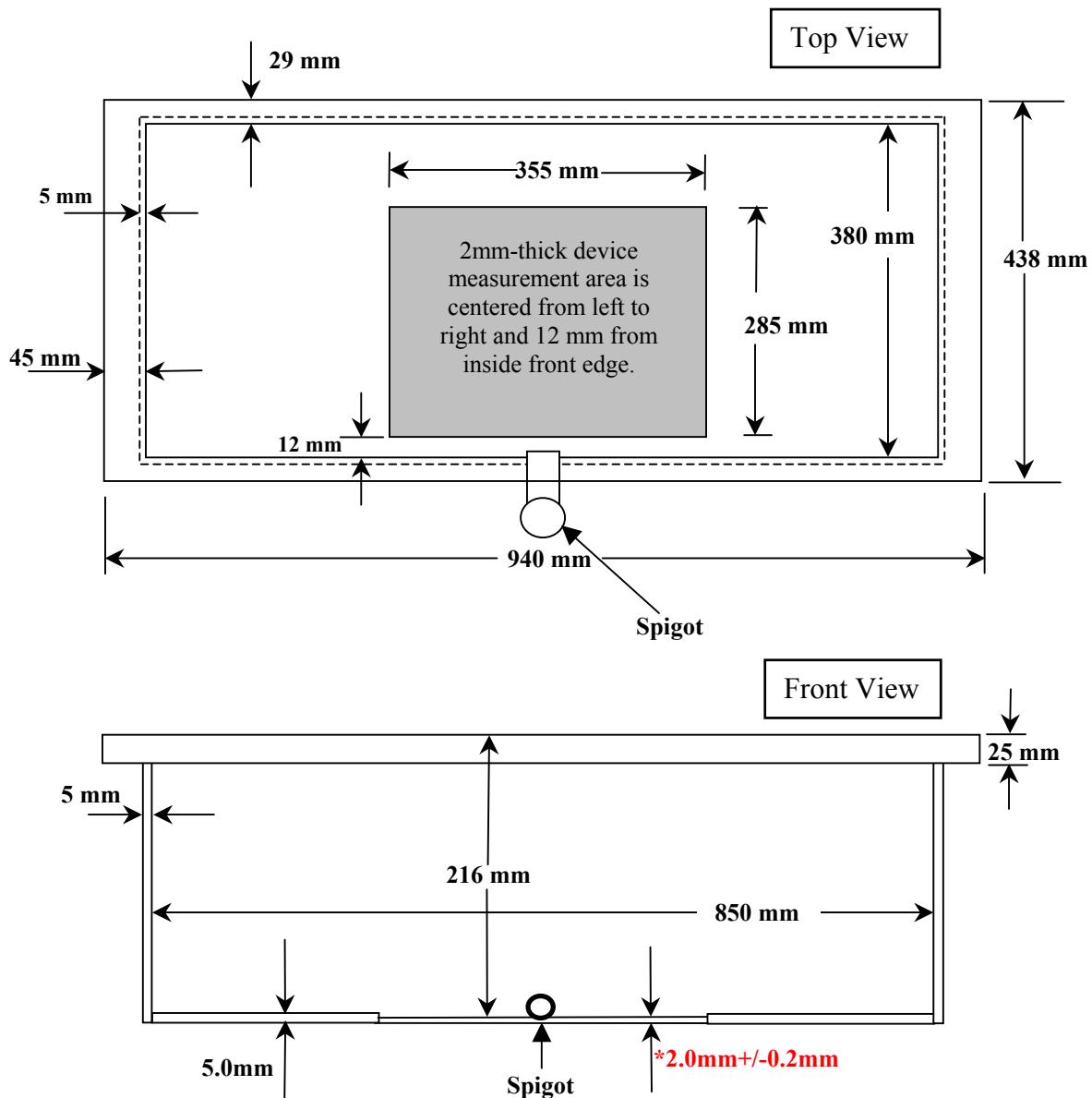
Based on the above information, we certify this product to be compliant to the requirements specified.

Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View


Fiberglass Planar Phantom - Back View

Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.
This drawing is not to scale.