

SPECTRONIC DENMARK

FCC INFORMATION

RF Measurement Report

Prepared by:

National Certification Laboratory

8370 Court Avenue, Suite B-1
Ellicott City, Maryland 21043
(410) 461-5548

In Support of:

FCC CERTIFICATION

For:

Spectronic Denmark
Skindbjergvej 44
DK-8500 Grenaa, Denmark

Model: INCA TX-RX-VOX Transmitter

FCCID: QKE-INCA

Demonstration of Compliance with FCC Rules Part 90.217

No part of this report may be reproduced without written approval of National Certification Laboratory

March 15, 2002

TABLE OF CONTENTS

1.0 General Information	4
1.1...Summary	4
1.2...Test Methodology	4
1.3...Test Facility.....	4
2.0 Description of Equipment Under Test (EUT)	5
2.1...EMI Countermeasure	6
3.0 Test Program	6
4.0 Test Configuration for Radiated and Conducted Emissions	6
5.0 FCC Part 2.202 / 90.209 - Calculation of Necessary Bandwidth	8
6.0 FCC Part 90.217 – Out-of-Band Emission Limits for 12.5 kHz Channel	8
7.0 FCC Part 90.217 – RF Power Rating	9
8.0 FCC Part 90.213 / 2.995 – Frequency Stability	10

TABLES

Table 1	EUT Accessories	14
Table 2	Support Equipment	15
Table 3	Measurement Equipment Used	16

EXHIBITS

Exhibit 1	Photographs	Error! Bookmark not defined.
Exhibit 1.1	External Photographs	Error! Bookmark not defined.
Exhibit 1.2	Internal Photographs	Error! Bookmark not defined.
Exhibit 2	Class B Labeling Format	Error! Bookmark not defined.

NCL PROJ.# SPEC-641

1.0 General Information:

This report has been prepared on behalf of **Spectronic Denmark**, to support the FCC Certification of a Part 90 transmitter. The Equipment Under Test (EUT) was the **Model: INCA TX-RX-VOX Transmitter**. The EUT configuration consisted of one Transmitter and one Receiver unit. The test results reported in this document relate only to the item that was tested.

Radio-Noise Emissions tests were performed according to the ANSI C63.4- 1992, ***“Method of Measurement of RFI from Low-Voltage Electronic Equipment in the Range of 9 KHz- 40 GHz”***. The measuring equipment conforms to ANSI C63.2 Specifications for electromagnetic Noise and Field Strength-Instrumentation

1.1 Summary:

The **Spectronic Denmark**, Model: **INCA TX-RX-VOX Transmitter**, complies with the Part 90.217 Radio Limits for licensed transmitters under 120 mW RF power.

1.2 Test Methodology:

Both RF Antenna Conducted and Radiated out-of-band emissions testing were performed according to the procedures specified in the applicable sections of TIA/EIA- 603 documents. Radiated testing was performed at an antenna to EUT distance of three (3) meters. The Dipole Substitution Method based on Section 2.2.12 was used to measure out-of-band radiated emission levels.

1.3 Test Facility:

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of National Certification Laboratory 8370 Court Avenue, Suite B-1, Ellicott City, Maryland 21043. This site has been fully described in a report dated May 26, 1993, submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

2.0 Description of Equipment Under Test (EUT):

The EUT features:

**External Wire Antenna
155 - 173 MHz Frequency Range
25 kHz Channel
+/- 4 kHz FM Modulation Deviation
50 mW Peak RF Power
Battery Operation
Built-in Microphone
5 PPM Frequency Stability**

2.1 EMI Countermeasure:

The following modifications were made to the EUT, by the project engineer to assure compliance to specifications:

None.

3.0 Test Program:

This report contains measurement charts and data as evidence for the following tests performed:

90.217 ----- Power Rating

90.217 / 2.993 / 2.991 ----- Harmonics & Out-of-Band Emissions

90.209 / 2.202 ----- Frequency Segment/Channel Bandwidth

90.213 / 2.995 -----Frequency Stability

4.0 Test Configuration for Radiated and Antenna Conducted RF Emissions:

For RF Antenna Conducted measurements of Power, Spurious/Harmonics, and Occupied Bandwidth, the RF antenna port was connected directly to the spectrum analyzer. Suitable attenuation was used to prevent overloading of the analyzer front end.

Radiated out-of-band emissions testing was performed according to the procedures specified in the applicable sections of TIA/EIA- 603 documents. Radiated testing was performed at an antenna to EUT distance of three (3) meters. The Dipole Substitution Method based on Section 2.2.12 was used to measure out-of-band radiated emission levels. Once an emission level is found as maximum, the EUT is removed from the test table and replaced with a calibrated tuned dipole antenna in vertical polarity, which is driven by a signal generator. The generator level is adjusted to the duplicate the previous reading on the analyzer which will be the ERP.

5.0 FCC Part 2.202 / 90.209 - Calculation of Necessary Bandwidth:

$$B_n = 2M + 2DK$$

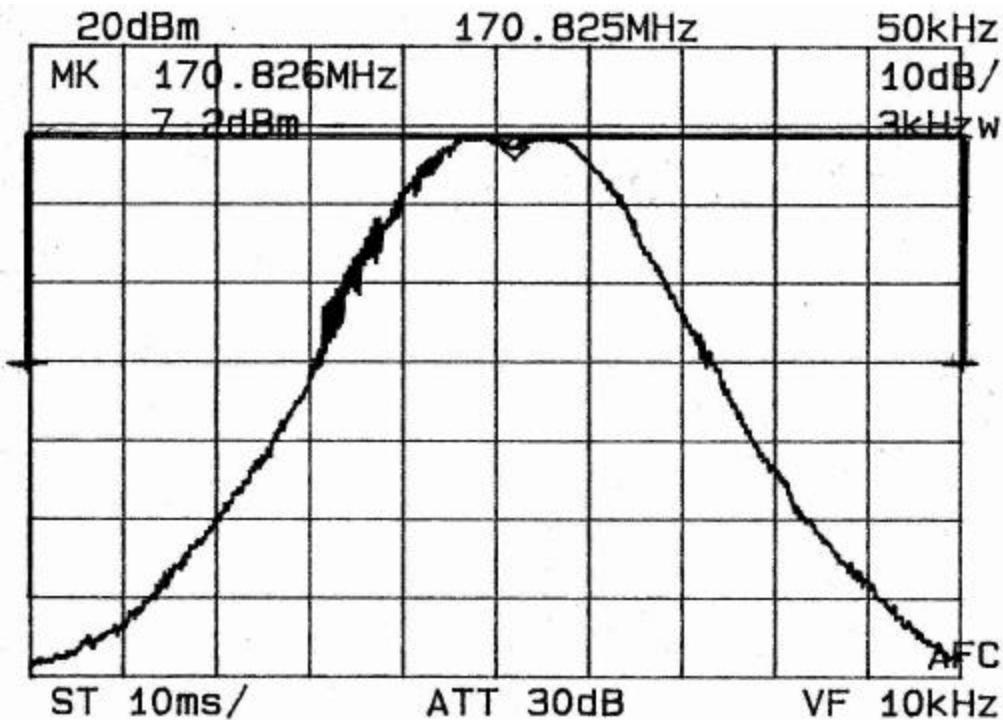
Where K= 1, M= Max Modulation, D= Peak Freq Deviation

Based on Designer's Specs.: M = 5.0 KHz , D = 4.0 KHz

Therefore: $B_n = 10.0 \text{ KHz} + 8.0 \text{ KHz} = 18 \text{ KHz}$

Emission Designator: 18K0F1D

6.0 FCC Part 90.217 – Out-of-Band Emission Limits for 25 kHz Channel:


Section 90.217 states:

For 25 kHz Channel: The sum of the Occupied Bandwidth and the Bandwidth for Stability shall be adjusted such that all emission levels 40 kHz or more from the center, are attenuated at least 30 dB below the unmodulated carrier. In this case the frequency stability is 5 PPM or +/- 855 Hz. The occupied bandwidth is 18 kHz.

SPAN: 5 kHz/DIV

RES BW: 3 kHz

10 dB/DIV

FCC PART 2.993/90.217 - RADIATED SPURIOUS EMISSIONS

Frequency of Carrier = 170.825 MHz
Limit = 30 dBc

TEST RESULTS

LIMIT: -30.0 dB FROM PEAK CARRIER

<u>COMPONENT</u>	<u>FREQUENCY (MHZ)</u>	<u>RESULT (dB FROM PEAK)</u>
HARMONIC	341.650	- 69
HARMONIC	512.475	- 72
HARMONIC	683.300	- 74
HARMONIC	854.125	- 75
HARMONIC	1024.95	- 79
HARMONIC	1195.77	- 77
HARMONIC	1366.60	- 76
HARMONIC	1537.43	- 80
HARMONIC	1708.25	- 80

FCC PART 2.991/90.217 - CONDUCTED SPURIOUS EMISSIONS

Frequency of Carrier = 170.825 MHz

Limit = 30 dBc

TEST RESULTS

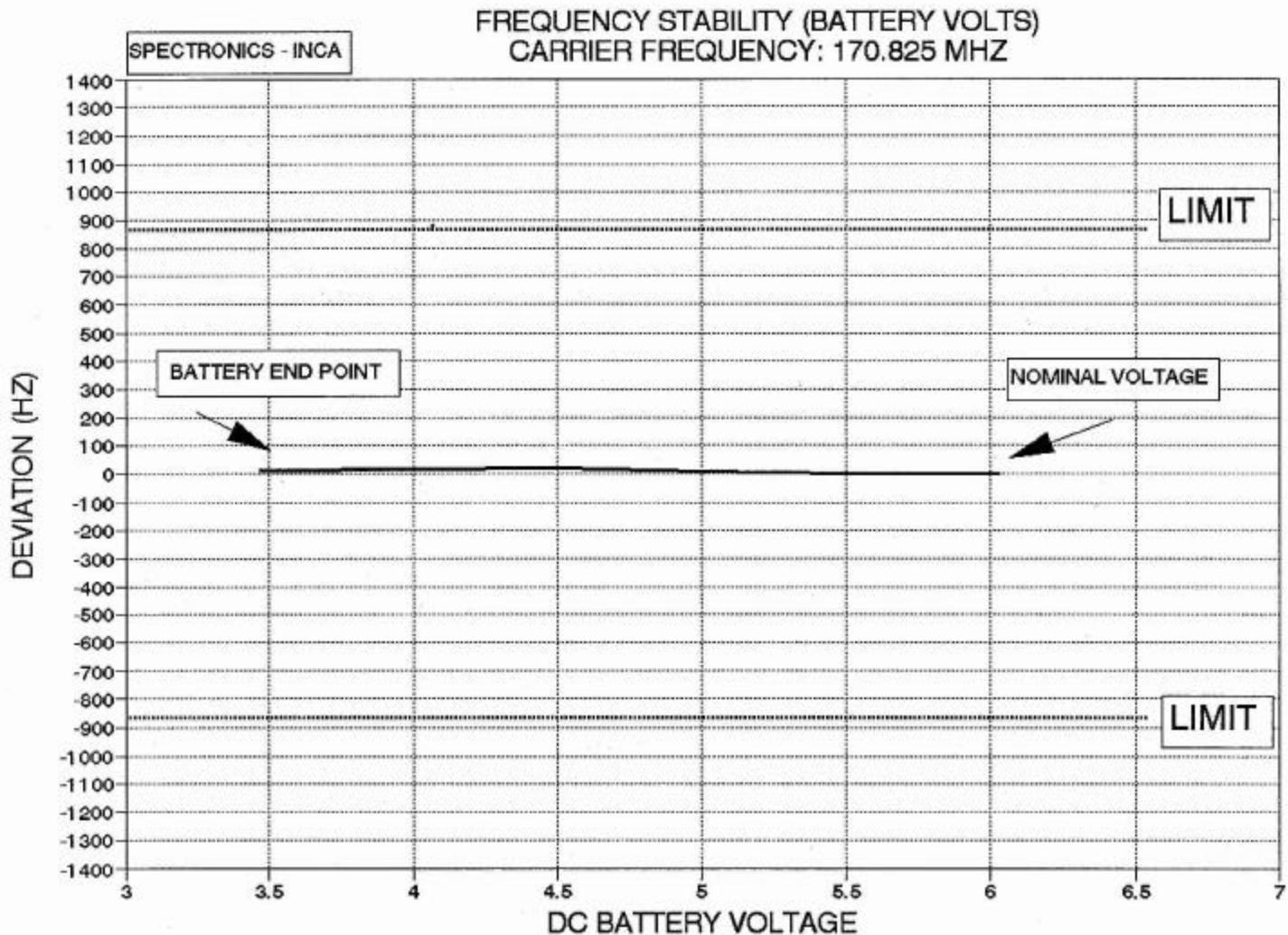
LIMIT: -30.0 dB FROM PEAK CARRIER

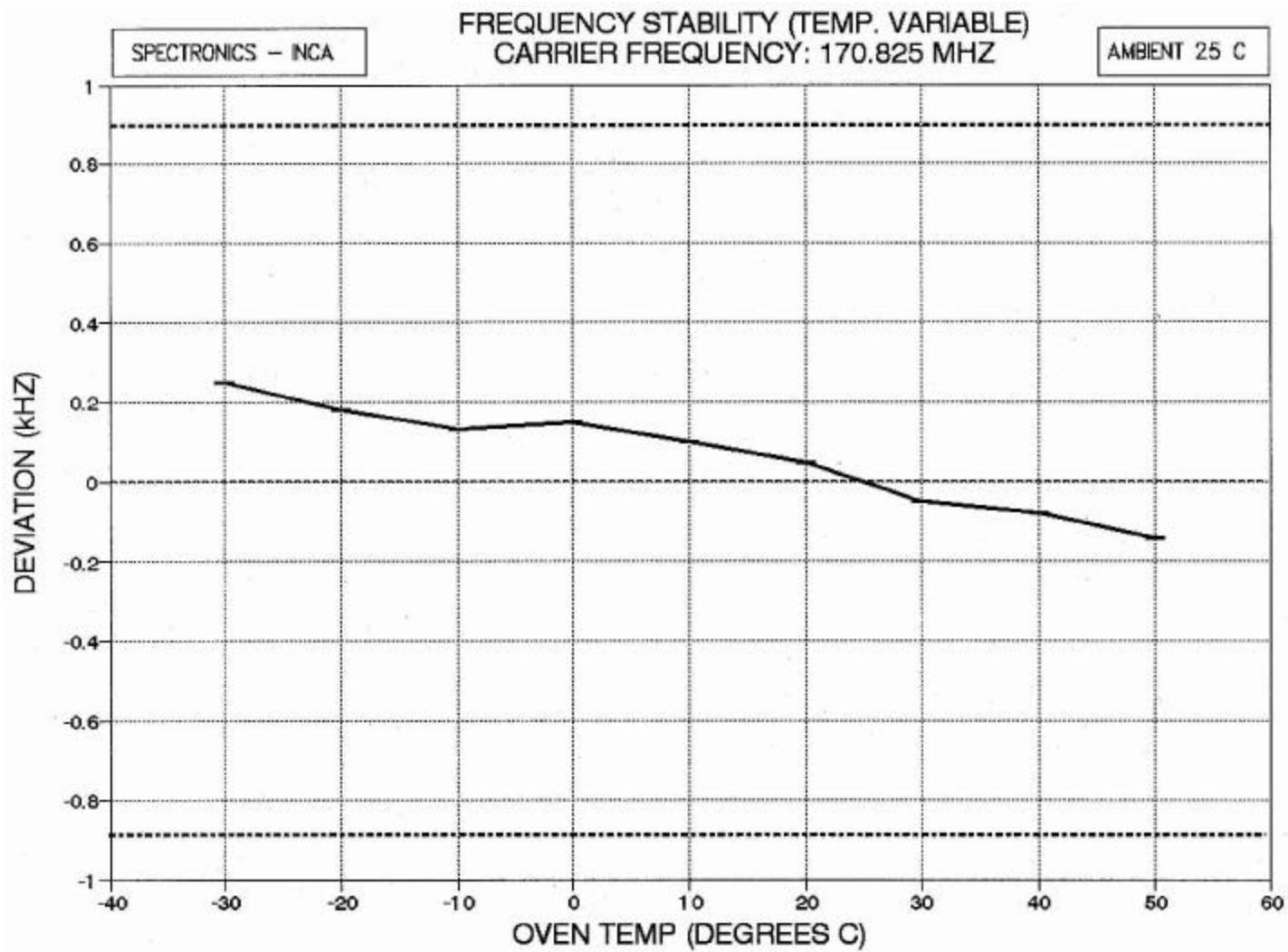
<u>COMPONENT</u>	<u>FREQUENCY (MHZ)</u>	<u>RESULT (dB FROM PEAK)</u>
HARMONIC	341.650	- 65
HARMONIC	512.475	- 68
HARMONIC	683.300	- 69
HARMONIC	854.125	- 70
HARMONIC	1024.95	- 75
HARMONIC	1195.77	- 77
HARMONIC	1366.60	- 78
HARMONIC	1537.43	- 78
HARMONIC	1708.25	- 78

7.0 FCC Part 90.217 - RF Power Rating :

The RF power may not exceed 120 mW. RF power measurements were taken at the antenna port, using a peak RF power meter.

Results:


170.825 MHz 17 dBm (50 mW)


8.0 FCC Part 90.213 / 2.995 - Frequency Stability :

The following charts reveal the Frequency Tolerance of the transmitter carrier frequency as a function of Temperature and Supply Voltage. The charts confirm the rated tolerance of **5.0 ppm**.

The transmitter was placed in the temperature chamber at 25 degrees C and allowed to stabilize for one hour. The transmitter was keyed on for one minute during which a frequency reading was taken. This was considered to be the reference frequency. The temp. was reduced to -30 degrees C and the transmitter allowed to stabilize for one hour. Frequency readings were taken and this procedure repeated in 10 degree increments up to 50 degrees C.

Frequency readings were also taken in increments down to the battery end-point voltage.

TABLE 1 – EUT ACCESSORIES

Type	Make	Model
None		

TABLE 2
SUPPORT EQUIPMENT

MANUFACTURER	FCC ID #	SERIAL #
None		

TABLE 3
MEASUREMENT EQUIPMENT USED

The following equipment is used to perform measurements:

EQUIPMENT	SERIAL #
Wavetek 2410A 1100 MHz Signal Generator	1362016
EMCO Model 3110 Biconical Antenna	1619
Antenna Research LPD-3500 Log Antenna	1005
EMCO Model 3146 Log Periodic Antenna	3007
HP 8348A Pre-Amplifier	197-2564A
Solar 8012-50-R-24-BNC LISN	924867
Bird 8306-300-N-30dB Attenuator	29198391515
Advantest Model R4131D Spectrum Analyzer	54378A
4 Meter Antenna Mast	
Motorized Turntable	
RG-233U 50 ohm coax Cable	
4 Meter Antenna Mast	