

Advanced
Compliance Laboratory

6 Randolph Way
Hillsborough, NJ 08844
Tel: (908) 927 9288
Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT of

PAVS TAG
MODEL: PAVSTAG
FCC ID: QJZPAVSTAG

June 11, 2008

This report concerns (check one): Original grant Class II change
Equipment type: Low Power Intentional Radiator

Deferred grant requested per 47 CF 0.457(d)(1)(ii)? yes no
If yes, defer until: _____ (date)
Company agrees to notify the Commission by _____ (date)
of the intended date of announcement of the product so that the grant can be
issued on that date.

Transition Rules Request per 15.37? yes no
If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR
[10-1-90 Edition] provision.

Report prepared for: Avante International Technology, Inc.
Report prepared by: Advanced Compliance Lab
Report number: 0048-080602-01

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance.....	4
1.2 Equipment Modifications	5
1.3 Product Information	6
1.4 Test Methodology	6
1.5 Test Facility.....	6
1.6 Test Equipment.....	6
1.7 Statement of the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION.....	9
3.1 Justification.....	9
3.2 Special Accessories.....	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS.....	13
5. CONDUCTED EMISSION DATA.....	14
5.1 Test Methods and Conditions	14
5.2 Test Data	14
6. RADIATED EMISSION DATA	17
6.1 Field Strength Calculation.....	17
6.2 Test Methods and Conditions	17
6.2 Test Data	17
6.4. Occupied Bandwidth	19
7. PHOTOS OF TESTED EUT	21

Figures

Figure 2.1 FCC ID Label	8
Figure 2.2 Location of Label on Back of the EUT	8
Figure 3.1 Radiated Test Setup, Position 1	10
Figure 3.2 Radiated Test Setup, Position 2	10
Figure 3.3 Radiated Test Setup, Position 3	11
Figure 3.4 Conducted Test Setup, Front	12
Figure 3.5 Conducted Test Setup, Rear	12
Figure 4.1 EUT Schematics.....	13
Figure 5.1 Line Conducted	15
Figure 5.2 Neutral Conducted	16
Figure 6.1 Bandwidth Plot.....	19
Figure 6.2 Pulse Train Timing	20
Figure 7.1 Front View	22
Figure 7.2 Rear View.....	23
Figure 7.3 Component Side.....	24
Figure 7.4 Foil Side	25

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: PAVS TAG
 Model: PAVSTAG
 Applicant: AVANTE INTERNATIONAL TECHNOLOGY, INC.
 Test Type: FCC Part 15C CERTIFICATION (15.231)
 Result: PASS
 Tested by: ADVANCED COMPLIANCE LABORATORY
 Test Date: June 11, 2008
 Report Number: 0048-080602-01

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC rules and regulations Part 15 subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li
 Lab Manager
 Advanced Compliance Lab

Date: June 11, 2008

1.2 Equipment Modifications

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	PAVS TAG PAVSTAG ⁽¹⁾	QJZPAVSTAG	
Housing	PLASTICS		
Power Supply	3V DC Battery		
Operation Freq.	439.4MHz		
Device Type	Periodic Operation		
Receiver	SENSOR Receiver	DoC	

(1) EUT submitted for grant.

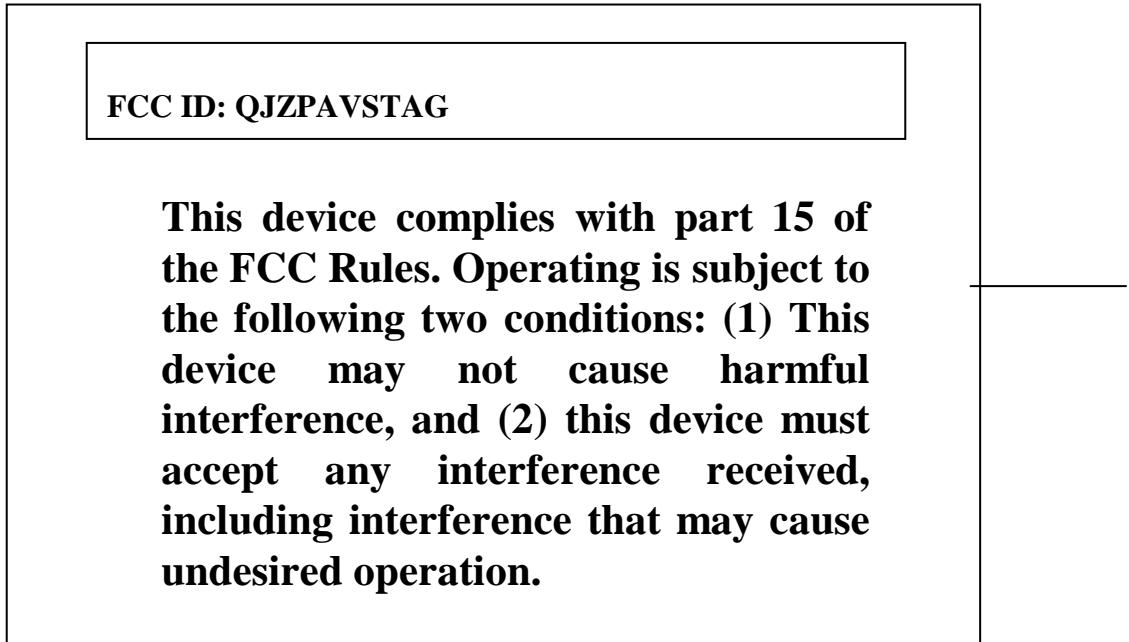
1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-2003 at an antenna to EUT distance of 3 meters.

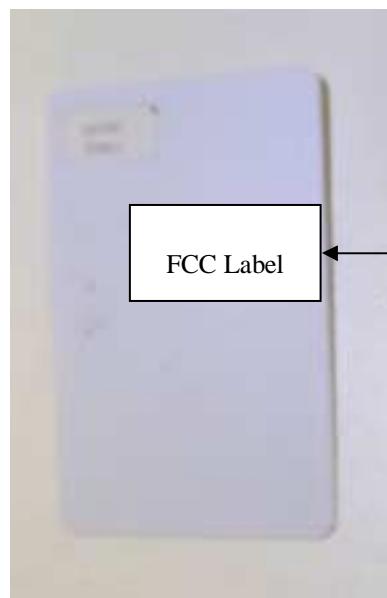
1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Hillsborough, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment


Manufacture	Model	Serial No.	Description	Last Cal dd/mm/yy	Cal Due dd/mm/yy
Hewlett-Packard	HP8546A	3448A00290	EMI Receiver	12/01/08	12/01/09
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	12/02/08	12/02/09
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	09/02/08	09/02/09
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	28/08/07	28/08/08
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	28/08/07	28/08/08
EMCO	6502	2665	10KHz-30MHz Active Loop Antenna	27/02/08	27/02/09
EMCO	3115	4945	Double Ridge Guide Horn Antenna	18/08/07	18/08/08

All Test Equipment Used are Calibrated Traceable to NIST Standards.


1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

Figure 2.1 FCC ID Label (Statement shown in the manual)

Figure 2.2 FCC ID Label Location

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). Its antenna is integrated with PCB. The minimum transmission interval is greater than 10s. Each transmission duration is 0.3ms with max. 0.5ms.

Testing was performed as EUT was set to testing mode with continuous operation.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 to Figure 3.5 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Test Setup, position 1-X

Figure 3.2 Radiated Test Setup, position 2-Y

Figure 3.3 Radiated Test Setup, position 3-Z

N/A

Figure 3.4 Conducted Setup- Front

N/A

Figure 3.5 Conducted Setup- Rear

4. SYSTEM SCHEMATICS

See Attachment.

Figure 4.1 System Schematics

5. CONDUCTED EMISSION DATA

5.1 Test Methods and Conditions

The EUT was under normal operational mode during the conducted emission test. EMI Receiver was scanned from 150KHz to 30MHz with maximum hold mode for maximum emission. Recorded data was sent to the plotter to generate output in linear format. At the input of the spectrum analyzer, a HP transient limiter is inserted for protective purpose. This limiter has a 10 dB attenuation in the range of 150KHZ to 30MHZ. That factor was automatically compensated by the receiver, so the readings are the corrected readings. The reference of the plot is the CISPR 22 Class B limit in Figure 5.1 through Figure 5.2.

Conducted Emission Technical Requirements				
Frequency Range	Class A		Class B	
	Quasi-Peak dBuV	Average dBuV	Quasi-Peak dBuV	Average dBuV
150kHz -0.5MHz	79 (8912uV)	66 (1995uV)	66-56	56-46
0.5MHz-30MHz	73 (4467uV)	60 (1000uV)	---	---
0.5MHz- 5MHz	---	---	56	46 (250uV)
5MHz-30MHz	---	---	60	50

Emissions that have peak values close to the specification limit (if any) are also measured in the quasi-peak mode to determine compliance.

5.2 Test Data

Figure 5.1-5.2 show the neutral and line conducted emissions for the standard operation.

N/A

Test Personnel:

Tester Signature: _____

Date: June 11, 2008

Typed/Printed Name: Edward Lee

N/A

Fig. 5.1 Conducted Emission-Line

N/A

Fig. 5.2 Conducted Emission- Neutral

6. RADIATED EMISSION DATA

6.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dB μ V/m

RA: Amplitude of EMI Receiver before correction in dB μ V

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

The pulse train timing plots are showed in Figure 6.2.

The pulse train timing plots as follows:

The total transmitting time for each transmission is less than 0.5ms within any 100ms duration. Therefore, the Coeff. =0.5/100=0.005

The maximum average field strength should be 0.005 of the peak field strength measured. So we use peak value minus 46dB as calculated maximum average field strength.

6.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 1GHz, 120KHz IF bandwidth / 120KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. Up to 10th harmonics were investigated.

6.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 6.1.

Test Personnel:

Typed/Printed Name: Edward Lee

Date: June 11, 2008

Radiated Test Data

Frequency (MHz)	Polarity [H or V], Position (X,Y,Z) (1)	Height (m)	Azimuth (Degree)	Peak Reading (dB μ V/m)	Calculated Average Reading (dB μ V/m)	FCC 3m Peak Limit (dB μ V/m)	Margin to Peak Limit	FCC 3m Average Limit (dB μ V/m)	Margin to Average Limit
439.4	H,X	1.5	90	70.6	24.6	93	-22.4	73.0	-48.4
878.8	H,X	1.4	80	44.0	-2	73	-29	53.0	-55
1318.2 (2)	H,X	1.4	80	42.1	-3.9	74	-31.9	54.0	-57.9
439.4	V,X	1.2	80	64.2	18.2	93	-28.8	73.0	-54.8
878.8	V,X	1.2	90	40.2	-5.8	73	-32.8	53.0	-58.8
1318.2	V,X	1.2	80	40.0	-6	74	-34	54.0	-60
439.4	H,Y	2.2	20	71.2	25.2	93	-21.8	73.0	-47.8
878.8	H,Y	1.8	10	45.8	-0.2	73	-27.2	53.0	-53.2
1318.2	H,Y	1.4	30	43.5	-2.5	74	-30.5	54.0	-56.5
439.4	V,Y	1.0	0	69.5	23.5	93	-23.5	73.0	-49.5
878.8	V,Y	1.2	10	43.0	-3	73	-30	53.0	-56
1318.2	V,Y	1.2	350	41.7	-4.3	74	-32.3	54.0	-58.3
439.4	H,Z	2.2	30	66.1	20.1	93	-26.9	73.0	-52.9
878.8	H,Z	1.9	10	41.6	-4.4	73	-31.4	53.0	-57.4
1318.2	H,Z	1.5	0	40.0	-6	74	-34	54.0	-60
439.4	V,Z	1.2	90	72.8	26.8	93	-20.2	73.0	-46.2
878.8	V,Z	1.3	100	46.1	0.1	73	-26.9	53.0	-52.9
1318.2	V,Z	1.2	80	43.9	-2.1	74	-30.1	54.0	-56.1

(1) See Figure 3.3 for definition of position Z, which is the typical orientation when EUT is installed.

(2) Restricted band.

(3) Fundamental limit is 1500-5000 microvolts/meter linear interpolations (average reading). Per FCC 15.231(e).

(4) Spurious limit is 150-500 microvolts/meter linear interpolations (average reading). Per 15.231(e).

5.4 Occupied Bandwidth

The bandwidth of the emission shall be no wider than 0.25% of the center frequency, in this case, 1.084MHz(433.5x0.25%). Bandwidth is determined at the points 20dB down from the modulated carrier. Figure 5.2 shows the occupied bandwidth plot.

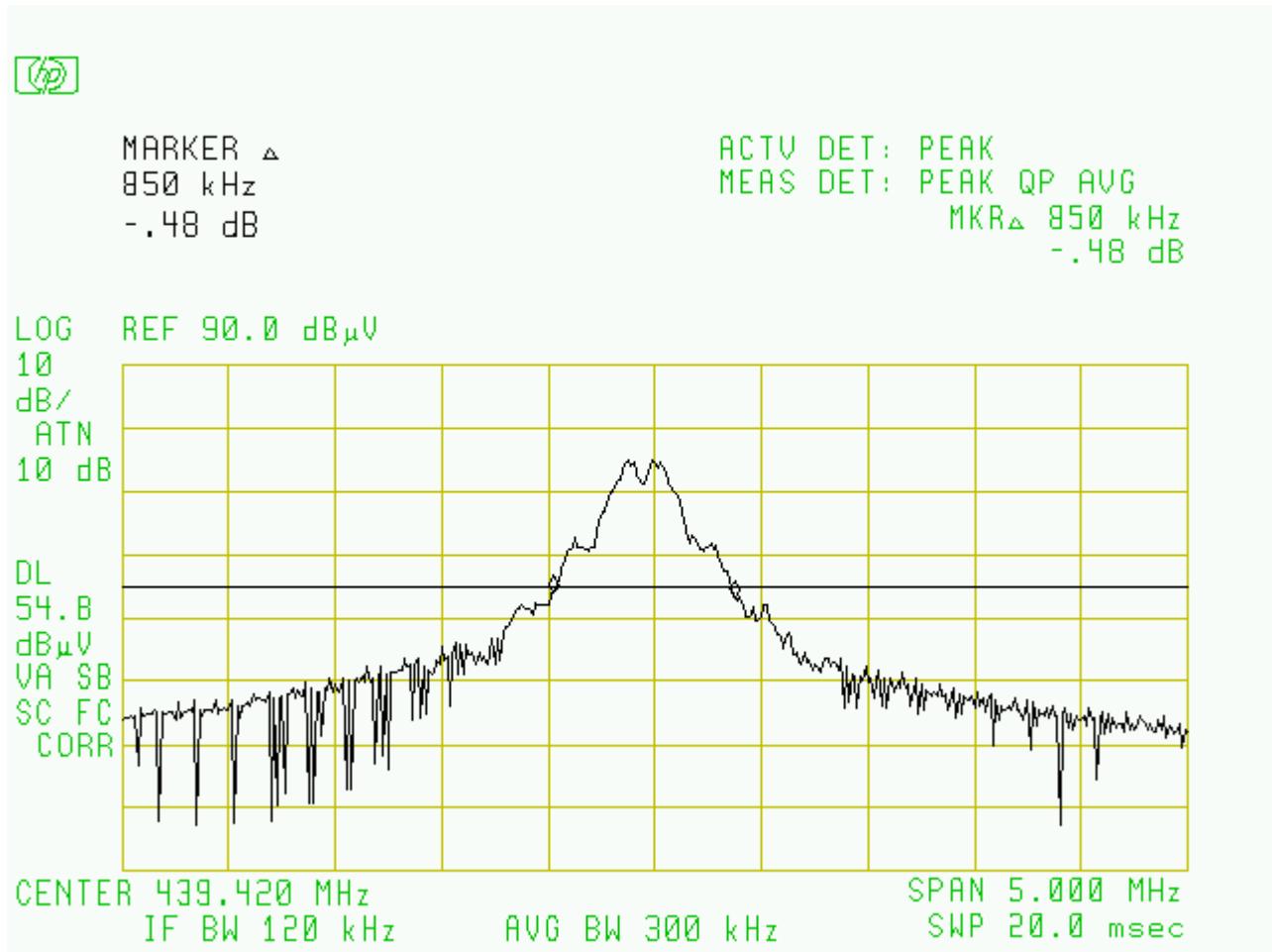


Figure 6.1 Occupied Bandwidth

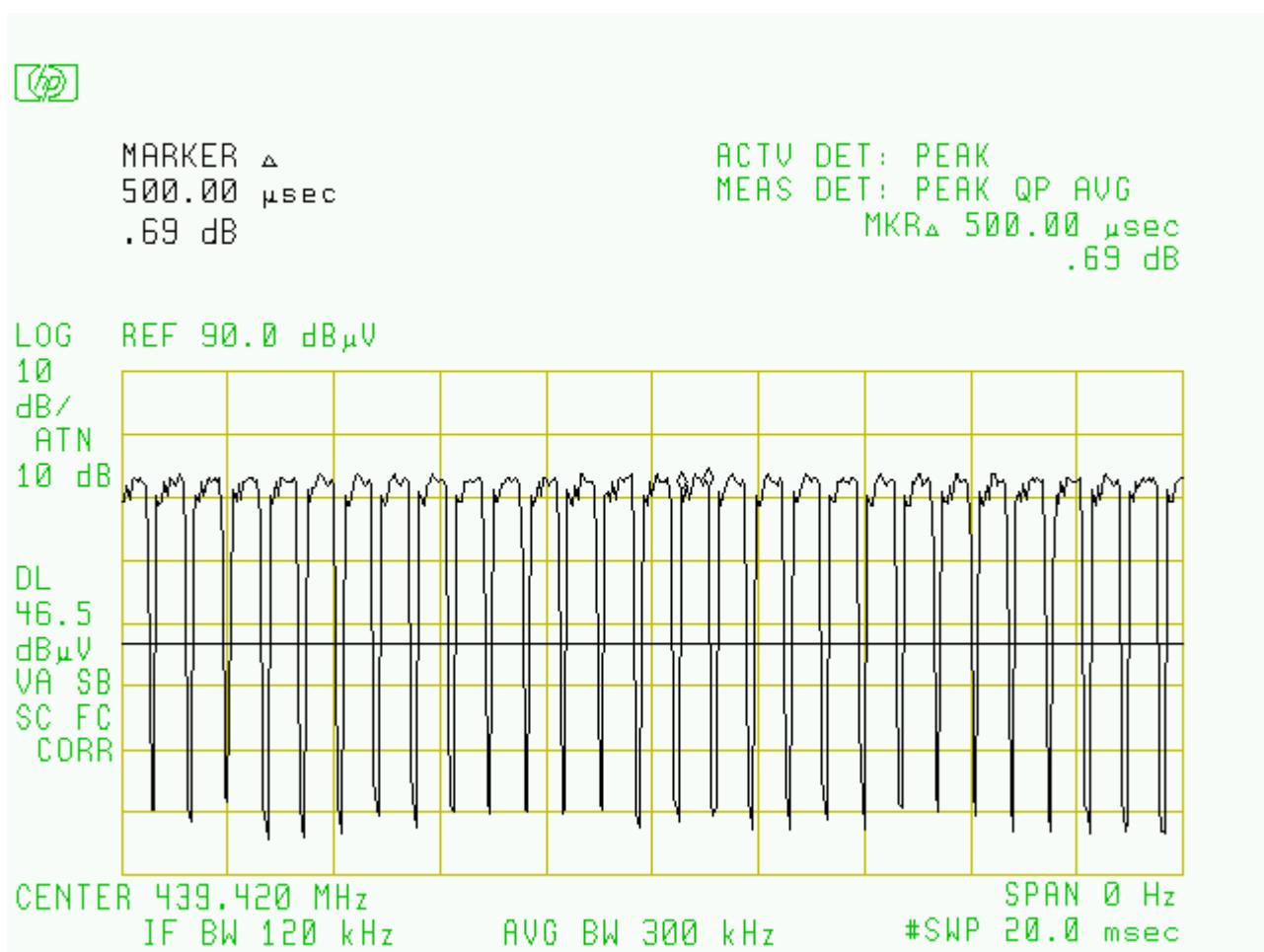


Figure 6.2 Pulse Train Timing