FCC ID: QJEWMC63000303

TABLE OF CONTENTS

TEST REPORT CONTAINING:

PAGE	1LETTER OF EXPLANATION
PAGE	2-4LIST OF TEST EQUIPMENT
PAGE	5TEST PROCEDURES
PAGE	6PRODUCT DESCRIPTION AND LIST OF ANTENNAS
PAGE	7POWERLINE CONDUCTED INTERFERENCE
PAGE	8-9POWERLINE CONDUCTED PLOTS
PAGE	10OCCUPIED BANDWIDTH
PAGE	11POWER OUTPUT
PAGE	12METHOD OF MEASURING RF CONDUCTED AND SPURIOUS EMISSIONS AT
	ANTENNA TERMINALS DATA
PAGE	13RADIATION INTERFERENCE TEST DATA
PAGE	14 METHOD OF MEASURING RADIATED SPURIOUS EMISS.
PAGE	15RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BANDS
	ANTENNEX ANTENNA
PAGE	16-17BANDEDGE PLOTS - ANTENNEX ANTENNA
PAGE	18RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BANDS
	MAXRAD ANTENNA
PAGE	19-20BANDEDGE PLOTS - MAXRAD ANTENNA
PAGE	21RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BANDS
	NEW DIPOLE ANTENNA
PAGE	22-23BANDEDGE PLOT - NEW DIPOLE ANTENNA
PAGE	24power spectral density
PAGE	25MPE CALCULATION

EXHIBIT ATTACHMENTS:

EXHIBIT	1REQUEST FOR CONFIDENTIALITY LETTER
EXHIBIT	2FCC ID LABEL SAMPLE
EXHIBIT	3SKETCH OF FCC ID LABEL LOCATION
EXHIBIT	4EXTERNAL PHOTOGRAPHS
EXHIBIT	5INTERNAL PHOTOGRAPHS
EXHIBIT	6BLOCK DIAGRAM
EXHIBIT	7SCHEMATICS
EXHIBIT	8USERS MANUAL
EXHIBIT	9CIRCUIT DESCRIPTION
EXHIBIT	10DUTY CYCLE CORRECTION FACTOR
EXHIBIT	11TEST SETUP PHOTOGRAPHS - RADIATED
EXHIBIT	12TEST SET UP PHOTOGRAPHS - POWER LINE CONDUCTED

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

TABLE OF CONTENTS

April 18, 2003

Federal Communications Commission Authorization and Evaluation Division 7435 Oakland Mills Road Columbia, MD 21046

SUBJECT: MESH NETWORKS

FCC ID: QJEWMC63000303

To Whom It May Concern:

The attached application is for a direct sequence spread spectrum assembly, made up of a PCMIA card and antennas as specified in this report. Mesh Networks purchases standard antennas from the manufacturer. This device is different than most 802.11 devices in that its network protocol uses quad division multiple access. QDMA is a DSSS technology, operating in the 2400 to 2483.5 MHz ISM band that utilizes a CSMA/CA (carrier sensed multiple access/collision avoidance) protocol, but the channelization is different from 802.11. QDMA has 4 concurrently available 20 MHz channels — one of which is dedicated as a reservation and overhead channel, the other 3 for data transport.

Under normal operation a terminal will use the reservation channel (default channel 0 (2410 MHz $\}$) for command and control information, and data channels (default 1 $\{2430 \, \text{MHz}\}$, 2 $\{2450 \, \text{MHz}\}$, and 3 $\{2470 \, \text{MHz}\}$) for transferring information.

Thus under normal operation the terminal will use the reservation channel (0) (2410 MHz) to request the ability to send network update information on a data channel (1,2, or 3). When the overall system traffic is low the terminal will default to using channel 3 for data transfer to provide the greatest separation of active channels, which reduces interference. As the system becomes more loaded terminals will choose channel 1, 2, or 3 depending on the RF transmissions in its vicinity. This will have the effect of making the use of the channels appear random as the timing of transmission by all terminals, and therefore choice of channel is random.

The WMC6300 uses an MMCX connector which is deemed to be unique. Mesh Networks networking scheme and market focus is not general consumer oriented. This unit is intended for professional installation.

Sincerely,

Mario R. de Aranzeta C.E.T.

Maro L. Le Changte

MRD/sh Encl.

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 1 of 25

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	НР	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	НР	85650A	3303A01690	CAL 8/31/01	8/31/03
X X	Receiver, Blue Tower Spectrum Analyzer (Blue)	НР	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	НР	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	НР	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
\Box	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 2 of 25

Ī	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Line Impedance Stabilization	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	НР	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	НР	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	НР	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	НР	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
	Modulation Analyzer	НР	8901A	3435A06868	CAL 9/5/01	9/5/03
	Near Field Probe	НР	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
	BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc Page 3 of 25

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	НР	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	НР	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	НР	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	НР	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	НР	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc Page 4 of 25

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC. Shielded interface cables were used in all cases except for cables connecting to the telephone line and the power cords. A test program was run which simulated a normal data transmission on a network.

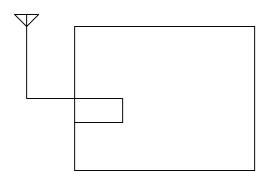
POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-1992 using a 50uH LISN. Both lines were observed with the UUT transmitting. The bandwidth of the spectrum analyzer was $10 \, \text{kHz}$ with an appropriate sweep speed. The ambient temperature of the UUT was $76 \, ^{\circ}\text{F}$ with a humidity of $40 \, ^{\circ}\text{K}$.

BANDWIDTH 6.0dB: The measurements were made with the spectrum analyzer's resolution bandwidth(RBW)=1.0MHz and the video bandwidth(VBW) =3.0MHz and the span set as shown on plot.

POWER OUTPUT: The RF power output was measured at the antenna feed point using a peak power meter.

ANTENNA CONDUCTED EMISSIONS: The RBW=100 kHz, VBW=300 kHz and the span set to 10.0MHz and the spectrum was scanned from 30MHz to the $10^{\rm th}$ Harmonic of the fundamental. Above 1.0GHz the resolution bandwidth was 1.0MHz and the VBW = 3.0MHz and the span to 50MHz.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth (RBW) of the spectrum analyzer was $100 \, \text{kHz}$ up to $1 \, \text{GHz}$ and $1.0 \, \text{MHz}$ above $1 \, \text{GHz}$ with an appropriate sweep speed. The VBW above $1.0 \, \text{GHz}$ was = $3.0 \, \text{MHz}$. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient temperature of the UUT was 80°F with a humidity of 40%.


APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 5 of 25

PRODUCT DESCRIPTION:

The QJEWMC63000303 is a direct sequence spread spectrum radio that operates in the 2410 to 2470 MHz frequency band.

Antennas:

Antenna p/n	Type/Connector	Gain (dBi)
Antennex	Antennex	3 dBi
MaxRad	6ft coax - mag mt	0 dBi
Centurion Wireless	Dipole	1.5 dBi
Technologies Inc.	Rubberized	
CAF28863 (Referred to as		
new dipole)		

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

 $REPORT \#: M/MeshNetworks \ \ 395 AUT 3 \ \ \ 395 AUT 3 TestReport. doc$

Page 6 of 25

FCC ID: QJEWMC63000303

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NO.: 15.107(a)

REQUIREMENTS: FREQUENCY LEVEL

MHz____uV_

0.450-30 250

0.150-0.50 66 to 56 dBuV QP 56 to 46 Ave 0.50-5.0 56 QP 46 Ave 5.0-30.0 60 QP 50 Ave

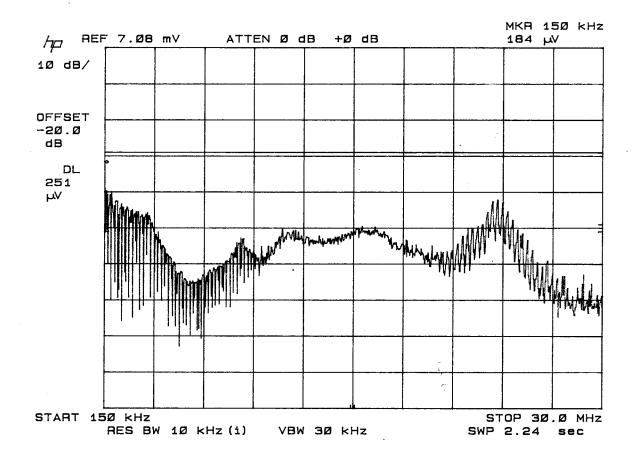
TEST PROCEDURE: ANSI STANDARD C63.4-1992. The spectrum was scanned from .45 to 30

MHz.

TEST DATA:

THE HIGHEST EMISSION READ FOR LINE 1 WAS 184 uV @ 150 kHz.

THE HIGHEST EMISSION READ FOR LINE 2 WAS 180 uV @ 150 kHz.


THE PLOTS ON THE FOLLOWING PAGES REPRESENT THE EMISSIONS TAKEN FOR THIS DEVICE.

 $\textbf{TEST RESULTS:} \quad \text{Both lines were observed.} \quad \text{The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.}$

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc


Page 7 of 25

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

 $REPORT \#: M/MeshNetworks \ \ 395 AUT 3 \ \ \ 395 AUT 3 TestReport. doc$

Page 8 of 25

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

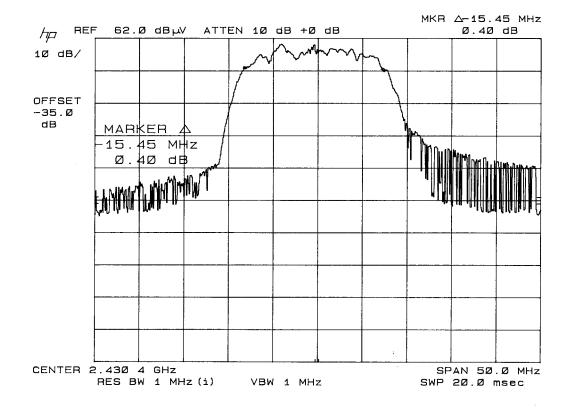
 $REPORT \#: M/MeshNetworks \ \ 395 AUT 3 \ \ \ 395 AUT 3 TestReport. doc$

Page 9 of 25

FCC ID: QJEWMC63000303

NAME OF TEST: 6.0dB BANDWIDTH

RULES PART NO.: 15.247(a)(2)


REQUIREMENTS: The 6.0dB bandwidth must be greater than 500 kHz.

MEASUREMENT: The 6.0dB bandwidth measured @ 2433.00 MHz was

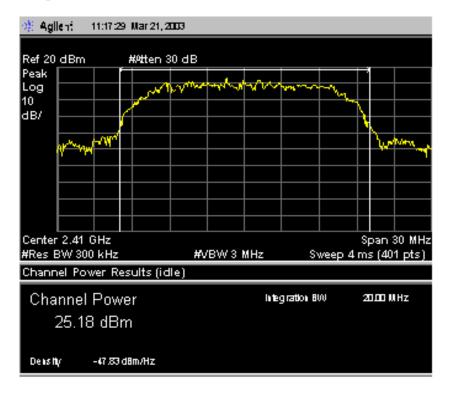
10.85 MHz.

MEASUREMENT

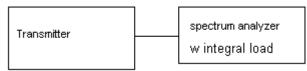
DATA:

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

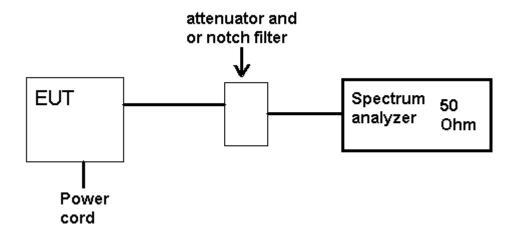

Page 10 of 25

NAME OF TEST: POWER OUTPUT


RULES PART NO.: 15.247(b) 1.0Watt or +30dBm

MEASUREMENT: 330.0 mWATTS or 25.18 dBm @ 2410.0 MHz

15.247(c) Method of Measuring RF Power output: The 99% power bandwidth method was used using an Agilent spectrum analyzer. The output of the EUT is terminated in a 50 ohm load. Three channels were tested and the highest power reported.


Test Setup Diagram

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 11 of 25

NAME OF TEST: SPURIOUS EMISSIONS AT ANTENNA TERMINALS

REQUIREMENTS: Emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

Three channels were measured and the worst cases presented. The spectrum was scanned to the tenth harmonic.

TF	EF	M reading	dB below carrier
2470	2470	10	0
	4940	-37	47
	7410	-51	61
	9880	-69	79
	12350	-72	82
	14820	-70	80
	17290	-70	80
	19760	-70	80
	22230	-70	80
	24700	-70	80
TF	EF	M reading	dB below carrier
2412	2412	11.8	0
	4824	-36.5	48.3
	7236	-61	72.8
	9648	-71.5	83.3
	12060	-73	84.8
	14472	-70	81.8
	16884	-70	81.8
	19296	-70	81.8
	21708	-70	81.8
	24120	-70	81.8
	2100	-62	73.8
	2600	-55	66.8

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 12 of 25

15.247(c),15.205 &15.209(b) Field_strength_of_spurious_emissions:

REQUIREMENTS:

FIELD STRENGTH FIELD STRENGTH of Fundamental: of Harmonics S15.209

30 - 88 MHz 40 dBuV/m @3M

902-928MHz 88 -216 MHz 43.5 2.4-2.4835GHz 216 -960 MHz 46

127.38dBuV/m @3m 54 dBuV/m @3m ABOVE 960 MHz 54dBuV/m

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

REQUIREMENTS: Emissions that fall in the restricted bands (15.205) must be less than 74 dBuV/m PEAK and 54dBuV/m AVERAGE otherwise the spurious and harmonics must be attenuated by at least 20dB.

TEST DATA:

Antennex Antenna Peak - 3 dBi

Tuned	Emission	Meter		Coax	Correction	Pulsed	Field	
Frequency	Frequency	Reading	Ant.	Loss	Factor	CFactor	Strength	Margin
\mathtt{MHz}	\mathtt{MHz}	dBuV	Polarity	dВ	dв	đВ	dBuV/m	đВ
2410.00	2412.00	56.2	V	3.33	30.67	0.00	90.20	37.18
2410.00	4820.00	8.2	V	5.95	33.82	-4.88	43.09	30.91
2470.00	2466.00	52.2	V	3.37	30.81	0.00	86.38	41.00
2470.00	4940.00	8.1	V	6.12	35.13	-4.88	44.47	29.53
2450.00	2446.00	52.9	V	3.36	30.76	0.00	87.02	40.36
2450.00	4900.00	8.5	V	6.06	35.02	-4.88	44.70	29.30

MaxRad Antenna Peak - 0 dBi

Tuned	Emission	Meter		Coax	Correction	Pulsed	Field	
Frequency	Frequency	Reading	Ant.	Loss	Factor	CFactor	Strength	Margin
\mathtt{MHz}	\mathtt{MHz}	dBuV	Polarity	dВ	dB	dВ	dBuV/m	dВ
2410.00	2412.00	53.20	V	3.33	30.67	0.00	87.20	40.18
2410.00	4820.00	8.1	V	5.95	33.82	-4.88	42.99	31.01
2450.00	2446.00	53.20	V	3.36	30.76	0.00	87.32	40.06
2450.00	4900.00	8.5	V	6.06	35.02	-4.88	44.70	29.30
2470.00	2466.00	52.80	V	3.37	30.81	0.00	86.98	40.40
2470.00	4940.00	8.4	V	6.12	35.13	-4.88	44.77	29.23

New Dipole Antenna Peak

Tuned	Emission	Meter		Coax	Correction	Pulsed	Field	
Frequency	Frequency	Reading	Ant.	Loss	Factor	CFactor	Strength	Margin
\mathtt{MHz}	\mathtt{MHz}	dBuV	Polarity	dВ	đВ	đВ	$\mathtt{dBuV/m}$	đВ
2470.00	2470.00	85.50	V	3.38	30.82	0.00	119.70	7.68
2470.00	4940.00	26.70	V	6.12	35.13	-4.88	63.07	10.93
2470.00	12341.00	9.90	V	10.54	41.42	-4.88	56.98	17.02

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

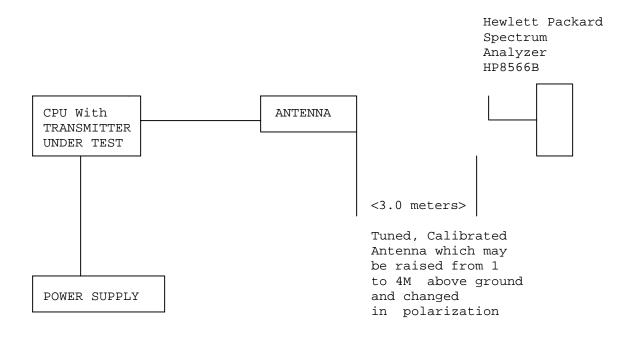
Page 13 of 25

15.247(c),15.205 &15.209(b) Field_strength_of_spurious_emissions continued:

New Dipole	Antenna Sp	urious Em	issions Pe	ak				
Tuned	Emission	Meter		Coax	Correction	Pulsed	Field	
Frequency	Frequency	Reading	Ant.	Loss	Factor	CFactor	Strength	Margin
\mathtt{MHz}	MHz	dBuV	Polarity	đВ	dВ	đВ	dBuV/m	đВ

Frequency	Frequency	Reading	Ant.	Loss	Factor	CFactor	Strength	Margin
MHz	\mathtt{MHz}	dBuV	Polarity	dВ	dВ	đВ	dBuV/m	dВ
2470.00	2278.00	19.6	V	3.22	30.32	-4.88	48.26	5.74
2470.00	2563.00	21.40	V	3.48	31.00	-4.88	51.00	3.00

New Dipole Antenna Spurious Emissions Average									
Tuned	Emission	Meter		Coax	Correction	Pulsed	Field		
Frequency	Frequency	Reading	Ant.	Loss	Factor	CFactor	Strength	Margin	
\mathtt{MHz}	\mathtt{MHz}	dBuV	Polarity	đВ	dВ	dВ	dBuV/m	dВ	
2470.00	2278.00	3.32	V	3.22	30.32	-4.88	31.98	22.02	
2470.00	2563.00	3.32	V	3.45	31.00	-4.88	32.89	21.11	
2470.00	4940.00	5.32	V	6.12	35.13	-4.88	41.69	12.31	


Three channels in the band were measured and the worst case is presented above.

No emissions were noted below 1000 MHz. No emissions past the 2*fo harmonic were noted. All antennas were tested to the tenth harmonic.

The digital emissions were included in a DoC report.

METHOD OF MEASUREMENT: The procedure used was ANSI STANDARD C63.4-1992 & the FCC/OET Guidance on Measurements for Direct Sequence Spread Spectrum Systems - Public Notice 54797 Dated July 12, 1995. Measurements were made at the open area test site of TIMCO ENGINEERING INC. located at 849 N.W. State Road 45, Newberry, FL 32669.

Method of Measuring Radiated Spurious Emissions

Equipment placed 80cm above ground on a rotatable platform.

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 14 of 25

FCC ID: OJEWMC63000303

NAME OF TEST: RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND

REOUIREMENTS: Emissions that fall in the restricted bands (15.205). These

emissions must be less than or equal to 500 uV/m (54 dBuV/m).

TEST PROCEDURE: An in band field strength measurement of the fundamental Emission

> using the RBW and detector function required by C63.4-2000 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted

band is presented below.

Above 1 GHz a RBW of 1 MHz was used as an instrument setting and 10 kHz was used for VBW. This is shown on the bandedge plots.

Antennex Antenna - 3 dBi - Peak:

Frequency: 2387 MHz Frequency: 2387 MHz

+14.10	dBuV from Plot	+	14.47	dBuV from Plot	

+30.61 ACF

+ 30.61. ACF + 3.31. Coax Loss + 3.31 Coax Loss

+20.00 dB Pad + 20.00 dB Pad

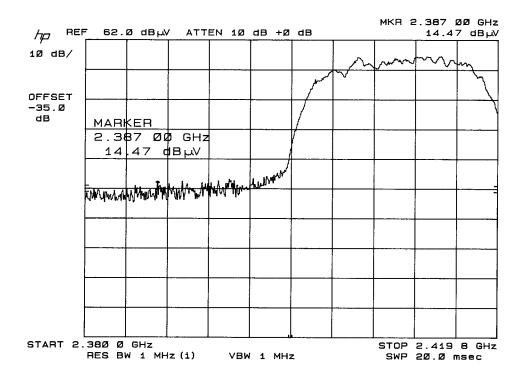
- 4.88 Pulsed CFactor 4.88 Pulsed CFactor

+ 63.51 +63.14 dBuV dBuV

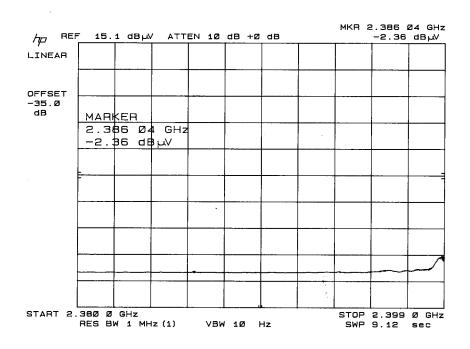
Antennex Antenna - 3 dBi - Average:

Frequency: 2386 MHz Frequency: 2483.50 MHz

- 2.36	dBuV from Plot	- 2.	03 dB1	uV from Pi	lot
+30.60	ACF	+30.	86 AC	F	
+ 3.31	Coax Loss	+ 3.	39 Coa	ax Loss	
+20.00	dB Pad	+20.	00 dB	Pad	
- 4.88	Pulsed CFactor	- 4.	88 Pu	lsed CFact	tor


+46.67 dBuV +47.34 dBuV

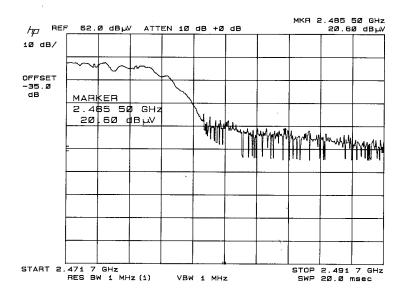
APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303


REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

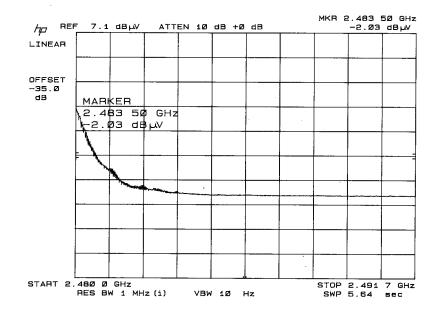
Page 15 of 25

BANDEDGE PLOT - ANTENNEX ANTENNA - PEAK

BANDEDGE PLOT - ANTENNEX ANTENNA - AVERAGE



APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303


REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 16 of 25

BANDEDGE PLOT - ANTENNEX ANTENNA - PEAK

BANDEDGE PLOT - ANTENNEX ANTENNA - AVERAGE

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 17 of 25

FCC ID: QJEWMC63000303

NAME OF TEST: RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND

REQUIREMENTS: Emissions that fall in the restricted bands (15.205). These

emissions must be less than or equal to 500 uV/m (54 dBuV/m).

TEST PROCEDURE: An in band field strength measurement of the fundamental Emission

using the RBW and detector function required by C63.4-2000 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted

band is presented below.

Above 1 GHz a RBW of 1 MHz was used as an instrument setting and 10 kHz was used for VBW. This is shown on the bandedge plots.

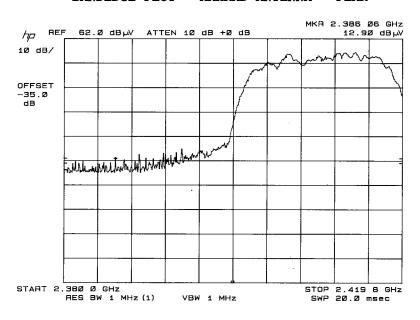
MaxRad Antenna - 0 dBi - Peak:

Frequency: 2386 MHz Frequency: 2485.5 MHz

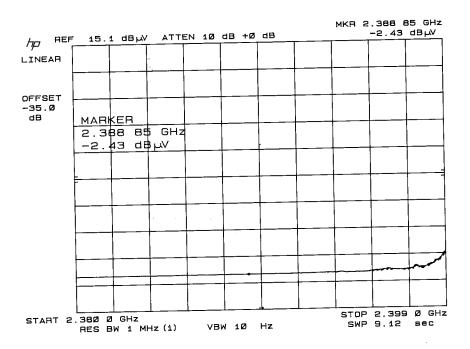
+12.90	dBuV from Plot	+20.60	dBuV from Plot
+30.60	ACF	+30.86	ACF
+ 3.31	Coax Loss	+ 3.39	Coax Loss
+20.00	dB Pad	+20.00	dB Pad
- 4.88	Pulsed CFactor	- 4.88	Pulsed CFactor
+61.93	dBuV	+69.97	dBuV

MaxRad Antenna - 3 dBi - Average:

Frequency: 2388 MHz Frequency: 2483.65 MHz


- 2.43	dBuV from Plot	- 1.85	dBuV from Plot
+30.61	ACF	+30.86	ACF
+ 3.31	Coax Loss	+ 3.39	Coax Loss
+20.00	dB Pad	+20.00	dB Pad
- 4.88	Pulsed CFactor	- 4.88	Pulsed CFactor
+46.61	dBuV	+47.52	dBuV

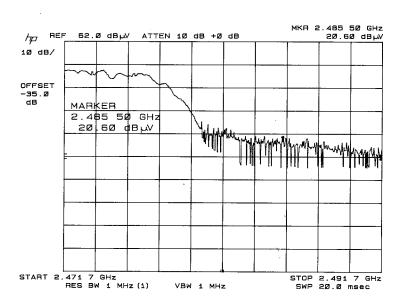
APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303


REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

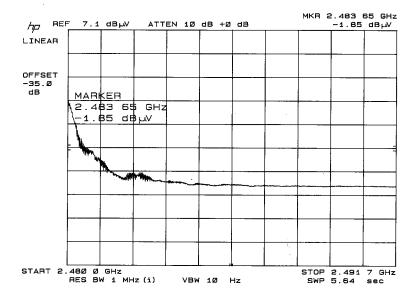
Page 18 of 25

BANDEDGE PLOT - MAXRAD ANTENNA - PEAK

BANDEDGE PLOT - MAXRAD ANTENNA - AVERAGE



APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303


REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 19 of 25

BANDEDGE PLOT - MAXRAD ANTENNA - PEAK

BANDEDGE PLOT - MAXRAD ANTENNA - AVERAGE

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 20 of 25

FCC ID: QJEWMC63000303

NAME OF TEST: RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND

REQUIREMENTS: Emissions that fall in the restricted bands (15.205). These

emissions must be less than or equal to 500 uV/m (54 dBuV/m).

TEST PROCEDURE: An in band field strength measurement of the fundamental Emission

using the RBW and detector function required by C63.4-2000 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted

band is presented below.

Above 1 GHz a RBW of 1 MHz was used as an instrument setting and 10 kHz was used for VBW. This is shown on the bandedge plots.

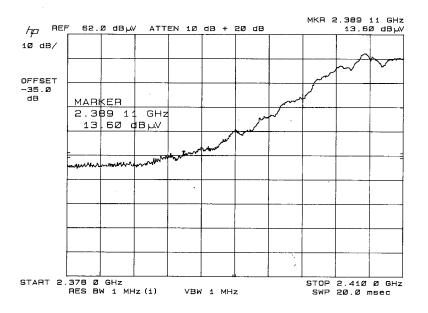
New Dipole Antenna - Peak:

Frequency: 2389 MHz Frequency: 2483.8 MHz

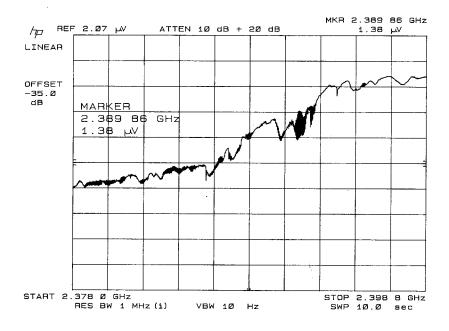
+13.60	dBuV from Plot	+24.40 dBuV f	rom Plot
+30.61	ACF	+30.61 ACF	
+ 3.31	Coax Loss	+ 3.31 Coax L	oss
+20.00	dB Pad	+20.00 dB Pad	
- 4.88	Pulsed CFactor	- 4.88 Pulsed	CFactor
+62.64	dBuV	+73.44 dBuV	

New Dipole Antenna - Average:

Frequency: 2389 MHz Frequency: 2483.5 MHz


+ 1.38	dBuV from Plot	+	4.38	dBuV fr	om Plot
+30.61	ACF	+3	0.86	ACF	
+ 3.31	Coax Loss	+	3.39	Coax Lo	SS
+20.00	dB Pad	+2	0.00	dB Pad	
- 4.88	Pulsed CFactor	_	4.88	Pulsed	CFactor
+50.42	dBuV	+5	3.75	dBuV	

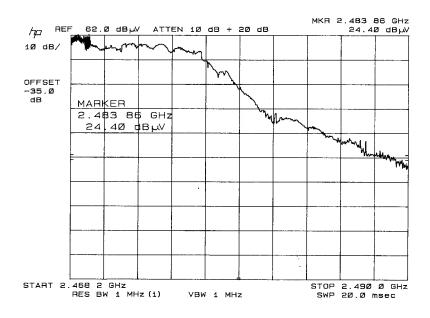
APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303


REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

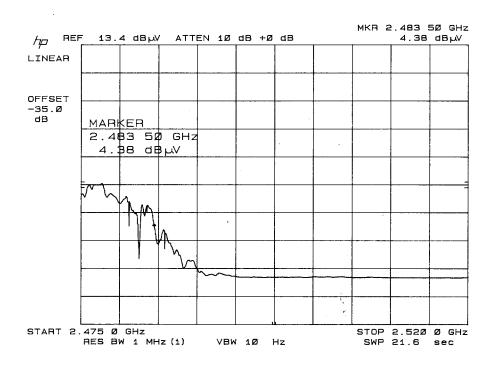
Page 21 of 25

BANDEDGE PLOT - NEW DIPOLE ANTENNA - PEAK

BANDEDGE PLOT - NEW DIPOLE ANTENNA - AVERAGE



APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303


REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 22 of 25

BANDEDGE PLOT - NEW DIPOLE ANTENNA - PEAK

BANDEDGE PLOT - NEW DIPOLE ANTENNA - AVERAGE

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 23 of 25

FCC ID: QJEWMC63000303

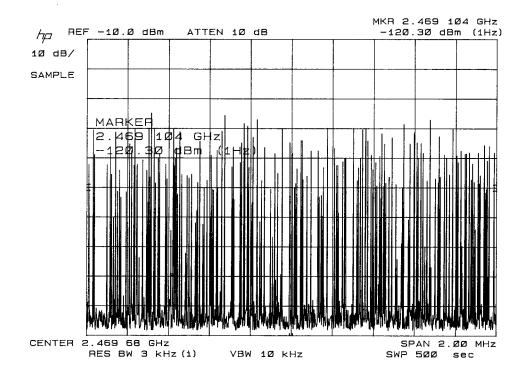
NAME OF TEST: POWER SPECTRAL DENSITY

RULES PART NO.: 15.247(d)

REQUIREMENTS: The peak level measured must be no greater than +8.0dBm.

DATA: THE PLOT IS SHOWN BELOW.

The level at 2469.68 MHz was -120.30 dBm.


-120.30 dBm

+ 20.00 dB Attn.

+ 35.00 dB Correction Factor

- 65.30 dBm

ALL CHANNELS WERE TESTED AND THE WORST CASE PRESENTED.

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 24 of 25

MPE CALCULATION

W := 330 power in Watts

D := .571 duty factor in decimal % (1=100%)

E := 30 exposure time in minutes

U := 30 use 6 for controlled and 30 for uncontrolled

$$Wexp := W \cdot D \cdot \left(\frac{E}{U}\right)$$

 $PC := \frac{E}{U}$

PC := 1 percent on time

Wexp = 188.43 Watts

Po := 188.43 mWatts

f := 2440

dBd := .85

S := 1 for all frequencies over 1500 MHz

G := dBd + 2.15

 $Gn := 10^{\frac{G}{10}}$

Gain numeric

Gn = 1.995

$$R := \sqrt{\frac{(Po \cdot Gn)}{4 \cdot \pi \cdot S}}$$

Rinches := $\frac{R}{2.54}$

R = 5.47 distance in centimeters required for compliance

Rinches = 2.153

The 0.571 duty cycle is derived from a presentation in a separate exhibit.

Conclusion:

The device complies with the MPE requirements by providing a safe separation distance between the antenna, including any radiating structure, and any persons.

APPLICANT: MESH NETWORKS FCC ID: QJEWMC63000303

REPORT #: M/MeshNetworks\395AUT3\395AUT3TestReport.doc

Page 25 of 25