

CORINEX COMMUNICATIONS CORP. IN-SITU TEST REPORT

FOR THE

BPL MEDIUM VOLTAGE ACCESS GATEWAY

FCC PART 15, SUBPART G SECTIONS 15.209 AND 15.109 CLASS A

COMPLIANCE

VOLUME 4: MEDIUM VOLTAGE 2-30MHZ OVERHEAD

DATE OF ISSUE: MAY 19, 2006

PREPARED FOR:

Corinex Communications Corp. 789 West Pender Street, Suite 670 Vancouver BC V6C 1H2 Canada

P.O. No.: 2006/SS/0018

W.O. No.: 84818

PREPARED BY:

Joyce Walker & Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: March 16 - May 2, 2006

Report No.: FC06-025 Volume 4 of 9

This report contains 9 volumes. This volume contains a total of 321 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 321 Report No.: FC06-025 Volume 4 of 9

MEDIUM VOLTAGE 2-30MHZ OVERHEAD MEASUREMENT DATA SHEETS

Page 2 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 11:15:26
Equipment: BPL MV Gateway Sequence#: 303
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N

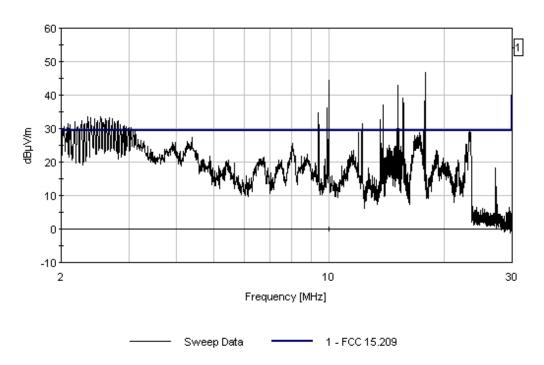
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly across from the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 10 Meter	rs	
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
1	17.185M QP	31.8	+0.2	+0.2	+8.4	-13.2	+0.0	27.4	29.5	-2.1	Paral
^	17.185M	34.7	+0.2	+0.2	+8.4	-13.2	+0.0	30.3	29.5	+0.8	Paral
3	23.284M QP	32.7	+0.2	+0.3	+7.3	-13.2	+0.0	27.3	29.5	-2.2	Paral
٨	23.284M	35.8	+0.2	+0.3	+7.3	-13.2	+0.0	30.4	29.5	+0.9	Paral
5	16.714M QP	30.3	+0.2	+0.2	+8.4	-13.2	+0.0	25.9	29.5	-3.6	Paral
^	16.714M	33.2	+0.2	+0.2	+8.4	-13.2	+0.0	28.8	29.5	-0.7	Paral
7	22.658M	29.9	+0.2	+0.3	+7.4	-13.2	+0.0	24.6	29.5	-4.9	Paral


Page 3 of 321 Report No.: FC06-025 Volume 4 of 9

8	11.413M	28.6	+0.1	+0.2	+8.9	-13.2	+0.0	24.6	29.5	-4.9	Paral
9	3.106M	28.1	+0.1	+0.1	+9.3	-13.2	+0.0	24.4	29.5	-5.1	Paral
10	4.373M QP	28.0	+0.1	+0.2	+9.2	-13.2	+0.0	24.3	29.5	-5.2	Paral
٨	4.373M	31.4	+0.1	+0.2	+9.2	-13.2	+0.0	27.7	29.5	-1.8	Paral
12	8.597M	27.4	+0.1	+0.2	+9.1	-13.2	+0.0	23.6	29.5	-5.9	Paral
13	19.225M	27.9	+0.2	+0.3	+8.2	-13.2	+0.0	23.4	29.5	-6.1	Paral
14	14.508M	27.5	+0.2	+0.2	+8.6	-13.2	+0.0	23.3	29.5	-6.2	Paral
15	7.989M QP	25.3	+0.1	+0.2	+9.1	-13.2	+0.0	21.5	29.5	-8.0	Paral
^	7.989M	30.1	+0.1	+0.2	+9.1	-13.2	+0.0	26.3	29.5	-3.2	Paral
17	5.475M	25.2	+0.1	+0.1	+9.2	-13.2	+0.0	21.4	29.5	-8.1	Paral
18	19.844M	25.5	+0.2	+0.3	+8.1	-13.2	+0.0	20.9	29.5	-8.6	Paral
19	21.723M	25.7	+0.2	+0.3	+7.7	-13.2	+0.0	20.7	29.5	-8.8	Paral
20	6.473M	24.0	+0.1	+0.1	+9.2	-13.2	+0.0	20.2	29.5	-9.3	Paral

Overhead Test Site #1 Date: 3/28/2006 Time: 11:15:26 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 303 Parallel Overhead Test Site 1 Position 1 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 5 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 11:37:50
Equipment: BPL MV Gateway Sequence#: 304
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

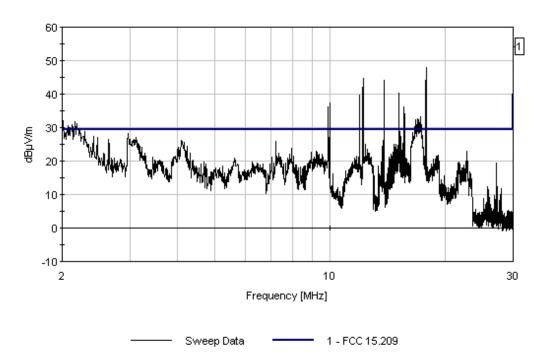
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly across from the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.197M	32.8	+0.2	+0.2	+8.4	-13.2	+0.0	28.4	29.5	-1.1	Perpe
	QP										
^	17.197M	35.0	+0.2	+0.2	+8.4	-13.2	+0.0	30.6	29.5	+1.1	Perpe
3	16.717M	31.6	+0.2	+0.2	+8.4	-13.2	+0.0	27.1	29.5	-2.4	Perpe
	QP										
^	16.717M	34.3	+0.2	+0.2	+8.4	-13.2	+0.0	29.9	29.5	+0.4	Perpe
5	17.452M	30.1	+0.2	+0.3	+8.3	-13.2	+0.0	25.7	29.5	-3.8	Perpe
	QP										_
^	17.452M	32.8	+0.2	+0.3	+8.3	-13.2	+0.0	28.4	29.5	-1.1	Perpe
											•


Page 6 of 321 Report No.: FC06-025 Volume 4 of 9

7	4.082M QP	27.7	+0.1	+0.2	+9.2	-13.2	+0.0	24.0	29.5	-5.5	Perpe
^	4.082M	31.9	+0.1	+0.2	+9.2	-13.2	+0.0	28.2	29.5	-1.3	Perpe
9	15.009M	28.1	+0.2	+0.2	+8.6	-13.2	+0.0	23.9	29.5	-5.6	Perpe
^	QP 15.009M	31.3	+0.2	+0.2	+8.6	-13.2	+0.0	27.1	29.5	-2.4	Perpe
11	22.656M	29.1	+0.2	+0.3	+7.4	-13.2	+0.0	23.8	29.5	-5.7	Perpe
12	2.972M	27.2	+0.1	+0.1	+9.3	-13.2	+0.0	23.5	29.5	-6.0	Perpe
^	<u>2.972M</u>	32.6	+0.1	+0.1	+9.3	-13.2	+0.0	28.9	29.5	-0.6	Perpe
14	7.347M	27.1	+0.1	+0.2	+9.2	-13.2	+0.0	23.4	29.5	-6.1	Perpe
15	16.367M OP	27.5	+0.2	+0.2	+8.4	-13.2	+0.0	23.1	29.5	-6.4	Perpe
^	16.367M	31.7	+0.2	+0.2	+8.4	-13.2	+0.0	27.3	29.5	-2.2	Perpe
17	19.071M	26.4	+0.2	+0.3	+8.2	-13.2	+0.0	21.9	29.5	-7.6	Perpe
18	12.702M	24.9	+0.2	+0.2	+8.8	-13.2	+0.0	20.9	29.5	-8.6	Perpe
19	11.712M	24.5	+0.1	+0.2	+8.9	-13.2	+0.0	20.5	29.5	-9.0	Perpe
20	9.732M	24.3	+0.1	+0.2	+9.1	-13.2	+0.0	20.5	29.5	-9.0	Perpe
21	8.843M	23.8	+0.1	+0.2	+9.1	-13.2	+0.0	20.0	29.5	-9.5	Perpe
22	5.740M	21.9	+0.1	+0.1	+9.2	-13.2	+0.0	18.1	29.5	-11.4	Perpe

Overhead Test Site #1 Date: 3/28/2006 Time: 11:37:50 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 304 Perpendicular Overhead Test Site 1 Position 1 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 8 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/21/2006
Test Type: Radiated Scan Time: 15:51:42
Equipment: BPL MV Gateway Sequence#: 231
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

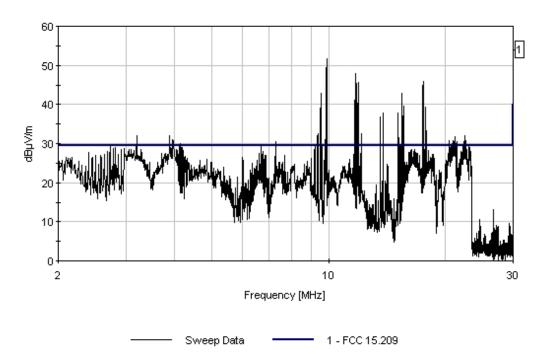
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is 40*LOG(30/14) = -13.22dB. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	22.499M	34.6	+0.2	+0.3	+7.5	-13.2	+0.0	29.4	29.5	-0.1	Paral
	QΡ										
٨	22.499M	37.1	+0.2	+0.3	+7.5	-13.2	+0.0	31.9	29.5	+2.4	Paral
3	21.253M	33.9	+0.2	+0.3	+7.8	-13.2	+0.0	29.0	29.5	-0.5	Paral
	QΡ										
٨	21.253M	36.4	+0.2	+0.3	+7.8	-13.2	+0.0	31.5	29.5	+2.0	Paral
5	23.087M	32.4	+0.2	+0.3	+7.3	-13.2	+0.0	27.0	29.5	-2.5	Paral
(QΡ										
٨	23.087M	35.6	+0.2	+0.3	+7.3	-13.2	+0.0	30.2	29.5	+0.7	Paral

Page 9 of 321 Report No.: FC06-025 Volume 4 of 9

7	3.935M	29.6	+0.1	+0.2	+9.3	-13.2	+0.0	26.0	29.5	-3.5	Paral
Q)P										
٨	3.935M	31.5	+0.1	+0.2	+9.3	-13.2	+0.0	27.9	29.5	-1.6	Paral
9	16.722M	30.4	+0.2	+0.2	+8.4	-13.2	+0.0	26.0	29.5	-3.5	Paral
Q)P										
٨	16.722M	33.7	+0.2	+0.2	+8.4	-13.2	+0.0	29.3	29.5	-0.2	Paral
11	3.140M	28.6	+0.1	+0.1	+9.3	-13.2	+0.0	24.9	29.5	-4.6	Paral
Q)P										
٨	3.140M	32.8	+0.1	+0.1	+9.3	-13.2	+0.0	29.1	29.5	-0.4	Paral
13	18.457M	28.0	+0.2	+0.3	+8.2	-13.2	+0.0	23.5	29.5	-6.0	Paral
Q)P										
٨	18.457M	31.3	+0.2	+0.3	+8.2	-13.2	+0.0	26.8	29.5	-2.7	Paral
15	6.566M	26.4	+0.1	+0.2	+9.2	-13.2	+0.0	22.7	29.5	-6.8	Paral

Overhead Test Site #1 Date: 3/21/2006 Time: 15:51:42 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 231 Parallel Overhead Test Site 1 Position 2 Medium Lines only. Notches off. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/21/2006
Test Type: Radiated Scan Time: 16:31:07
Equipment: BPL MV Gateway Sequence#: 233
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

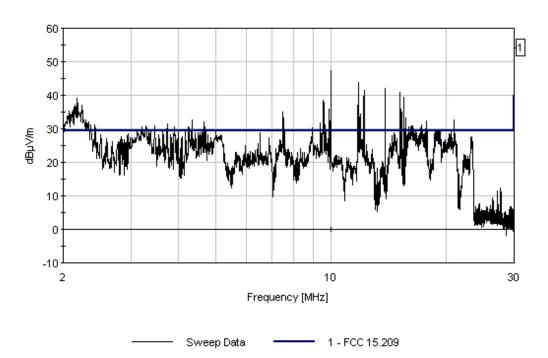
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

1. will direct. Zegerian	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

micusu	Medsurement Data. Reading listed by the					rest Distance. To Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant	
1	17.191M	33.1	+0.2	+0.2	+8.4	-13.2	+0.0	28.7	29.5	-0.8	Perpe	
	QP											
٨	17.191M	35.8	+0.2	+0.2	+8.4	-13.2	+0.0	31.4	29.5	+1.9	Perpe	
3	20.883M	33.3	+0.2	+0.3	+7.9	-13.2	+0.0	28.5	29.5	-1.0	Perpe	
	QP											
٨	20.883M	36.3	+0.2	+0.3	+7.9	-13.2	+0.0	31.5	29.5	+2.0	Perpe	
											•	
5	3.273M	31.5	+0.1	+0.1	+9.3	-13.2	+0.0	27.8	29.5	-1.7	Perpe	
	QP										-	
٨	3.273M	34.1	+0.1	+0.1	+9.3	-13.2	+0.0	30.4	29.5	+0.9	Perpe	
											•	


Page 11 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.751M QP	32.1	+0.2	+0.3	+8.2	-13.2	+0.0	27.6	29.5	-1.9	Perpe
^	18.751M	34.8	+0.2	+0.3	+8.2	-13.2	+0.0	30.3	29.5	+0.8	Perpe
9	8.905M QP	30.8	+0.1	+0.2	+9.1	-13.2	+0.0	27.0	29.5	-2.5	Perpe
^	8.905M	34.7	+0.1	+0.2	+9.1	-13.2	+0.0	30.9	29.5	+1.4	Perpe
11	14.688M QP	30.6	+0.2	+0.2	+8.6	-13.2	+0.0	26.4	29.5	-3.1	Perpe
^	14.688M	33.3	+0.2	+0.2	+8.6	-13.2	+0.0	29.1	29.5	-0.4	Perpe
13	15.949M QP	30.6	+0.2	+0.2	+8.5	-13.2	+0.0	26.3	29.5	-3.2	Perpe
٨	15.949M	33.1	+0.2	+0.2	+8.5	-13.2	+0.0	28.8	29.5	-0.7	Perpe
15	4.285M	29.5	+0.1	+0.2	+9.2	-13.2	+0.0	25.8	29.5	-3.7	Perpe
16	6.892M	29.3	+0.1	+0.2	+9.2	-13.2	+0.0	25.6	29.5	-3.9	Perpe
17	19.216M QP	29.7	+0.2	+0.3	+8.2	-13.2	+0.0	25.1	29.5	-4.4	Perpe
٨	19.216M	32.3	+0.2	+0.3	+8.2	-13.2	+0.0	27.8	29.5	-1.7	Perpe
19	20.475M QP	29.3	+0.2	+0.3	+8.0	-13.2	+0.0	24.6	29.5	-4.9	Perpe
٨	20.475M	32.4	+0.2	+0.3	+8.0	-13.2	+0.0	27.7	29.5	-1.8	Perpe
21	9.746M	28.4	+0.1	+0.2	+9.1	-13.2	+0.0	24.6	29.5	-4.9	Perpe
22	8.422M	27.8	+0.1	+0.2	+9.1	-13.2	+0.0	24.0	29.5	-5.5	Perpe
23	23.287M QP	28.9	+0.2	+0.3	+7.3	-13.2	+0.0	23.5	29.5	-6.0	Perpe
۸	23.287M	32.2	+0.2	+0.3	+7.3	-13.2	+0.0	26.8	29.5	-2.7	Perpe
25	4.832M QP	26.8	+0.1	+0.1	+9.2	-13.2	+0.0	23.0	29.5	-6.5	Perpe
٨	4.832M	31.1	+0.1	+0.1	+9.2	-13.2	+0.0	27.2	29.5	-2.3	Perpe

Overhead Test Site #1 Date: 3/21/2006 Time: 16:31:07 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 233 Perpendicular Overhead Test Site 1 Position 2 Medium Lines only. Notches off. Formal Power

Page 13 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 10:50:34
Equipment: BPL MV Gateway Sequence#: 301
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

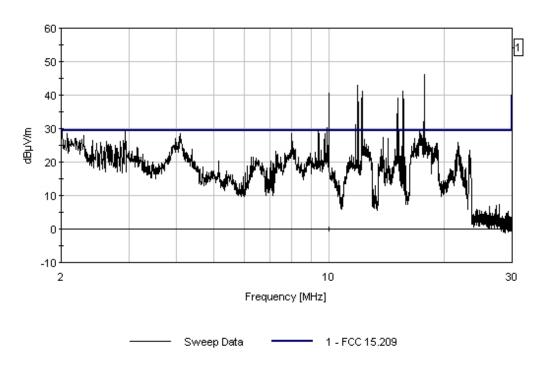
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

1,10000000	reading nated by margin.						Test Bistance. 10 Meters						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar		
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant		
1	17.184M	31.2	+0.2	+0.2	+8.4	-13.2	+0.0	26.8	29.5	-2.7	Perpe		
()P												
٨	17.184M	34.1	+0.2	+0.2	+8.4	-13.2	+0.0	29.7	29.5	+0.2	Perpe		
3	4.067M	29.9	+0.1	+0.2	+9.2	-13.2	+0.0	26.2	29.5	-3.3	Perpe		
()P										_		
٨	4.067M	32.7	+0.1	+0.2	+9.2	-13.2	+0.0	29.0	29.5	-0.5	Perpe		
5	16.713M	29.6	+0.2	+0.2	+8.4	-13.2	+0.0	25.2	29.5	-4.3	Perpe		
()P												
٨	16.713M	32.4	+0.2	+0.2	+8.4	-13.2	+0.0	27.9	29.5	-1.6	Perpe		
											_		
7	8.127M	28.9	+0.1	+0.2	+9.1	-13.2	+0.0	25.1	29.5	-4.4	Perpe		
											-		
	3 0	MHz 1 17.184M QP ^ 17.184M 3 4.067M QP ^ 4.067M 5 16.713M QP ^ 16.713M	# Freq Rdng MHz dBμV 1 17.184M 31.2 QP ^ 17.184M 34.1 3 4.067M 29.9 QP ^ 4.067M 32.7 5 16.713M 29.6 QP ^ 16.713M 32.4	# Freq Rdng T1 MHz dBµV dB 1 17.184M 31.2 +0.2 QP ^ 17.184M 34.1 +0.2 3 4.067M 29.9 +0.1 QP ^ 4.067M 32.7 +0.1 5 16.713M 29.6 +0.2 QP ^ 16.713M 32.4 +0.2	# Freq Rdng T1 T2 MHz dB μ V dB dB dB 1 17.184M 31.2 +0.2 +0.2 QP ^ 17.184M 34.1 +0.2 +0.2 3 4.067M 29.9 +0.1 +0.2 QP ^ 4.067M 32.7 +0.1 +0.2 5 16.713M 29.6 +0.2 +0.2 QP ^ 16.713M 32.4 +0.2 +0.2	# Freq Rdng T1 T2 T3 MHz dB μ V dB dB dB dB 1 17.184M 31.2 +0.2 +0.2 +8.4 QP ^ 17.184M 34.1 +0.2 +0.2 +8.4 3 4.067M 29.9 +0.1 +0.2 +9.2 QP ^ 4.067M 32.7 +0.1 +0.2 +9.2 5 16.713M 29.6 +0.2 +0.2 +8.4 QP ^ 16.713M 32.4 +0.2 +0.2 +8.4	# Freq Rdng T1 T2 T3 T4 MHz dB μ V dB dB dB dB dB dB dB 1 171.184M 31.2 +0.2 +0.2 +8.4 -13.2 QP ^ 17.184M 34.1 +0.2 +0.2 +8.4 -13.2 3 4.067M 29.9 +0.1 +0.2 +9.2 -13.2 QP ^ 4.067M 32.7 +0.1 +0.2 +9.2 -13.2 5 16.713M 29.6 +0.2 +0.2 +8.4 -13.2 QP ^ 16.713M 32.4 +0.2 +0.2 +8.4 -13.2	# Freq Rdng $\frac{1}{4}$	# Freq Rdng $\frac{1}{dB} = \frac{1}{dB} = \frac{1}{dB}$	# Freq Rdng dB μ V dB dB dB dB dB dB Table dB μ V/m dB μ V/m l 1.17.184M 31.2 +0.2 +0.2 +8.4 -13.2 +0.0 26.8 29.5 QP ^ 17.184M 34.1 +0.2 +0.2 +8.4 -13.2 +0.0 29.7 29.5 3 4.067M 29.9 +0.1 +0.2 +9.2 -13.2 +0.0 26.2 29.5 QP ^ 4.067M 32.7 +0.1 +0.2 +9.2 -13.2 +0.0 29.0 29.5 5 16.713M 29.6 +0.2 +0.2 +8.4 -13.2 +0.0 25.2 29.5 QP ^ 16.713M 32.4 +0.2 +0.2 +8.4 -13.2 +0.0 27.9 29.5	# Freq Rdng dB μ V dB dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB dB Table dB μ V/m dB dB dB dB dB Table dB μ V/m dB dB dB dB dB dB Table dB μ V/m dB dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB dB Table dB μ V/m dB dB dB dB dB dB dB Table dB μ V/m dB		


Page 14 of 321 Report No.: FC06-025 Volume 4 of 9

8	12.347M QP	28.5	+0.2	+0.2	+8.8	-13.2	+0.0	24.5	29.5	-5.0	Perpe
^	12.347M	31.3	+0.2	+0.2	+8.8	-13.2	+0.0	27.3	29.5	-2.2	Perpe
10	17.957M QP	28.4	+0.2	+0.3	+8.3	-13.2	+0.0	24.0	29.5	-5.5	Perpe
^	17.957M	31.1	+0.2	+0.3	+8.3	-13.2	+0.0	26.7	29.5	-2.8	Perpe
12	13.822M QP	28.1	+0.2	+0.2	+8.7	-13.2	+0.0	24.0	29.5	-5.5	Perpe
^	13.822M	35.4	+0.2	+0.2	+8.7	-13.2	+0.0	31.2	29.5	+1.7	Perpe
14	19.067M QP	27.5	+0.2	+0.3	+8.2	-13.2	+0.0	23.0	29.5	-6.5	Perpe
^	19.067M	30.3	+0.2	+0.3	+8.2	-13.2	+0.0	25.8	29.5	-3.7	Perpe
16	21.732M QP	27.8	+0.2	+0.3	+7.7	-13.2	+0.0	22.8	29.5	-6.7	Perpe
^	21.732M	30.7	+0.2	+0.3	+7.7	-13.2	+0.0	25.7	29.5	-3.8	Perpe
18	18.381M QP	27.0	+0.2	+0.3	+8.2	-13.2	+0.0	22.5	29.5	-7.0	Perpe
^	18.381M	30.2	+0.2	+0.3	+8.2	-13.2	+0.0	25.7	29.5	-3.8	Perpe
20	9.721M	26.0	+0.1	+0.2	+9.1	-13.2	+0.0	22.2	29.5	-7.3	Perpe
21	14.793M QP	26.3	+0.2	+0.2	+8.6	-13.2	+0.0	22.1	29.5	-7.4	Perpe
^	14.793M	30.8	+0.2	+0.2	+8.6	-13.2	+0.0	26.6	29.5	-2.9	Perpe
23	6.490M	25.7	+0.1	+0.2	+9.2	-13.2	+0.0	22.0	29.5	-7.5	Perpe
24	11.318M	25.3	+0.1	+0.2	+8.9	-13.2	+0.0	21.3	29.5	-8.2	Perpe
25	8.911M	23.8	+0.1	+0.2	+9.1	-13.2	+0.0	20.0	29.5	-9.5	Perpe
26	23.437M	23.0	+0.2	+0.3	+7.2	-13.2	+0.0	17.5	29.5	-12.0	Perpe

Overhead Test Site #1 Date: 3/28/2006 Time: 10:50:34 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 301 Perpendicular Overhead Test Site 1 Position 3 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 16 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 10:58:13
Equipment: BPL MV Gateway Sequence#: 302
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

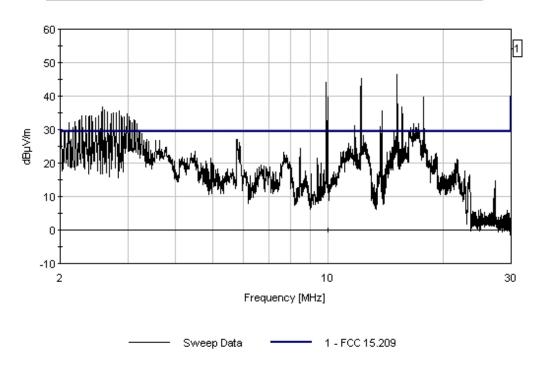
Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Measurement Data. Reading listed b					by margin: Test Distance: 10 Weters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.405M	33.8	+0.2	+0.2	+8.4	-13.2	+0.0	29.4	29.5	-0.1	Paral
	QP										
٨	16.405M	37.1	+0.2	+0.2	+8.4	-13.2	+0.0	32.7	29.5	+3.2	Paral
3	17.185M	33.3	+0.2	+0.2	+8.4	-13.2	+0.0	28.8	29.5	-0.7	Paral
	QP										
^	17.185M	36.4	+0.2	+0.2	+8.4	-13.2	+0.0	32.0	29.5	+2.5	Paral
5	12.349M	30.0	+0.2	+0.2	+8.8	-13.2	+0.0	26.0	29.5	-3.5	Paral
	QΡ										
^	12.349M	32.5	+0.2	+0.2	+8.8	-13.2	+0.0	28.5	29.5	-1.0	Paral

Page 17 of 321 Report No.: FC06-025 Volume 4 of 9



7	14.843M	29.4	+0.2	+0.2	+8.6	-13.2	+0.0	25.2	29.5	-4.3	Paral
(QP										
^	14.843M	33.5	+0.2	+0.2	+8.6	-13.2	+0.0	29.3	29.5	-0.2	Paral
9	10.940M	28.6	+0.1	+0.2	+9.0	-13.2	+0.0	24.7	29.5	-4.8	Paral
10	15.939M QP	28.2	+0.2	+0.2	+8.5	-13.2	+0.0	23.9	29.5	-5.6	Paral
^	15.939M	31.0	+0.2	+0.2	+8.5	-13.2	+0.0	26.7	29.5	-2.8	Paral
12	3.061M	27.4	+0.1	+0.1	+9.3	-13.2	+0.0	23.7	29.5	-5.8	Paral
13	7.663M	27.1	+0.1	+0.2	+9.1	-13.2	+0.0	23.3	29.5	-6.2	Paral
14	17.956M	27.4	+0.2	+0.3	+8.3	-13.2	+0.0	23.0	29.5	-6.5	Paral
	QP										
^	17.956M	30.8	+0.2	+0.3	+8.3	-13.2	+0.0	26.4	29.5	-3.1	Paral
16	11.298M QP	26.8	+0.1	+0.2	+8.9	-13.2	+0.0	22.8	29.5	-6.7	Paral
^	11.298M	31.3	+0.1	+0.2	+8.9	-13.2	+0.0	27.3	29.5	-2.2	Paral
18	19.073M	27.0	+0.2	+0.3	+8.2	-13.2	+0.0	22.5	29.5	-7.0	Paral
19	21.724M	25.7	+0.2	+0.3	+7.7	-13.2	+0.0	20.7	29.5	-8.8	Paral
20	22.661M	24.3	+0.2	+0.3	+7.4	-13.2	+0.0	19.0	29.5	-10.5	Paral
21	23.447M	23.8	+0.2	+0.3	+7.2	-13.2	+0.0	18.3	29.5	-11.2	Paral

Page 18 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/28/2006 Time: 10:58:13 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 302 Parallel Overhead Test Site 1 Position 3 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 19 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/28/2006Test Type:Radiated ScanTime:10:26:15Equipment:BPL MV GatewaySequence#:299Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

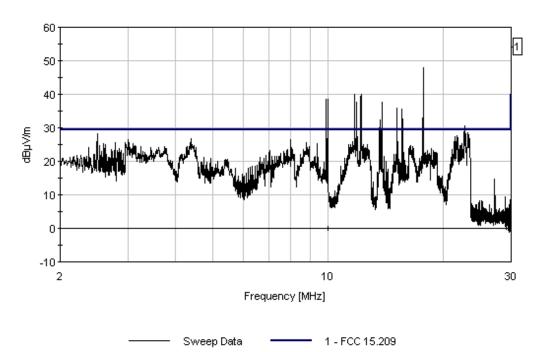
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Measur	Measurement Data: Reading listed by margin.						Test Distance. To Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar		
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant		
1	22.659M	32.9	+0.2	+0.3	+7.4	-13.2	+0.0	27.5	29.5	-2.0	Paral		
	QP												
^	22.659M	35.9	+0.2	+0.3	+7.4	-13.2	+0.0	30.6	29.5	+1.1	Paral		
3	21.728M	30.7	+0.2	+0.3	+7.7	-13.2	+0.0	25.7	29.5	-3.8	Paral		
(QP												
^	21.728M	33.6	+0.2	+0.3	+7.7	-13.2	+0.0	28.6	29.5	-0.9	Paral		
5	18.345M	29.9	+0.2	+0.3	+8.3	-13.2	+0.0	25.5	29.5	-4.0	Paral		


Page 20 of 321 Report No.: FC06-025 Volume 4 of 9

6	23.085M QP	30.8	+0.2	+0.3	+7.3	-13.2	+0.0	25.4	29.5	-4.1	Paral
٨	23.085M	33.7	+0.2	+0.3	+7.3	-13.2	+0.0	28.3	29.5	-1.2	Paral
8	21.387M QP	30.2	+0.2	+0.3	+7.7	-13.2	+0.0	25.2	29.5	-4.3	Paral
^	21.387M	33.2	+0.2	+0.3	+7.7	-13.2	+0.0	28.2	29.5	-1.3	Paral
10	19.068M	28.8	+0.2	+0.3	+8.2	-13.2	+0.0	24.3	29.5	-5.2	Paral
11	16.263M QP	28.5	+0.2	+0.2	+8.5	-13.2	+0.0	24.2	29.5	-5.3	Paral
٨	16.263M	32.3	+0.2	+0.2	+8.5	-13.2	+0.0	28.0	29.5	-1.5	Paral
13	4.380M QP	27.5	+0.1	+0.2	+9.2	-13.2	+0.0	23.8	29.5	-5.7	Paral
٨	4.380M	31.6	+0.1	+0.2	+9.2	-13.2	+0.0	27.9	29.5	-1.6	Paral
15	12.659M QP	27.1	+0.2	+0.2	+8.8	-13.2	+0.0	23.1	29.5	-6.4	Paral
٨	12.659M	29.7	+0.2	+0.2	+8.8	-13.2	+0.0	25.7	29.5	-3.8	Paral
17	8.745M QP	26.9	+0.1	+0.2	+9.1	-13.2	+0.0	23.1	29.5	-6.4	Paral
٨	8.745M	30.2	+0.1	+0.2	+9.1	-13.2	+0.0	26.3	29.5	-3.2	Paral
19	7.665M	26.7	+0.1	+0.2	+9.1	-13.2	+0.0	22.9	29.5	-6.6	Paral
20	3.548M	26.4	+0.1	+0.2	+9.3	-13.2	+0.0	22.8	29.5	-6.7	Paral
21	11.559M OP	26.7	+0.1	+0.2	+8.9	-13.2	+0.0	22.6	29.5	-6.9	Paral
٨	11.559M	30.1	+0.1	+0.2	+8.9	-13.2	+0.0	26.1	29.5	-3.4	Paral
23	5.408M	24.5	+0.1	+0.1	+9.2	-13.2	+0.0	20.7	29.5	-8.8	Paral

Overhead Test Site #1 Date: 3/28/2006 Time: 10:26:15 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 299 Parallel Overhead Test Site 1 Position 4 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 22 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 10:35:10
Equipment: BPL MV Gateway Sequence#: 300
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			-
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

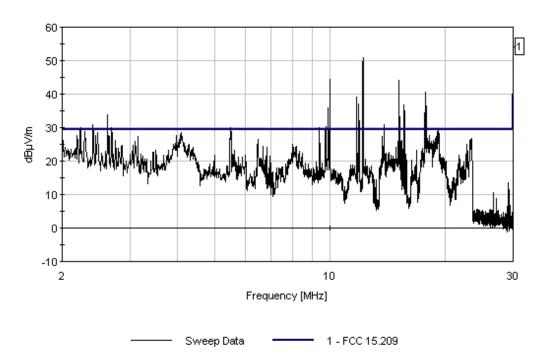
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

111000000	ement Data.	14,	saamg ms	tea of inc	415111.			Distance	c. 10 1,1ctc1		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	19.068M	31.4	+0.2	+0.3	+8.2	-13.2	+0.0	26.9	29.5	-2.6	Perpe
(QP										
٨	19.068M	34.0	+0.2	+0.3	+8.2	-13.2	+0.0	29.5	29.5	+0.0	Perpe
3	4.070M	29.8	+0.1	+0.2	+9.2	-13.2	+0.0	26.1	29.5	-3.4	Perpe
	QP										
^	4.070M	33.6	+0.1	+0.2	+9.2	-13.2	+0.0	29.9	29.5	+0.4	Perpe
5	8.131M	28.9	+0.1	+0.2	+9.1	-13.2	+0.0	25.1	29.5	-4.4	Perpe
6	23.287M	29.8	+0.2	+0.3	+7.3	-13.2	+0.0	24.4	29.5	-5.1	Perpe
	QP										
^	23.287M	33.2	+0.2	+0.3	+7.3	-13.2	+0.0	27.8	29.5	-1.7	Perpe
											-


Page 23 of 321 Report No.: FC06-025 Volume 4 of 9

8	17.954M	28.7	+0.2	+0.3	+8.3	-13.2	+0.0	24.3	29.5	-5.2	Perpe
	QP										
^	17.954M	32.1	+0.2	+0.3	+8.3	-13.2	+0.0	27.7	29.5	-1.8	Perpe
10	21.728M	27.9	+0.2	+0.3	+7.7	-13.2	+0.0	22.9	29.5	-6.6	Perpe
11	22.660M QP	27.9	+0.2	+0.3	+7.4	-13.2	+0.0	22.6	29.5	-6.9	Perpe
^	22.660M	31.3	+0.2	+0.3	+7.4	-13.2	+0.0	26.0	29.5	-3.5	Perpe
13	17.397M	25.3	+0.2	+0.3	+8.3	-13.2	+0.0	20.9	29.5	-8.6	Perpe
14	14.532M	24.5	+0.2	+0.2	+8.6	-13.2	+0.0	20.3	29.5	-9.2	Perpe
15	6.541M	21.3	+0.1	+0.2	+9.2	-13.2	+0.0	17.6	29.5	-11.9	Perpe
16	11.420M	21.4	+0.1	+0.2	+8.9	-13.2	+0.0	17.4	29.5	-12.1	Perpe
17	10.332M	19.6	+0.1	+0.2	+9.1	-13.2	+0.0	15.8	29.5	-13.7	Perpe
18	9.683M	19.6	+0.1	+0.2	+9.1	-13.2	+0.0	15.8	29.5	-13.7	Perpe
19	12.773M	18.5	+0.2	+0.2	+8.8	-13.2	+0.0	14.5	29.5	-15.0	Perpe

Overhead Test Site #1 Date: 3/28/2006 Time: 10:35:10 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 300 Perpendicular Overhead Test Site 1 Position 4 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 25 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 16:31:08
Equipment: BPL MV Gateway Sequence#: 293
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

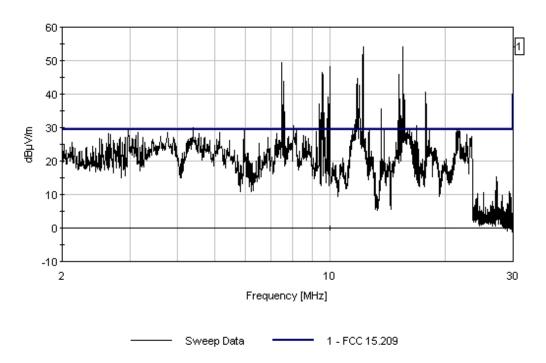
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

1. will direct. Zegerian	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

1,100000	<u> </u>		admig mo		41 S 1111.			or 2 isterio	. 10 1.1000		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.936M	33.1	+0.2	+0.2	+8.5	-13.2	+0.0	28.8	29.5	-0.7	Paral
	QΡ										
٨	15.936M	35.0	+0.2	+0.2	+8.5	-13.2	+0.0	30.7	29.5	+1.2	Paral
3	11.559M	32.1	+0.1	+0.2	+8.9	-13.2	+0.0	28.1	29.5	-1.4	Paral
	QP										
٨	11.559M	35.2	+0.1	+0.2	+8.9	-13.2	+0.0	31.2	29.5	+1.7	Paral
5	21.724M	31.8	+0.2	+0.3	+7.7	-13.2	+0.0	26.8	29.5	-2.7	Paral
	QΡ										
٨	21.724M	34.5	+0.2	+0.3	+7.7	-13.2	+0.0	29.5	29.5	+0.0	Paral


Page 26 of 321 Report No.: FC06-025 Volume 4 of 9

7	4.375M QP	30.2	+0.1	+0.2	+9.2	-13.2	+0.0	26.5	29.5	-3.0	Paral
^	4.375M	34.0	+0.1	+0.2	+9.2	-13.2	+0.0	30.3	29.5	+0.8	Paral
9	3.748M QP	30.0	+0.1	+0.2	+9.3	-13.2	+0.0	26.4	29.5	-3.1	Paral
^	3.748M	33.5	+0.1	+0.2	+9.3	-13.2	+0.0	29.9	29.5	+0.4	Paral
11	5.162M QP	29.5	+0.1	+0.1	+9.2	-13.2	+0.0	25.7	29.5	-3.8	Paral
۸	5.162M	33.3	+0.1	+0.1	+9.2	-13.2	+0.0	29.5	29.5	+0.0	Paral
13	17.964M	29.0	+0.2	+0.3	+8.3	-13.2	+0.0	24.6	29.5	-4.9	Paral
14	23.157M QP	29.8	+0.2	+0.3	+7.3	-13.2	+0.0	24.4	29.5	-5.1	Paral
٨	23.157M	32.9	+0.2	+0.3	+7.3	-13.2	+0.0	27.5	29.5	-2.0	Paral
16	8.597M QP	28.1	+0.1	+0.2	+9.1	-13.2	+0.0	24.3	29.5	-5.2	Paral
^	8.597M	32.1	+0.1	+0.2	+9.1	-13.2	+0.0	28.3	29.5	-1.2	Paral
18	22.666M QP	29.1	+0.2	+0.3	+7.4	-13.2	+0.0	23.8	29.5	-5.7	Paral
٨	22.666M	31.9	+0.2	+0.3	+7.4	-13.2	+0.0	26.6	29.5	-2.9	Paral
20	18.339M	27.9	+0.2	+0.3	+8.3	-13.2	+0.0	23.5	29.5	-6.0	Paral
21	8.012M QP	26.6	+0.1	+0.2	+9.1	-13.2	+0.0	22.8	29.5	-6.7	Paral
٨	8.012M	36.5	+0.1	+0.2	+9.1	-13.2	+0.0	32.7	29.5	+3.2	Paral
23	12.034M	26.8	+0.1	+0.2	+8.9	-13.2	+0.0	22.8	29.5	-6.7	Paral
24	18.759M	26.7	+0.2	+0.3	+8.2	-13.2	+0.0	22.2	29.5	-7.3	Paral
25	14.819M	25.9	+0.2	+0.2	+8.6	-13.2	+0.0	21.7	29.5	-7.8	Paral
26	12.424M	25.4	+0.2	+0.2	+8.8	-13.2	+0.0	21.4	29.5	-8.1	Paral
27	19.759M	24.6	+0.2	+0.3	+8.1	-13.2	+0.0	20.0	29.5	-9.5	Paral
-											

Overhead Test Site #1 Date: 3/23/2006 Time: 16:31:08 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 293 Parallel Overhead Test Site 1 Position 5 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 28 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 16:41:13
Equipment: BPL MV Gateway Sequence#: 294
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

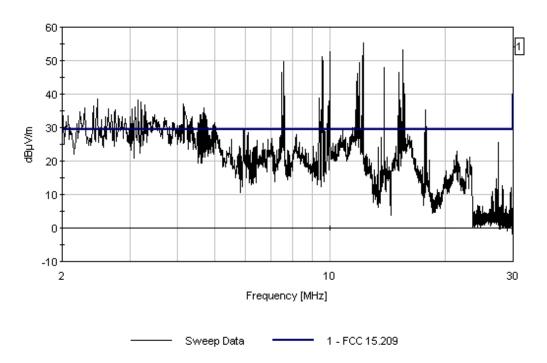
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

moun	m emem Dam.	100	caamg ns	tea by fine	1151111.		- 1 (Distance	c. 10 ivictor		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1 11.564M	31.3	+0.1	+0.2	+8.9	-13.2	+0.0	27.3	29.5	-2.2	Perpe
	QP										
	^ 11.564M	34.3	+0.1	+0.2	+8.9	-13.2	+0.0	30.3	29.5	+0.8	Perpe
	3 10.779M	30.5	+0.1	+0.2	+9.0	-13.2	+0.0	26.6	29.5	-2.9	Perpe
	QP										
	^ 10.779M	33.3	+0.1	+0.2	+9.0	-13.2	+0.0	29.4	29.5	-0.1	Perpe
											•
	5 3.946M	28.7	+0.1	+0.2	+9.3	-13.2	+0.0	25.1	29.5	-4.4	Perpe
	QP										•
	^ 3.946M	36.3	+0.1	+0.2	+9.3	-13.2	+0.0	32.7	29.5	+3.2	Perpe
											•


Page 29 of 321 Report No.: FC06-025 Volume 4 of 9

7	15.941M QP	29.3	+0.2	+0.2	+8.5	-13.2	+0.0	25.0	29.5	-4.5	Perpe
٨	15.941M	32.1	+0.2	+0.2	+8.5	-13.2	+0.0	27.8	29.5	-1.7	Perpe
9	8.126M QP	28.5	+0.1	+0.2	+9.1	-13.2	+0.0	24.7	29.5	-4.8	Perpe
٨	8.126M	31.8	+0.1	+0.2	+9.1	-13.2	+0.0	28.0	29.5	-1.5	Perpe
11	5.158M QP	27.6	+0.1	+0.1	+9.2	-13.2	+0.0	23.8	29.5	-5.7	Perpe
٨	5.158M	31.5	+0.1	+0.1	+9.2	-13.2	+0.0	27.7	29.5	-1.8	Perpe
13	4.881M QP	27.2	+0.1	+0.1	+9.2	-13.2	+0.0	23.4	29.5	-6.1	Perpe
٨	4.881M	34.4	+0.1	+0.1	+9.2	-13.2	+0.0	30.6	29.5	+1.1	Perpe
15	5.472M QP	25.4	+0.1	+0.1	+9.2	-13.2	+0.0	21.6	29.5	-7.9	Perpe
٨	5.472M	29.8	+0.1	+0.1	+9.2	-13.2	+0.0	26.0	29.5	-3.5	Perpe
17	21.366M	26.5	+0.2	+0.3	+7.7	-13.2	+0.0	21.5	29.5	-8.0	Perpe
18	23.096M	26.4	+0.2	+0.3	+7.3	-13.2	+0.0	21.0	29.5	-8.5	Perpe
19	22.661M	26.1	+0.2	+0.3	+7.4	-13.2	+0.0	20.8	29.5	-8.7	Perpe
20	6.984M QP	23.9	+0.1	+0.2	+9.2	-13.2	+0.0	20.2	29.5	-9.3	Perpe
٨	6.984M	32.0	+0.1	+0.2	+9.2	-13.2	+0.0	28.3	29.5	-1.2	Perpe
22	14.794M	23.0	+0.2	+0.2	+8.6	-13.2	+0.0	18.8	29.5	-10.7	Perpe
23	12.599M	21.8	+0.2	+0.2	+8.8	-13.2	+0.0	17.8	29.5	-11.7	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 16:41:13 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 294 Perpendicular Overhead Test Site 1 Position 5 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 31 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 10:01:10
Equipment: BPL MV Gateway Sequence#: 297
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

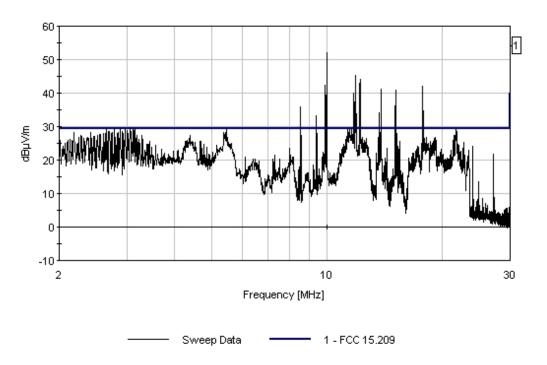
Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

17100000	rement Data.	111	saamg ns	tea by me	<u> </u>		1,	Distance	c. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	5.473M	30.1	+0.1	+0.1	+9.2	-13.2	+0.0	26.2	29.5	-3.3	Paral
	QP										
^	5.473M	33.3	+0.1	+0.1	+9.2	-13.2	+0.0	29.5	29.5	+0.0	Paral
3	18.124M	30.5	+0.2	+0.3	+8.3	-13.2	+0.0	26.1	29.5	-3.4	Paral
	QP										
^	18.124M	33.1	+0.2	+0.3	+8.3	-13.2	+0.0	28.7	29.5	-0.8	Paral
5	11.562M	29.8	+0.1	+0.2	+8.9	-13.2	+0.0	25.8	29.5	-3.7	Paral
	QP										
٨	11.562M	33.0	+0.1	+0.2	+8.9	-13.2	+0.0	29.0	29.5	-0.5	Paral

Page 32 of 321 Report No.: FC06-025 Volume 4 of 9



7	19.102M	29.3	+0.2	+0.3	+8.2	-13.2	+0.0	24.8	29.5	-4.7	Paral
	QΡ										
٨	19.102M	32.8	+0.2	+0.3	+8.2	-13.2	+0.0	28.3	29.5	-1.2	Paral
9	21.654M OP	29.4	+0.2	+0.3	+7.7	-13.2	+0.0	24.4	29.5	-5.1	Paral
^	21.654M	33.3	+0.2	+0.3	+7.7	-13.2	+0.0	28.3	29.5	-1.2	Paral
11	12.656M QP	28.4	+0.2	+0.2	+8.8	-13.2	+0.0	24.4	29.5	-5.1	Paral
^	12.656M	30.8	+0.2	+0.2	+8.8	-13.2	+0.0	26.8	29.5	-2.7	Paral
13	4.376M QP	28.1	+0.1	+0.2	+9.2	-13.2	+0.0	24.4	29.5	-5.1	Paral
٨	4.376M	32.1	+0.1	+0.2	+9.2	-13.2	+0.0	28.4	29.5	-1.1	Paral
15	23.439M QP	28.4	+0.2	+0.3	+7.2	-13.2	+0.0	22.9	29.5	-6.6	Paral
^	23.439M	31.7	+0.2	+0.3	+7.2	-13.2	+0.0	26.2	29.5	-3.3	Paral
17	17.337M	26.7	+0.2	+0.3	+8.3	-13.2	+0.0	22.3	29.5	-7.2	Paral
18	19.840M	26.7	+0.2	+0.3	+8.1	-13.2	+0.0	22.1	29.5	-7.4	Paral
19	8.046M	25.8	+0.1	+0.2	+9.1	-13.2	+0.0	22.0	29.5	-7.5	Paral
20	6.421M	23.7	+0.1	+0.1	+9.2	-13.2	+0.0	19.9	29.5	-9.6	Paral

Page 33 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/28/2006 Time: 10:01:10 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 297 Parallel Overhead Test Site 1 Position 6 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 34 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/28/2006Test Type:Radiated ScanTime:10:06:26Equipment:BPL MV GatewaySequence#:298Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

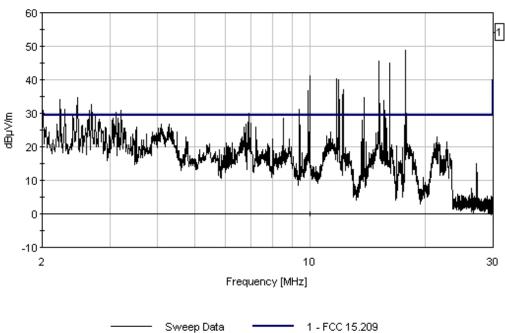
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


mensur	mem Dam.	reading noted by margin.				Test Distance. To Weters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	11.297M	28.8	+0.1	+0.2	+8.9	-13.2	+0.0	24.8	29.5	-4.7	Perpe
2	17.953M	27.0	+0.2	+0.3	+8.3	-13.2	+0.0	22.6	29.5	-6.9	Perpe
3	14.994M	26.8	+0.2	+0.2	+8.6	-13.2	+0.0	22.6	29.5	-6.9	Perpe
4 Q	4.086M P	26.2	+0.1	+0.2	+9.2	-13.2	+0.0	22.5	29.5	-7.0	Perpe
۸	4.086M	30.5	+0.1	+0.2	+9.2	-13.2	+0.0	26.8	29.5	-2.7	Perpe
6	21.373M	27.1	+0.2	+0.3	+7.7	-13.2	+0.0	22.1	29.5	-7.4	Perpe

Page 35 of 321 Report No.: FC06-025 Volume 4 of 9

7	22.659M	26.4	+0.2	+0.3	+7.4	-13.2	+0.0	21.1	29.5	-8.4	Perpe
8	6.910M	24.4	+0.1	+0.2	+9.2	-13.2	+0.0	20.7	29.5	-8.8	Perpe
0	0.910IVI	24.4	⊤0.1	+0.2	±9.2	-13.2	+0.0	20.7	29.3	-0.0	1 cipc
9	5.376M	23.8	+0.1	+0.1	+9.2	-13.2	+0.0	20.0	29.5	-9.5	Perpe
10	12.347M	23.5	+0.2	+0.2	+8.8	-13.2	+0.0	19.5	29.5	-10.0	Perpe
10	12.5 1711	23.3		10.2	10.0	13.2	10.0	17.5	27.5	10.0	respe
11	16.258M	23.4	+0.2	+0.2	+8.5	-13.2	+0.0	19.1	29.5	-10.4	Perpe
12	23.057M	22.8	+0.2	+0.3	+7.3	-13.2	+0.0	17.4	29.5	-12.1	Perpe
12	23.03/111	22.0	10.2	10.3	17.5	13.2	10.0	17.7	27.3	12.1	respe

Overhead Test Site #1 Date: 3/28/2006 Time: 10:06:26 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 298 Perpendicular Overhead Test Site 1 Position 6 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 15:53:19
Equipment: BPL MV Gateway Sequence#: 289
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

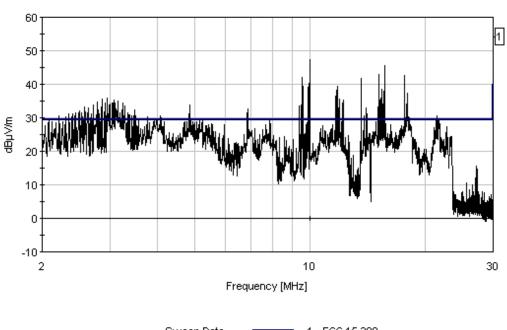
Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

111000000	ement Data.	111	admig mo	tea ey ma				DISCUITE.	5. 10 mileter		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.955M	33.8	+0.2	+0.3	+8.3	-13.2	+0.0	29.3	29.5	-0.2	Paral
(QP										
^	17.955M	36.9	+0.2	+0.3	+8.3	-13.2	+0.0	32.5	29.5	+3.0	Paral
3	3.123M	32.9	+0.1	+0.1	+9.3	-13.2	+0.0	29.2	29.5	-0.3	Paral
()P										
^	3.123M	39.6	+0.1	+0.1	+9.3	-13.2	+0.0	35.9	29.5	+6.4	Paral
5	21.383M	32.5	+0.2	+0.3	+7.7	-13.2	+0.0	27.5	29.5	-2.0	Paral
(QP										
^	21.383M	35.1	+0.2	+0.3	+7.7	-13.2	+0.0	30.1	29.5	+0.6	Paral
	3 (MHz 1 17.955M QP ^ 17.955M 3 3.123M QP ^ 3.123M 5 21.383M QP	# Freq Rdng MHz dBµV 1 17.955M 33.8 QP ^ 17.955M 36.9 3 3.123M 32.9 QP ^ 3.123M 39.6 5 21.383M 32.5 QP		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# Freq Rdng MHz dB dB dB dB dB Table 1 17.955M 33.8 +0.2 +0.3 +8.3 -13.2 +0.0 QP ^ 17.955M 36.9 +0.2 +0.3 +8.3 -13.2 +0.0 3 3.123M 32.9 +0.1 +0.1 +9.3 -13.2 +0.0 QP ^ 3.123M 39.6 +0.1 +0.1 +9.3 -13.2 +0.0 5 21.383M 32.5 +0.2 +0.3 +7.7 -13.2 +0.0 QP	# Freq Rdng MHz dB μ V dB dB dB dB dB Table dB μ V/m 1 17.955M 33.8 +0.2 +0.3 +8.3 -13.2 +0.0 29.3 QP ^ 17.955M 36.9 +0.2 +0.3 +8.3 -13.2 +0.0 32.5 3 3.123M 32.9 +0.1 +0.1 +9.3 -13.2 +0.0 29.2 QP ^ 3.123M 39.6 +0.1 +0.1 +9.3 -13.2 +0.0 35.9 5 21.383M 32.5 +0.2 +0.3 +7.7 -13.2 +0.0 27.5 QP	# Freq Rdng dB μ V dB dB dB dB dB Table dB μ V/m dB μ V/m l 1.7.955M 33.8 +0.2 +0.3 +8.3 -13.2 +0.0 29.3 29.5 QP ^ 17.955M 36.9 +0.2 +0.3 +8.3 -13.2 +0.0 32.5 29.5 3 3.123M 32.9 +0.1 +0.1 +9.3 -13.2 +0.0 29.2 29.5 QP ^ 3.123M 39.6 +0.1 +0.1 +9.3 -13.2 +0.0 35.9 29.5 5 21.383M 32.5 +0.2 +0.3 +7.7 -13.2 +0.0 27.5 29.5 QP	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 37 of 321 Report No.: FC06-025 Volume 4 of 9


7 5 QP	.158M	30.0	+0.1	+0.1	+9.2	-13.2	+0.0	26.2	29.5	-3.3	Paral
	.158M	34.1	+0.1	+0.1	+9.2	-13.2	+0.0	30.3	29.5	+0.8	Paral
9 21 QP	.634M	31.1	+0.2	+0.3	+7.7	-13.2	+0.0	26.1	29.5	-3.4	Paral
	.634M	34.8	+0.2	+0.3	+7.7	-13.2	+0.0	29.8	29.5	+0.3	Paral
11 14 QP	.847M	30.1	+0.2	+0.2	+8.6	-13.2	+0.0	25.9	29.5	-3.6	Paral
	.847M	33.2	+0.2	+0.2	+8.6	-13.2	+0.0	29.0	29.5	-0.5	Paral
13 10 QP).775M	29.6	+0.1	+0.2	+9.0	-13.2	+0.0	25.7	29.5	-3.8	Paral
).775M	32.3	+0.1	+0.2	+9.0	-13.2	+0.0	28.4	29.5	-1.1	Paral
15 14	.225M	29.1	+0.2	+0.2	+8.7	-13.2	+0.0	25.0	29.5	-4.5	Paral
16 23	3.336M	30.3	+0.2	+0.3	+7.3	-13.2	+0.0	24.9	29.5	-4.6	Paral
17 22 QP	2.660M	29.7	+0.2	+0.3	+7.4	-13.2	+0.0	24.4	29.5	-5.1	Paral
	2.660M	33.2	+0.2	+0.3	+7.4	-13.2	+0.0	27.9	29.5	-1.6	Paral
19 17 QP	7.483M	28.8	+0.2	+0.3	+8.3	-13.2	+0.0	24.4	29.5	-5.1	Paral
	7.483M	31.2	+0.2	+0.3	+8.3	-13.2	+0.0	26.8	29.5	-2.7	Paral
21 3 QP	.938M	28.0	+0.1	+0.2	+9.3	-13.2	+0.0	24.4	29.5	-5.1	Paral
	.938M	34.0	+0.1	+0.2	+9.3	-13.2	+0.0	30.4	29.5	+0.9	Paral
23 11 QP	.412M	28.1	+0.1	+0.2	+8.9	-13.2	+0.0	24.1	29.5	-5.4	Paral
	.412M	31.4	+0.1	+0.2	+8.9	-13.2	+0.0	27.4	29.5	-2.1	Paral
25 7 QP	.661M	27.8	+0.1	+0.2	+9.1	-13.2	+0.0	24.0	29.5	-5.5	Paral
_	.661M	32.2	+0.1	+0.2	+9.1	-13.2	+0.0	28.4	29.5	-1.1	Paral
27 18	3.585M	27.7	+0.2	+0.3	+8.2	-13.2	+0.0	23.2	29.5	-6.3	Paral
28 7 QP	.031M	26.9	+0.1	+0.2	+9.2	-13.2	+0.0	23.2	29.5	-6.3	Paral
	.031M	31.8	+0.1	+0.2	+9.2	-13.2	+0.0	28.1	29.5	-1.4	Paral
1											

Page 38 of 321 Report No.: FC06-025 Volume 4 of 9

30 16.090M	26.9	+0.2	+0.2	+8.5	-13.2	+0.0	22.6	29.5	-6.9	Paral
^ 16.090M	30.2	+0.2	+0.2	+8.5	-13.2	+0.0	25.9	29.5	-3.6	Paral
32 12.297M	24.4	+0.2	+0.2	+8.8	-13.2	+0.0	20.4	29.5	-9.1	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 15:53:19 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 289 Parallel Overhead Test Site 1 Position 7 Medium Lines only. Notches off. MODE 1/2. Formal Power

----- Sweep Data ----- 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 15:40:08
Equipment: BPL MV Gateway Sequence#: 290
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

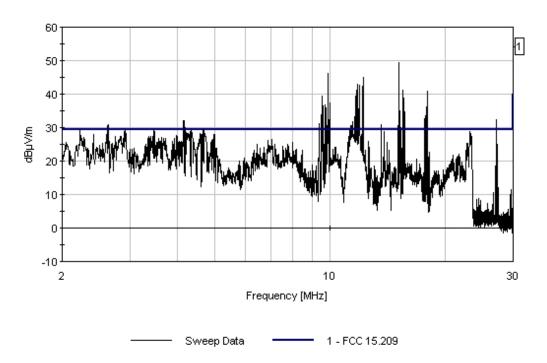
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

2	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

media	ement Data.	110	ading no	tea by ma	15111.		1,	of Distance	o. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	11.410M	32.7	+0.1	+0.2	+8.9	-13.2	+0.0	28.7	29.5	-0.8	Perpe
(QΡ										
٨	11.410M	36.1	+0.1	+0.2	+8.9	-13.2	+0.0	32.1	29.5	+2.6	Perpe
3	23.088M	31.3	+0.2	+0.3	+7.3	-13.2	+0.0	25.9	29.5	-3.6	Perpe
(QP										
٨	23.088M	34.3	+0.2	+0.3	+7.3	-13.2	+0.0	28.9	29.5	-0.6	Perpe
5	7.655M	27.6	+0.1	+0.2	+9.1	-13.2	+0.0	23.8	29.5	-5.7	Perpe
											_
6	10.310M	27.5	+0.1	+0.2	+9.1	-13.2	+0.0	23.7	29.5	-5.8	Perpe
											_


Page 40 of 321 Report No.: FC06-025 Volume 4 of 9

7	22.660M	28.2	+0.2	+0.3	+7.4	-13.2	+0.0	22.9	29.5	-6.6	Perpe
	QP										
٨	22.660M	31.4	+0.2	+0.3	+7.4	-13.2	+0.0	26.1	29.5	-3.4	Perpe
9	20.886M	27.1	+0.2	+0.3	+7.9	-13.2	+0.0	22.3	29.5	-7.2	Perpe
10	6.907M QP	26.0	+0.1	+0.2	+9.2	-13.2	+0.0	22.3	29.5	-7.2	Perpe
٨	6.907M	29.9	+0.1	+0.2	+9.2	-13.2	+0.0	26.2	29.5	-3.3	Perpe
12	21.734M	26.9	+0.2	+0.3	+7.7	-13.2	+0.0	21.9	29.5	-7.6	Perpe
13	21.386M	26.3	+0.2	+0.3	+7.7	-13.2	+0.0	21.3	29.5	-8.2	Perpe
14	14.217M	24.5	+0.2	+0.2	+8.7	-13.2	+0.0	20.4	29.5	-9.1	Perpe
15	12.235M	24.1	+0.1	+0.2	+8.9	-13.2	+0.0	20.1	29.5	-9.4	Perpe
16	16.267M	24.3	+0.2	+0.2	+8.5	-13.2	+0.0	19.9	29.5	-9.6	Perpe
17	3.920M	22.5	+0.1	+0.2	+9.3	-13.2	+0.0	18.9	29.5	-10.6	Perpe
18	3.268M	21.3	+0.1	+0.1	+9.3	-13.2	+0.0	17.6	29.5	-11.9	Perpe
19	20.101M	22.0	+0.2	+0.3	+8.1	-13.2	+0.0	17.4	29.5	-12.1	Perpe
20	5.008M	20.2	+0.1	+0.1	+9.2	-13.2	+0.0	16.4	29.5	-13.1	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 15:40:08 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 290 Perpendicular Overhead Test Site 1 Position 7 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 42 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/28/2006Test Type:Radiated ScanTime:09:38:03Equipment:BPL MV GatewaySequence#:295Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

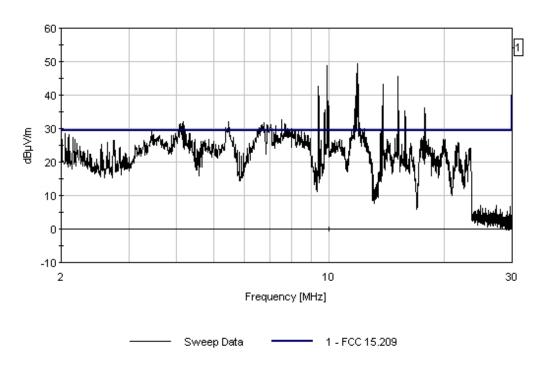
Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

172000000	ement Data.	111	ading no	tea by me	41 S 1111.		1,	ost Distance	c. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	7.664M	32.9	+0.1	+0.2	+9.1	-13.2	+0.0	29.1	29.5	-0.4	Perpe
	QP										
٨	7.664M	41.4	+0.1	+0.2	+9.1	-13.2	+0.0	37.6	29.5	+8.1	Perpe
3	6.752M	32.9	+0.1	+0.2	+9.2	-13.2	+0.0	29.1	29.5	-0.4	Perpe
	QP										
٨	6.752M	36.4	+0.1	+0.2	+9.2	-13.2	+0.0	32.7	29.5	+3.2	Perpe
											-
5	5.474M	32.7	+0.1	+0.1	+9.2	-13.2	+0.0	28.9	29.5	-0.6	Perpe
	QP										-
٨	5.474M	38.0	+0.1	+0.1	+9.2	-13.2	+0.0	34.2	29.5	+4.7	Perpe
											•

Page 43 of 321 Report No.: FC06-025 Volume 4 of 9



7 11.562M QP	32.5	+0.1	+0.2	+8.9	-13.2	+0.0	28.5	29.5	-1.0	Perpe
^ 11.562M	35.4	+0.1	+0.2	+8.9	-13.2	+0.0	31.4	29.5	+1.9	Perpe
9 12.348M QP	32.0	+0.2	+0.2	+8.8	-13.2	+0.0	28.0	29.5	-1.5	Perpe
^ 12.348M	34.5	+0.2	+0.2	+8.8	-13.2	+0.0	30.5	29.5	+1.0	Perpe
11 4.118M QP	29.6	+0.1	+0.2	+9.2	-13.2	+0.0	25.9	29.5	-3.6	Perpe
^ 4.118M	36.1	+0.1	+0.2	+9.2	-13.2	+0.0	32.3	29.5	+2.8	Perpe
13 8.744M QP	29.6	+0.1	+0.2	+9.1	-13.2	+0.0	25.8	29.5	-3.7	Perpe
^ 8.744M	33.4	+0.1	+0.2	+9.1	-13.2	+0.0	29.6	29.5	+0.1	Perpe
15 16.338M	29.0	+0.2	+0.2	+8.5	-13.2	+0.0	24.7	29.5	-4.8	Perpe
16 14.373M	28.8	+0.2	+0.2	+8.7	-13.2	+0.0	24.7	29.5	-4.8	Perpe
17 10.589M QP	28.6	+0.1	+0.2	+9.0	-13.2	+0.0	24.7	29.5	-4.8	Perpe
^ 10.589M	31.4	+0.1	+0.2	+9.0	-13.2	+0.0	27.5	29.5	-2.0	Perpe
19 3.556M QP	28.3	+0.1	+0.2	+9.3	-13.2	+0.0	24.7	29.5	-4.8	Perpe
^ 3.556M	35.5	+0.1	+0.2	+9.3	-13.2	+0.0	31.9	29.5	+2.4	Perpe
21 21.726M QP	29.4	+0.2	+0.3	+7.7	-13.2	+0.0	24.4	29.5	-5.1	Perpe
^ 21.726M	32.3	+0.2	+0.3	+7.7	-13.2	+0.0	27.3	29.5	-2.2	Perpe
23 17.453M QP	28.4	+0.2	+0.3	+8.3	-13.2	+0.0	24.0	29.5	-5.5	Perpe
^ 17.453M	30.7	+0.2	+0.3	+8.3	-13.2	+0.0	26.2	29.5	-3.3	Perpe
25 20.000M QP	28.1	+0.2	+0.3	+8.1	-13.2	+0.0	23.4	29.5	-6.1	Perpe
^ 20.000M	31.8	+0.2	+0.3	+8.1	-13.2	+0.0	27.2	29.5	-2.3	Perpe
27 17.955M QP	27.3	+0.2	+0.3	+8.3	-13.2	+0.0	22.9	29.5	-6.6	Perpe
^ 17.955M	30.4	+0.2	+0.3	+8.3	-13.2	+0.0	26.0	29.5	-3.5	Perpe
29 23.158M QP	28.0	+0.2	+0.3	+7.3	-13.2	+0.0	22.6	29.5	-6.9	Perpe
^ 23.158M	31.4	+0.2	+0.3	+7.3	-13.2	+0.0	26.0	29.5	-3.5	Perpe

Page 44 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/28/2006 Time: 09:38:03 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 295 Perpendicular Overhead Test Site 1 Position 8 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 45 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/28/2006
Test Type: Radiated Scan Time: 09:49:39
Equipment: BPL MV Gateway Sequence#: 296
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

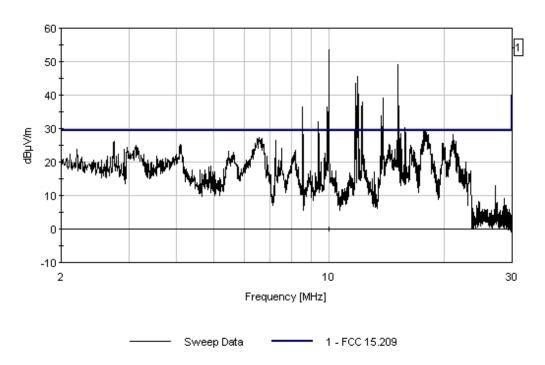
Transducer Legend:

o o o o o o	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

measur	етет Виш.	111	aumg ns	icu by mi	ugm.		1 (ot Distance	c. 10 Wicter	. 0	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.956M	32.9	+0.2	+0.3	+8.3	-13.2	+0.0	28.5	29.5	-1.0	Paral
Ç)P										
٨	17.956M	35.8	+0.2	+0.3	+8.3	-13.2	+0.0	31.4	29.5	+1.9	Paral
3	21.099M	29.2	+0.2	+0.3	+7.8	-13.2	+0.0	24.3	29.5	-5.2	Paral
4	19.844M	28.8	+0.2	+0.3	+8.1	-13.2	+0.0	24.2	29.5	-5.3	Paral
5	8.130M	27.9	+0.1	+0.2	+9.1	-13.2	+0.0	24.1	29.5	-5.4	Paral
6	4.066M	27.8	+0.1	+0.2	+9.2	-13.2	+0.0	24.1	29.5	-5.4	Paral

Page 46 of 321 Report No.: FC06-025 Volume 4 of 9



7	6.557M QP	27.6	+0.1	+0.2	+9.2	-13.2	+0.0	23.9	29.5	-5.6	Paral
٨	6.557M	31.0	+0.1	+0.2	+9.2	-13.2	+0.0	27.3	29.5	-2.2	Paral
9 (16.820M QP	28.1	+0.2	+0.2	+8.4	-13.2	+0.0	23.7	29.5	-5.8	Paral
٨	16.820M	33.0	+0.2	+0.2	+8.4	-13.2	+0.0	28.6	29.5	-0.9	Paral
11	17.340M QP	27.7	+0.2	+0.3	+8.3	-13.2	+0.0	23.3	29.5	-6.2	Paral
٨	17.340M	31.1	+0.2	+0.3	+8.3	-13.2	+0.0	26.7	29.5	-2.8	Paral
13	14.537M QP	27.1	+0.2	+0.2	+8.6	-13.2	+0.0	22.9	29.5	-6.6	Paral
۸	14.537M	30.2	+0.2	+0.2	+8.6	-13.2	+0.0	26.0	29.5	-3.5	Paral
15	23.440M	28.2	+0.2	+0.3	+7.2	-13.2	+0.0	22.7	29.5	-6.8	Paral
16	3.128M QP	25.9	+0.1	+0.1	+9.3	-13.2	+0.0	22.2	29.5	-7.3	Paral
۸	3.128M	30.2	+0.1	+0.1	+9.3	-13.2	+0.0	26.5	29.5	-3.0	Paral
18	5.474M QP	24.5	+0.1	+0.1	+9.2	-13.2	+0.0	20.7	29.5	-8.8	Paral
٨	5.474M	30.4	+0.1	+0.1	+9.2	-13.2	+0.0	26.6	29.5	-2.9	Paral
20	11.412M	19.7	+0.1	+0.2	+8.9	-13.2	+0.0	15.7	29.5	-13.8	Paral

Page 47 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/28/2006 Time: 09:49:39 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 296 Parallel Overhead Test Site 1 Position 8 Medium Lines only. Notches off, MODE 1/2, Formal Power

Page 48 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 14:39:39
Equipment: BPL MV Gateway Sequence#: 285
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

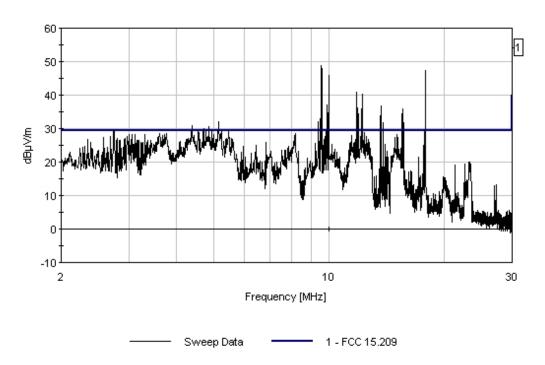
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 53.47 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

11200050010	mem Data.	110	ading no	ied of ind	15			bt Distance	5. 10 mileter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	5.163M	33.0	+0.1	+0.1	+9.2	-13.2	+0.0	29.2	29.5	-0.3	Paral
Q	P										
٨	5.163M	36.0	+0.1	+0.1	+9.2	-13.2	+0.0	32.2	29.5	+2.7	Paral
3	4.374M	31.9	+0.1	+0.2	+9.2	-13.2	+0.0	28.2	29.5	-1.3	Paral
Q.	P										
٨	4.374M	35.7	+0.1	+0.2	+9.2	-13.2	+0.0	32.0	29.5	+2.5	Paral
5	8.127M	30.6	+0.1	+0.2	+9.1	-13.2	+0.0	26.8	29.5	-2.7	Paral
Q	P										
٨	8.127M	33.5	+0.1	+0.2	+9.1	-13.2	+0.0	29.7	29.5	+0.2	Paral
	1 Q	MHz 1 5.163M QP ^ 5.163M 3 4.374M QP ^ 4.374M 5 8.127M QP	# Freq Rdng MHz dBμV 1 5.163M 33.0 QP ^ 5.163M 36.0 3 4.374M 31.9 QP ^ 4.374M 35.7 5 8.127M 30.6 QP	# Freq Rdng T1 MHz $dB\mu V$ dB 1 5.163M 33.0 +0.1 QP ^ 5.163M 36.0 +0.1 3 4.374M 31.9 +0.1 QP ^ 4.374M 35.7 +0.1 5 8.127M 30.6 +0.1 QP	# Freq Rdng $T1$ $T2$ MHz $dB\mu V$ dB dB 1 5.163M 33.0 +0.1 +0.1 QP ^ 5.163M 36.0 +0.1 +0.1 3 4.374M 31.9 +0.1 +0.2 QP ^ 4.374M 35.7 +0.1 +0.2 5 8.127M 30.6 +0.1 +0.2 QP	# Freq Rdng T1 T2 T3 MHz dB μ V dB dB dB dB 1 5.163M 33.0 +0.1 +0.1 +9.2 P	# Freq Rdng T1 T2 T3 T4 MHz dB μ V dB dB dB dB dB dB 1 5.163M 33.0 +0.1 +0.1 +9.2 -13.2 QP ^ 5.163M 36.0 +0.1 +0.1 +9.2 -13.2 3 4.374M 31.9 +0.1 +0.2 +9.2 -13.2 QP ^ 4.374M 35.7 +0.1 +0.2 +9.2 -13.2 5 8.127M 30.6 +0.1 +0.2 +9.1 -13.2 QP	# Freq Rdng $\frac{1}{4}$	# Freq Rdng $dB\mu V$ dB dB dB dB dB dB Table $dB\mu V/m$ 1 5.163M 33.0 +0.1 +0.1 +9.2 -13.2 +0.0 29.2 OP ^ 5.163M 36.0 +0.1 +0.1 +9.2 -13.2 +0.0 32.2 3 4.374M 31.9 +0.1 +0.2 +9.2 -13.2 +0.0 28.2 OP ^ 4.374M 35.7 +0.1 +0.2 +9.2 -13.2 +0.0 32.0 5 8.127M 30.6 +0.1 +0.2 +9.1 -13.2 +0.0 26.8 OP	# Freq Rdng dB μ V dB dB dB dB dB Table dB μ V/m dB μ V/m l 5.163M 33.0 +0.1 +0.1 +9.2 -13.2 +0.0 29.2 29.5 QP ^ 5.163M 31.9 +0.1 +0.2 +9.2 -13.2 +0.0 32.2 29.5 QP ^ 4.374M 35.7 +0.1 +0.2 +9.2 -13.2 +0.0 32.0 29.5 S 5 8.127M 30.6 +0.1 +0.2 +9.1 -13.2 +0.0 26.8 29.5 QP	# Freq Rdng dB μ V dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB μ V/m dB μ V/m dB dB dB dB Table dB μ V/m dB dB μ V/m dB dB μ V/m dB μ V/m dB μ V/m dB dB μ V/m dA μ V/m d


Page 49 of 321 Report No.: FC06-025 Volume 4 of 9

7	11.416M	30.1	+0.1	+0.2	+8.9	-13.2	+0.0	26.1	29.5	-3.4	Paral
	QP										
^	11.416M	32.8	+0.1	+0.2	+8.9	-13.2	+0.0	28.8	29.5	-0.7	Paral
9	12.189M	30.0	+0.1	+0.2	+8.9	-13.2	+0.0	26.0	29.5	-3.5	Paral
_	QP	30.0	10.1	10.2	10.7	-13.2	10.0	20.0	27.5	-3.3	1 arar
٨	12.189M	33.2	+0.1	+0.2	+8.9	-13.2	+0.0	29.2	29.5	-0.3	Paral
11	3.606M QP	29.4	+0.1	+0.2	+9.3	-13.2	+0.0	25.8	29.5	-3.7	Paral
٨	3.606M	32.9	+0.1	+0.2	+9.3	-13.2	+0.0	29.3	29.5	-0.2	Paral
13	14.845M QP	29.0	+0.2	+0.2	+8.6	-13.2	+0.0	24.8	29.5	-4.7	Paral
^	14.845M	31.8	+0.2	+0.2	+8.6	-13.2	+0.0	27.6	29.5	-1.9	Paral
15	6.985M	27.1	+0.1	+0.2	+9.2	-13.2	+0.0	23.4	29.5	-6.1	Paral
16	10.151M OP	26.9	+0.1	+0.2	+9.1	-13.2	+0.0	23.1	29.5	-6.4	Paral
٨	10.151M	30.2	+0.1	+0.2	+9.1	-13.2	+0.0	26.4	29.5	-3.1	Paral
18	12.665M OP	26.5	+0.2	+0.2	+8.8	-13.2	+0.0	22.5	29.5	-7.0	Paral
^	12.665M	30.1	+0.2	+0.2	+8.8	-13.2	+0.0	26.1	29.5	-3.4	Paral
20	23.200M	22.2	+0.2	+0.3	+7.3	-13.2	+0.0	16.8	29.5	-12.7	Paral
21	20.010M	19.6	+0.2	+0.3	+8.1	-13.2	+0.0	15.0	29.5	-14.5	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 14:39:39 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 285 Parallel Overhead Test Site 1 Position 9 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 51 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 14:43:17
Equipment: BPL MV Gateway Sequence#: 286
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

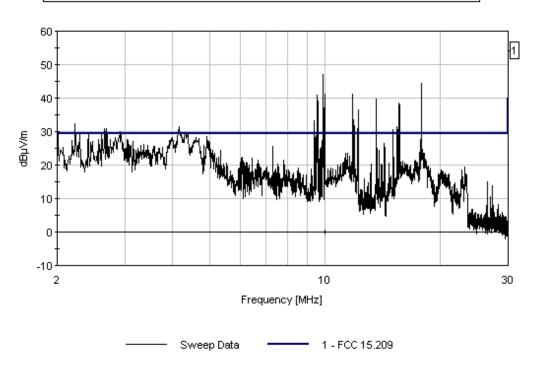
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 53.47 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

2	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


Medsurement Data: Reading listed by margin					ugm.		1 (ot Distance	o. To wicter							
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant					
1	17.956M	29.0	+0.2	+0.3	+8.3	-13.2	+0.0	24.6	29.5	-4.9	Perpe					
2	11.416M	27.5	+0.1	+0.2	+8.9	-13.2	+0.0	23.5	29.5	-6.0	Perpe					
3	16.269M	27.1	+0.2	+0.2	+8.5	-13.2	+0.0	22.8	29.5	-6.7	Perpe					
4	17.188M	25.9	+0.2	+0.2	+8.4	-13.2	+0.0	21.5	29.5	-8.0	Perpe					
5	18.590M	24.5	+0.2	+0.3	+8.2	-13.2	+0.0	20.0	29.5	-9.5	Perpe					
6	23.158M	23.7	+0.2	+0.3	+7.3	-13.2	+0.0	18.3	29.5	-11.2	Perpe					

Page 52 of 321 Report No.: FC06-025 Volume 4 of 9

0 100001 200 00 01 100 00 100		
8 19.996M 22.6 +0.2 +0.3 +8.1 -13.2 +0.0 18.0 29.5	-11.5 P	Perpe
9 10.314M 21.7 +0.1 +0.2 +9.1 -13.2 +0.0 17.8 29.5	-11.7 P	Perpe
10 14.848M 20.6 +0.2 +0.2 +8.6 -13.2 +0.0 16.4 29.5	-13.1 P	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 14:43:17 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 286 Perpendicular Overhead Test Site 1 Position 9 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 14:14:36
Equipment: BPL MV Gateway Sequence#: 283
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

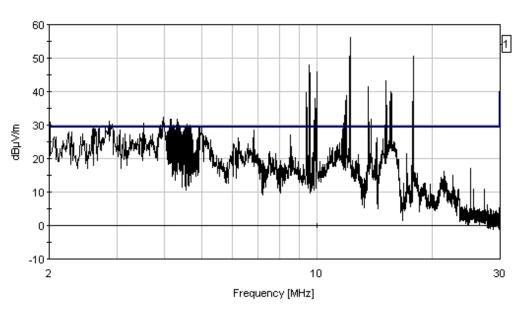
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.939M	29.8	+0.2	+0.2	+8.5	-13.2	+0.0	25.4	29.5	-4.1	Perpe
2	14.851M	28.7	+0.2	+0.2	+8.6	-13.2	+0.0	24.5	29.5	-5.0	Perpe
3	5.165M	27.8	+0.1	+0.1	+9.2	-13.2	+0.0	24.0	29.5	-5.5	Perpe
4	15.290M	27.9	+0.2	+0.2	+8.6	-13.2	+0.0	23.7	29.5	-5.8	Perpe
5	11.251M	27.6	+0.1	+0.2	+9.0	-13.2	+0.0	23.7	29.5	-5.8	Perpe
6	6.733M	25.5	+0.1	+0.2	+9.2	-13.2	+0.0	21.8	29.5	-7.7	Perpe

Page 54 of 321 Report No.: FC06-025 Volume 4 of 9

7	3.736M	23.3	+0.1	+0.2	+9.3	-13.2	+0.0	19.7	29.5	-9.8	Perpe
8	4.303M	20.6	+0.1	+0.2	+9.2	-13.2	+0.0	16.9	29.5	-12.6	Perpe
9	21.369M	21.8	+0.2	+0.3	+7.7	-13.2	+0.0	16.8	29.5	-12.7	Perpe
10	12.759M	18.5	+0.2	+0.2	+8.8	-13.2	+0.0	14.5	29.5	-15.0	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 14:14:36 Corinex WO#: 84818
FCC 15:209 Test Distance: 10 Meters Sequence#: 283 Perpendicular
Overhead Test Site 1 Position 10 Medium Lines only, Notches off, MODE 1/2, Formal Power

——— Sweep Data ———— 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/23/2006Test Type:Radiated ScanTime:14:30:26Equipment:BPL MV GatewaySequence#:284Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

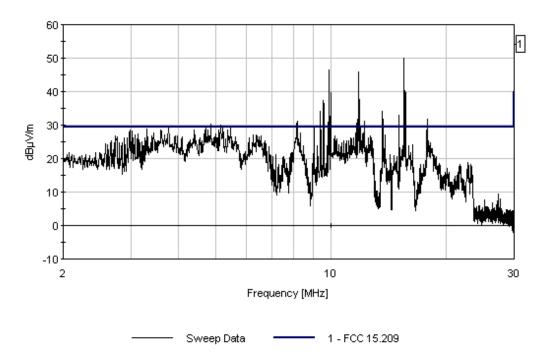
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


mensure	mem Dam.	110	damy not	ea by ma	15111.		10	ot Distance	o. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	8.131M	32.5	+0.1	+0.2	+9.1	-13.2	+0.0	28.7	29.5	-0.8	Paral
Q1	P										
٨	8.131M	35.4	+0.1	+0.2	+9.1	-13.2	+0.0	31.6	29.5	+2.1	Paral
3	5.163M	31.6	+0.1	+0.1	+9.2	-13.2	+0.0	27.8	29.5	-1.7	Paral
Q1	P										
٨	5.163M	34.4	+0.1	+0.1	+9.2	-13.2	+0.0	30.6	29.5	+1.1	Paral
5	4.375M	29.2	+0.1	+0.2	+9.2	-13.2	+0.0	25.5	29.5	-4.0	Paral
Q1	P										
٨	4.375M	34.2	+0.1	+0.2	+9.2	-13.2	+0.0	30.5	29.5	+1.0	Paral

Page 56 of 321 Report No.: FC06-025 Volume 4 of 9

7	3.601M	28.7	+0.1	+0.2	+9.3	-13.2	+0.0	25.1	29.5	-4.4	Paral
(QP										
^	3.601M	33.0	+0.1	+0.2	+9.3	-13.2	+0.0	29.4	29.5	-0.1	Paral
9	6.409M	27.9	+0.1	+0.1	+9.2	-13.2	+0.0	24.1	29.5	-5.4	Paral
	QP										
^	6.409M	32.6	+0.1	+0.1	+9.2	-13.2	+0.0	28.8	29.5	-0.7	Paral
11	12.497M	27.2	+0.2	+0.2	+8.8	-13.2	+0.0	23.2	29.5	-6.3	Paral
(QP										
٨	12.497M	30.8	+0.2	+0.2	+8.8	-13.2	+0.0	26.8	29.5	-2.7	Paral
13	10.156M	26.2	+0.1	+0.2	+9.1	-13.2	+0.0	22.4	29.5	-7.1	Paral
	QP										
٨	10.156M	29.8	+0.1	+0.2	+9.1	-13.2	+0.0	26.0	29.5	-3.5	Paral
15	16.090M	26.3	+0.2	+0.2	+8.5	-13.2	+0.0	22.0	29.5	-7.5	Paral
16	23.089M	23.9	+0.2	+0.3	+7.3	-13.2	+0.0	18.5	29.5	-11.0	Paral
17	21.728M	23.4	+0.2	+0.3	+7.7	-13.2	+0.0	18.4	29.5	-11.1	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 14:30:26 Corinex VVO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 284 Parallel Overhead Test Site 1 Position 10 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 13:18:51
Equipment: BPL MV Gateway Sequence#: 280
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

Measurement Data:

7.765M

21.6

+0.1

+0.2

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Test Distance: 10 Meters

Reading listed by margin.

	#	Freq	Kang	11	12	13	14	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	5.215M	28.4	+0.1	+0.1	+9.2	-13.2	+0.0	24.6	29.5	-4.9	Perpe
-	2	6.948M	25.7	+0.1	+0.2	+9.2	-13.2	+0.0	22.0	29.5	-7.5	Perpe
												_
	3	5.663M	24.5	+0.1	+0.1	+9.2	-13.2	+0.0	20.7	29.5	-8.8	Perpe
Ī	4	17.195M	24.8	+0.2	+0.2	+8.4	-13.2	+0.0	20.4	29.5	-9.1	Perpe
	5	11.250M	23.4	+0.1	+0.2	+9.0	-13.2	+0.0	19.5	29.5	-10.0	Perpe
-	6	16.590M	22.2	+0.2	+0.2	+8.4	-13.2	+0.0	17.8	29.5	-11.7	Perpe

+9.1

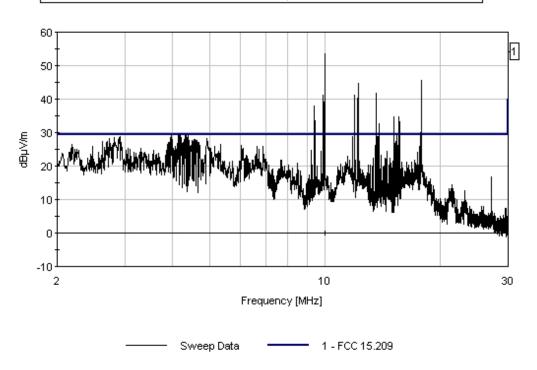
-13.2

+0.0

17.8

29.5

Page 58 of 321 Report No.: FC06-025 Volume 4 of 9


Perpe

-11.7

8	12.423M	19.3	+0.2	+0.2	+8.8	-13.2	+0.0	15.3	29.5	-14.2	Perpe
9	18.680M	18.9	+0.2	+0.3	+8.2	-13.2	+0.0	14.4	29.5	-15.1	Perpe
10	21.403M	16.1	+0.2	+0.3	+7.7	-13.2	+0.0	11.1	29.5	-18.4	Perpe
11	23.118M	16.0	+0.2	+0.3	+7.3	-13.2	+0.0	10.6	29.5	-18.9	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 13:18:51 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 280 Perpendicular Overhead Test Site 1 Position 11 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 13:30:13
Equipment: BPL MV Gateway Sequence#: 281
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

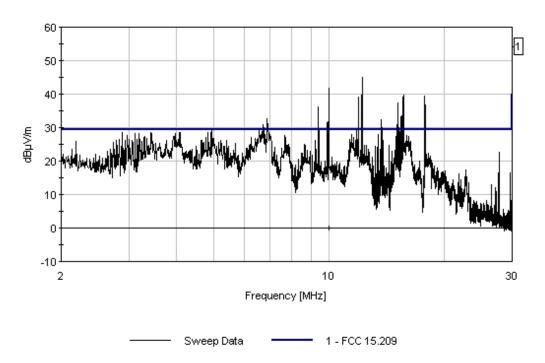
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

·····	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

	measure	reading listed by margin.					Test Bistance: 10 Weters					
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	6.907M	31.9	+0.1	+0.2	+9.2	-13.2	+0.0	28.2	29.5	-1.3	Paral
	Q	P										
	٨	6.907M	35.4	+0.1	+0.2	+9.2	-13.2	+0.0	31.7	29.5	+2.2	Paral
	3	4.062M	29.7	+0.1	+0.2	+9.2	-13.2	+0.0	26.0	29.5	-3.5	Paral
	Q	P										
	٨	4.062M	33.2	+0.1	+0.2	+9.2	-13.2	+0.0	29.5	29.5	+0.0	Paral
	5	15.938M	30.2	+0.2	+0.2	+8.5	-13.2	+0.0	25.9	29.5	-3.6	Paral
QP												
	٨	15.938M	33.0	+0.2	+0.2	+8.5	-13.2	+0.0	28.7	29.5	-0.8	Paral


Page 60 of 321 Report No.: FC06-025 Volume 4 of 9

7	8.596M	29.3	+0.1	+0.2	+9.1	-13.2	+0.0	25.5	29.5	-4.0	Paral
8	11.412M QP	29.3	+0.1	+0.2	+8.9	-13.2	+0.0	25.3	29.5	-4.2	Paral
^	11.412M	33.7	+0.1	+0.2	+8.9	-13.2	+0.0	29.7	29.5	+0.2	Paral
10	7.732M	28.8	+0.1	+0.2	+9.1	-13.2	+0.0	25.0	29.5	-4.5	Paral
11	18.123M	28.2	+0.2	+0.3	+8.3	-13.2	+0.0	23.8	29.5	-5.7	Paral
12	12.622M	27.2	+0.2	+0.2	+8.8	-13.2	+0.0	23.2	29.5	-6.3	Paral
13	5.002M OP	26.9	+0.1	+0.1	+9.2	-13.2	+0.0	23.1	29.5	-6.4	Paral
^	5.002M	33.4	+0.1	+0.1	+9.2	-13.2	+0.0	29.6	29.5	+0.1	Paral
15	3.403M	26.7	+0.1	+0.1	+9.3	-13.2	+0.0	23.0	29.5	-6.5	Paral
16	15.052M	23.9	+0.2	+0.2	+8.6	-13.2	+0.0	19.7	29.5	-9.8	Paral
17	22.663M	22.6	+0.2	+0.3	+7.4	-13.2	+0.0	17.3	29.5	-12.2	Paral
18	21.733M	18.2	+0.2	+0.3	+7.7	-13.2	+0.0	13.2	29.5	-16.3	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 13:30:13 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 281 Parallel Overhead Test Site 1 Position 11 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 62 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 12:42:34
Equipment: BPL MV Gateway Sequence#: 278
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

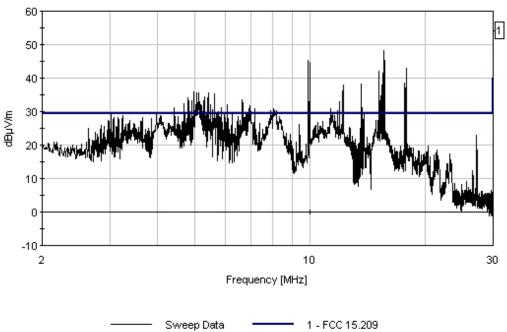
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

1. will direct. Degetion	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

TITECTOTO	ement Data.	415III.	Test Distance: 10 Weters								
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	5.155M	32.0	+0.1	+0.1	+9.2	-13.2	+0.0	28.2	29.5	-1.3	Paral
(QΡ										
٨	5.155M	39.1	+0.1	+0.1	+9.2	-13.2	+0.0	35.3	29.5	+5.8	Paral
3	8.128M	31.6	+0.1	+0.2	+9.1	-13.2	+0.0	27.8	29.5	-1.7	Paral
	QΡ										
٨	8.128M	34.7	+0.1	+0.2	+9.1	-13.2	+0.0	30.9	29.5	+1.4	Paral
5	11.296M	31.1	+0.1	+0.2	+8.9	-13.2	+0.0	27.1	29.5	-2.4	Paral
QP											
^	11.296M	35.3	+0.1	+0.2	+8.9	-13.2	+0.0	31.3	29.5	+1.8	Paral


Page 63 of 321 Report No.: FC06-025 Volume 4 of 9

7	6.907M OP	30.1	+0.1	+0.2	+9.2	-13.2	+0.0	26.4	29.5	-3.1	Paral
^	6.907M	35.5	+0.1	+0.2	+9.2	-13.2	+0.0	31.8	29.5	+2.3	Paral
9	4.062M QP	28.9	+0.1	+0.2	+9.2	-13.2	+0.0	25.2	29.5	-4.3	Paral
٨	4.062M	33.7	+0.1	+0.2	+9.2	-13.2	+0.0	30.0	29.5	+0.5	Paral
11	14.847M OP	29.2	+0.2	+0.2	+8.6	-13.2	+0.0	25.0	29.5	-4.5	Paral
^	14.847M	32.3	+0.2	+0.2	+8.6	-13.2	+0.0	28.1	29.5	-1.4	Paral
13	15.779M	27.9	+0.2	+0.2	+8.5	-13.2	+0.0	23.6	29.5	-5.9	Paral
14	4.437M QP	24.8	+0.1	+0.2	+9.2	-13.2	+0.0	21.1	29.5	-8.4	Paral
٨	4.437M	32.1	+0.1	+0.2	+9.2	-13.2	+0.0	28.4	29.5	-1.1	Paral
16	21.475M	26.2	+0.2	+0.3	+7.7	-13.2	+0.0	21.1	29.5	-8.4	Paral
17	3.530M OP	23.6	+0.1	+0.2	+9.3	-13.2	+0.0	20.0	29.5	-9.5	Paral
٨	3.530M	31.6	+0.1	+0.2	+9.3	-13.2	+0.0	28.0	29.5	-1.5	Paral
19	18.360M	23.5	+0.2	+0.3	+8.2	-13.2	+0.0	19.0	29.5	-10.5	Paral
20	19.744M	22.6	+0.2	+0.3	+8.1	-13.2	+0.0	18.0	29.5	-11.5	Paral
21	23.100M	21.5	+0.2	+0.3	+7.3	-13.2	+0.0	16.1	29.5	-13.4	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 12:42:34 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 278 Parallel Overhead Test Site 1 Position 12 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 13:13:02
Equipment: BPL MV Gateway Sequence#: 279
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

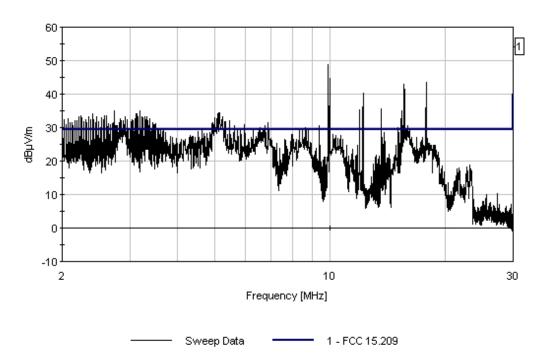
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE1/MODE2 filters in place. Formal Power Profile.

Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.938M	32.7	+0.2	+0.2	+8.5	-13.2	+0.0	28.4	29.5	-1.1	Perpe
QP											
^	15.938M	35.2	+0.2	+0.2	+8.5	-13.2	+0.0	30.9	29.5	+1.4	Perpe
											_
3	6.724M	31.3	+0.1	+0.2	+9.2	-13.2	+0.0	27.6	29.5	-1.9	Perpe
	QP										
^	6.724M	35.6	+0.1	+0.2	+9.2	-13.2	+0.0	31.8	29.5	+2.3	Perpe
											•
5	5.108M	30.6	+0.1	+0.1	+9.2	-13.2	+0.0	26.8	29.5	-2.7	Perpe
	QP										_
^	5.108M	39.2	+0.1	+0.1	+9.2	-13.2	+0.0	35.4	29.5	+5.9	Perpe
											•


Page 66 of 321 Report No.: FC06-025 Volume 4 of 9

7	8.439M	30.5	+0.1	+0.2	+9.1	-13.2	+0.0	26.7	29.5	-2.8	Perpe
(QP										
٨	8.439M	34.8	+0.1	+0.2	+9.1	-13.2	+0.0	31.0	29.5	+1.5	Perpe
9	18.751M	30.1	+0.2	+0.3	+8.2	-13.2	+0.0	25.6	29.5	-3.9	Perpe
10	17.454M	29.8	+0.2	+0.3	+8.3	-13.2	+0.0	25.4	29.5	-4.1	Perpe
11	10.629M QP	29.0	+0.1	+0.2	+9.0	-13.2	+0.0	25.1	29.5	-4.4	Perpe
^	10.629M	32.1	+0.1	+0.2	+9.0	-13.2	+0.0	28.2	29.5	-1.3	Perpe
13	5.633M	27.7	+0.1	+0.1	+9.2	-13.2	+0.0	23.9	29.5	-5.6	Perpe
(QP										
^	5.633M	35.9	+0.1	+0.1	+9.2	-13.2	+0.0	32.1	29.5	+2.6	Perpe
15	14.860M	27.8	+0.2	+0.2	+8.6	-13.2	+0.0	23.6	29.5	-5.9	Perpe
16	11.415M	25.9	+0.1	+0.2	+8.9	-13.2	+0.0	21.9	29.5	-7.6	Perpe
17	21.729M	26.4	+0.2	+0.3	+7.7	-13.2	+0.0	21.4	29.5	-8.1	Perpe
18	3.649M	23.1	+0.1	+0.2	+9.3	-13.2	+0.0	19.5	29.5	-10.0	Perpe
19	23.303M	24.0	+0.2	+0.3	+7.3	-13.2	+0.0	18.6	29.5	-10.9	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 13:13:02 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 279 Perpendicular
Overhead Test Site 1 Position 12 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 68 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 11:19:04
Equipment: BPL MV Gateway Sequence#: 245
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

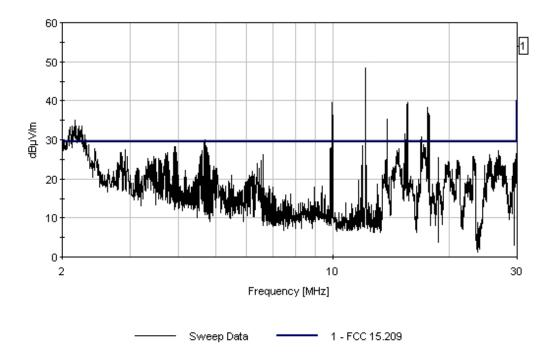
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly across from the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


			0								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	26.877M	33.7	+0.2	+0.3	+6.1	-13.2	+0.0	27.1	29.5	-2.4	Perpe
(QP										
٨	26.877M	36.0	+0.2	+0.3	+6.1	-13.2	+0.0	29.4	29.5	-0.1	Perpe
											-
3	19.523M	30.0	+0.2	+0.3	+8.1	-13.2	+0.0	25.4	29.5	-4.1	Perpe
											-
4	25.469M	31.3	+0.2	+0.3	+6.7	-13.2	+0.0	25.3	29.5	-4.2	Perpe
(QP										_
٨	25.469M	34.0	+0.2	+0.3	+6.7	-13.2	+0.0	28.0	29.5	-1.5	Perpe
											-
6	17.217M	29.6	+0.2	+0.2	+8.4	-13.2	+0.0	25.2	29.5	-4.3	Perpe
(QP										•
٨	17.217M	31.8	+0.2	+0.2	+8.4	-13.2	+0.0	27.4	29.5	-2.1	Perpe
											•
•											

Page 69 of 321 Report No.: FC06-025 Volume 4 of 9

8	14.697M	29.3	+0.2	+0.2	+8.6	-13.2	+0.0	25.1	29.5	-4.4	Perpe
(QP										
٨	14.697M	31.8	+0.2	+0.2	+8.6	-13.2	+0.0	27.6	29.5	-1.9	Perpe
٨	14.697M	31.2	+0.2	+0.2	+8.6	-13.2	+0.0	27.0	29.5	-2.5	Perpe
11	29.844M QP	31.8	+0.3	+0.3	+5.1	-13.2	+0.0	24.3	29.5	-5.2	Perpe
٨	29.844M	34.6	+0.3	+0.3	+5.1	-13.2	+0.0	27.1	29.5	-2.4	Perpe
13	23.158M QP	29.3	+0.2	+0.3	+7.3	-13.2	+0.0	23.9	29.5	-5.6	Perpe
٨	23.158M	32.6	+0.2	+0.3	+7.3	-13.2	+0.0	27.2	29.5	-2.3	Perpe
15	21.098M QP	28.8	+0.2	+0.3	+7.8	-13.2	+0.0	23.9	29.5	-5.6	Perpe
٨	21.098M	31.6	+0.2	+0.3	+7.8	-13.2	+0.0	26.7	29.5	-2.8	Perpe
17	19.840M QP	28.1	+0.2	+0.3	+8.1	-13.2	+0.0	23.5	29.5	-6.0	Perpe
٨	19.840M	30.9	+0.2	+0.3	+8.1	-13.2	+0.0	26.3	29.5	-3.2	Perpe

Overhead Test Site #1 Date: 3/22/2006 Time: 11:19:04 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 245 Perpendicular Overhead Test Site 1 Position 1 Medium Lines only. Notches off, MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 11:40:55
Equipment: BPL MV Gateway Sequence#: 246
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly across from the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

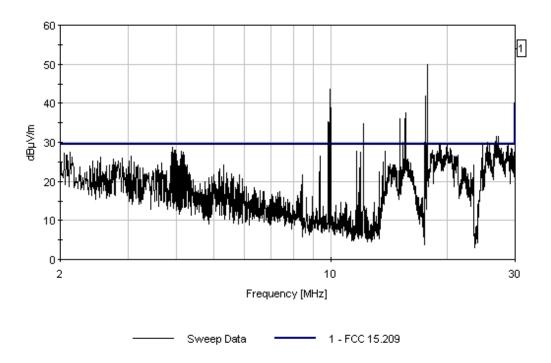
Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Measu	remem Dam.	111	caumig ms	ica by mi	ugm.		1 (ot Distance	c. To wicter	. 0	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	26.876M	35.7	+0.2	+0.3	+6.1	-13.2	+0.0	29.1	29.5	-0.4	Paral
	QP										
٨	26.876M	38.3	+0.2	+0.3	+6.1	-13.2	+0.0	31.7	29.5	+2.2	Paral
3	28.749M	35.5	+0.3	+0.3	+5.4	-13.2	+0.0	28.3	29.5	-1.2	Paral
	QP										
٨	28.749M	37.4	+0.3	+0.3	+5.4	-13.2	+0.0	30.2	29.5	+0.7	Paral
5	24.686M	33.2	+0.2	+0.3	+7.0	-13.2	+0.0	27.5	29.5	-2.0	Paral
	QP										
^	24.686M	36.1	+0.2	+0.3	+7.0	-13.2	+0.0	30.4	29.5	+0.9	Paral

Page 71 of 321 Report No.: FC06-025 Volume 4 of 9



7	19.102M QP	30.9	+0.2	+0.3	+8.2	-13.2	+0.0	26.4	29.5	-3.1	Paral
٨	19.102M	34.5	+0.2	+0.3	+8.2	-13.2	+0.0	30.0	29.5	+0.5	Paral
9	19.998M OP	30.8	+0.2	+0.3	+8.1	-13.2	+0.0	26.2	29.5	-3.3	Paral
^	19.998M	33.5	+0.2	+0.3	+8.1	-13.2	+0.0	28.9	29.5	-0.6	Paral
11	29.378M OP	33.2	+0.3	+0.3	+5.2	-13.2	+0.0	25.8	29.5	-3.7	Paral
^	29.378M	35.7	+0.3	+0.3	+5.2	-13.2	+0.0	28.3	29.5	-1.2	Paral
13	21.100M OP	29.8	+0.2	+0.3	+7.8	-13.2	+0.0	24.8	29.5	-4.7	Paral
^	21.100M	31.9	+0.2	+0.3	+7.8	-13.2	+0.0	27.0	29.5	-2.5	Paral
15	18.296M OP	28.9	+0.2	+0.3	+8.3	-13.2	+0.0	24.5	29.5	-5.0	Paral
^	18.296M	32.2	+0.2	+0.3	+8.3	-13.2	+0.0	27.8	29.5	-1.7	Paral
17	15.705M OP	27.4	+0.2	+0.2	+8.5	-13.2	+0.0	23.1	29.5	-6.4	Paral
٨	15.705M	30.2	+0.2	+0.2	+8.5	-13.2	+0.0	25.9	29.5	-3.6	Paral

Page 72 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/22/2006 Time: 11:40:55 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 246 Parallel Overhead Test Site 1 Position 1 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 73 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/22/2006Test Type:Radiated ScanTime:10:49:07Equipment:BPL MV GatewaySequence#:243Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

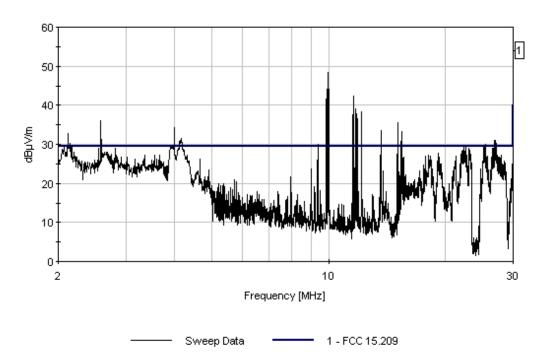
Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Tement Data.		baaring mo	tea of fine	41 S 1111.			ost Distance	c. 10 ivictor		
Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
26.875M	35.9	+0.2	+0.3	+6.1	-13.2	+0.0	29.3	29.5	-0.2	Paral
QP										
26.875M	38.6	+0.2	+0.3	+6.1	-13.2	+0.0	32.0	29.5	+2.5	Paral
27.186M	34.8	+0.2	+0.3	+6.0	-13.2	+0.0	28.1	29.5	-1.4	Paral
QP										
27.186M	41.5	+0.2	+0.3	+6.0	-13.2	+0.0	34.8	29.5	+5.3	Paral
25.317M	33.9	+0.2	+0.3	+6.8	-13.2	+0.0	28.0	29.5	-1.5	Paral
QP										
25.317M	35.9	+0.2	+0.3	+6.8	-13.2	+0.0	30.0	29.5	+0.5	Paral
	Freq MHz 26.875M QP 26.875M 27.186M QP 27.186M 25.317M QP	Freq Mdng dBμV 26.875M 35.9 QP 26.875M 38.6 27.186M 34.8 QP 27.186M 41.5 25.317M 33.9 QP	Freq Rdng T1 MHz dBµV dB 26.875M 35.9 +0.2 QP 26.875M 38.6 +0.2 27.186M 34.8 +0.2 QP 27.186M 41.5 +0.2 25.317M 33.9 +0.2 QP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq Rdng T1 T2 T3 MHz dBμV dB dB dB 26.875M 35.9 +0.2 +0.3 +6.1 QP 26.875M 38.6 +0.2 +0.3 +6.1 27.186M 34.8 +0.2 +0.3 +6.0 QP 27.186M 41.5 +0.2 +0.3 +6.0 25.317M 33.9 +0.2 +0.3 +6.8 QP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq MHz Rdng dBμV T1 dBμV T2 dBμV T3 dBμV T4 dBμV/m dB dB Dist dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dB Margin dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dBμV/m dB 26.875M 35.9 +0.2 +0.3 +6.1 -13.2 +0.0 29.3 29.5 -0.2 QP 26.875M 38.6 +0.2 +0.3 +6.1 -13.2 +0.0 32.0 29.5 +2.5 27.186M 34.8 +0.2 +0.3 +6.0 -13.2 +0.0 28.1 29.5 -1.4 QP 27.186M 41.5 +0.2 +0.3 +6.0 -13.2 +0.0 34.8 29.5 +5.3 25.317M 33.9 +0.2 +0.3 +6.8 -13.2 +0.0 28.0 29.5 -1.5

Page 74 of 321 Report No.: FC06-025 Volume 4 of 9



7	23.087M OP	31.5	+0.2	+0.3	+7.3	-13.2	+0.0	26.1	29.5	-3.4	Paral
٨	23.087M	34.8	+0.2	+0.3	+7.3	-13.2	+0.0	29.4	29.5	-0.1	Paral
9	27.967M OP	31.9	+0.3	+0.3	+5.7	-13.2	+0.0	25.0	29.5	-4.5	Paral
٨	27.967M	34.4	+0.3	+0.3	+5.7	-13.2	+0.0	27.5	29.5	-2.0	Paral
11	21.328M QP	29.7	+0.2	+0.3	+7.8	-13.2	+0.0	24.8	29.5	-4.7	Paral
٨	21.328M	32.8	+0.2	+0.3	+7.8	-13.2	+0.0	27.9	29.5	-1.6	Paral
13	29.844M	31.9	+0.3	+0.3	+5.1	-13.2	+0.0	24.4	29.5	-5.1	Paral
14	19.329M OP	28.9	+0.2	+0.3	+8.2	-13.2	+0.0	24.4	29.5	-5.1	Paral
^	19.329M	32.5	+0.2	+0.3	+8.2	-13.2	+0.0	28.0	29.5	-1.5	Paral
16	18.312M QP	28.3	+0.2	+0.3	+8.3	-13.2	+0.0	23.9	29.5	-5.6	Paral
٨	18.312M	31.6	+0.2	+0.3	+8.3	-13.2	+0.0	27.2	29.5	-2.3	Paral
18	28.545M QP	29.9	+0.3	+0.3	+5.5	-13.2	+0.0	22.8	29.5	-6.7	Paral
٨	28.545M	33.2	+0.3	+0.3	+5.5	-13.2	+0.0	26.1	29.5	-3.4	Paral
20	17.186M	26.8	+0.2	+0.2	+8.4	-13.2	+0.0	22.4	29.5	-7.1	Paral

Page 75 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/22/2006 Time: 10:49:07 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 243 Parallel Overhead Test Site 1 Position 2 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 76 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 11:03:55
Equipment: BPL MV Gateway Sequence#: 244
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

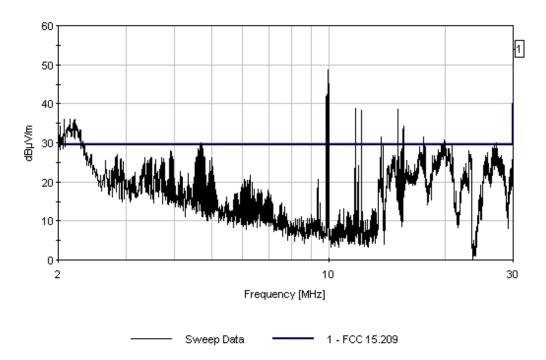
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

1. w. suncer Legerius	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


TIT CUBU.	ement Data	111	Juding no	tea of inc	41 S 1111.			Distance	c. 10 1,1ctc1		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	26.875M	33.1	+0.2	+0.3	+6.1	-13.2	+0.0	26.5	29.5	-3.0	Perpe
(QΡ										
٨	26.875M	34.6	+0.2	+0.3	+6.1	-13.2	+0.0	27.9	29.5	-1.6	Perpe
3	17.338M	30.9	+0.2	+0.3	+8.3	-13.2	+0.0	26.5	29.5	-3.0	Perpe
(QP										
٨	17.338M	33.8	+0.2	+0.3	+8.3	-13.2	+0.0	29.4	29.5	-0.1	Perpe
											_
5	19.841M	31.0	+0.2	+0.3	+8.1	-13.2	+0.0	26.4	29.5	-3.1	Perpe
(QΡ										-
٨	19.841M	33.6	+0.2	+0.3	+8.1	-13.2	+0.0	29.0	29.5	-0.5	Perpe
											-
	3 (MHz 1 26.875M QP ^ 26.875M 3 17.338M QP ^ 17.338M 5 19.841M QP	# Freq Rdng MHz dBµV 1 26.875M 33.1 QP ^ 26.875M 34.6 3 17.338M 30.9 QP ^ 17.338M 33.8 5 19.841M 31.0 QP		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# Freq Rdng T1 T2 T3 T4 MHz dB μ V dB dB dB dB dB 1 26.875M 33.1 +0.2 +0.3 +6.1 -13.2 QP ^ 26.875M 34.6 +0.2 +0.3 +6.1 -13.2 3 17.338M 30.9 +0.2 +0.3 +8.3 -13.2 QP ^ 17.338M 33.8 +0.2 +0.3 +8.3 -13.2 5 19.841M 31.0 +0.2 +0.3 +8.1 -13.2 QP	# Freq Rdng MHz dB dB dB dB dB Table 1 26.875M 33.1 +0.2 +0.3 +6.1 -13.2 +0.0 QP ^ 26.875M 34.6 +0.2 +0.3 +6.1 -13.2 +0.0 3 17.338M 30.9 +0.2 +0.3 +8.3 -13.2 +0.0 QP ^ 17.338M 33.8 +0.2 +0.3 +8.3 -13.2 +0.0 5 19.841M 31.0 +0.2 +0.3 +8.1 -13.2 +0.0 QP	# Freq Rdng MHz dB μ V dB dB dB dB dB Table dB μ V/m 1 26.875M 33.1 +0.2 +0.3 +6.1 -13.2 +0.0 26.5 QP ^ 26.875M 34.6 +0.2 +0.3 +6.1 -13.2 +0.0 27.9 3 17.338M 30.9 +0.2 +0.3 +8.3 -13.2 +0.0 26.5 QP ^ 17.338M 33.8 +0.2 +0.3 +8.3 -13.2 +0.0 29.4 5 19.841M 31.0 +0.2 +0.3 +8.1 -13.2 +0.0 26.4 QP	# Freq Rdng dB μ V dB dB dB dB dB Table dB μ V/m dB μ V/m l 26.875M 33.1 +0.2 +0.3 +6.1 -13.2 +0.0 26.5 29.5 QP ^ 26.875M 34.6 +0.2 +0.3 +6.1 -13.2 +0.0 27.9 29.5 3 17.338M 30.9 +0.2 +0.3 +8.3 -13.2 +0.0 26.5 29.5 QP ^ 17.338M 33.8 +0.2 +0.3 +8.3 -13.2 +0.0 29.4 29.5 5 19.841M 31.0 +0.2 +0.3 +8.1 -13.2 +0.0 26.4 29.5 QP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 77 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.751M	29.8	+0.2	+0.3	+8.2	-13.2	+0.0	25.3	29.5	-4.2	Perpe
Q1	P										
٨	18.751M	31.5	+0.2	+0.3	+8.2	-13.2	+0.0	27.0	29.5	-2.5	Perpe
9	27.961M	32.1	+0.3	+0.3	+5.7	-13.2	+0.0	25.2	29.5	-4.3	Perpe
10	29.843M	31.1	+0.3	+0.3	+5.1	-13.2	+0.0	23.6	29.5	-5.9	Perpe
11	25.467M	29.3	+0.2	+0.3	+6.7	-13.2	+0.0	23.3	29.5	-6.2	Perpe
Q1	P										
٨	25.467M	31.7	+0.2	+0.3	+6.7	-13.2	+0.0	25.7	29.5	-3.8	Perpe
13	23.155M	28.3	+0.2	+0.3	+7.3	-13.2	+0.0	22.9	29.5	-6.6	Perpe
Q1	P										
٨	23.155M	31.9	+0.2	+0.3	+7.3	-13.2	+0.0	26.5	29.5	-3.0	Perpe
											•

Overhead Test Site #1 Date: 3/22/2006 Time: 11:03:55 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 244 Perpendicular Overhead Test Site 1 Position 2 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 12:07:45
Equipment: BPL MV Gateway Sequence#: 248
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

11200000	· ····································	41 S 1111.	rest Bistairee. To infeters								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	21.326M	34.3	+0.2	+0.3	+7.8	-13.2	+0.0	29.4	29.5	-0.1	Perpe
	QP										
٨	21.326M	36.9	+0.2	+0.3	+7.8	-13.2	+0.0	32.0	29.5	+2.5	Perpe
3	26.874M	34.0	+0.2	+0.3	+6.1	-13.2	+0.0	27.4	29.5	-2.1	Perpe
	QP										
٨	26.874M	36.3	+0.2	+0.3	+6.1	-13.2	+0.0	29.7	29.5	+0.2	Perpe
											_
5	29.845M	32.8	+0.3	+0.3	+5.1	-13.2	+0.0	25.3	29.5	-4.2	Perpe
											_
6	18.379M	29.4	+0.2	+0.3	+8.2	-13.2	+0.0	24.9	29.5	-4.6	Perpe
	QP										_
^	18.379M	32.7	+0.2	+0.3	+8.2	-13.2	+0.0	28.2	29.5	-1.3	Perpe
											•

Page 79 of 321 Report No.: FC06-025 Volume 4 of 9

8	14.238M QP	28.9	+0.2	+0.2	+8.7	-13.2	+0.0	24.8	29.5	-4.7	Perpe
^	14.238M	31.8	+0.2	+0.2	+8.7	-13.2	+0.0	27.7	29.5	-1.8	Perpe
10	14.691M QP	28.7	+0.2	+0.2	+8.6	-13.2	+0.0	24.5	29.5	-5.0	Perpe
^	14.691M	31.6	+0.2	+0.2	+8.6	-13.2	+0.0	27.4	29.5	-2.1	Perpe
12	17.256M QP	28.6	+0.2	+0.2	+8.4	-13.2	+0.0	24.2	29.5	-5.3	Perpe
^	17.256M	32.4	+0.2	+0.2	+8.4	-13.2	+0.0	28.0	29.5	-1.5	Perpe
14	19.227M QP	28.3	+0.2	+0.3	+8.2	-13.2	+0.0	23.8	29.5	-5.7	Perpe
^	19.227M	32.2	+0.2	+0.3	+8.2	-13.2	+0.0	27.7	29.5	-1.8	Perpe
16 (22.031M QP	28.6	+0.2	+0.3	+7.6	-13.2	+0.0	23.5	29.5	-6.0	Perpe
۸	22.031M	31.3	+0.2	+0.3	+7.6	-13.2	+0.0	26.2	29.5	-3.3	Perpe

Page 80 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/22/2006 Time: 12:07:45 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 248 Perpendicular Overhead Test Site 1 Position 3 Medium Lines only. Notches off, MODE 2/3. Formal Power

Page 81 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 11:57:34
Equipment: BPL MV Gateway Sequence#: 247
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

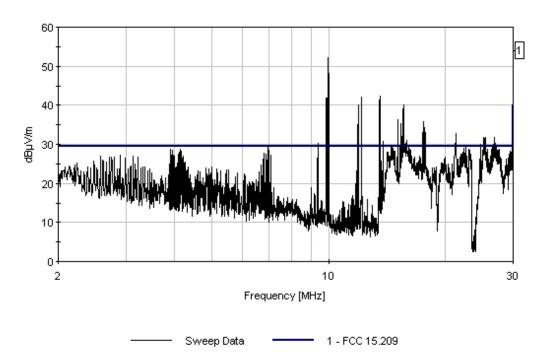
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

111000000	asurement Buta: Reading listed by margin.						Test Distance: 10 Weters						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar		
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant		
1	26.874M	36.0	+0.2	+0.3	+6.1	-13.2	+0.0	29.4	29.5	-0.1	Paral		
(QP												
٨	26.874M	38.5	+0.2	+0.3	+6.1	-13.2	+0.0	31.9	29.5	+2.4	Paral		
3	21.365M	34.0	+0.2	+0.3	+7.7	-13.2	+0.0	29.0	29.5	-0.5	Paral		
	QP												
^	21.365M	36.4	+0.2	+0.3	+7.7	-13.2	+0.0	31.3	29.5	+1.8	Paral		
5	23.155M	34.2	+0.2	+0.3	+7.3	-13.2	+0.0	28.8	29.5	-0.7	Paral		
6	25.312M	34.5	+0.2	+0.3	+6.8	-13.2	+0.0	28.6	29.5	-0.9	Paral		
(QP												
٨	25.312M	37.3	+0.2	+0.3	+6.8	-13.2	+0.0	31.4	29.5	+1.9	Paral		


Page 82 of 321 Report No.: FC06-025 Volume 4 of 9

8	15.785M	32.6	+0.2	+0.2	+8.5	-13.2	+0.0	28.3	29.5	-1.2	Paral
1 (QP										
^	15.785M	35.0	+0.2	+0.2	+8.5	-13.2	+0.0	30.7	29.5	+1.2	Paral
10	29.844M	34.5	+0.3	+0.3	+5.1	-13.2	+0.0	27.0	29.5	-2.5	Paral
,	QP										
^	29.844M	37.4	+0.3	+0.3	+5.1	-13.2	+0.0	29.9	29.5	+0.4	Paral
12	14.581M	31.1	+0.2	+0.2	+8.6	-13.2	+0.0	26.9	29.5	-2.6	Paral
,	QP										
^	14.581M	34.2	+0.2	+0.2	+8.6	-13.2	+0.0	30.0	29.5	+0.5	Paral
14	19.842M	28.3	+0.2	+0.3	+8.1	-13.2	+0.0	23.7	29.5	-5.8	Paral
	QP										
^	19.842M	31.6	+0.2	+0.3	+8.1	-13.2	+0.0	27.0	29.5	-2.5	Paral
16	17.189M	28.1	+0.2	+0.2	+8.4	-13.2	+0.0	23.7	29.5	-5.8	Paral
	QP										
۸	17.189M	31.2	+0.2	+0.2	+8.4	-13.2	+0.0	26.8	29.5	-2.7	Paral
18	18.931M OP	27.6	+0.2	+0.3	+8.2	-13.2	+0.0	23.1	29.5	-6.4	Paral
٨	18.931M	30.8	+0.2	+0.3	+8.2	-13.2	+0.0	26.3	29.5	-3.2	Paral

Overhead Test Site #1 Date: 3/22/2006 Time: 11:57:34 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 247 Parallel Overhead Test Site 1 Position 3 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 84 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 12:32:33
Equipment: BPL MV Gateway Sequence#: 249
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

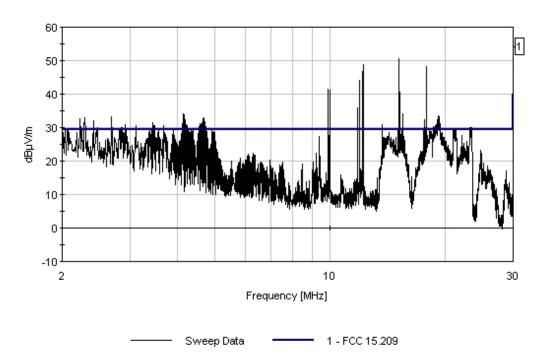
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Redding listed by margin.						Test Distance. To Weters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant	
1	21.098M	32.9	+0.2	+0.3	+7.8	-13.2	+0.0	28.0	29.5	-1.5	Perpe	
(QP											
٨	21.098M	35.4	+0.2	+0.3	+7.8	-13.2	+0.0	30.5	29.5	+1.0	Perpe	
3	23.157M	33.2	+0.2	+0.3	+7.3	-13.2	+0.0	27.8	29.5	-1.7	Perpe	
(QP											
٨	23.157M	36.4	+0.2	+0.3	+7.3	-13.2	+0.0	31.0	29.5	+1.5	Perpe	
5	18.380M	32.4	+0.2	+0.3	+8.2	-13.2	+0.0	27.8	29.5	-1.7	Perpe	
(QP											
٨	18.380M	35.4	+0.2	+0.3	+8.2	-13.2	+0.0	30.9	29.5	+1.4	Perpe	
											_	


Page 85 of 321 Report No.: FC06-025 Volume 4 of 9

7	19.843M OP	32.2	+0.2	+0.3	+8.1	-13.2	+0.0	27.6	29.5	-1.9	Perpe
^	19.843M	35.0	+0.2	+0.3	+8.1	-13.2	+0.0	30.4	29.5	+0.9	Perpe
9 (19.229M QP	32.1	+0.2	+0.3	+8.2	-13.2	+0.0	27.5	29.5	-2.0	Perpe
۸	19.229M	35.8	+0.2	+0.3	+8.2	-13.2	+0.0	31.3	29.5	+1.8	Perpe
11	14.236M QP	30.8	+0.2	+0.2	+8.7	-13.2	+0.0	26.7	29.5	-2.8	Perpe
٨	14.236M	33.7	+0.2	+0.2	+8.7	-13.2	+0.0	29.6	29.5	+0.1	Perpe
13	24.683M	30.3	+0.2	+0.3	+7.0	-13.2	+0.0	24.6	29.5	-4.9	Perpe
14	15.408M QP	27.3	+0.2	+0.2	+8.6	-13.2	+0.0	23.1	29.5	-6.4	Perpe
٨	15.408M	30.8	+0.2	+0.2	+8.6	-13.2	+0.0	26.6	29.5	-2.9	Perpe
16	25.781M	25.7	+0.2	+0.3	+6.6	-13.2	+0.0	19.6	29.5	-9.9	Perpe

Overhead Test Site #1 Date: 3/22/2006 Time: 12:32:33 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 249 Perpendicular Overhead Test Site 1 Position 4 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 87 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 14:07:36
Equipment: BPL MV Gateway Sequence#: 252
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

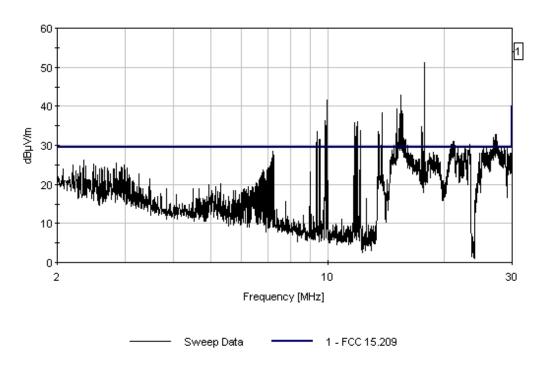
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1 15.780M	33.5	+0.2	+0.2	+8.5	-13.2	+0.0	29.2	29.5	-0.3	Paral
QP										
^ 15.780M	36.4	+0.2	+0.2	+8.5	-13.2	+0.0	32.1	29.5	+2.6	Paral
3 27.188M	35.8	+0.2	+0.3	+6.0	-13.2	+0.0	29.1	29.5	-0.4	Paral
QP										
^ 27.188M	40.0	+0.2	+0.3	+6.0	-13.2	+0.0	33.3	29.5	+3.8	Paral
5 23.281M	33.5	+0.2	+0.3	+7.3	-13.2	+0.0	28.1	29.5	-1.4	Paral
QP										
^ 23.281M	35.9	+0.2	+0.3	+7.3	-13.2	+0.0	30.5	29.5	+1.0	Paral
	MHz 1 15.780M QP ^ 15.780M 3 27.188M QP ^ 27.188M 5 23.281M QP	MHz dBμV 1 15.780M 33.5 QP ^ 15.780M 36.4 3 27.188M 35.8 QP ^ 27.188M 40.0 5 23.281M 33.5 QP	MHz dBμV dB 1 15.780M 33.5 +0.2 QP ^ 15.780M 36.4 +0.2 3 27.188M 35.8 +0.2 QP ^ 27.188M 40.0 +0.2 5 23.281M 33.5 +0.2 QP	MHz dBμV dB dB 1 15.780M 33.5 +0.2 +0.2 QP ^ 15.780M 36.4 +0.2 +0.2 3 27.188M 35.8 +0.2 +0.3 QP ^ 27.188M 40.0 +0.2 +0.3 5 23.281M 33.5 +0.2 +0.3 QP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					


Page 88 of 321 Report No.: FC06-025 Volume 4 of 9

7 21.093M QP	33.1	+0.2	+0.3	+7.8	-13.2	+0.0	28.1	29.5	-1.4	Paral
^ 21.093M	36.7	+0.2	+0.3	+7.8	-13.2	+0.0	31.8	29.5	+2.3	Paral
9 22.656M QP	33.3	+0.2	+0.3	+7.4	-13.2	+0.0	27.9	29.5	-1.6	Paral
^ 22.656M	35.3	+0.2	+0.3	+7.4	-13.2	+0.0	30.0	29.5	+0.5	Paral
11 28.597M QP	34.9	+0.3	+0.3	+5.5	-13.2	+0.0	27.8	29.5	-1.7	Paral
^ 28.597M	37.6	+0.3	+0.3	+5.5	-13.2	+0.0	30.5	29.5	+1.0	Paral
13 21.719M QP	32.6	+0.2	+0.3	+7.7	-13.2	+0.0	27.6	29.5	-1.9	Paral
^ 21.719M	35.1	+0.2	+0.3	+7.7	-13.2	+0.0	30.1	29.5	+0.6	Paral
15 16.412M QP	31.8	+0.2	+0.2	+8.4	-13.2	+0.0	27.3	29.5	-2.2	Paral
^ 16.412M	34.0	+0.2	+0.2	+8.4	-13.2	+0.0	29.6	29.5	+0.1	Paral
17 26.755M QP	33.4	+0.2	+0.3	+6.2	-13.2	+0.0	26.9	29.5	-2.6	Paral
^ 26.755M	36.4	+0.2	+0.3	+6.2	-13.2	+0.0	29.9	29.5	+0.4	Paral
19 18.379M QP	30.4	+0.2	+0.3	+8.2	-13.2	+0.0	25.9	29.5	-3.6	Paral
^ 18.379M	33.5	+0.2	+0.3	+8.2	-13.2	+0.0	29.0	29.5	-0.5	Paral
21 29.847M QP	33.3	+0.3	+0.3	+5.1	-13.2	+0.0	25.8	29.5	-3.7	Paral
^ 29.847M	35.1	+0.3	+0.3	+5.1	-13.2	+0.0	27.6	29.5	-1.9	Paral
23 19.219M QP	30.1	+0.2	+0.3	+8.2	-13.2	+0.0	25.6	29.5	-3.9	Paral
^ 19.219M	32.7	+0.2	+0.3	+8.2	-13.2	+0.0	28.2	29.5	-1.3	Paral
25 24.685M QP	31.2	+0.2	+0.3	+7.0	-13.2	+0.0	25.5	29.5	-4.0	Paral
^ 24.685M	33.7	+0.2	+0.3	+7.0	-13.2	+0.0	28.0	29.5	-1.5	Paral
27 15.292M QP	29.5	+0.2	+0.2	+8.6	-13.2	+0.0	25.3	29.5	-4.2	Paral
^ 15.292M	32.6	+0.2	+0.2	+8.6	-13.2	+0.0	28.4	29.5	-1.1	Paral

Overhead Test Site #1 Date: 3/22/2006 Time: 14:07:36 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 252 Parallel Overhead Test Site 1 Position 4 Medium Lines only. Notches off, MODE 2/3. Formal Power

Page 90 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/22/2006Test Type:Radiated ScanTime:14:57:48Equipment:BPL MV GatewaySequence#:255Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

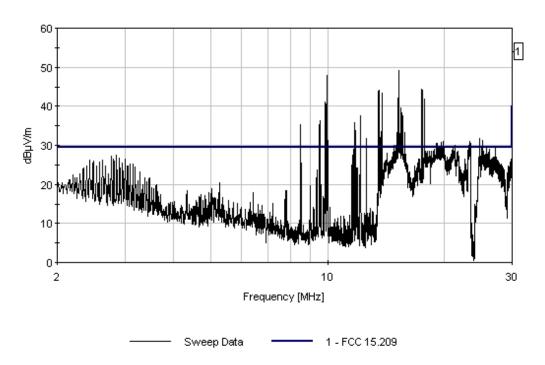
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Reading listed by margin.					1,	of Distance	o. 10 ivictor	15			
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	19.841M	33.1	+0.2	+0.3	+8.1	-13.2	+0.0	28.5	29.5	-1.0	Paral
	QP										
^	19.841M	36.0	+0.2	+0.3	+8.1	-13.2	+0.0	31.4	29.5	+1.9	Paral
3	25.207M	34.2	+0.2	+0.3	+6.8	-13.2	+0.0	28.3	29.5	-1.2	Paral
	QP										
^	25.207M	37.1	+0.2	+0.3	+6.8	-13.2	+0.0	31.1	29.5	+1.6	Paral
5	21.327M	32.9	+0.2	+0.3	+7.8	-13.2	+0.0	28.0	29.5	-1.5	Paral
	QP										
٨	21.327M	35.4	+0.2	+0.3	+7.8	-13.2	+0.0	30.5	29.5	+1.0	Paral


Page 91 of 321 Report No.: FC06-025 Volume 4 of 9

7 24.749M QP	33.5	+0.2	+0.3	+7.0	-13.2	+0.0	27.8	29.5	-1.7	Paral
^ 24.749M	36.4	+0.2	+0.3	+7.0	-13.2	+0.0	30.7	29.5	+1.2	Paral
9 19.101M QP	32.0	+0.2	+0.3	+8.2	-13.2	+0.0	27.5	29.5	-2.0	Paral
^ 19.101M	35.5	+0.2	+0.3	+8.2	-13.2	+0.0	31.0	29.5	+1.5	Paral
11 15.303M QP	31.6	+0.2	+0.2	+8.6	-13.2	+0.0	27.4	29.5	-2.1	Paral
^ 15.303M	34.2	+0.2	+0.2	+8.6	-13.2	+0.0	30.0	29.5	+0.5	Paral
13 23.438M QP	32.7	+0.2	+0.3	+7.2	-13.2	+0.0	27.2	29.5	-2.3	Paral
^ 23.438M	35.7	+0.2	+0.3	+7.2	-13.2	+0.0	30.2	29.5	+0.7	Paral
15 26.224M QP	32.5	+0.2	+0.3	+6.4	-13.2	+0.0	26.2	29.5	-3.3	Paral
^ 26.224M	35.6	+0.2	+0.3	+6.4	-13.2	+0.0	29.3	29.5	-0.2	Paral
17 15.782M QP	30.6	+0.2	+0.2	+8.5	-13.2	+0.0	26.2	29.5	-3.3	Paral
^ 15.782M	33.0	+0.2	+0.2	+8.5	-13.2	+0.0	28.7	29.5	-0.8	Paral
19 18.125M QP	30.1	+0.2	+0.3	+8.3	-13.2	+0.0	25.6	29.5	-3.9	Paral
^ 18.125M	32.6	+0.2	+0.3	+8.3	-13.2	+0.0	28.2	29.5	-1.3	Paral
21 14.981M QP	29.3	+0.2	+0.2	+8.6	-13.2	+0.0	25.1	29.5	-4.4	Paral
^ 14.981M	31.6	+0.2	+0.2	+8.6	-13.2	+0.0	27.4	29.5	-2.1	Paral
23 29.845M QP	31.8	+0.3	+0.3	+5.1	-13.2	+0.0	24.3	29.5	-5.2	Paral
^ 29.845M	34.4	+0.3	+0.3	+5.1	-13.2	+0.0	26.9	29.5	-2.6	Paral
25 27.659M QP	31.1	+0.3	+0.3	+5.8	-13.2	+0.0	24.3	29.5	-5.2	Paral
^ 27.659M	33.6	+0.3	+0.3	+5.8	-13.2	+0.0	26.8	29.5	-2.7	Paral

Overhead Test Site #1 Date: 3/22/2006 Time: 14:57:48 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 255 Parallel Overhead Test Site 1 Position 5 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 93 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/22/2006Test Type:Radiated ScanTime:15:06:59Equipment:BPL MV GatewaySequence#:256Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

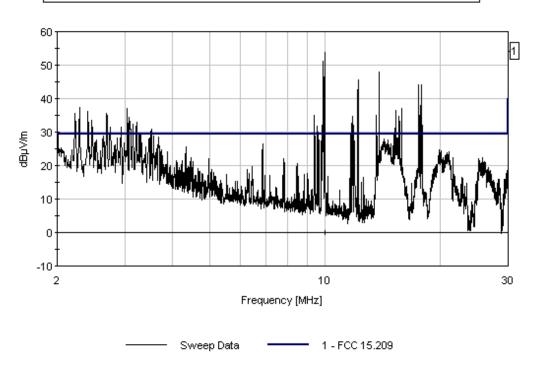
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


1,2000000	<u> </u>		Juding m		·- 8			or 2 isterio	O. 10 1:10:02		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.236M	30.1	+0.2	+0.2	+8.7	-13.2	+0.0	26.0	29.5	-3.5	Perpe
(QΡ										
٨	14.236M	33.7	+0.2	+0.2	+8.7	-13.2	+0.0	29.6	29.5	+0.1	Perpe
3	19.843M	30.0	+0.2	+0.3	+8.1	-13.2	+0.0	25.4	29.5	-4.1	Perpe
4	15.444M	27.5	+0.2	+0.2	+8.5	-13.2	+0.0	23.2	29.5	-6.3	Perpe
5	25.734M	28.6	+0.2	+0.3	+6.6	-13.2	+0.0	22.5	29.5	-7.0	Perpe
6	20.882M	27.0	+0.2	+0.3	+7.9	-13.2	+0.0	22.2	29.5	-7.3	Perpe
(QΡ										
٨	20.882M	30.6	+0.2	+0.3	+7.9	-13.2	+0.0	25.8	29.5	-3.7	Perpe
											•
	3 3 4 5	MHz 1 14.236M QP ^ 14.236M 3 19.843M 4 15.444M 5 25.734M 6 20.882M QP	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# Freq Rdng T1 T2 T3 $dB\mu V$ dB dB dB dB dB 1 14.236M 30.1 +0.2 +0.2 +8.7 QP ^ 14.236M 33.7 +0.2 +0.2 +8.7 3 19.843M 30.0 +0.2 +0.3 +8.1 4 15.444M 27.5 +0.2 +0.2 +8.5 5 25.734M 28.6 +0.2 +0.3 +6.6 QP	# Freq Rdng T1 T2 T3 T4 MHz dB μ V dB dB dB dB dB dB 1 14.236M 30.1 +0.2 +0.2 +8.7 -13.2 QP	# Freq Rdng T1 T2 T3 T4 Dist MHz dB μ V dB dB dB dB dB Table 1 14.236M 30.1 +0.2 +0.2 +8.7 -13.2 +0.0 QP	# Freq Rdng $\frac{1}{dB} = \frac{1}{dB} = \frac{1}{dB}$	# Freq Rdng dB μ V dB dB dB dB dB dB Table dB μ V/m dB μ V/m l 1 14.236M 30.1 +0.2 +0.2 +8.7 -13.2 +0.0 26.0 29.5 QP ^ 14.236M 30.0 +0.2 +0.3 +8.1 -13.2 +0.0 25.4 29.5 4 15.444M 27.5 +0.2 +0.2 +8.5 -13.2 +0.0 23.2 29.5 5 25.734M 28.6 +0.2 +0.3 +6.6 -13.2 +0.0 22.5 29.5 QP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 94 of 321 Report No.: FC06-025 Volume 4 of 9

8	26.227M	26.6	+0.2	+0.3	+6.4	-13.2	+0.0	20.3	29.5	-9.2	Perpe
9	19.370M	24.8	+0.2	+0.3	+8.2	-13.2	+0.0	20.3	29.5	-9.2	Perpe
10	29.860M	26.1	+0.3	+0.3	+5.0	-13.2	+0.0	18.5	29.5	-11.0	Perpe

Overhead Test Site #1 Date: 3/22/2006 Time: 15:06:59 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 256 Perpendicular Overhead Test Site 1 Position 5 Medium Lines only. Notches off, MODE 2/3. Formal Power

Page 95 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/22/2006Test Type:Radiated ScanTime:15:23:12Equipment:BPL MV GatewaySequence#:257Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

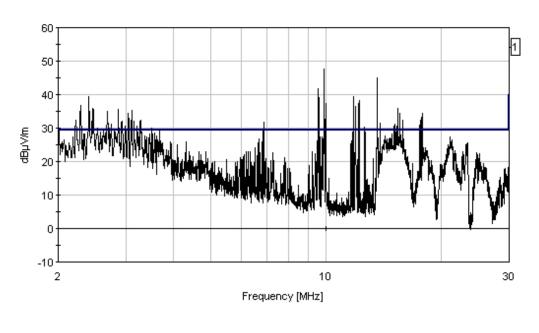
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


mensus	emem Daia.	110	ading no	ica oy ma	15111.		1,	of Distance	o. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	23.156M	30.7	+0.2	+0.3	+7.3	-13.2	+0.0	25.3	29.5	-4.2	Perpe
2	21.097M	30.2	+0.2	+0.3	+7.8	-13.2	+0.0	25.3	29.5	-4.2	Perpe
(QР										
^	21.097M	32.6	+0.2	+0.3	+7.8	-13.2	+0.0	27.7	29.5	-1.8	Perpe
4	18.126M	29.4	+0.2	+0.3	+8.3	-13.2	+0.0	25.0	29.5	-4.5	Perpe
5	15.786M	28.7	+0.2	+0.2	+8.5	-13.2	+0.0	24.3	29.5	-5.2	Perpe
(QΡ										
^	15.786M	30.9	+0.2	+0.2	+8.5	-13.2	+0.0	26.6	29.5	-2.9	Perpe
											_

Page 96 of 321 Report No.: FC06-025 Volume 4 of 9

7 14.2° OP	75M 28.0	+0.2	+0.2	+8.7	-13.2	+0.0	23.9	29.5	-5.6	Perpe
^ 14.2	75M 32.2	+0.2	+0.2	+8.7	-13.2	+0.0	28.1	29.5	-1.4	Perpe
9 24.69	95M 29.5	+0.2	+0.3	+7.0	-13.2	+0.0	23.8	29.5	-5.7	Perpe
10 15.10)3M 27.0	+0.2	+0.2	+8.6	-13.2	+0.0	22.8	29.5	-6.7	Perpe
QP										
^ 15.10)3M 29.8	+0.2	+0.2	+8.6	-13.2	+0.0	25.6	29.5	-3.9	Perpe
12 29.2	34M 24.6	+0.3	+0.3	+5.3	-13.2	+0.0	17.3	29.5	-12.2	Perpe

Overhead Test Site #1 Date: 3/22/2006 Time: 15:23:12 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 257 Perpendicular Overhead Test Site 1 Position 6 Medium Lines only. Notches off. MODE 2/3. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/22/2006
Test Type: Radiated Scan Time: 15:38:16
Equipment: BPL MV Gateway Sequence#: 258
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

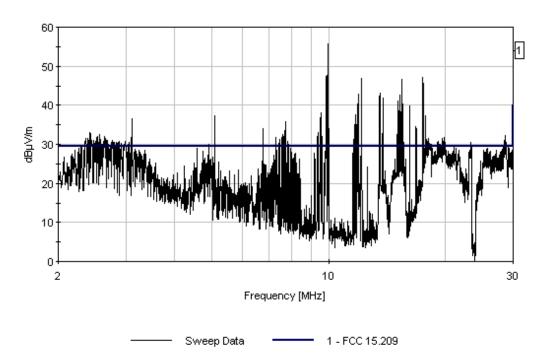
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

Measur	emeni Daia.	1//	ading no	icu by mi	ugm.		1 (st Distance	c. 10 Micici		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	28.601M	36.5	+0.3	+0.3	+5.5	-13.2	+0.0	29.4	29.5	-0.1	Paral
(QP										
٨	28.601M	39.4	+0.3	+0.3	+5.5	-13.2	+0.0	32.3	29.5	+2.8	Paral
3	19.843M	34.0	+0.2	+0.3	+8.1	-13.2	+0.0	29.4	29.5	-0.1	Paral
(QP										
^	19.843M	36.9	+0.2	+0.3	+8.1	-13.2	+0.0	32.3	29.5	+2.8	Paral
5	17.954M	32.7	+0.2	+0.3	+8.3	-13.2	+0.0	28.3	29.5	-1.2	Paral
(QP										
٨	17.954M	36.2	+0.2	+0.3	+8.3	-13.2	+0.0	31.8	29.5	+2.3	Paral


Page 98 of 321 Report No.: FC06-025 Volume 4 of 9

7	21.097M QP	33.1	+0.2	+0.3	+7.8	-13.2	+0.0	28.2	29.5	-1.3	Paral
٨	21.097M	35.6	+0.2	+0.3	+7.8	-13.2	+0.0	30.7	29.5	+1.2	Paral
9	19.224M QP	31.9	+0.2	+0.3	+8.2	-13.2	+0.0	27.4	29.5	-2.1	Paral
٨	19.224M	35.6	+0.2	+0.3	+8.2	-13.2	+0.0	31.1	29.5	+1.6	Paral
11	29.378M QP	34.7	+0.3	+0.3	+5.2	-13.2	+0.0	27.3	29.5	-2.2	Paral
٨	29.378M	37.4	+0.3	+0.3	+5.2	-13.2	+0.0	30.0	29.5	+0.5	Paral
13	23.439M QP	31.8	+0.2	+0.3	+7.2	-13.2	+0.0	26.3	29.5	-3.2	Paral
٨	23.439M	34.8	+0.2	+0.3	+7.2	-13.2	+0.0	29.3	29.5	-0.2	Paral
15	25.735M QP	32.1	+0.2	+0.3	+6.6	-13.2	+0.0	26.0	29.5	-3.5	Paral
٨	25.735M	35.9	+0.2	+0.3	+6.6	-13.2	+0.0	29.8	29.5	+0.3	Paral
17	27.028M QP	32.1	+0.2	+0.3	+6.1	-13.2	+0.0	25.5	29.5	-4.0	Paral
٨	27.028M	34.7	+0.2	+0.3	+6.1	-13.2	+0.0	28.1	29.5	-1.4	Paral
19	27.838M QP	31.8	+0.3	+0.3	+5.8	-13.2	+0.0	25.0	29.5	-4.5	Paral
٨	27.838M	34.9	+0.3	+0.3	+5.8	-13.2	+0.0	28.1	29.5	-1.4	Paral
21	21.730M OP	30.0	+0.2	+0.3	+7.7	-13.2	+0.0	25.0	29.5	-4.5	Paral
٨	21.730M	32.9	+0.2	+0.3	+7.7	-13.2	+0.0	27.8	29.5	-1.7	Paral
23	14.844M QP	27.1	+0.2	+0.2	+8.6	-13.2	+0.0	22.9	29.5	-6.6	Paral
٨	14.844M	29.9	+0.2	+0.2	+8.6	-13.2	+0.0	25.7	29.5	-3.8	Paral
25	15.291M	26.9	+0.2	+0.2	+8.6	-13.2	+0.0	22.7	29.5	-6.8	Paral

Overhead Test Site #1 Date: 3/22/2006 Time: 15:38:16 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 258 Parallel Overhead Test Site 1 Position 6 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 100 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/23/2006Test Type:Radiated ScanTime:09:38:28Equipment:BPL MV GatewaySequence#:263Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

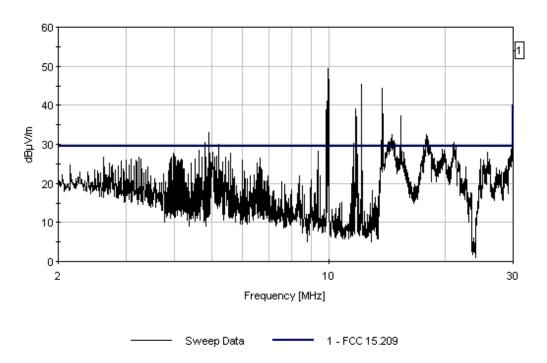
Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

171000000	ement Data.	111	ading no.	tea of ma	- 5····			DISCUITE.	5. 10 mileter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.954M	33.9	+0.2	+0.3	+8.3	-13.2	+0.0	29.5	29.5	0.0	Paral
()P										
٨	17.954M	37.1	+0.2	+0.3	+8.3	-13.2	+0.0	32.7	29.5	+3.2	Paral
3	21.099M	33.3	+0.2	+0.3	+7.8	-13.2	+0.0	28.4	29.5	-1.1	Paral
()P										
^	21.099M	35.7	+0.2	+0.3	+7.8	-13.2	+0.0	30.8	29.5	+1.3	Paral
5	14.497M	32.1	+0.2	+0.2	+8.6	-13.2	+0.0	27.9	29.5	-1.6	Paral
)P										
٨	14.497M	35.3	+0.2	+0.2	+8.6	-13.2	+0.0	31.1	29.5	+1.6	Paral

Page 101 of 321 Report No.: FC06-025 Volume 4 of 9



7	29.842M QP	35.4	+0.3	+0.3	+5.1	-13.2	+0.0	27.8	29.5	-1.7	Paral
٨	29.842M	37.5	+0.3	+0.3	+5.1	-13.2	+0.0	30.0	29.5	+0.5	Paral
9 (19.715M QP	30.3	+0.2	+0.3	+8.1	-13.2	+0.0	25.7	29.5	-3.8	Paral
٨	19.715M	33.9	+0.2	+0.3	+8.1	-13.2	+0.0	29.3	29.5	-0.2	Paral
11	27.336M	31.4	+0.2	+0.3	+6.0	-13.2	+0.0	24.7	29.5	-4.8	Paral
12	22.660M	29.7	+0.2	+0.3	+7.4	-13.2	+0.0	24.4	29.5	-5.1	Paral
13	21.568M QP	29.1	+0.2	+0.3	+7.7	-13.2	+0.0	24.1	29.5	-5.4	Paral
٨	21.568M	34.8	+0.2	+0.3	+7.7	-13.2	+0.0	29.8	29.5	+0.3	Paral
15	24.748M QP	29.5	+0.2	+0.3	+7.0	-13.2	+0.0	23.8	29.5	-5.7	Paral
٨	24.748M	32.7	+0.2	+0.3	+7.0	-13.2	+0.0	27.0	29.5	-2.5	Paral
17	25.205M QP	29.4	+0.2	+0.3	+6.8	-13.2	+0.0	23.5	29.5	-6.0	Paral
٨	25.205M	33.2	+0.2	+0.3	+6.8	-13.2	+0.0	27.3	29.5	-2.2	Paral
19	26.043M QP	29.6	+0.2	+0.3	+6.5	-13.2	+0.0	23.4	29.5	-6.1	Paral
٨	26.043M	32.8	+0.2	+0.3	+6.5	-13.2	+0.0	26.6	29.5	-2.9	Paral

Page 102 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/23/2006 Time: 09:38:28 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 263 Parallel Overhead Test Site 1 Position 7 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 103 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/23/2006Test Type:Radiated ScanTime:09:51:56Equipment:BPL MV GatewaySequence#:264Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

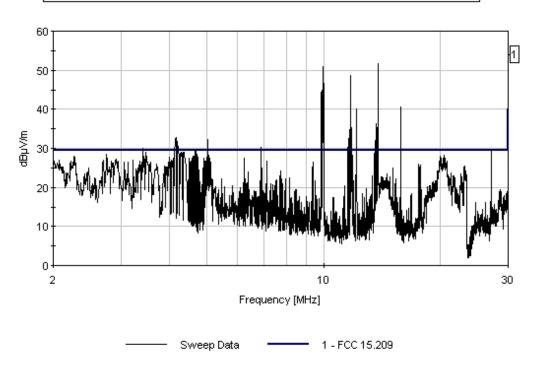
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


media	emem Daia.	110	dams no	tea by ma	15111.		1 (ot Distance	c. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	19.999M	29.9	+0.2	+0.3	+8.1	-13.2	+0.0	25.3	29.5	-4.2	Perpe
()P										
٨	19.999M	32.6	+0.2	+0.3	+8.1	-13.2	+0.0	28.0	29.5	-1.5	Perpe
3	22.661M	30.2	+0.2	+0.3	+7.4	-13.2	+0.0	24.9	29.5	-4.6	Perpe
4	20.510M	29.6	+0.2	+0.3	+8.0	-13.2	+0.0	24.9	29.5	-4.6	Perpe
()P										
٨	20.510M	33.7	+0.2	+0.3	+8.0	-13.2	+0.0	29.0	29.5	-0.5	Perpe
											-
6	21.792M	28.6	+0.2	+0.3	+7.6	-13.2	+0.0	23.5	29.5	-6.0	Perpe
											_

Page 104 of 321 Report No.: FC06-025 Volume 4 of 9

	23.086M OP	28.6	+0.2	+0.3	+7.3	-13.2	+0.0	23.2	29.5	-6.3	Perpe
^	23.086M	31.9	+0.2	+0.3	+7.3	-13.2	+0.0	26.5	29.5	-3.0	Perpe
9	14.409M	25.8	+0.2	+0.2	+8.6	-13.2	+0.0	21.6	29.5	-7.9	Perpe
10	29.843M	26.4	+0.3	+0.3	+5.1	-13.2	+0.0	18.9	29.5	-10.6	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 09:51:56 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 264 Perpendicular Overhead Test Site 1 Position 7 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/23/2006Test Type:Radiated ScanTime:10:29:06Equipment:BPL MV GatewaySequence#:267Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

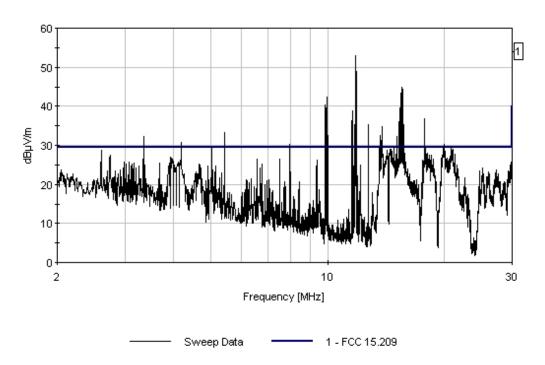
Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

1720000	n ement Bata.	111	caamg ms	tea of me	41 g 1111.			Distance	c. 10 1,1ctc1		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	20.001M	32.5	+0.2	+0.3	+8.1	-13.2	+0.0	27.9	29.5	-1.6	Paral
	QP										
٨	20.001M	35.0	+0.2	+0.3	+8.1	-13.2	+0.0	30.4	29.5	+0.9	Paral
3	19.841M	31.8	+0.2	+0.3	+8.1	-13.2	+0.0	27.2	29.5	-2.3	Paral
	QP										
٨	19.841M	34.5	+0.2	+0.3	+8.1	-13.2	+0.0	29.9	29.5	+0.4	Paral
5	20.883M	31.4	+0.2	+0.3	+7.9	-13.2	+0.0	26.6	29.5	-2.9	Paral
	QP										
٨	20.883M	34.9	+0.2	+0.3	+7.9	-13.2	+0.0	30.1	29.5	+0.6	Paral

Page 106 of 321 Report No.: FC06-025 Volume 4 of 9



7 14.538M	30.6	+0.2	+0.2	+8.6	-13.2	+0.0	26.4	29.5	-3.1	Paral
QP										
^ 14.538M	33.7	+0.2	+0.2	+8.6	-13.2	+0.0	29.5	29.5	+0.0	Paral
9 17.959M	30.1	+0.2	+0.3	+8.3	-13.2	+0.0	25.7	29.5	-3.8	Paral
QP										
^ 17.959M	32.8	+0.2	+0.3	+8.3	-13.2	+0.0	28.3	29.5	-1.2	Paral
11 21.367M	30.3	+0.2	+0.3	+7.7	-13.2	+0.0	25.3	29.5	-4.2	Paral
QP										
^ 21.367M	32.6	+0.2	+0.3	+7.7	-13.2	+0.0	27.5	29.5	-2.0	Paral
13 15.705M	28.7	+0.2	+0.2	+8.5	-13.2	+0.0	24.4	29.5	-5.1	Paral
QP	20.7	. 0.2	. 0.2	. 0.0	10.2	. 0.0		_,	0.1	1 4141
^ 15.705M	31.4	+0.2	+0.2	+8.5	-13.2	+0.0	27.1	29.5	-2.4	Paral
1017 00171	01	. 0.2	. 0.2	. 0.0	10.2	. 0.0		_,		1 4141
15 18.588M	28.6	+0.2	+0.3	+8.2	-13.2	+0.0	24.1	29.5	-5.4	Paral
QP										
^ 18.588M	31.7	+0.2	+0.3	+8.2	-13.2	+0.0	27.1	29.5	-2.4	Paral
10.0001/1	31.7	10.2	10.5	10.2	13.2	10.0	27.11	27.5	2	1 urur
17 24.748M	29.6	+0.2	+0.3	+7.0	-13.2	+0.0	23.9	29.5	-5.6	Paral
21.710141	27.0	10.2	10.5	17.0	13.2	10.0	23.7	27.5	3.0	1 arar
18 29.841M	30.7	+0.3	+0.3	+5.1	-13.2	+0.0	23.2	29.5	-6.3	Paral
QP	20.7	. 0.2	. 0.2		10.2	. 0.0		_,	0.0	1 4141
^ 29.841M	33.2	+0.3	+0.3	+5.1	-13.2	+0.0	25.7	29.5	-3.8	Paral
2,10.1111	22.2	. 0.2	. 0.2		10.2	. 0.0		->	2.0	1 41.41
20 26.100M	28.8	+0.2	+0.3	+6.5	-13.2	+0.0	22.6	29.5	-6.9	Paral
20 20.100101	20.0	10.2	10.5	10.5	13.2	10.0	22.0	27.5	0.7	1 4141
21 22.658M	27.1	+0.2	+0.3	+7.4	-13.2	+0.0	21.8	29.5	-7.7	Paral
21 22.03011	27.1	10.2	10.5	1 /	13.2	10.0	21.0	27.5	,.,	1 4141
1										

Page 107 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/23/2006 Time: 10:29:06 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 267 Parallel Overhead Test Site 1 Position 8 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 108 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 10:41:35
Equipment: BPL MV Gateway Sequence#: 268
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

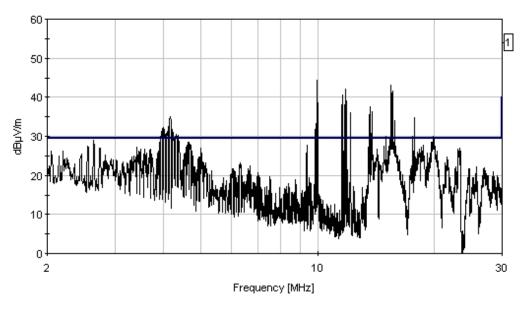
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


17.	LOUDIN	ement Daia.	111	buding no	tea of inc	<u>5</u>			ost Distance	5. 10 mileter		
	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
	1	19.842M	31.9	+0.2	+0.3	+8.1	-13.2	+0.0	27.3	29.5	-2.2	Perpe
	(QΡ										
	٨	19.842M	34.7	+0.2	+0.3	+8.1	-13.2	+0.0	30.1	29.5	+0.6	Perpe
	3	15.703M	30.1	+0.2	+0.2	+8.5	-13.2	+0.0	25.8	29.5	-3.7	Perpe
	(QP										
	٨	15.703M	32.4	+0.2	+0.2	+8.5	-13.2	+0.0	28.1	29.5	-1.4	Perpe
	5	21.569M	30.3	+0.2	+0.3	+7.7	-13.2	+0.0	25.3	29.5	-4.2	Perpe
	6	18.751M	29.8	+0.2	+0.3	+8.2	-13.2	+0.0	25.3	29.5	-4.2	Perpe
	(QΡ										_
	٨	18.751M	32.5	+0.2	+0.3	+8.2	-13.2	+0.0	28.0	29.5	-1.5	Perpe
												-

Page 109 of 321 Report No.: FC06-025 Volume 4 of 9

8	14.849M	29.5	+0.2	+0.2	+8.6	-13.2	+0.0	25.3	29.5	-4.2	Perpe
	QP										
٨	14.849M	32.8	+0.2	+0.2	+8.6	-13.2	+0.0	28.6	29.5	-0.9	Perpe
10	18.379M	28.9	+0.2	+0.3	+8.2	-13.2	+0.0	24.4	29.5	-5.1	Perpe
	QP										
٨	18.379M	31.9	+0.2	+0.3	+8.2	-13.2	+0.0	27.4	29.5	-2.1	Perpe
12	23.155M	28.9	+0.2	+0.3	+7.3	-13.2	+0.0	23.5	29.5	-6.0	Perpe
	QP										
^	23.155M	32.2	+0.2	+0.3	+7.3	-13.2	+0.0	26.8	29.5	-2.7	Perpe
14	24.662M	28.1	+0.2	+0.3	+7.0	-13.2	+0.0	22.4	29.5	-7.1	Perpe
15	27.193M	28.2	+0.2	+0.3	+6.0	-13.2	+0.0	21.5	29.5	-8.0	Perpe
16	28.435M	27.3	+0.3	+0.3	+5.6	-13.2	+0.0	20.3	29.5	-9.2	Perpe
17	29.088M	27.0	+0.3	+0.3	+5.3	-13.2	+0.0	19.7	29.5	-9.8	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 10:41:35 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 268 Perpendicular Overhead Test Site 1 Position 8 Medium Lines only. Notches off. MODE 2/3. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 11:23:25
Equipment: BPL MV Gateway Sequence#: 269
Manufacturer: Corinex Tested By: C. Nicklas
Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

<u>=4.0.p</u>			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

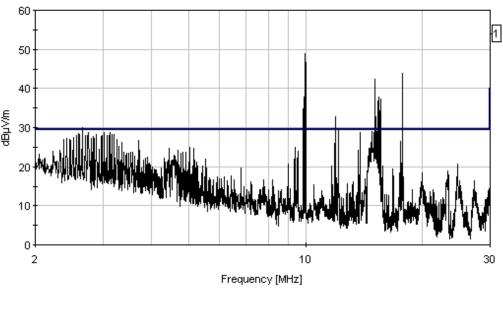
Support Devices:

Function	Manufacturar	Model #	C/NI
Function	Manufacturer	Model #	3/1N

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 53.47 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:


Transaucer Ecgena.	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.847M	30.9	+0.2	+0.2	+8.6	-13.2	+0.0	26.7	29.5	-2.8	Paral
	QP										
٨	14.847M	34.2	+0.2	+0.2	+8.6	-13.2	+0.0	30.0	29.5	+0.5	Paral
3	15.228M	26.0	+0.2	+0.2	+8.6	-13.2	+0.0	21.8	29.5	-7.7	Paral
	QP										
٨	15.228M	29.9	+0.2	+0.2	+8.6	-13.2	+0.0	25.7	29.5	-3.8	Paral
5	24.751M	26.2	+0.2	+0.3	+7.0	-13.2	+0.0	20.5	29.5	-9.0	Paral
6	23.338M	23.2	+0.2	+0.3	+7.3	-13.2	+0.0	17.8	29.5	-11.7	Paral
7	20.005M	22.3	+0.2	+0.3	+8.1	-13.2	+0.0	17.7	29.5	-11.8	Paral
8	29.845M	22.5	+0.3	+0.3	+5.1	-13.2	+0.0	15.0	29.5	-14.5	Paral

Page 111 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/23/2006 Time: 11:23:25 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 269 Parallel Overhead Test Site 1 Position 9 Medium Lines only. Notches off. MODE 2/3. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 11:16:49
Equipment: BPL MV Gateway Sequence#: 270
Manufacturer: Corinex Tested By: C. Nicklas
Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

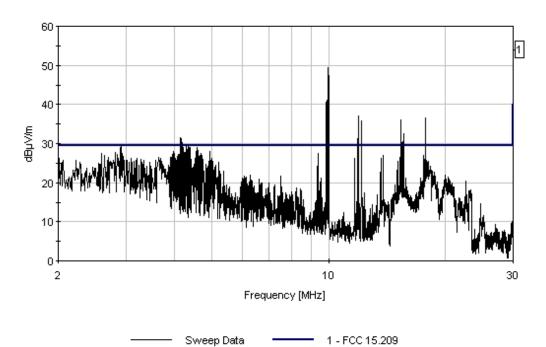
Support Devices:

Function	Manufacturer	Model #	S/N
----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 53.47 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410	
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1	

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 10 Metei	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.345M	29.2	+0.2	+0.3	+8.3	-13.2	+0.0	24.8	29.5	-4.7	Perpe
2	18.747M	28.5	+0.2	+0.3	+8.2	-13.2	+0.0	24.0	29.5	-5.5	Perpe
3	17.958M QP	27.4	+0.2	+0.3	+8.3	-13.2	+0.0	23.0	29.5	-6.5	Perpe
^	17.958M	30.1	+0.2	+0.3	+8.3	-13.2	+0.0	25.7	29.5	-3.8	Perpe
5	20.003M	27.1	+0.2	+0.3	+8.1	-13.2	+0.0	22.5	29.5	-7.0	Perpe
6	17.345M	25.0	+0.2	+0.3	+8.3	-13.2	+0.0	20.6	29.5	-8.9	Perpe
7	15.750M	23.6	+0.2	+0.2	+8.5	-13.2	+0.0	19.3	29.5	-10.2	Perpe
8	23.083M	23.8	+0.2	+0.3	+7.3	-13.2	+0.0	18.4	29.5	-11.1	Perpe

Page 113 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/23/2006 Time: 11:16:49 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 270 Perpendicular Overhead Test Site 1 Position 9 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 114 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex Specification: FCC 15,209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 11:35:19
Equipment: BPL MV Gateway Sequence#: 271
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

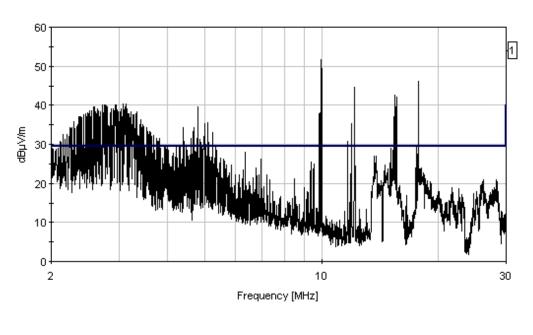
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


172000000	ement Data.	111	baamg ms	tea of mic	41 S 1111.			Distance	5. 10 mileter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	13.752M	29.3	+0.2	+0.2	+8.7	-13.2	+0.0	25.2	29.5	-4.3	Paral
2	14.811M	28.8	+0.2	+0.2	+8.6	-13.2	+0.0	24.6	29.5	-4.9	Paral
3	18.127M	28.6	+0.2	+0.3	+8.3	-13.2	+0.0	24.2	29.5	-5.3	Paral
4	15.375M	28.3	+0.2	+0.2	+8.6	-13.2	+0.0	24.1	29.5	-5.4	Paral
5	15.781M	26.2	+0.2	+0.2	+8.5	-13.2	+0.0	21.9	29.5	-7.6	Paral
6	26.240M	27.4	+0.2	+0.3	+6.4	-13.2	+0.0	21.1	29.5	-8.4	Paral

Page 115 of 321 Report No.: FC06-025 Volume 4 of 9

7	28.313M	27.9	+0.3	+0.3	+5.6	-13.2	+0.0	20.9	29.5	-8.6	Paral
8	22.669M	24.8	+0.2	+0.3	+7.4	-13.2	+0.0	19.5	29.5	-10.0	Paral
9	21.730M	23.7	+0.2	+0.3	+7.7	-13.2	+0.0	18.7	29.5	-10.8	Paral
10	25.224M	24.2	+0.2	+0.3	+6.8	-13.2	+0.0	18.3	29.5	-11.2	Paral
11	23.070M	23.5	+0.2	+0.3	+7.3	-13.2	+0.0	18.1	29.5	-11.4	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 11:35:19 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 271 Parallel Overhead Test Site 1 Position 10 Medium Lines only. Notches off. MODE 2/3. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 11:44:29
Equipment: BPL MV Gateway Sequence#: 272
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

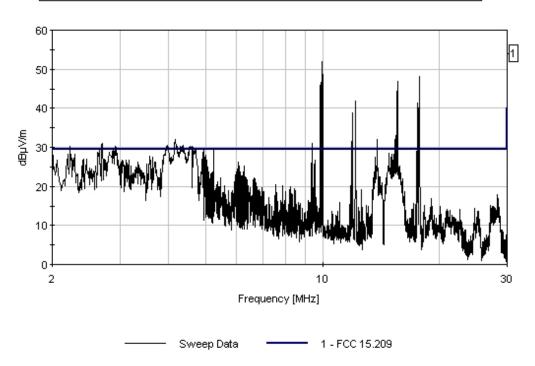
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

 6	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


Measur	етет Виш.	17.0	ading no	icu by ma	ugm.		1 (ot Distance	c. 10 Micici		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.847M	30.0	+0.2	+0.2	+8.6	-13.2	+0.0	25.8	29.5	-3.7	Perpe
(QР										
٨	14.847M	33.2	+0.2	+0.2	+8.6	-13.2	+0.0	29.0	29.5	-0.5	Perpe
3	15.375M	28.9	+0.2	+0.2	+8.6	-13.2	+0.0	24.7	29.5	-4.8	Perpe
4	15.788M	28.9	+0.2	+0.2	+8.5	-13.2	+0.0	24.6	29.5	-4.9	Perpe
5	13.753M	27.4	+0.2	+0.2	+8.7	-13.2	+0.0	23.3	29.5	-6.2	Perpe
(QΡ										_
٨	13.753M	30.1	+0.2	+0.2	+8.7	-13.2	+0.0	26.0	29.5	-3.5	Perpe
											_

Page 117 of 321 Report No.: FC06-025 Volume 4 of 9

7	19.126M	21.8	+0.2	+0.3	+8.2	-13.2	+0.0	17.3	29.5	-12.2	Perpe
8	28.450M	23.9	+0.3	+0.3	+5.6	-13.2	+0.0	16.9	29.5	-12.6	Perpe
9	24.780M	21.3	+0.2	+0.3	+6.9	-13.2	+0.0	15.5	29.5	-14.0	Perpe
10	21.080M	19.7	+0.2	+0.3	+7.8	-13.2	+0.0	14.8	29.5	-14.7	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 11:44:29 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 272 Perpendicular Overhead Test Site 1 Position 10 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 11:56:53
Equipment: BPL MV Gateway Sequence#: 273
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

Measurement Data:

Freq

21.350M

26.225M

Rdng

18.5

19.0

+0.2

+0.2

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

T4

-13.2

-13.2

Dist

+0.0

+0.0

T3

Test Distance: 10 Meters

Spec

29.5

29.5

Margin

Polar

Perpe

Perpe

Corr

13.5

12.7

Reading listed by margin.

T2

+0.3

+0.3

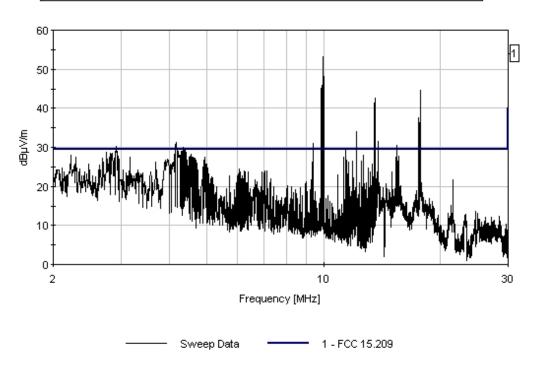
T1

	MHz	dBμV	dB	dB	dB	dB	Table	dBμV/m	dBµV/m	dB	Ant
1	14.700M	21.6	+0.2	+0.2	+8.6	-13.2	+0.0	17.4	29.5	-12.1	Perpe
2	17.340M	20.6	+0.2	+0.3	+8.3	-13.2	+0.0	16.2	29.5	-13.3	Perpe
3	15.545M	20.3	+0.2	+0.2	+8.5	-13.2	+0.0	16.0	29.5	-13.5	Perpe
4	15.810M	20.2	+0.2	+0.2	+8.5	-13.2	+0.0	15.9	29.5	-13.6	Perpe
5	18.810M	19.2	+0.2	+0.3	+8.2	-13.2	+0.0	14.7	29.5	-14.8	Perpe

+7.7

+6.4

Page 119 of 321 Report No.: FC06-025 Volume 4 of 9


-16.0

-16.8

8	23.338M	16.9	+0.2	+0.3	+7.3	-13.2	+0.0	11.5	29.5	-18.0	Perpe
9	27.575M	17.8	+0.3	+0.3	+5.9	-13.2	+0.0	11.1	29.5	-18.4	Perpe
10	24.738M	16.5	+0.2	+0.3	+7.0	-13.2	+0.0	10.8	29.5	-18.7	Perpe
11	28.463M	17.8	+0.3	+0.3	+5.5	-13.2	+0.0	10.7	29.5	-18.8	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 11:56:53 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 273 Perpendicular Overhead Test Site 1 Position 11 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 120 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 12:02:48
Equipment: BPL MV Gateway Sequence#: 274
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

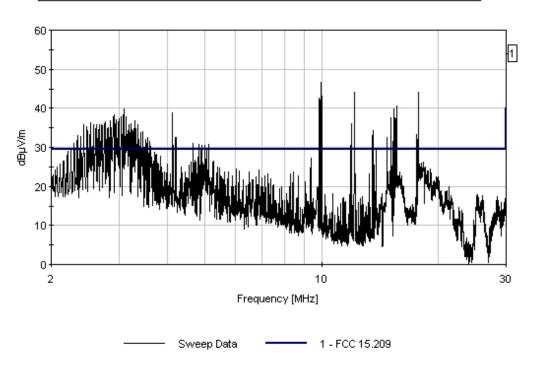
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

1	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


17.	Lusui	етет Виш.	100	aumg ns	ica by mic	115III.		1 (ot Distance	o. 10 ivicioi	.0	
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	19.226M	29.5	+0.2	+0.3	+8.2	-13.2	+0.0	25.0	29.5	-4.5	Paral
	2	19.841M	27.8	+0.2	+0.3	+8.1	-13.2	+0.0	23.2	29.5	-6.3	Paral
	3	18.347M OP	27.3	+0.2	+0.3	+8.2	-13.2	+0.0	22.8	29.5	-6.7	Paral
	۸	18.347M	30.8	+0.2	+0.3	+8.2	-13.2	+0.0	26.3	29.5	-3.2	Paral
	5	15.995M	25.9	+0.2	+0.2	+8.5	-13.2	+0.0	21.6	29.5	-7.9	Paral
	6	15.780M	25.0	+0.2	+0.2	+8.5	-13.2	+0.0	20.7	29.5	-8.8	Paral
	7	14.765M	24.2	+0.2	+0.2	+8.6	-13.2	+0.0	20.0	29.5	-9.5	Paral

Page 121 of 321 Report No.: FC06-025 Volume 4 of 9

8	21.391M	22.4	+0.2	+0.3	+7.7	-13.2	+0.0	17.4	29.5	-12.1	Paral
9	26.138M	22.3	+0.2	+0.3	+6.4	-13.2	+0.0	16.0	29.5	-13.5	Paral
10	29.713M	22.6	+0.3	+0.3	+5.1	-13.2	+0.0	15.1	29.5	-14.4	Paral
11	28.313M	22.0	+0.3	+0.3	+5.6	-13.2	+0.0	15.0	29.5	-14.5	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 12:02:48 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 274 Parallel Overhead Test Site 1 Position 11 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 122 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 12:11:33
Equipment: BPL MV Gateway Sequence#: 275
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

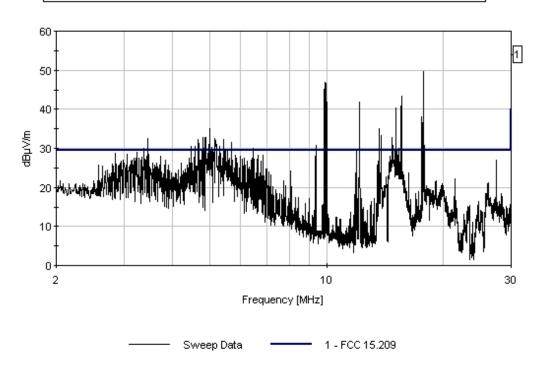
Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

 Measurement Data:
 Reading listed by margin.
 Test Distance: 10 Meters

 # Freq Rdng T1 T2 T3 T4 Dist Corr Spec


#		Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	14.847M	32.3	+0.2	+0.2	+8.6	-13.2	+0.0	28.1	29.5	-1.4	Paral
	Ç)P										
	٨	14.847M	35.5	+0.2	+0.2	+8.6	-13.2	+0.0	31.3	29.5	+1.8	Paral
	3	15.827M	29.4	+0.2	+0.2	+8.5	-13.2	+0.0	25.1	29.5	-4.4	Paral
	4	26.221M	27.5	+0.2	+0.3	+6.4	-13.2	+0.0	21.2	29.5	-8.3	Paral
	5	19.249M	24.9	+0.2	+0.3	+8.2	-13.2	+0.0	20.4	29.5	-9.1	Paral
	6	18.362M	24.1	+0.2	+0.3	+8.2	-13.2	+0.0	19.6	29.5	-9.9	Paral
	7	28.299M	24.4	+0.3	+0.3	+5.6	-13.2	+0.0	17.4	29.5	-12.1	Paral

Page 123 of 321 Report No.: FC06-025 Volume 4 of 9

8	21.388M	22.0	+0.2	+0.3	+7.7	-13.2	+0.0	17.0	29.5	-12.5	Paral
9	24.750M	21.8	+0.2	+0.3	+7.0	-13.2	+0.0	16.1	29.5	-13.4	Paral
10	23.450M	21.2	+0.2	+0.3	+7.2	-13.2	+0.0	15.7	29.5	-13.8	Paral
11	29.868M	19.7	+0.3	+0.3	+5.0	-13.2	+0.0	12.1	29.5	-17.4	Paral

Overhead Test Site #1 Date: 3/23/2006 Time: 12:11:33 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 275 Parallel Overhead Test Site 1 Position 12 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/23/2006
Test Type: Radiated Scan Time: 12:21:51
Equipment: BPL MV Gateway Sequence#: 276
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6749420821

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6749420821
Overhead Coupler	Arteche	Overcap-S-17	0517347/51
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

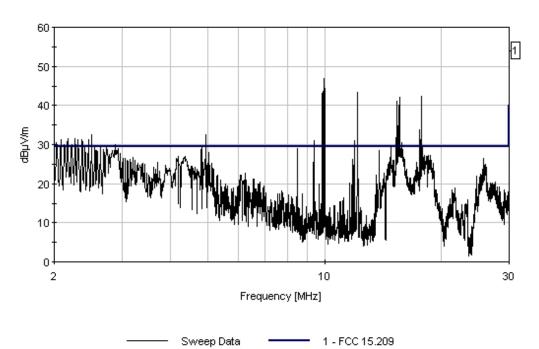
Test Conditions / Notes:

Formal Overhead Test Site #1 Post Street east of Cochran Street, Houston, TX. Unit on third pole from the end on the street on the North side of the street. Medium voltage wires are 35 feet above the street or ~10.7 meters. Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.0 meters. Slant Distance and Test Distance correction factor is -40*LOG(30/14) = -13.22dB. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Unit is setup for maximum transmission over the medium voltage lines with the Formal Power Profile for overhead lines only. Notch Filters are off line. Running with MODE2/MODE3 filters in place. Formal Power Profile.

Transducer Legend:

1. will direct. Zegerian	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S1

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


11200000	· ciiiciii 2 iiiiii		baaring mo	tea of mic	41 S 1111.			DE Z IDEALITE	O. 10 1:10:02		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.780M	31.3	+0.2	+0.2	+8.5	-13.2	+0.0	27.0	29.5	-2.5	Perpe
	QP										
٨	15.780M	33.7	+0.2	+0.2	+8.5	-13.2	+0.0	29.4	29.5	-0.1	Perpe
											_
3	14.849M	30.4	+0.2	+0.2	+8.6	-13.2	+0.0	26.2	29.5	-3.3	Perpe
	QP										
٨	14.849M	34.1	+0.2	+0.2	+8.6	-13.2	+0.0	29.9	29.5	+0.4	Perpe
											_
5	26.103M	31.7	+0.2	+0.3	+6.5	-13.2	+0.0	25.5	29.5	-4.0	Perpe
											_
6	18.748M	29.8	+0.2	+0.3	+8.2	-13.2	+0.0	25.3	29.5	-4.2	Perpe
	QP										_
٨	18.748M	32.4	+0.2	+0.3	+8.2	-13.2	+0.0	27.9	29.5	-1.6	Perpe
											•

Page 125 of 321 Report No.: FC06-025 Volume 4 of 9

8	17.342M	29.6	+0.2	+0.3	+8.3	-13.2	+0.0	25.2	29.5	-4.3	Perpe
9	24.748M	29.1	+0.2	+0.3	+7.0	-13.2	+0.0	23.3	29.5	-6.2	Perpe
10	19.102M QP	26.4	+0.2	+0.3	+8.2	-13.2	+0.0	21.9	29.5	-7.6	Perpe
٨	19.102M	30.3	+0.2	+0.3	+8.2	-13.2	+0.0	25.8	29.5	-3.7	Perpe
12	27.574M	26.7	+0.3	+0.3	+5.9	-13.2	+0.0	20.0	29.5	-9.5	Perpe
13	21.372M	24.1	+0.2	+0.3	+7.7	-13.2	+0.0	19.1	29.5	-10.4	Perpe
14	29.123M	25.1	+0.3	+0.3	+5.3	-13.2	+0.0	17.8	29.5	-11.7	Perpe
15	29.903M	23.8	+0.3	+0.3	+5.0	-13.2	+0.0	16.2	29.5	-13.3	Perpe
16	23.431M	20.8	+0.2	+0.3	+7.2	-13.2	+0.0	15.3	29.5	-14.2	Perpe

Overhead Test Site #1 Date: 3/23/2006 Time: 12:21:51 Corinex WO#: 84818
FCC 15:209 Test Distance: 10 Meters Sequence#: 276 Perpendicular
Overhead Test Site 1 Position 12 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 126 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 10:26:10
Equipment: BPL MV Gateway Sequence#: 319
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly out from pole where box is installed. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

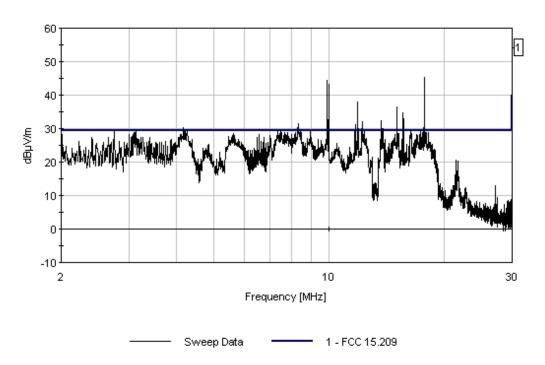
Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1 8.287M	32.2	+0.1	+0.2	+9.1	-12.8	+0.0	28.8	29.5	-0.7	Perpe
	QP										
	^ 8.287M	34.8	+0.1	+0.2	+9.1	-12.8	+0.0	31.4	29.5	+1.9	Perpe
	3 12.346M	30.8	+0.2	+0.2	+8.8	-12.8	+0.0	27.2	29.5	-2.3	Perpe
	QP										_
	^ 12.346M	33.7	+0.2	+0.2	+8.8	-12.8	+0.0	30.1	29.5	+0.6	Perpe
											_
	5 8.907M	30.1	+0.1	+0.2	+9.1	-12.8	+0.0	26.7	29.5	-2.8	Perpe
	QP										_
	^ 8.907M	33.6	+0.1	+0.2	+9.1	-12.8	+0.0	30.2	29.5	+0.7	Perpe
											•

Page 127 of 321 Report No.: FC06-025 Volume 4 of 9



7 1 QP	7.963M	30.1	+0.2	+0.3	+8.3	-12.8	+0.0	26.1	29.5	-3.4	Perpe
^ 1	17.963M	33.0	+0.2	+0.3	+8.3	-12.8	+0.0	29.0	29.5	-0.5	Perpe
9 1 QP	6.947M	30.1	+0.2	+0.2	+8.4	-12.8	+0.0	26.1	29.5	-3.4	Perpe
	6.947M	33.3	+0.2	+0.2	+8.4	-12.8	+0.0	29.3	29.5	-0.2	Perpe
11 QP	6.341M	29.9	+0.2	+0.2	+8.5	-12.8	+0.0	26.0	29.5	-3.5	Perpe
	6.341M	34.1	+0.2	+0.2	+8.5	-12.8	+0.0	30.1	29.5	+0.6	Perpe
13 QP	7.346M	29.3	+0.1	+0.2	+9.2	-12.8	+0.0	26.0	29.5	-3.5	Perpe
	7.346M	32.2	+0.1	+0.2	+9.2	-12.8	+0.0	28.9	29.5	-0.6	Perpe
15 QP	3.752M	29.5	+0.2	+0.2	+8.7	-12.8	+0.0	25.8	29.5	-3.7	Perpe
	3.752M	32.7	+0.2	+0.2	+8.7	-12.8	+0.0	29.0	29.5	-0.5	Perpe
17 QP	4.259M	29.2	+0.1	+0.2	+9.2	-12.8	+0.0	25.8	29.5	-3.7	Perpe
	4.259M	32.5	+0.1	+0.2	+9.2	-12.8	+0.0	29.2	29.5	-0.3	Perpe
19 QP	4.841M	29.5	+0.2	+0.2	+8.6	-12.8	+0.0	25.7	29.5	-3.8	Perpe
	4.841M	32.5	+0.2	+0.2	+8.6	-12.8	+0.0	28.7	29.5	-0.8	Perpe
21 QP	5.663M	27.3	+0.1	+0.1	+9.2	-12.8	+0.0	23.9	29.5	-5.6	Perpe
	5.663M	31.2	+0.1	+0.1	+9.2	-12.8	+0.0	27.7	29.5	-1.8	Perpe
23 QP	0.458M	26.5	+0.1	+0.2	+9.0	-12.8	+0.0	23.0	29.5	-6.5	Perpe
	0.458M	29.7	+0.1	+0.2	+9.0	-12.8	+0.0	26.2	29.5	-3.3	Perpe
25 QP	3.121M	25.9	+0.1	+0.1	+9.3	-12.8	+0.0	22.6	29.5	-6.9	Perpe
^	3.121M	31.5	+0.1	+0.1	+9.3	-12.8	+0.0	28.2	29.5	-1.3	Perpe
27 2	21.643M	23.6	+0.2	+0.3	+7.7	-12.8	+0.0	19.0	29.5	-10.5	Perpe

Page 128 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 10:26:10 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 319 Perpendicular Overhead Test Site 2 Position 1 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 129 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:10:32:39Equipment:BPL MV GatewaySequence#:320Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

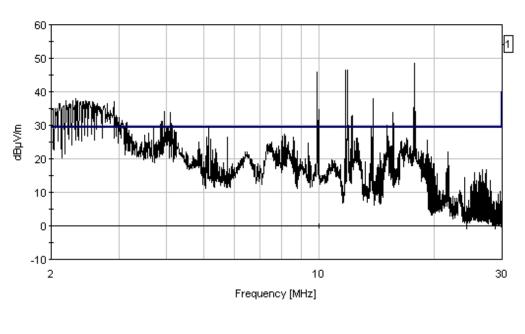
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly out from pole where box is installed. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measur	ement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 10 Metei	îs.	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	7.344M	27.6	+0.1	+0.2	+9.2	-12.8	+0.0	24.3	29.5	-5.2	Paral
2	15.000M QP	27.8	+0.2	+0.2	+8.6	-12.8	+0.0	24.0	29.5	-5.5	Paral
۸	15.000M	30.4	+0.2	+0.2	+8.6	-12.8	+0.0	26.6	29.5	-2.9	Paral
4	16.880M) P	27.4	+0.2	+0.2	+8.4	-12.8	+0.0	23.4	29.5	-6.1	Paral
٨	16.880M	30.7	+0.2	+0.2	+8.4	-12.8	+0.0	26.7	29.5	-2.8	Paral
6 (16.341M)P	26.3	+0.2	+0.2	+8.5	-12.8	+0.0	22.4	29.5	-7.1	Paral
٨	16.341M	30.2	+0.2	+0.2	+8.5	-12.8	+0.0	26.3	29.5	-3.2	Paral

Page 130 of 321 Report No.: FC06-025 Volume 4 of 9

8	6.466M	25.6	+0.1	+0.1	+9.2	-12.8	+0.0	22.2	29.5	-7.3	Paral
9	3.136M	24.5	+0.1	+0.1	+9.3	-12.8	+0.0	21.2	29.5	-8.3	Paral
10	12.501M	23.2	+0.2	+0.2	+8.8	-12.8	+0.0	19.6	29.5	-9.9	Paral
	QP										
^	12.501M	30.2	+0.2	+0.2	+8.8	-12.8	+0.0	26.5	29.5	-3.0	Paral
12	18.155M	22.5	+0.2	+0.3	+8.3	-12.8	+0.0	18.5	29.5	-11.0	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 10:32:39 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 320 Parallel Overhead Test Site 2 Position 1 Medium Lines only. Notches off. MODE 1/2. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:10:40:57Equipment:BPL MV GatewaySequence#:321Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

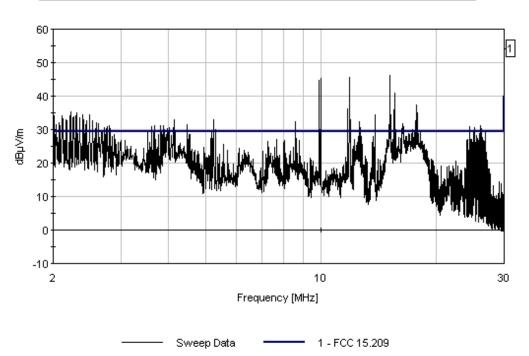
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.341M	33.0	+0.2	+0.2	+8.5	-12.8	+0.0	29.1	29.5	-0.4	Paral
	QP										
/	16.341M	36.4	+0.2	+0.2	+8.5	-12.8	+0.0	32.5	29.5	+3.0	Paral
3	14.999M	32.4	+0.2	+0.2	+8.6	-12.8	+0.0	28.6	29.5	-0.9	Paral
	QP										
/	14.999M	35.1	+0.2	+0.2	+8.6	-12.8	+0.0	31.3	29.5	+1.8	Paral
4	17.344M	30.9	+0.2	+0.3	+8.3	-12.8	+0.0	26.9	29.5	-2.6	Paral
	QP										
/	17.344M	33.8	+0.2	+0.3	+8.3	-12.8	+0.0	29.8	29.5	+0.3	Paral

Page 132 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.132M	30.5	+0.2	+0.3	+8.3	-12.8	+0.0	26.5	29.5	-3.0	Paral
	QP										
٨	18.132M	33.1	+0.2	+0.3	+8.3	-12.8	+0.0	29.1	29.5	-0.4	Paral
9	4.198M	28.2	+0.1	+0.2	+9.2	-12.8	+0.0	24.9	29.5	-4.6	Paral
10	7.366M	26.4	+0.1	+0.2	+9.2	-12.8	+0.0	23.1	29.5	-6.4	Paral
11	12.418M	25.7	+0.2	+0.2	+8.8	-12.8	+0.0	22.1	29.5	-7.4	Paral
12	3.133M	25.3	+0.1	+0.1	+9.3	-12.8	+0.0	22.0	29.5	-7.5	Paral
13	6.403M	24.5	+0.1	+0.1	+9.2	-12.8	+0.0	21.1	29.5	-8.4	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 10:40:57 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 321 Parallel Overhead Test Site 2 Position 2 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 133 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 10:53:18
Equipment: BPL MV Gateway Sequence#: 322
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

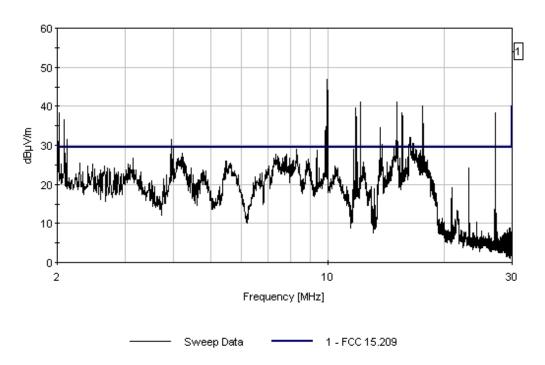
Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.339M	33.3	+0.2	+0.2	+8.5	-12.8	+0.0	29.4	29.5	-0.1	Perpe
	QP										
^	16.339M	36.2	+0.2	+0.2	+8.5	-12.8	+0.0	32.3	29.5	+2.8	Perpe
3	15.001M	32.4	+0.2	+0.2	+8.6	-12.8	+0.0	28.6	29.5	-0.9	Perpe
	QP										
^	15.001M	35.9	+0.2	+0.2	+8.6	-12.8	+0.0	32.1	29.5	+2.6	Perpe
5	8.284M	30.0	+0.1	+0.2	+9.1	-12.8	+0.0	26.6	29.5	-2.9	Perpe
QP											_
^	8.284M	32.8	+0.1	+0.2	+9.1	-12.8	+0.0	29.3	29.5	-0.2	Perpe
											•

Page 134 of 321 Report No.: FC06-025 Volume 4 of 9



7	16.954M	29.5	+0.2	+0.2	+8.4	-12.8	+0.0	25.5	29.5	-4.0	Perpe
1	QP										
٨	16.954M	33.1	+0.2	+0.2	+8.4	-12.8	+0.0	29.1	29.5	-0.4	Perpe
9	4.112M QP	26.7	+0.1	+0.2	+9.2	-12.8	+0.0	23.4	29.5	-6.1	Perpe
٨	4.112M	30.6	+0.1	+0.2	+9.2	-12.8	+0.0	27.3	29.5	-2.2	Perpe
11	10.569M	26.8	+0.1	+0.2	+9.0	-12.8	+0.0	23.3	29.5	-6.2	Perpe
12	18.128M QP	27.2	+0.2	+0.3	+8.3	-12.8	+0.0	23.2	29.5	-6.3	Perpe
٨	18.128M	30.5	+0.2	+0.3	+8.3	-12.8	+0.0	26.5	29.5	-3.0	Perpe
14	7.243M OP	26.4	+0.1	+0.2	+9.2	-12.8	+0.0	23.1	29.5	-6.4	Perpe
٨	7.243M	30.3	+0.1	+0.2	+9.2	-12.8	+0.0	27.0	29.5	-2.5	Perpe
16	12.348M QP	26.4	+0.2	+0.2	+8.8	-12.8	+0.0	22.8	29.5	-6.7	Perpe
٨	12.348M	29.5	+0.2	+0.2	+8.8	-12.8	+0.0	25.9	29.5	-3.6	Perpe
18	5.475M QP	26.0	+0.1	+0.1	+9.2	-12.8	+0.0	22.6	29.5	-6.9	Perpe
٨	5.475M	29.9	+0.1	+0.1	+9.2	-12.8	+0.0	26.5	29.5	-3.0	Perpe

Page 135 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 10:53:18 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 322 Perpendicular Overhead Test Site 2 Position 2 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 136 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 11:03:46
Equipment: BPL MV Gateway Sequence#: 323
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

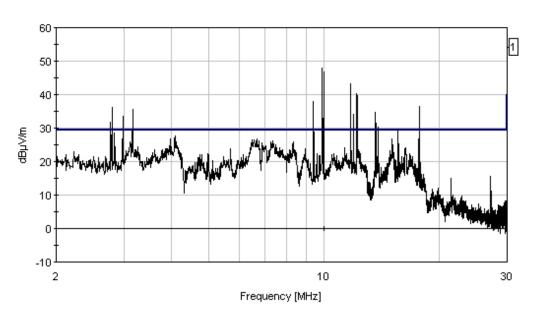
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar		
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant		
1	15.001M	29.9	+0.2	+0.2	+8.6	-12.8	+0.0	26.1	29.5	-3.4	Perpe		
	QP												
٨	15.001M	34.4	+0.2	+0.2	+8.6	-12.8	+0.0	30.6	29.5	+1.1	Perpe		
3	16.261M	29.1	+0.2	+0.2	+8.5	-12.8	+0.0	25.2	29.5	-4.3	Perpe		
											_		
4	8.286M	27.0	+0.1	+0.2	+9.1	-12.8	+0.0	23.6	29.5	-5.9	Perpe		
	QP												
٨	8.286M	30.1	+0.1	+0.2	+9.1	-12.8	+0.0	26.7	29.5	-2.8	Perpe		
											-		
6	11.299M	27.1	+0.1	+0.2	+8.9	-12.8	+0.0	23.5	29.5	-6.0	Perpe		
											•		

Page 137 of 321 Report No.: FC06-025 Volume 4 of 9

7	6.663M	26.7	+0.1	+0.2	+9.2	-12.8	+0.0	23.4	29.5	-6.1	Perpe
Ç	P P										-
٨	6.663M	30.2	+0.1	+0.2	+9.2	-12.8	+0.0	26.9	29.5	-2.6	Perpe
9	3.901M	26.2	+0.1	+0.2	+9.3	-12.8	+0.0	23.0	29.5	-6.5	Perpe
10	7.343M	26.1	+0.1	+0.2	+9.2	-12.8	+0.0	22.8	29.5	-6.7	Perpe
Ç)P										
٨	7.343M	29.6	+0.1	+0.2	+9.2	-12.8	+0.0	26.3	29.5	-3.2	Perpe
12	3.110M	25.7	+0.1	+0.1	+9.3	-12.8	+0.0	22.4	29.5	-7.1	Perpe
											-

Overhead Test Site #1 Date: 3/29/2006 Time: 11:03:46 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 323 Perpendicular Overhead Test Site 2 Position 3 Medium Lines only. Notches off. MODE 1/2. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:11:37:38Equipment:BPL MV GatewaySequence#:325Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

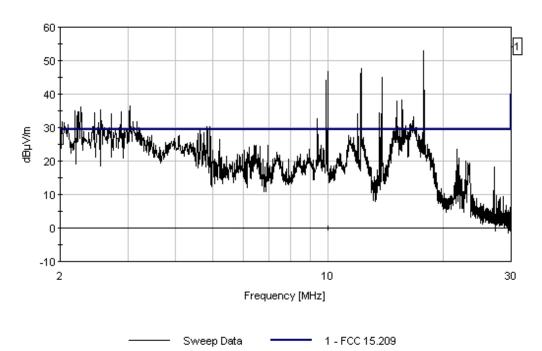
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


11	icusui	ement Data.	100	ading no	cu by mic	11 g 11 1 .		1 (ot Distance	c. 10 ivictor		
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	15.936M	32.3	+0.2	+0.2	+8.5	-12.8	+0.0	28.4	29.5	-1.1	Paral
	(QP										
	^	15.936M	35.1	+0.2	+0.2	+8.5	-12.8	+0.0	31.2	29.5	+1.7	Paral
	3	3.117M	30.9	+0.1	+0.1	+9.3	-12.8	+0.0	27.6	29.5	-1.9	Paral
	(QP										
	^	3.117M	34.3	+0.1	+0.1	+9.3	-12.8	+0.0	31.0	29.5	+1.5	Paral
	5	16.337M	31.4	+0.2	+0.2	+8.5	-12.8	+0.0	27.5	29.5	-2.0	Paral
	(QΡ										
	^	16.337M	34.8	+0.2	+0.2	+8.5	-12.8	+0.0	30.9	29.5	+1.4	Paral

Page 139 of 321 Report No.: FC06-025 Volume 4 of 9

7	14.815M OP	30.7	+0.2	+0.2	+8.6	-12.8	+0.0	26.9	29.5	-2.6	Paral
۸	14.815M	32.8	+0.2	+0.2	+8.6	-12.8	+0.0	29.0	29.5	-0.5	Paral
9	11.416M QP	28.7	+0.1	+0.2	+8.9	-12.8	+0.0	25.1	29.5	-4.4	Paral
^	11.416M	31.6	+0.1	+0.2	+8.9	-12.8	+0.0	27.9	29.5	-1.6	Paral
11	12.348M OP	28.6	+0.2	+0.2	+8.8	-12.8	+0.0	25.0	29.5	-4.5	Paral
^	12.348M	31.5	+0.2	+0.2	+8.8	-12.8	+0.0	27.9	29.5	-1.6	Paral
13	17.965M	27.7	+0.2	+0.3	+8.3	-12.8	+0.0	23.7	29.5	-5.8	Paral
14	7.336M	23.9	+0.1	+0.2	+9.2	-12.8	+0.0	20.6	29.5	-8.9	Paral
15	8.907M QP	23.8	+0.1	+0.2	+9.1	-12.8	+0.0	20.4	29.5	-9.1	Paral
^	8.907M	29.0	+0.1	+0.2	+9.1	-12.8	+0.0	25.6	29.5	-3.9	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 11:37:38 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 325 Parallel Overhead Test Site 2 Position 3 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 140 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 11:46:26
Equipment: BPL MV Gateway Sequence#: 326
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

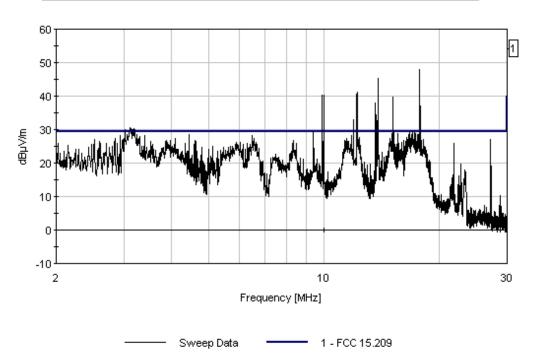
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#		Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	3.125M	31.1	+0.1	+0.1	+9.3	-12.8	+0.0	27.8	29.5	-1.7	Paral
	Ç)P										
	٨	3.125M	34.3	+0.1	+0.1	+9.3	-12.8	+0.0	31.0	29.5	+1.5	Paral
	3	16.953M	30.1	+0.2	+0.2	+8.4	-12.8	+0.0	26.1	29.5	-3.4	Paral
	Ç	P P										
	٨	16.953M	33.6	+0.2	+0.2	+8.4	-12.8	+0.0	29.6	29.5	+0.1	Paral
	5	6.609M	28.6	+0.1	+0.2	+9.2	-12.8	+0.0	25.3	29.5	-4.2	Paral
	6	11.413M	28.4	+0.1	+0.2	+8.9	-12.8	+0.0	24.8	29.5	-4.7	Paral
	Ç	P P										
	٨	11.413M	31.8	+0.1	+0.2	+8.9	-12.8	+0.0	28.2	29.5	-1.3	Paral

Page 141 of 321 Report No.: FC06-025 Volume 4 of 9

8	8.287M	27.7	+0.1	+0.2	+9.1	-12.8	+0.0	24.3	29.5	-5.2	Paral
)P										
^	8.287M	30.7	+0.1	+0.2	+9.1	-12.8	+0.0	27.3	29.5	-2.2	Paral
10	14.843M	27.6	+0.2	+0.2	+8.6	-12.8	+0.0	23.8	29.5	-5.7	Paral
)P										
^	14.843M	30.0	+0.2	+0.2	+8.6	-12.8	+0.0	26.2	29.5	-3.3	Paral
12	18.335M	27.5	+0.2	+0.3	+8.3	-12.8	+0.0	23.5	29.5	-6.0	Paral
13	3.953M	26.4	+0.1	+0.2	+9.3	-12.8	+0.0	23.2	29.5	-6.3	Paral
)P										
^	3.953M	31.4	+0.1	+0.2	+9.3	-12.8	+0.0	28.2	29.5	-1.3	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 11:46:26 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 326 Parallel Overhead Test Site 2 Position 4 Medium Lines only. Notches off, MODE 1/2, Formal Power

Page 142 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: **Corinex** Specification: FCC 15.209

Work Order #: **84818** Date: 3/29/2006 Time: 11:54:06 Test Type: **Radiated Scan** Equipment: **BPL MV Gateway** Sequence#: 327 Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

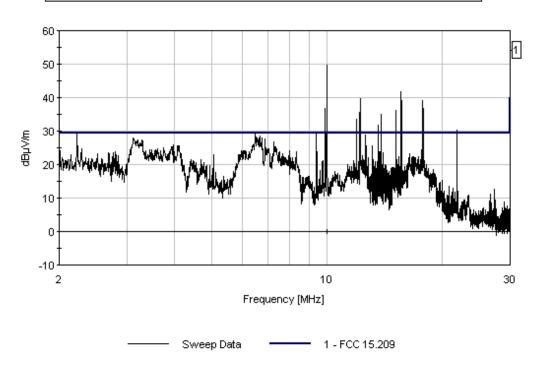
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measure	easurement Data: Reading listed by margin.					Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	7.340M	32.7	+0.1	+0.2	+9.2	-12.8	+0.0	29.4	29.5	-0.1	Perpe
Q)P										
2	3.123M	28.7	+0.1	+0.1	+9.3	-12.8	+0.0	25.4	29.5	-4.1	Perpe
Ç	(P										
٨	3.123M	32.6	+0.1	+0.1	+9.3	-12.8	+0.0	29.3	29.5	-0.2	Perpe
4	6.540M	28.1	+0.1	+0.2	+9.2	-12.8	+0.0	24.8	29.5	-4.7	Perpe
Q)P										
٨	6.540M	31.9	+0.1	+0.2	+9.2	-12.8	+0.0	28.6	29.5	-0.9	Perpe
6	7.340M	26.6	+0.1	+0.2	+9.2	-12.8	+0.0	23.3	29.5	-6.2	Perpe
Ç	(P										
٨	7.340M	29.8	+0.1	+0.2	+9.2	-12.8	+0.0	26.5	29.5	-3.0	Perpe

Page 143 of 321 Report No.: FC06-025 Volume 4 of 9

8	16.955M	26.3	+0.2	+0.2	+8.4	-12.8	+0.0	22.3	29.5	-7.2	Perpe
9	17.915M	24.7	+0.2	+0.3	+8.3	-12.8	+0.0	20.7	29.5	-8.8	Perpe
10	12.440M	24.2	+0.2	+0.2	+8.8	-12.8	+0.0	20.6	29.5	-8.9	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 11:54:06 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 327 Perpendicular Overhead Test Site 2 Position 4 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:12:02:43Equipment:BPL MV GatewaySequence#:328Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

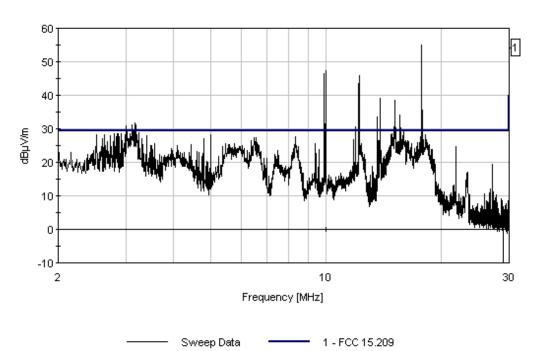
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.937M	30.6	+0.2	+0.2	+8.5	-12.8	+0.0	26.7	29.5	-2.8	Paral
	QP										
^	15.937M	33.2	+0.2	+0.2	+8.5	-12.8	+0.0	29.3	29.5	-0.2	Paral
3	14.841M	30.4	+0.2	+0.2	+8.6	-12.8	+0.0	26.6	29.5	-2.9	Paral
	QP										
^	14.841M	33.0	+0.2	+0.2	+8.6	-12.8	+0.0	29.2	29.5	-0.3	Paral
5	18.131M	30.0	+0.2	+0.3	+8.3	-12.8	+0.0	26.0	29.5	-3.5	Paral
	QP										
^	18.131M	32.8	+0.2	+0.3	+8.3	-12.8	+0.0	28.8	29.5	-0.7	Paral

Page 145 of 321 Report No.: FC06-025 Volume 4 of 9

7	8.286M	29.4	+0.1	+0.2	+9.1	-12.8	+0.0	26.0	29.5	-3.5	Paral
Ç)P										
٨	8.286M	32.4	+0.1	+0.2	+9.1	-12.8	+0.0	29.0	29.5	-0.5	Paral
9	5.941M	28.6	+0.1	+0.1	+9.2	-12.8	+0.0	25.2	29.5	-4.3	Paral
10	3.133M	27.3	+0.1	+0.1	+9.3	-12.8	+0.0	24.0	29.5	-5.5	Paral
Ç)P										
٨	3.133M	31.1	+0.1	+0.1	+9.3	-12.8	+0.0	27.8	29.5	-1.7	Paral
12	12.321M	27.5	+0.2	+0.2	+8.8	-12.8	+0.0	23.9	29.5	-5.6	Paral
13	6.487M	27.0	+0.1	+0.2	+9.2	-12.8	+0.0	23.7	29.5	-5.8	Paral
Ç)P										
٨	6.487M	31.4	+0.1	+0.2	+9.2	-12.8	+0.0	28.1	29.5	-1.4	Paral
15	23.341M	17.4	+0.2	+0.3	+7.3	-12.8	+0.0	12.4	29.5	-17.1	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 12:02:43 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 328 Parallel Overhead Test Site 2 Position 5 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 146 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 12:11:44
Equipment: BPL MV Gateway Sequence#: 329
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 · 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

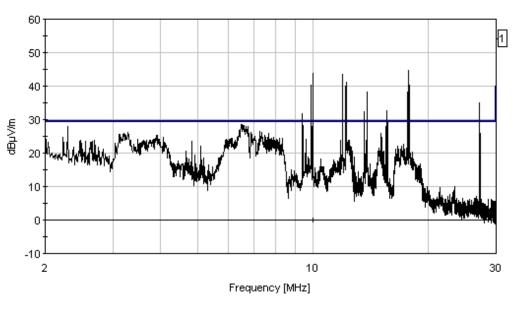
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	6.570M	28.4	+0.1	+0.2	+9.2	-12.8	+0.0	25.1	29.5	-4.4	Perpe
Q	P										
٨	6.570M	31.2	+0.1	+0.2	+9.2	-12.8	+0.0	27.9	29.5	-1.6	Perpe
3	12.244M	28.5	+0.1	+0.2	+8.9	-12.8	+0.0	24.9	29.5	-4.6	Perpe
4	8.288M	27.8	+0.1	+0.2	+9.1	-12.8	+0.0	24.4	29.5	-5.1	Perpe
											_
5	16.954M	27.0	+0.2	+0.2	+8.4	-12.8	+0.0	23.0	29.5	-6.5	Perpe
											_

Page 147 of 321 Report No.: FC06-025 Volume 4 of 9

6	4.068M	26.2	+0.1	+0.2	+9.2	-12.8	+0.0	22.9	29.5	-6.6	Perpe
Ç	(P										
٨	4.068M	29.7	+0.1	+0.2	+9.2	-12.8	+0.0	26.4	29.5	-3.1	Perpe
8	3.287M	26.1	+0.1	+0.1	+9.3	-12.8	+0.0	22.8	29.5	-6.7	Perpe
Ç)P										
٨	3.287M	29.8	+0.1	+0.1	+9.3	-12.8	+0.0	26.5	29.5	-3.0	Perpe
10	14.819M	24.2	+0.2	+0.2	+8.6	-12.8	+0.0	20.4	29.5	-9.1	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 12:11:44 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 329 Perpendicular Overhead Test Site 2 Position 5 Medium Lines only. Notches off, MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:12:52:30Equipment:BPL MV GatewaySequence#:330Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

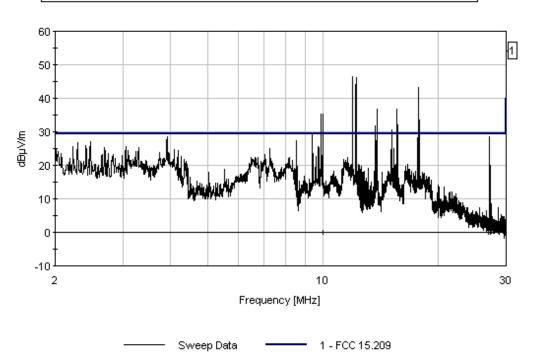
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	3.106M	27.0	+0.1	+0.1	+9.3	-12.8	+0.0	23.7	29.5	-5.8	Perpe
2	3.800M	26.2	+0.1	+0.2	+9.3	-12.8	+0.0	23.0	29.5	-6.5	Perpe
3	6.571M	25.0	+0.1	+0.2	+9.2	-12.8	+0.0	21.7	29.5	-7.8	Perpe
4	8.097M	24.5	+0.1	+0.2	+9.1	-12.8	+0.0	21.1	29.5	-8.4	Perpe
5	11.323M	23.8	+0.1	+0.2	+8.9	-12.8	+0.0	20.2	29.5	-9.3	Perpe
6	14.836M	21.9	+0.2	+0.2	+8.6	-12.8	+0.0	18.1	29.5	-11.4	Perpe

Page 149 of 321 Report No.: FC06-025 Volume 4 of 9

7	16.944M	21.2	+0.2	+0.2	+8.4	-12.8	+0.0	17.1	29.5	-12.4	Perpe
8	16.404M	20.8	+0.2	+0.2	+8.4	-12.8	+0.0	16.8	29.5	-12.7	Perpe
9	18.373M	20.7	+0.2	+0.3	+8.2	-12.8	+0.0	16.6	29.5	-12.9	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 12:52:30 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 330 Perpendicular Overhead Test Site 2 Position 6 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 150 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 12:58:32
Equipment: BPL MV Gateway Sequence#: 331
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

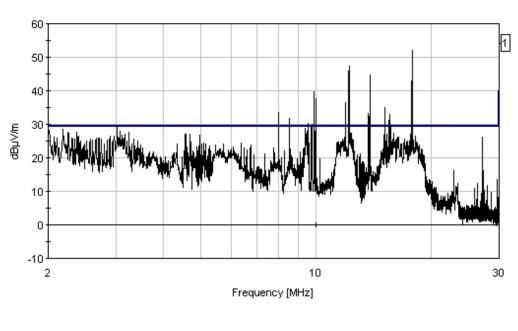
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	12.348M	29.4	+0.2	+0.2	+8.8	-12.8	+0.0	25.8	29.5	-3.7	Paral
	QP										
٨	12.348M	32.0	+0.2	+0.2	+8.8	-12.8	+0.0	28.4	29.5	-1.1	Paral
3	11.604M	27.8	+0.1	+0.2	+8.9	-12.8	+0.0	24.2	29.5	-5.3	Paral
4	3.099M	27.1	+0.1	+0.1	+9.3	-12.8	+0.0	23.8	29.5	-5.7	Paral
5	18.128M	27.7	+0.2	+0.3	+8.3	-12.8	+0.0	23.7	29.5	-5.8	Paral
	QP										
^	18.128M	31.0	+0.2	+0.3	+8.3	-12.8	+0.0	27.0	29.5	-2.5	Paral

Page 151 of 321 Report No.: FC06-025 Volume 4 of 9

7	16.407M	27.0	+0.2	+0.2	+8.4	-12.8	+0.0	23.0	29.5	-6.5	Paral
	QΡ										
٨	16.407M	30.5	+0.2	+0.2	+8.4	-12.8	+0.0	26.5	29.5	-3.0	Paral
9	5.600M	25.7	+0.1	+0.1	+9.2	-12.8	+0.0	22.3	29.5	-7.2	Paral
10	14.857M	24.5	+0.2	+0.2	+8.6	-12.8	+0.0	20.7	29.5	-8.8	Paral
11	8.637M	23.7	+0.1	+0.2	+9.1	-12.8	+0.0	20.3	29.5	-9.2	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 12:58:32 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 331 Parallel Overhead Test Site 2 Position 6 Medium Lines only. Notches off. MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:09:26
Equipment: BPL MV Gateway Sequence#: 332
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

Measurement Data:

Freq

14.822M

11.315M

Rdng

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

T3

T4

-12.8

-12.8

Test Distance: 10 Meters

Spec

29.5

29.5

Corr

22.8

22.6

Dist

+0.0

+0.0

Reading listed by margin.

T1

+0.2

+0.1

26.6

26.2

T2

+0.2

+0.2

MHz dBuV dB dB dB dΒ Table dBµV/m dBµV/m dB Ant 1 12.347M 28.2 +0.2+0.2+8.8-12.8+0.024.6 29.5 -4.9 Perpe 12.347M 31.4 +0.2+0.2-12.8 +0.027.8 29.5 -1.7 +8.8Perpe 3 16.397M 27.2 +0.2+0.2+8.4-12.8 +0.023.2 29.5 -6.3 Perpe 4 11.716M 26.7 +0.1+0.2+8.9-12.8+0.023.1 29.5 -6.4 Perpe 11.716M 29.5 +0.1+0.2+8.9-12.8 +0.025.9 29.5 -3.6 Perpe

+8.6

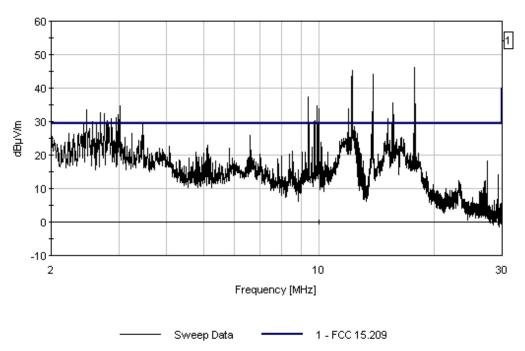
+8.9

Page 153 of 321 Report No.: FC06-025 Volume 4 of 9

Polar

Perpe

Perpe


Margin

-6.7

-6.9

Overhead Test Site #1 Date: 3/29/2006 Time: 13:09:26 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 332 Perpendicular Overhead Test Site 2 Position 7 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:15:15
Equipment: BPL MV Gateway Sequence#: 333
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

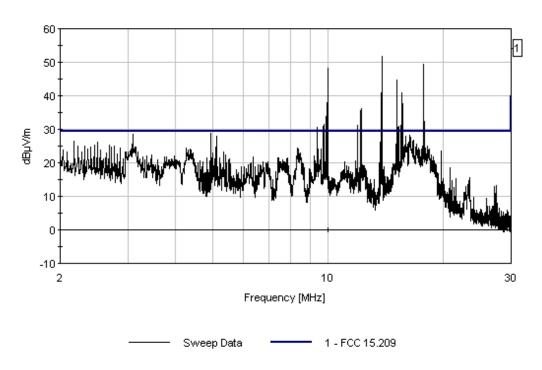
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	8.287M	28.5	+0.1	+0.2	+9.1	-12.8	+0.0	25.1	29.5	-4.4	Paral
2	15.939M QP	28.6	+0.2	+0.2	+8.5	-12.8	+0.0	24.7	29.5	-4.8	Paral
٨	15.939M	31.7	+0.2	+0.2	+8.5	-12.8	+0.0	27.8	29.5	-1.7	Paral
4	16.407M QP	28.6	+0.2	+0.2	+8.4	-12.8	+0.0	24.6	29.5	-4.9	Paral
٨	16.407M	32.4	+0.2	+0.2	+8.4	-12.8	+0.0	28.4	29.5	-1.1	Paral
6	4.258M	26.9	+0.1	+0.2	+9.2	-12.8	+0.0	23.6	29.5	-5.9	Paral

Page 155 of 321 Report No.: FC06-025 Volume 4 of 9

7	17.957M	27.3	+0.2	+0.3	+8.3	-12.8	+0.0	23.3	29.5	-6.2	Paral
8	3.110M	24.9	+0.1	+0.1	+9.3	-12.8	+0.0	21.6	29.5	-7.9	Paral
9	14.857M	23.1	+0.2	+0.2	+8.6	-12.8	+0.0	19.2	29.5	-10.3	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 13:15:15 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 333 Parallel Overhead Test Site 2 Position 7 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:21:59
Equipment: BPL MV Gateway Sequence#: 334
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

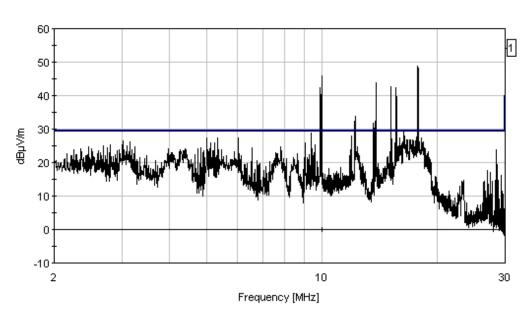
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.409M	29.0	+0.2	+0.2	+8.4	-12.8	+0.0	25.0	29.5	-4.5	Paral
	QΡ										
٨	16.409M	32.6	+0.2	+0.2	+8.4	-12.8	+0.0	28.6	29.5	-0.9	Paral
3	18.128M	28.9	+0.2	+0.3	+8.3	-12.8	+0.0	24.9	29.5	-4.6	Paral
	QΡ										
٨	18.128M	31.9	+0.2	+0.3	+8.3	-12.8	+0.0	27.9	29.5	-1.6	Paral
5	15.938M	28.5	+0.2	+0.2	+8.5	-12.8	+0.0	24.6	29.5	-4.9	Paral
	QΡ										
٨	15.938M	31.8	+0.2	+0.2	+8.5	-12.8	+0.0	27.9	29.5	-1.6	Paral

Page 157 of 321 Report No.: FC06-025 Volume 4 of 9

7	16.950M	28.1	+0.2	+0.2	+8.4	-12.8	+0.0	24.1	29.5	-5.4	Paral
(QР										
٨	16.950M	31.1	+0.2	+0.2	+8.4	-12.8	+0.0	27.1	29.5	-2.4	Paral
9	12.346M	27.6	+0.2	+0.2	+8.8	-12.8	+0.0	24.0	29.5	-5.5	Paral
10	4.363M	27.1	+0.1	+0.2	+9.2	-12.8	+0.0	23.8	29.5	-5.7	Paral
11	7.580M	23.2	+0.1	+0.2	+9.1	-12.8	+0.0	19.8	29.5	-9.7	Paral
12	5.930M	23.0	+0.1	+0.1	+9.2	-12.8	+0.0	19.6	29.5	-9.9	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 13:21:59 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 334 Parallel Overhead Test Site 2 Position 8 Medium Lines only. Notches off. MODE 1/2. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:26:44
Equipment: BPL MV Gateway Sequence#: 335
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

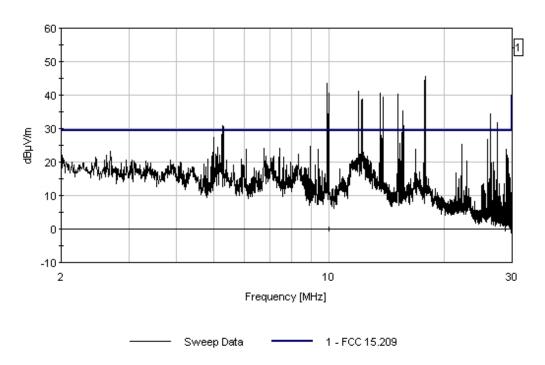
	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	12.444M	25.3	+0.2	+0.2	+8.8	-12.8	+0.0	21.7	29.5	-7.8	Perpe
2	11.431M	24.5	+0.1	+0.2	+8.9	-12.8	+0.0	20.9	29.5	-8.6	Perpe
3	8.420M	21.8	+0.1	+0.2	+9.1	-12.8	+0.0	18.4	29.5	-11.1	Perpe
4	4.400M	20.3	+0.1	+0.2	+9.2	-12.8	+0.0	17.0	29.5	-12.5	Perpe
5	17.199M	19.7	+0.2	+0.2	+8.4	-12.8	+0.0	15.7	29.5	-13.8	Perpe

Page 159 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 13:26:44 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 335 Perpendicular Overhead Test Site 2 Position 8 Medium Lines only. Notches off. MODE 1/2. Formal Power

Report No.: FC06-025 Volume 4 of 9

Page 160 of 321

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:13:33:19Equipment:BPL MV GatewaySequence#:336Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

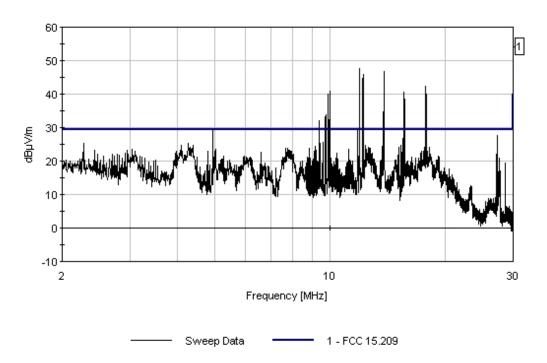
Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	4.078M	27.3	+0.1	+0.2	+9.2	-12.8	+0.0	24.0	29.5	-5.5	Paral
2	7.805M	25.8	+0.1	+0.2	+9.1	-12.8	+0.0	22.4	29.5	-7.1	Paral
3	18.279M	25.2	+0.2	+0.3	+8.3	-12.8	+0.0	21.2	29.5	-8.3	Paral
4	6.166M	23.9	+0.1	+0.1	+9.2	-12.8	+0.0	20.5	29.5	-9.0	Paral
5	17.038M	24.3	+0.2	+0.2	+8.4	-12.8	+0.0	20.3	29.5	-9.2	Paral
6	14.855M	22.4	+0.2	+0.2	+8.6	-12.8	+0.0	18.6	29.5	-10.9	Paral

Page 161 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 13:33:19 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 336 Parallel Overhead Test Site 2 Position 9 Medium Lines only. Notches off, MODE 1/2. Formal Power

Page 162 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:36:41
Equipment: BPL MV Gateway Sequence#: 337
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

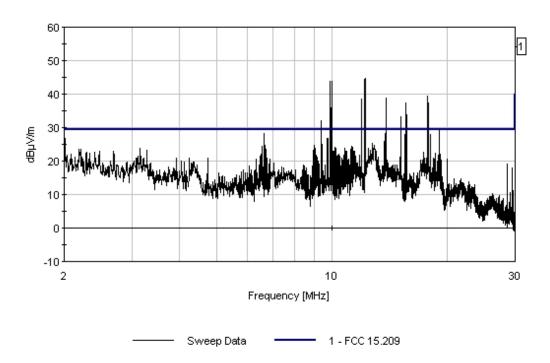
	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	4.378M	21.9	+0.1	+0.2	+9.2	-12.8	+0.0	18.6	29.5	-10.9	Perpe
2	17.071M	21.9	+0.2	+0.2	+8.4	-12.8	+0.0	17.9	29.5	-11.6	Perpe
3	14.836M	21.6	+0.2	+0.2	+8.6	-12.8	+0.0	17.8	29.5	-11.7	Perpe
4	14.458M	21.6	+0.2	+0.2	+8.6	-12.8	+0.0	17.8	29.5	-11.7	Perpe
5	7.588M	20.6	+0.1	+0.2	+9.1	-12.8	+0.0	17.2	29.5	-12.3	Perpe

Page 163 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 13:36:41 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 337 Perpendicular Overhead Test Site 2 Position 9 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 164 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:13:43:55Equipment:BPL MV GatewaySequence#:338Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

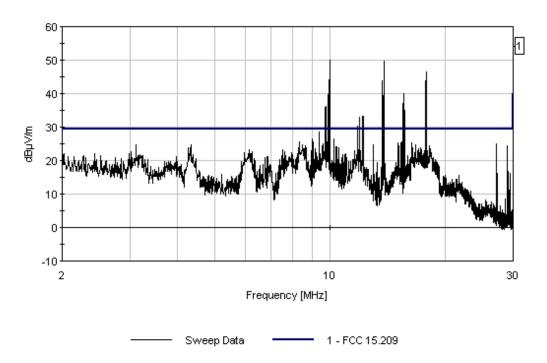
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.130M	27.6	+0.2	+0.3	+8.3	-12.8	+0.0	23.6	29.5	-5.9	Paral
2	8.450M	26.0	+0.1	+0.2	+9.1	-12.8	+0.0	22.6	29.5	-6.9	Paral
3	16.570M	26.5	+0.2	+0.2	+8.4	-12.8	+0.0	22.5	29.5	-7.0	Paral
4	17.045M	26.1	+0.2	+0.2	+8.4	-12.8	+0.0	22.1	29.5	-7.4	Paral
5	6.170M	25.1	+0.1	+0.1	+9.2	-12.8	+0.0	21.7	29.5	-7.8	Paral
6	4.375M	25.0	+0.1	+0.2	+9.2	-12.8	+0.0	21.7	29.5	-7.8	Paral

Page 165 of 321 Report No.: FC06-025 Volume 4 of 9

7	3.295M	25.0	+0.1	+0.1	+9.3	-12.8	+0.0	21.7	29.5	-7.8	Paral
8	15.935M	24.1	+0.2	+0.2	+8.5	-12.8	+0.0	20.1	29.5	-9.4	Paral
9	11.180M	20.2	+0.1	+0.2	+9.0	-12.8	+0.0	16.7	29.5	-12.8	Paral
10	14.785M	20.4	+0.2	+0.2	+8.6	-12.8	+0.0	16.6	29.5	-12.9	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 13:43:55 Corinex VVO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 338 Parallel Overhead Test Site 2 Position 10 Medium Lines only, Notches off, MODE 1/2, Formal Power

Page 166 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:47:05
Equipment: BPL MV Gateway Sequence#: 339
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

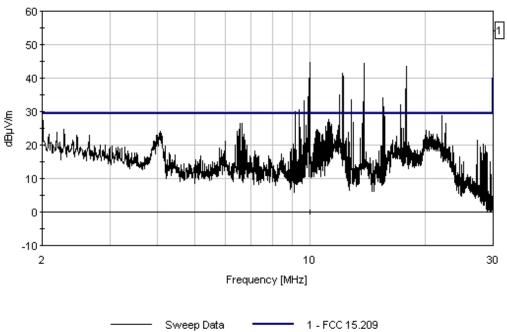
Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	20.745M	27.6	+0.2	+0.3	+7.9	-12.8	+0.0	23.2	29.5	-6.3	Perpe
2	4.035M	23.8	+0.1	+0.2	+9.3	-12.8	+0.0	20.6	29.5	-8.9	Perpe
3	16.245M	23.2	+0.2	+0.2	+8.5	-12.8	+0.0	19.3	29.5	-10.2	Perpe
4	16.935M	23.3	+0.2	+0.2	+8.4	-12.8	+0.0	19.3	29.5	-10.2	Perpe
5	19.815M	22.3	+0.2	+0.3	+8.1	-12.8	+0.0	18.1	29.5	-11.4	Perpe
6	18.405M	20.6	+0.2	+0.3	+8.2	-12.8	+0.0	16.5	29.5	-13.0	Perpe

Page 167 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 13:47:05 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 339 Perpendicular Overhead Test Site 2 Position 10 Medium Lines only. Notches off. MODE 1/2. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 13:58:31
Equipment: BPL MV Gateway Sequence#: 340
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

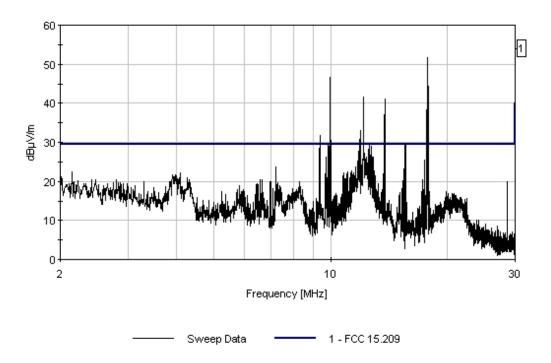
Function Manufacturer Model #	S/N
-------------------------------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

					8						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	3.915M	24.7	+0.1	+0.2	+9.3	-12.8	+0.0	21.5	29.5	-8.0	Perpe
2	8.335M	22.3	+0.1	+0.2	+9.1	-12.8	+0.0	18.8	29.5	-10.7	Perpe
3	19.930M	19.7	+0.2	+0.3	+8.1	-12.8	+0.0	15.4	29.5	-14.1	Perpe
4	11.212M	17.3	+0.1	+0.2	+9.0	-12.8	+0.0	13.8	29.5	-15.7	Perpe
											_

Page 169 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 13:58:31 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 340 Perpendicular
Overhead Test Site 2 Position 11 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 170 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:03:46
Equipment: BPL MV Gateway Sequence#: 341
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

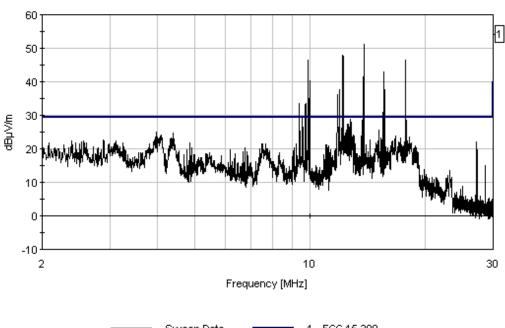
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.117M	27.3	+0.2	+0.2	+8.6	-12.8	+0.0	23.5	29.5	-6.0	Paral
2	16.400M	26.8	+0.2	+0.2	+8.4	-12.8	+0.0	22.8	29.5	-6.7	Paral
3	17.213M	26.7	+0.2	+0.2	+8.4	-12.8	+0.0	22.7	29.5	-6.8	Paral
4	4.100M	25.8	+0.1	+0.2	+9.2	-12.8	+0.0	22.5	29.5	-7.0	Paral
5	15.802M	26.1	+0.2	+0.2	+8.5	-12.8	+0.0	22.2	29.5	-7.3	Paral
6	18.284M	25.3	+0.2	+0.3	+8.3	-12.8	+0.0	21.3	29.5	-8.2	Paral

Page 171 of 321 Report No.: FC06-025 Volume 4 of 9

7	15.940M	25.0	+0.2	+0.2	+8.5	-12.8	+0.0	21.1	29.5	-8.4	Paral
8	14.795M	24.9	+0.2	+0.2	+8.6	-12.8	+0.0	21.1	29.5	-8.4	Paral
9	7.760M	24.0	+0.1	+0.2	+9.1	-12.8	+0.0	20.6	29.5	-8.9	Paral
10	18.905M	24.6	+0.2	+0.3	+8.2	-12.8	+0.0	20.5	29.5	-9.0	Paral
11	17.502M	24.0	+0.2	+0.3	+8.3	-12.8	+0.0	20.0	29.5	-9.5	Paral
12	22.708M	15.4	+0.2	+0.3	+7.4	-12.8	+0.0	10.5	29.5	-19.0	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 14:03:46 Corinex VVO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 341 Parallel Overhead Test Site 2 Position 11 Medium Lines only. Notches off. MODE 1/2. Formal Power

— Sweep Data 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:10:37
Equipment: BPL MV Gateway Sequence#: 342
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

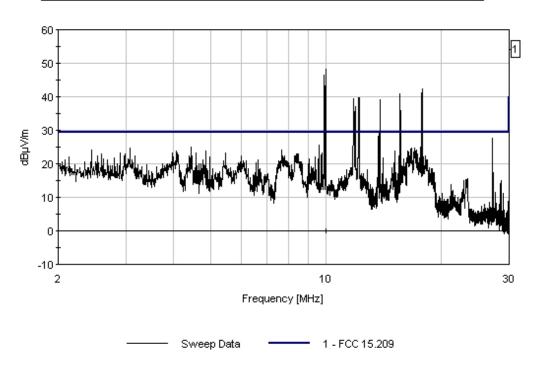
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.220M	27.8	+0.2	+0.2	+8.4	-12.8	+0.0	23.8	29.5	-5.7	Paral
2	4.065M	26.3	+0.1	+0.2	+9.2	-12.8	+0.0	23.0	29.5	-6.5	Paral
3	8.295M	26.2	+0.1	+0.2	+9.1	-12.8	+0.0	22.8	29.5	-6.7	Paral
4	16.270M	26.0	+0.2	+0.2	+8.5	-12.8	+0.0	22.1	29.5	-7.4	Paral
5	18.265M	24.3	+0.2	+0.3	+8.3	-12.8	+0.0	20.3	29.5	-9.2	Paral

Page 173 of 321 Report No.: FC06-025 Volume 4 of 9

6	6.635M	22.9	+0.1	+0.2	+9.2	-12.8	+0.0	19.6	29.5	-9.9	Paral
7	11.585M	21.9	+0.1	+0.2	+8.9	-12.8	+0.0	18.3	29.5	-11.2	Paral
8	23.075M	19.4	+0.2	+0.3	+7.3	-12.8	+0.0	14.4	29.5	-15.1	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 14:10:37 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 342 Parallel Overhead Test Site 2 Position 12 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 174 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:13:31
Equipment: BPL MV Gateway Sequence#: 343
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	
----------	--------------	---------	-----	--

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	4.260M	26.4	+0.1	+0.2	+9.2	-12.8	+0.0	23.1	29.5	-6.4	Perpe
2	16.720M	23.1	+0.2	+0.2	+8.4	-12.8	+0.0	19.1	29.5	-10.4	Perpe
3	8.060M	22.0	+0.1	+0.2	+9.1	-12.8	+0.0	18.6	29.5	-10.9	Perpe
4	12.460M	21.0	+0.2	+0.2	+8.8	-12.8	+0.0	17.4	29.5	-12.1	Perpe

Page 175 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 14:13:31 Corinex VVO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 343 Perpendicular
Overhead Test Site 2 Position 12 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 176 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 16:44:23
Equipment: BPL MV Gateway Sequence#: 366
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

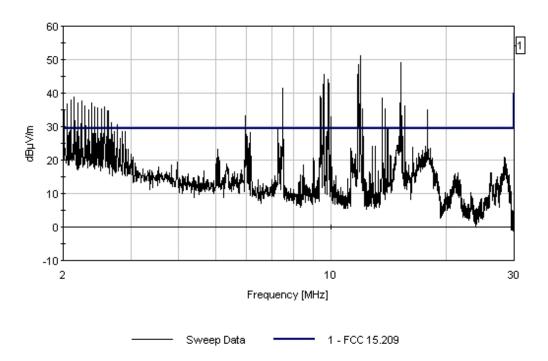
Support Devices:

Function Manufacturer Model # S/N

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly out from pole where box is installed. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measur	ement Data:	Reading listed by margin.				Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.860M	28.4	+0.2	+0.2	+8.6	-12.8	+0.0	24.6	29.5	-4.9	Paral
2	17.350M	26.4	+0.2	+0.3	+8.3	-12.8	+0.0	22.4	29.5	-7.1	Paral
3	18.135M	25.9	+0.2	+0.3	+8.3	-12.8	+0.0	21.9	29.5	-7.6	Paral
4	28.405M	24.8	+0.3	+0.3	+5.6	-12.8	+0.0	18.2	29.5	-11.3	Paral
5	20.995M	20.2	+0.2	+0.3	+7.8	-12.8	+0.0	15.7	29.5	-13.8	Paral
6	27.690M	20.9	+0.3	+0.3	+5.8	-12.8	+0.0	14.5	29.5	-15.0	Paral
7	26.190M	20.2	+0.2	+0.3	+6.4	-12.8	+0.0	14.3	29.5	-15.2	Paral

Page 177 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 16:44:23 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 366 Parallel Overhead Test Site 2 Position 1 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 178 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 16:49:40
Equipment: BPL MV Gateway Sequence#: 367
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

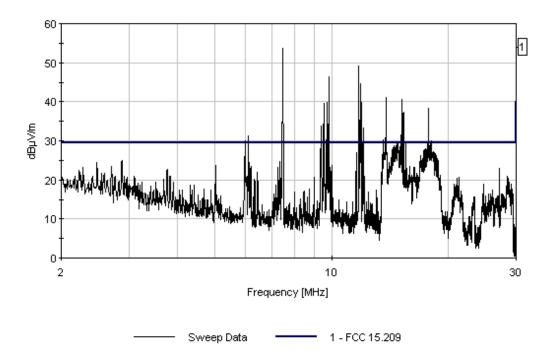
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly out from pole where box is installed. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


			0								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	13.750M	32.1	+0.2	+0.2	+8.7	-12.8	+0.0	28.4	29.5	-1.1	Perpe
	QP										
٨	13.750M	35.4	+0.2	+0.2	+8.7	-12.8	+0.0	31.7	29.5	+2.2	Perpe
											-
3	18.128M	31.3	+0.2	+0.3	+8.3	-12.8	+0.0	27.3	29.5	-2.2	Perpe
	QP										-
٨	18.128M	34.3	+0.2	+0.3	+8.3	-12.8	+0.0	30.3	29.5	+0.8	Perpe
											_
5	14.790M	30.8	+0.2	+0.2	+8.6	-12.8	+0.0	27.0	29.5	-2.5	Perpe
	QP										_
٨	14.790M	33.7	+0.2	+0.2	+8.6	-12.8	+0.0	29.9	29.5	+0.4	Perpe
											•

Page 179 of 321 Report No.: FC06-025 Volume 4 of 9

QP ^ 17.501M 32.2 +0.2 +0.3 +8.3 -12.8 +0.0 28.2 29.5 -1.3 Per 9 18.601M 28.3 +0.2 +0.3 +8.2 -12.8 +0.0 24.2 29.5 -5.3 Per QP ^ 18.601M 30.9 +0.2 +0.3 +8.2 -12.8 +0.0 26.8 29.5 -2.7 Per 11 16.952M 28.0 +0.2 +0.2 +8.4 -12.8 +0.0 24.0 29.5 -5.5 Per QP ^ 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 24.0 29.5 -5.5 Per 13 28.446M 27.8 +0.3 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Per 14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Per 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.												
^ 17.501M 32.2 +0.2 +0.3 +8.3 -12.8 +0.0 28.2 29.5 -1.3 Perg 9 18.601M 28.3 +0.2 +0.3 +8.2 -12.8 +0.0 24.2 29.5 -5.3 Perg ^ 18.601M 30.9 +0.2 +0.3 +8.2 -12.8 +0.0 26.8 29.5 -2.7 Perg 11 16.952M 28.0 +0.2 +0.2 +8.4 -12.8 +0.0 24.0 29.5 -5.5 Perg QP ^ 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Perg 13 28.446M 27.8 +0.3 +0.3 +5.6 -12.8 +0.0 21.2 29.5 -8.3 Perg 14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Perg 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0	,		29.0	+0.2	+0.3	+8.3	-12.8	+0.0	25.0	29.5	-4.5	Perpe
^ 17.501M 32.2 +0.2 +0.3 +8.3 -12.8 +0.0 28.2 29.5 -1.3 Perg 9 18.601M 28.3 +0.2 +0.3 +8.2 -12.8 +0.0 24.2 29.5 -5.3 Perg ^ 18.601M 30.9 +0.2 +0.3 +8.2 -12.8 +0.0 26.8 29.5 -2.7 Perg 11 16.952M 28.0 +0.2 +0.2 +8.4 -12.8 +0.0 24.0 29.5 -5.5 Perg QP ^ 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Perg 13 28.446M 27.8 +0.3 +0.3 +5.6 -12.8 +0.0 21.2 29.5 -8.3 Perg 14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Perg 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0	()P										
QP ^ 18.601M 30.9 +0.2 +0.3 +8.2 -12.8 +0.0 26.8 29.5 -2.7 Perpose 11 16.952M 28.0 +0.2 +0.2 +8.4 -12.8 +0.0 24.0 29.5 -5.5 Perpose 0P ^ 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Perpose 13 28.446M 27.8 +0.3 +0.3 +5.6 -12.8 +0.0 21.2 29.5 -8.3 Perpose 14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Perpose 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0 29.5 -10.5 Perpose 16 27.586M 24.7 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perpose	٨	17.501M	32.2	+0.2	+0.3	+8.3	-12.8	+0.0	28.2	29.5	-1.3	Perpe
^ 18.601M 30.9 +0.2 +0.3 +8.2 -12.8 +0.0 26.8 29.5 -2.7 Perplan 11 16.952M 28.0 +0.2 +8.4 -12.8 +0.0 24.0 29.5 -5.5 Perplan ^ 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Perplan 13 28.446M 27.8 +0.3 +0.3 +5.6 -12.8 +0.0 21.2 29.5 -8.3 Perplan 14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Perplan 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0 29.5 -10.5 Perplan 16 27.586M 24.7 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perplan	_		28.3	+0.2	+0.3	+8.2	-12.8	+0.0	24.2	29.5	-5.3	Perpe
QP A 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Perposition 13 28.446M 27.8 +0.3 +0.3 +5.6 -12.8 +0.0 21.2 29.5 -8.3 Perposition 14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Perposition 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0 29.5 -10.5 Perposition 16 27.586M 24.7 +0.3 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perposition		-	30.9	+0.2	+0.3	+8.2	-12.8	+0.0	26.8	29.5	-2.7	Perpe
^ 16.952M 31.3 +0.2 +0.2 +8.4 -12.8 +0.0 27.3 29.5 -2.2 Perplication of the state o			28.0	+0.2	+0.2	+8.4	-12.8	+0.0	24.0	29.5	-5.5	Perpe
14 24.691M 24.9 +0.2 +0.3 +7.0 -12.8 +0.0 19.6 29.5 -9.9 Perport 15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0 29.5 -10.5 Perport 16 27.586M 24.7 +0.3 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perport 16 27.586M 24.7 +0.3 +0.3 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perport 16 27.586M 24.7 +0.3 +0.3 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perport 16 27.586M 24.7 +0.3 +0.3 +0.3 +0.3 +0.0 18.4 29.5 -11.1 Perport 17 27.586M 24.7 +0.3 +0.3 +0.3 +0.3 +0.0 18.4 29.5 -11.1 Perport 18 27.586M 24.7 +0.3 +0.3 +0.3 +0.3 +0.0 18.4 29.5 -11.1 Perport 18 27.586M 24.7 +0.3 +0.3 +0.3 +0.3 +0.0 +0.0 +0.0 +0.0		1	31.3	+0.2	+0.2	+8.4	-12.8	+0.0	27.3	29.5	-2.2	Perpe
15 21.391M 23.6 +0.2 +0.3 +7.7 -12.8 +0.0 19.0 29.5 -10.5 Perple 16 27.586M 24.7 +0.3 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Perple 17	13	28.446M	27.8	+0.3	+0.3	+5.6	-12.8	+0.0	21.2	29.5	-8.3	Perpe
16 27.586M 24.7 +0.3 +0.3 +5.9 -12.8 +0.0 18.4 29.5 -11.1 Per	14	24.691M	24.9	+0.2	+0.3	+7.0	-12.8	+0.0	19.6	29.5	-9.9	Perpe
	15	21.391M	23.6	+0.2	+0.3	+7.7	-12.8	+0.0	19.0	29.5	-10.5	Perpe
	16	27.586M	24.7	+0.3	+0.3	+5.9	-12.8	+0.0	18.4	29.5	-11.1	Perpe
17 26.041M 22.7 +0.2 +0.3 +6.5 -12.8 +0.0 16.9 29.5 -12.6 Per	17	26.041M	22.7	+0.2	+0.3	+6.5	-12.8	+0.0	16.9	29.5	-12.6	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 16:49:40 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 367 Perpendicular Overhead Test Site 2 Position 1 Medium Lines only. Notches off, MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 16:34:34
Equipment: BPL MV Gateway Sequence#: 364
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

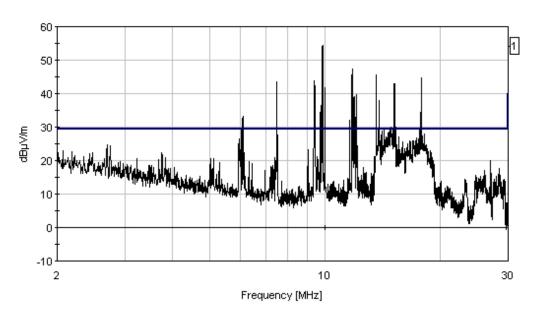
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.822M	31.0	+0.2	+0.2	+8.6	-12.8	+0.0	27.2	29.5	-2.3	Perpe
	QP										
٨	14.822M	33.7	+0.2	+0.2	+8.6	-12.8	+0.0	29.9	29.5	+0.4	Perpe
3	17.212M	29.1	+0.2	+0.2	+8.4	-12.8	+0.0	25.1	29.5	-4.4	Perpe
											_
4	15.947M	28.4	+0.2	+0.2	+8.5	-12.8	+0.0	24.5	29.5	-5.0	Perpe
											_
5	13.901M	28.1	+0.2	+0.2	+8.7	-12.8	+0.0	24.4	29.5	-5.1	Perpe
	QP										-
٨	13.901M	30.5	+0.2	+0.2	+8.7	-12.8	+0.0	26.8	29.5	-2.7	Perpe
											•

Page 181 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.132M	28.0	+0.2	+0.3	+8.3	-12.8	+0.0	24.0	29.5	-5.5	Perpe
8	28.557M	22.8	+0.3	+0.3	+5.5	-12.8	+0.0	16.1	29.5	-13.4	Perpe
9	26.082M	21.5	+0.2	+0.3	+6.5	-12.8	+0.0	15.7	29.5	-13.8	Perpe
10	24.732M	19.8	+0.2	+0.3	+7.0	-12.8	+0.0	14.5	29.5	-15.0	Perpe
11	23.287M	18.5	+0.2	+0.3	+7.3	-12.8	+0.0	13.5	29.5	-16.0	Perpe
12	28.787M	19.6	+0.3	+0.3	+5.4	-12.8	+0.0	12.8	29.5	-16.7	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 16:34:34 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 364 Perpendicular Overhead Test Site 2 Position 2 Medium Lines only. Notches off. MODE 2/3. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 16:41:16
Equipment: BPL MV Gateway Sequence#: 365
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

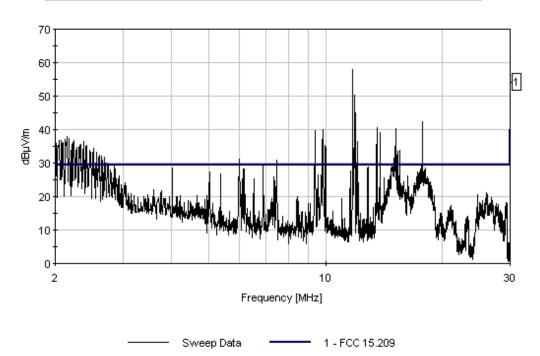
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.834M	30.7	+0.2	+0.2	+8.6	-12.8	+0.0	26.9	29.5	-2.6	Paral
(QΡ										
٨	14.834M	32.7	+0.2	+0.2	+8.6	-12.8	+0.0	28.9	29.5	-0.6	Paral
3	18.129M	30.3	+0.2	+0.3	+8.3	-12.8	+0.0	26.3	29.5	-3.2	Paral
	QΡ										
٨	18.129M	32.9	+0.2	+0.3	+8.3	-12.8	+0.0	28.9	29.5	-0.6	Paral
5	17.344M	28.8	+0.2	+0.3	+8.3	-12.8	+0.0	24.8	29.5	-4.7	Paral
	QΡ										
٨	17.344M	32.6	+0.2	+0.3	+8.3	-12.8	+0.0	28.6	29.5	-0.9	Paral

Page 183 of 321 Report No.: FC06-025 Volume 4 of 9

7	15.779M	27.5	+0.2	+0.2	+8.5	-12.8	+0.0	23.6	29.5	-5.9	Paral
8	26.194M	25.8	+0.2	+0.3	+6.4	-12.8	+0.0	19.9	29.5	-9.6	Paral
9	24.679M	24.2	+0.2	+0.3	+7.0	-12.8	+0.0	18.9	29.5	-10.6	Paral
10	27.674M	23.5	+0.3	+0.3	+5.8	-12.8	+0.0	17.1	29.5	-12.4	Paral
11	29.229M	23.6	+0.3	+0.3	+5.3	-12.8	+0.0	16.7	29.5	-12.8	Paral
12	21.394M	20.0	+0.2	+0.3	+7.7	-12.8	+0.0	15.4	29.5	-14.1	Paral
13	23.294M	17.8	+0.2	+0.3	+7.3	-12.8	+0.0	12.8	29.5	-16.7	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 16:41:16 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 365 Parallel Overhead Test Site 2 Position 2 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 184 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 16:22:31
Equipment: BPL MV Gateway Sequence#: 362
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

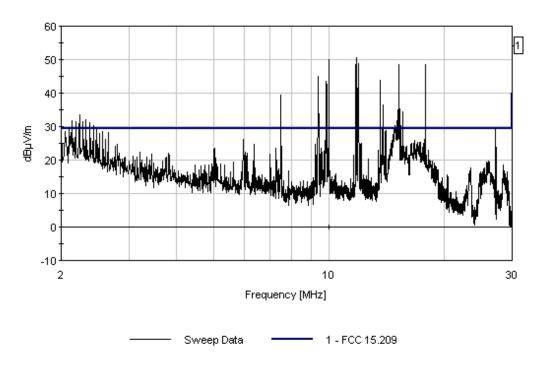
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.818M	32.2	+0.2	+0.2	+8.6	-12.8	+0.0	28.4	29.5	-1.1	Paral
)P										
٨	14.818M	34.6	+0.2	+0.2	+8.6	-12.8	+0.0	30.8	29.5	+1.3	Paral
3	17.043M	29.3	+0.2	+0.2	+8.4	-12.8	+0.0	25.3	29.5	-4.2	Paral
4	16.578M	28.1	+0.2	+0.2	+8.4	-12.8	+0.0	24.1	29.5	-5.4	Paral
5	18.133M	25.8	+0.2	+0.3	+8.3	-12.8	+0.0	21.8	29.5	-7.7	Paral
6	26.113M	24.0	+0.2	+0.3	+6.4	-12.8	+0.0	18.1	29.5	-11.4	Paral

Page 185 of 321 Report No.: FC06-025 Volume 4 of 9

7	24.753M	22.9	+0.2	+0.3	+7.0	-12.8	+0.0	17.6	29.5	-11.9	Paral
8	23.288M	21.8	+0.2	+0.3	+7.3	-12.8	+0.0	16.8	29.5	-12.7	Paral
9	28.598M	23.3	+0.3	+0.3	+5.5	-12.8	+0.0	16.6	29.5	-12.9	Paral
10	26.563M	21.5	+0.2	+0.3	+6.3	-12.8	+0.0	15.5	29.5	-14.0	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 16:22:31 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 362 Parallel Overhead Test Site 2 Position 3 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 186 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:16:26:20Equipment:BPL MV GatewaySequence#:363Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

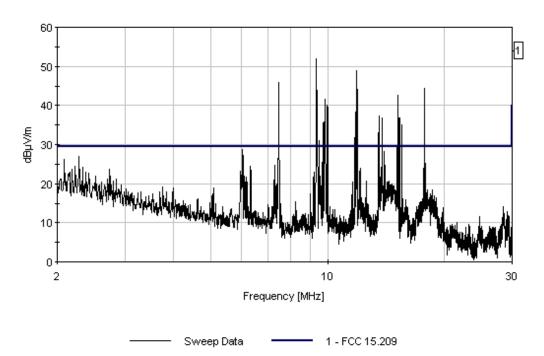
	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.380M	24.6	+0.2	+0.2	+8.7	-12.8	+0.0	20.9	29.5	-8.6	Perpe
2	17.970M	21.2	+0.2	+0.3	+8.3	-12.8	+0.0	17.2	29.5	-12.3	Perpe
3	19.065M	20.2	+0.2	+0.3	+8.2	-12.8	+0.0	16.1	29.5	-13.4	Perpe
4	17.350M	18.5	+0.2	+0.3	+8.3	-12.8	+0.0	14.5	29.5	-15.0	Perpe
5	28.445M	19.5	+0.3	+0.3	+5.6	-12.8	+0.0	12.9	29.5	-16.6	Perpe

Page 187 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 16:26:20 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 363 Perpendicular Overhead Test Site 2 Position 3 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 188 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 16:11:16
Equipment: BPL MV Gateway Sequence#: 360
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

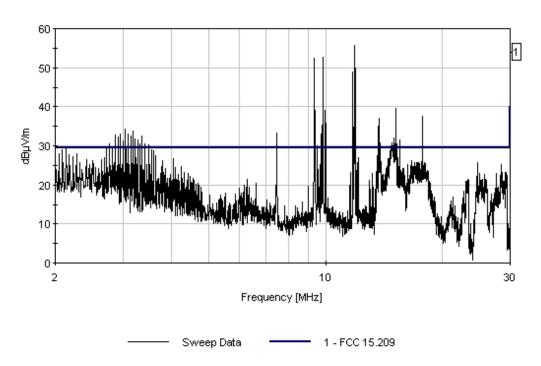
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.817M	33.1	+0.2	+0.2	+8.6	-12.8	+0.0	29.3	29.5	-0.2	Paral
(QP										
٨	14.817M	35.2	+0.2	+0.2	+8.6	-12.8	+0.0	31.4	29.5	+1.9	Paral
3	28.434M	32.1	+0.3	+0.3	+5.6	-12.8	+0.0	25.5	29.5	-4.0	Paral
4	17.195M	28.3	+0.2	+0.2	+8.4	-12.8	+0.0	24.3	29.5	-5.2	Paral
(QP										
٨	17.195M	30.9	+0.2	+0.2	+8.4	-12.8	+0.0	26.9	29.5	-2.6	Paral
6	18.130M	27.8	+0.2	+0.3	+8.3	-12.8	+0.0	23.8	29.5	-5.7	Paral
(QP										
٨	18.130M	30.9	+0.2	+0.3	+8.3	-12.8	+0.0	26.9	29.5	-2.6	Paral

Page 189 of 321 Report No.: FC06-025 Volume 4 of 9

8	29.362M	30.5	+0.3	+0.3	+5.2	-12.8	+0.0	23.5	29.5	-6.0	Paral
9	15.782M	27.3	+0.2	+0.2	+8.5	-12.8	+0.0	23.4	29.5	-6.1	Paral
10	24.751M	28.1	+0.2	+0.3	+7.0	-12.8	+0.0	22.8	29.5	-6.7	Paral
^	<u>QP</u> 24.751M	31.2	+0.2	+0.3	+7.0	-12.8	+0.0	25.9	29.5	-3.6	Paral
12	25.001M	26.5	+0.2	+0.3	+6.9	-12.8	+0.0	21.1	29.5	-8.4	Paral
13	23.085M	26.0	+0.2	+0.3	+7.3	-12.8	+0.0	21.0	29.5	-8.5	Paral
14	26.081M	25.4	+0.2	+0.3	+6.5	-12.8	+0.0	19.6	29.5	-9.9	Paral
15	21.370M	19.8	+0.2	+0.3	+7.7	-12.8	+0.0	15.2	29.5	-14.3	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 16:11:16 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 360 Parallel Overhead Test Site 2 Position 4 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 190 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:16:17:08Equipment:BPL MV GatewaySequence#:361Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

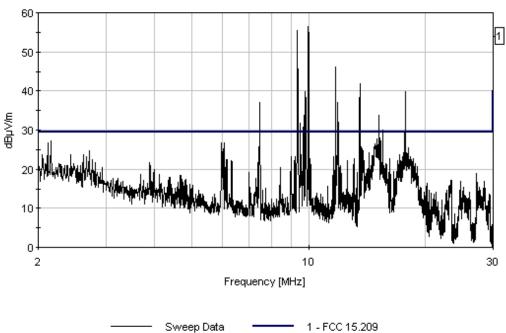
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.4 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


micusur	emeni Daia.	100	ading no	ica by mic	115111.		1 (ot Distance	o. 10 ivictor		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.820M	28.9	+0.2	+0.2	+8.6	-12.8	+0.0	25.1	29.5	-4.4	Perpe
)P										
٨	14.820M	31.8	+0.2	+0.2	+8.6	-12.8	+0.0	28.0	29.5	-1.5	Perpe
3	15.405M	27.2	+0.2	+0.2	+8.6	-12.8	+0.0	23.4	29.5	-6.1	Perpe
4	17.985M	25.0	+0.2	+0.3	+8.3	-12.8	+0.0	21.0	29.5	-8.5	Perpe
5	18.280M	24.4	+0.2	+0.3	+8.3	-12.8	+0.0	20.4	29.5	-9.1	Perpe
6	18.560M	21.3	+0.2	+0.3	+8.2	-12.8	+0.0	17.2	29.5	-12.3	Perpe
1											

Page 191 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.095M	21.4	+0.2	+0.3	+7.3	-12.8	+0.0	16.4	29.5	-13.1	Perpe
8	28.320M	22.3	+0.3	+0.3	+5.6	-12.8	+0.0	15.7	29.5	-13.8	Perpe
9	24.685M	20.8	+0.2	+0.3	+7.0	-12.8	+0.0	15.5	29.5	-14.0	Perpe
10	27.500M	20.9	+0.3	+0.3	+5.9	-12.8	+0.0	14.6	29.5	-14.9	Perpe
11	29.365M	18.1	+0.3	+0.3	+5.2	-12.8	+0.0	11.1	29.5	-18.4	Perpe
12	21.360M	15.4	+0.2	+0.3	+7.7	-12.8	+0.0	10.8	29.5	-18.7	Perpe
											_

Overhead Test Site #1 Date: 3/29/2006 Time: 16:17:08 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 361 Perpendicular Overhead Test Site 2 Position 4 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 192 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:40:40
Equipment: BPL MV Gateway Sequence#: 358
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

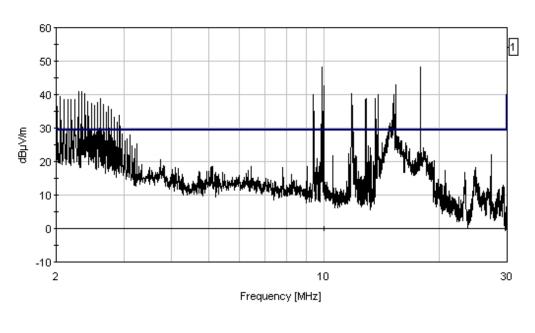
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.818M	33.2	+0.2	+0.2	+8.6	-12.8	+0.0	29.4	29.5	-0.1	Paral
(QP										
٨	14.818M	36.0	+0.2	+0.2	+8.6	-12.8	+0.0	32.2	29.5	+2.7	Paral
3	15.631M	28.3	+0.2	+0.2	+8.5	-12.8	+0.0	24.4	29.5	-5.1	Paral
	QP										
٨	15.631M	31.5	+0.2	+0.2	+8.5	-12.8	+0.0	27.6	29.5	-1.9	Paral
5	14.215M	26.2	+0.2	+0.2	+8.7	-12.8	+0.0	22.5	29.5	-7.0	Paral
6	18.369M	26.0	+0.2	+0.3	+8.2	-12.8	+0.0	21.9	29.5	-7.6	Paral

Page 193 of 321 Report No.: FC06-025 Volume 4 of 9

7	16.409M	25.1	+0.2	+0.2	+8.4	-12.8	+0.0	21.1	29.5	-8.4	Paral
(QP										
^	16.409M	30.5	+0.2	+0.2	+8.4	-12.8	+0.0	26.5	29.5	-3.0	Paral
9	24.724M	22.2	+0.2	+0.3	+7.0	-12.8	+0.0	16.9	29.5	-12.6	Paral
10	28.434M	18.8	+0.3	+0.3	+5.6	-12.8	+0.0	12.2	29.5	-17.3	Paral
11	12.750M	15.7	+0.2	+0.2	+8.8	-12.8	+0.0	12.1	29.5	-17.4	Paral
12	26.929M	18.2	+0.2	+0.3	+6.1	-12.8	+0.0	12.0	29.5	-17.5	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 15:40:40 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 358 Parallel Overhead Test Site 2 Position 5 Medium Lines only. Notches off. MODE 2/3. Formal Power

----- Sweep Data ----- 1 - FCC 15.209

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:44:13
Equipment: BPL MV Gateway Sequence#: 359
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

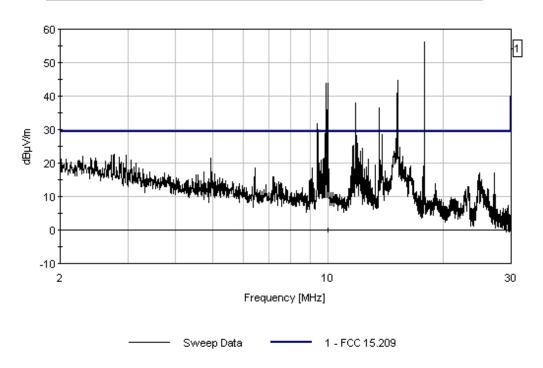
Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.855M	26.3	+0.2	+0.2	+8.6	-12.8	+0.0	22.5	29.5	-7.0	Perpe
2	15.610M	21.8	+0.2	+0.2	+8.5	-12.8	+0.0	17.9	29.5	-11.6	Perpe
3	24.740M	21.1	+0.2	+0.3	+7.0	-12.8	+0.0	15.8	29.5	-13.7	Perpe
4	16.450M	19.5	+0.2	+0.2	+8.4	-12.8	+0.0	15.5	29.5	-14.0	Perpe
5	23.330M	17.1	+0.2	+0.3	+7.3	-12.8	+0.0	12.1	29.5	-17.4	Perpe
6	26.135M	17.7	+0.2	+0.3	+6.4	-12.8	+0.0	11.7	29.5	-17.8	Perpe

Page 195 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 15:44:13 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 359 Perpendicular Overhead Test Site 2 Position 5 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 196 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:26:26
Equipment: BPL MV Gateway Sequence#: 356
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

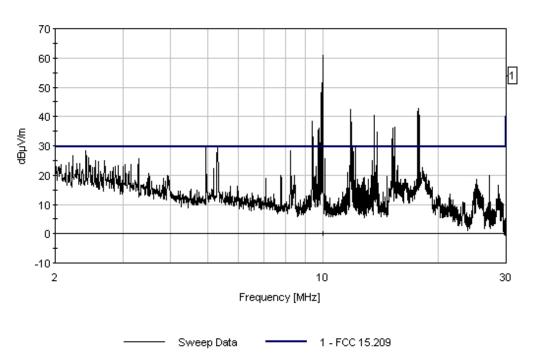
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.390M	26.6	+0.2	+0.3	+8.2	-12.8	+0.0	22.5	29.5	-7.0	Perpe
2	12.760M	22.5	+0.2	+0.2	+8.8	-12.8	+0.0	18.9	29.5	-10.6	Perpe
3	16.345M	22.2	+0.2	+0.2	+8.5	-12.8	+0.0	18.3	29.5	-11.2	Perpe
4	17.340M	21.9	+0.2	+0.3	+8.3	-12.8	+0.0	17.9	29.5	-11.6	Perpe
5	15.640M	20.5	+0.2	+0.2	+8.5	-12.8	+0.0	16.6	29.5	-12.9	Perpe
6	24.585M	18.2	+0.2	+0.3	+7.0	-12.8	+0.0	12.9	29.5	-16.6	Perpe

Page 197 of 321 Report No.: FC06-025 Volume 4 of 9

7	26.075M	17.4	+0.2	+0.3	+6.5	-12.8	+0.0	11.6	29.5	-17.9	Perpe
8	29.130M	17.6	+0.3	+0.3	+5.3	-12.8	+0.0	10.7	29.5	-18.8	Perpe
9	23.435M	14.9	+0.2	+0.3	+7.2	-12.8	+0.0	9.8	29.5	-19.7	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 15:26:26 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 356 Perpendicular Overhead Test Site 2 Position 6 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 198 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:33:47
Equipment: BPL MV Gateway Sequence#: 357
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

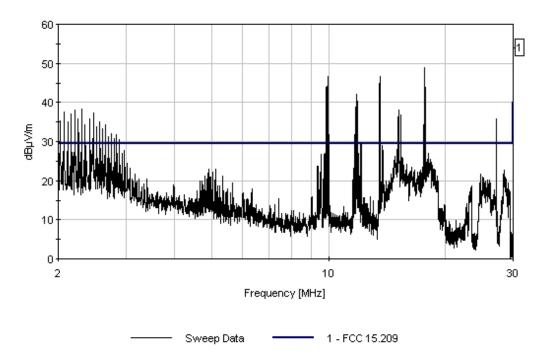
Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.596M	28.9	+0.2	+0.3	+8.2	-12.8	+0.0	24.8	29.5	-4.7	Paral
2 (18.129M QP	28.0	+0.2	+0.3	+8.3	-12.8	+0.0	24.0	29.5	-5.5	Paral
^	18.129M	31.0	+0.2	+0.3	+8.3	-12.8	+0.0	27.0	29.5	-2.5	Paral
4	14.819M QP	27.8	+0.2	+0.2	+8.6	-12.8	+0.0	24.0	29.5	-5.5	Paral
۸	14.819M	31.6	+0.2	+0.2	+8.6	-12.8	+0.0	27.8	29.5	-1.7	Paral
6	15.934M	27.4	+0.2	+0.2	+8.5	-12.8	+0.0	23.5	29.5	-6.0	Paral


Page 199 of 321 Report No.: FC06-025 Volume 4 of 9

7	16.409M	27.4	+0.2	+0.2	+8.4	-12.8	+0.0	23.4	29.5	-6.1	Paral
8	28.551M	28.1	+0.3	+0.3	+5.5	-12.8	+0.0	21.4	29.5	-8.1	Paral
9	25.006M	26.8	+0.2	+0.3	+6.9	-12.8	+0.0	21.4	29.5	-8.1	Paral
10	16.969M	24.3	+0.2	+0.2	+8.4	-12.8	+0.0	20.3	29.5	-9.2	Paral
11	24.721M	24.8	+0.2	+0.3	+7.0	-12.8	+0.0	19.5	29.5	-10.0	Paral
12	26.156M	24.8	+0.2	+0.3	+6.4	-12.8	+0.0	18.8	29.5	-10.7	Paral
13	29.096M	25.3	+0.3	+0.3	+5.3	-12.8	+0.0	18.4	29.5	-11.1	Paral
14	26.881M	23.4	+0.2	+0.3	+6.1	-12.8	+0.0	17.2	29.5	-12.3	Paral
15	23.281M	21.9	+0.2	+0.3	+7.3	-12.8	+0.0	16.9	29.5	-12.6	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 15:33:47 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 357 Parallel

Overhead Test Site 2 Position 6 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 200 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:11:42
Equipment: BPL MV Gateway Sequence#: 354
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

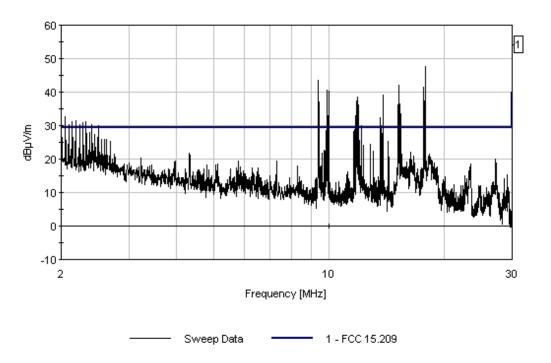
	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.325M	24.8	+0.2	+0.3	+8.3	-12.8	+0.0	20.8	29.5	-8.7	Paral
2	16.420M	22.5	+0.2	+0.2	+8.4	-12.8	+0.0	18.5	29.5	-11.0	Paral
3	23.290M	22.1	+0.2	+0.3	+7.3	-12.8	+0.0	17.0	29.5	-12.5	Paral
4	26.875M	19.2	+0.2	+0.3	+6.1	-12.8	+0.0	13.0	29.5	-16.5	Paral
5	29.085M	18.6	+0.3	+0.3	+5.3	-12.8	+0.0	11.7	29.5	-17.8	Paral

Page 201 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 15:11:42 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 354 Parallel Overhead Test Site 2 Position 7 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 202 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:15:16:44Equipment:BPL MV GatewaySequence#:355Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufacturer Model #	S/N
-------------------------------	-----

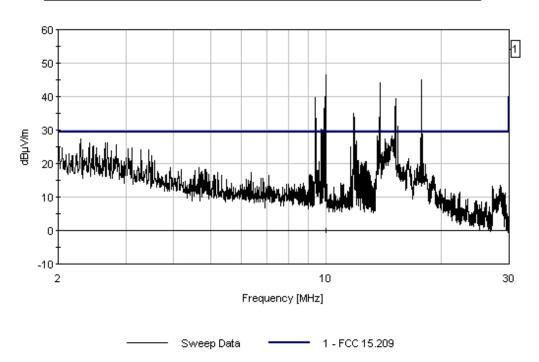
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.848M	29.3	+0.2	+0.2	+8.6	-12.8	+0.0	25.5	29.5	-4.0	Perpe
)P										
٨	14.848M	31.7	+0.2	+0.2	+8.6	-12.8	+0.0	27.9	29.5	-1.6	Perpe
3	14.530M	27.3	+0.2	+0.2	+8.6	-12.8	+0.0	23.5	29.5	-6.0	Perpe
4	12.570M	23.9	+0.2	+0.2	+8.8	-12.8	+0.0	20.3	29.5	-9.2	Perpe
											_
5	15.628M	23.7	+0.2	+0.2	+8.5	-12.8	+0.0	19.7	29.5	-9.8	Perpe
											_
6	16.568M	23.5	+0.2	+0.2	+8.4	-12.8	+0.0	19.5	29.5	-10.0	Perpe
											-

Page 203 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.138M	20.6	+0.2	+0.3	+8.3	-12.8	+0.0	16.6	29.5	-12.9	Perpe
8	27.333M	19.0	+0.2	+0.3	+6.0	-12.8	+0.0	12.7	29.5	-16.8	Perpe
9	28.288M	18.7	+0.3	+0.3	+5.6	-12.8	+0.0	12.1	29.5	-17.4	Perpe

Overhead Test Site #1 Date: 3/29/2006 Time: 15:16:44 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 355 Perpendicular Overhead Test Site 2 Position 7 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 204 of 321 Report No.: FC06-025 Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:03:52
Equipment: BPL MV Gateway Sequence#: 352
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

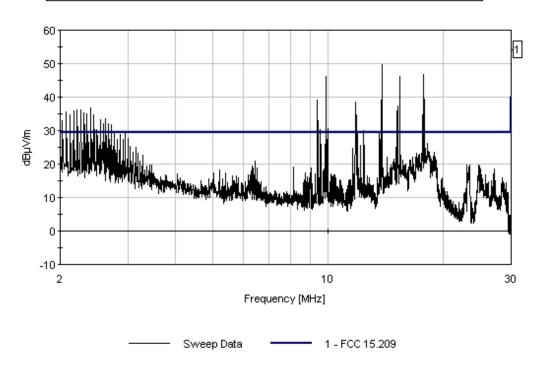
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.970M	27.9	+0.2	+0.3	+8.3	-12.8	+0.0	23.9	29.5	-5.6	Paral
2	18.260M	26.8	+0.2	+0.3	+8.3	-12.8	+0.0	22.8	29.5	-6.7	Paral
3	16.270M	26.6	+0.2	+0.2	+8.5	-12.8	+0.0	22.7	29.5	-6.8	Paral
4	15.520M	26.0	+0.2	+0.2	+8.5	-12.8	+0.0	22.1	29.5	-7.4	Paral
5	16.975M	25.7	+0.2	+0.2	+8.4	-12.8	+0.0	21.7	29.5	-7.8	Paral
6	14.860M	24.5	+0.2	+0.2	+8.6	-12.8	+0.0	20.7	29.5	-8.8	Paral

Page 205 of 321 Report No.: FC06-025 Volume 4 of 9

7	19.060M	24.2	+0.2	+0.3	+8.2	-12.8	+0.0	20.0	29.5	-9.5	Paral
8	24.720M	23.2	+0.2	+0.3	+7.0	-12.8	+0.0	17.9	29.5	-11.6	Paral
9	23.325M	22.4	+0.2	+0.3	+7.3	-12.8	+0.0	17.4	29.5	-12.1	Paral
10	26.320M	21.2	+0.2	+0.3	+6.4	-12.8	+0.0	15.3	29.5	-14.2	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 15:03:52 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 352 Parallel Overhead Test Site 2 Position 8 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 15:07:51
Equipment: BPL MV Gateway Sequence#: 353
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

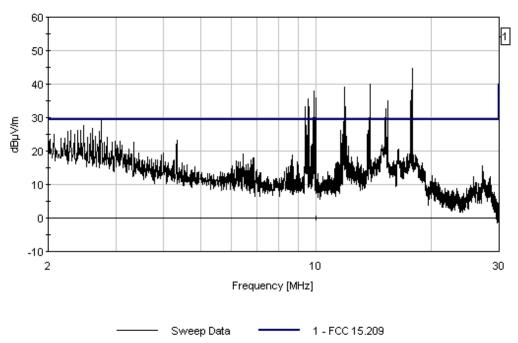
	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.890M	24.4	+0.2	+0.2	+8.6	-12.8	+0.0	20.6	29.5	-8.9	Perpe
2	16.335M	22.1	+0.2	+0.2	+8.5	-12.8	+0.0	18.2	29.5	-11.3	Perpe
3	17.950M	21.7	+0.2	+0.3	+8.3	-12.8	+0.0	17.6	29.5	-11.9	Perpe
4	27.055M	23.1	+0.2	+0.3	+6.1	-12.8	+0.0	16.9	29.5	-12.6	Perpe
5	17.050M	20.4	+0.2	+0.2	+8.4	-12.8	+0.0	16.4	29.5	-13.1	Perpe
6	25.740M	17.7	+0.2	+0.3	+6.6	-12.8	+0.0	12.0	29.5	-17.5	Perpe

Page 207 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 15:07:51 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 353 Perpendicular Overhead Test Site 2 Position 8 Medium Lines only. Notches off, MODE 2/3, Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/29/2006Test Type:Radiated ScanTime:14:53:17Equipment:BPL MV GatewaySequence#:350Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

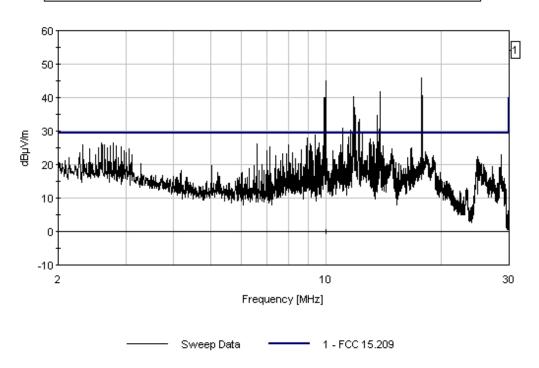
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.260M	26.3	+0.2	+0.3	+8.3	-12.8	+0.0	22.3	29.5	-7.2	Paral
2	19.055M	26.2	+0.2	+0.3	+8.2	-12.8	+0.0	22.1	29.5	-7.4	Paral
3	14.840M	25.6	+0.2	+0.2	+8.6	-12.8	+0.0	21.8	29.5	-7.7	Paral
4	25.005M	26.2	+0.2	+0.3	+6.9	-12.8	+0.0	20.8	29.5	-8.7	Paral
5	16.425M	24.7	+0.2	+0.2	+8.4	-12.8	+0.0	20.7	29.5	-8.8	Paral
6	24.715M	25.5	+0.2	+0.3	+7.0	-12.8	+0.0	20.2	29.5	-9.3	Paral

Page 209 of 321 Report No.: FC06-025 Volume 4 of 9

7	26.235M	24.0	+0.2	+0.3	+6.4	-12.8	+0.0	18.1	29.5	-11.4	Paral
8	27.130M	23.7	+0.2	+0.3	+6.0	-12.8	+0.0	17.4	29.5	-12.1	Paral
9	28.435M	22.4	+0.3	+0.3	+5.6	-12.8	+0.0	15.8	29.5	-13.7	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 14:53:17 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 350 Parallel Overhead Test Site 2 Position 9 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:57:17
Equipment: BPL MV Gateway Sequence#: 351
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

	=										
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1 14.880M	25.7	+0.2	+0.2	+8.6	-12.8	+0.0	21.9	29.5	-7.6	Perpe
2	2 17.340M	19.1	+0.2	+0.3	+8.3	-12.8	+0.0	15.1	29.5	-14.4	Perpe
	3 18.905M	19.1	+0.2	+0.3	+8.2	-12.8	+0.0	15.0	29.5	-14.5	Perpe
4	4 28.465M	18.4	+0.3	+0.3	+5.5	-12.8	+0.0	11.7	29.5	-17.8	Perpe

Page 211 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 14:57:17 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 351 Perpendicular Overhead Test Site 2 Position 9 Medium Lines only. Notches off, MODE 2/3. Formal Power

Page 212 of 321 Report No.: FC06-025

Volume 4 of 9

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:41:28
Equipment: BPL MV Gateway Sequence#: 348
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1 1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

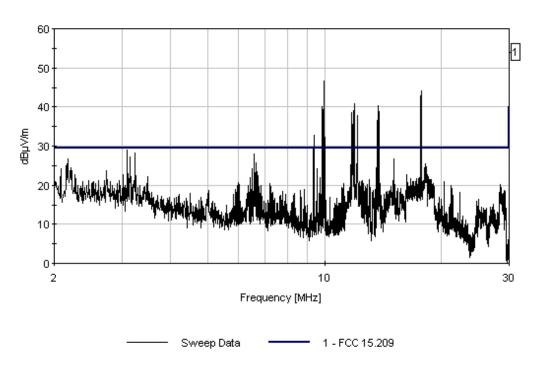
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.295M	27.2	+0.2	+0.3	+8.3	-12.8	+0.0	23.2	29.5	-6.3	Paral
2	17.345M	24.6	+0.2	+0.3	+8.3	-12.8	+0.0	20.6	29.5	-8.9	Paral
3	14.885M	23.9	+0.2	+0.2	+8.6	-12.8	+0.0	20.1	29.5	-9.4	Paral
4	16.560M	23.9	+0.2	+0.2	+8.4	-12.8	+0.0	19.9	29.5	-9.6	Paral
5	28.550M	25.4	+0.3	+0.3	+5.5	-12.8	+0.0	18.7	29.5	-10.8	Paral

Page 213 of 321 Report No.: FC06-025 Volume 4 of 9

6	29.095M	24.6	+0.3	+0.3	+5.3	-12.8	+0.0	17.7	29.5	-11.8	Paral
7	24.645M	20.0	+0.2	+0.3	+7.0	-12.8	+0.0	14.7	29.5	-14.8	Paral
8	25.880M	19.1	+0.2	+0.3	+6.5	-12.8	+0.0	13.3	29.5	-16.2	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 14:41:28 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 348 Parallel Overhead Test Site 2 Position 10 Medium Lines only. Notches off. MODE 2/3. Formal Power

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:45:15
Equipment: BPL MV Gateway Sequence#: 349
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

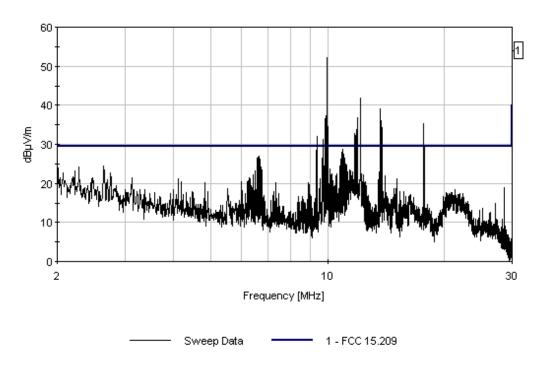
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	21.045M	21.8	+0.2	+0.3	+7.8	-12.8	+0.0	17.3	29.5	-12.2	Perpe
2	16.570M	19.9	+0.2	+0.2	+8.4	-12.8	+0.0	15.9	29.5	-13.6	Perpe
											_
3	14.790M	17.5	+0.2	+0.2	+8.6	-12.8	+0.0	13.7	29.5	-15.8	Perpe
											-

Page 215 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 14:45:15 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 349 Perpendicular
Overhead Test Site 2 Position 10 Medium Lines only. Notches off. MODE 2/3. Formal Power

Test Location: Overhead Test Site #2 •Westford Street West of Cochran Street Streetlight Pole #465477 • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:30:56
Equipment: BPL MV Gateway Sequence#: 346
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

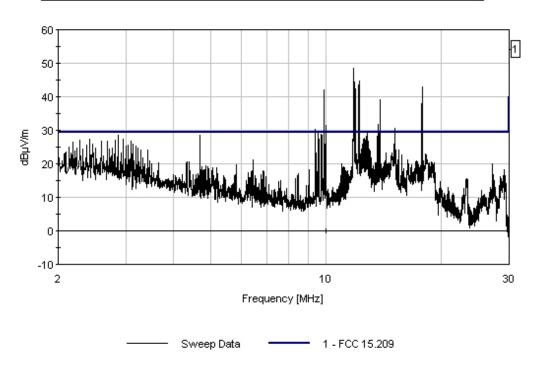
Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	12.762M	30.4	+0.2	+0.2	+8.8	-12.8	+0.0	26.8	29.5	-2.7	Paral
(QΡ										
^	12.762M	33.6	+0.2	+0.2	+8.8	-12.8	+0.0	30.0	29.5	+0.5	Paral
3	14.842M	26.0	+0.2	+0.2	+8.6	-12.8	+0.0	22.2	29.5	-7.3	Paral
4	18.262M	25.9	+0.2	+0.3	+8.3	-12.8	+0.0	21.9	29.5	-7.6	Paral
5	16.717M	24.4	+0.2	+0.2	+8.4	-12.8	+0.0	20.4	29.5	-9.1	Paral

Page 217 of 321 Report No.: FC06-025 Volume 4 of 9

6	23.442M	21.4	+0.2	+0.3	+7.2	-12.8	+0.0	16.3	29.5	-13.2	Paral
7	29.097M	22.3	+0.3	+0.3	+5.3	-12.8	+0.0	15.4	29.5	-14.1	Paral
8	27.402M	19.3	+0.3	+0.3	+5.9	-12.8	+0.0	13.0	29.5	-16.5	Paral

Overhead Test Site #1 Date: 3/29/2006 Time: 14:30:56 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 346 Parallel Overhead Test Site 2 Position 11 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 218 of 321 Report No.: FC06-025 Volume 4 of 9

Test Location: Overhead Test Site #2 •Westford Street West of Cochran Street Streetlight Pole #465477 • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:34:39
Equipment: BPL MV Gateway Sequence#: 347
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

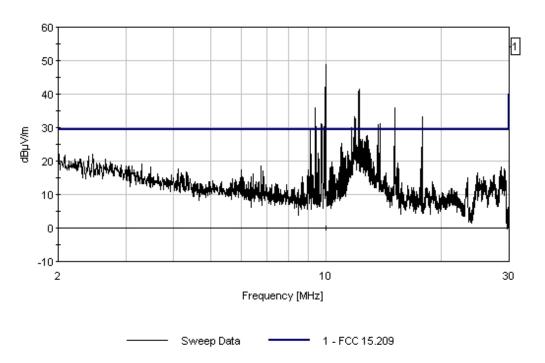
	Function	Manufacturer	Model #	S/N
--	----------	--------------	---------	-----

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2


Measurement Data:Reading listed by margin.Test Distance: 10 Meters# Freq Rdng T1 T2 T3 T4 Dist Corr Spec

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	12.757M	31.4	+0.2	+0.2	+8.8	-12.8	+0.0	27.8	29.5	-1.7	Perpe
	QP										
^	12.757M	35.6	+0.2	+0.2	+8.8	-12.8	+0.0	32.0	29.5	+2.5	Perpe
											_
3	28.642M	22.9	+0.3	+0.3	+5.5	-12.8	+0.0	16.2	29.5	-13.3	Perpe
											_
4	27.342M	21.7	+0.2	+0.3	+6.0	-12.8	+0.0	15.4	29.5	-14.1	Perpe
											-
5	24.742M	19.3	+0.2	+0.3	+7.0	-12.8	+0.0	14.0	29.5	-15.5	Perpe
											_
6	25.477M	19.4	+0.2	+0.3	+6.7	-12.8	+0.0	13.8	29.5	-15.7	Perpe
											•
7	23.437M	17.9	+0.2	+0.3	+7.2	-12.8	+0.0	12.8	29.5	-16.7	Perpe
											•

Page 219 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 14:34:39 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 347 Perpendicular Overhead Test Site 2 Position 11 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 220 of 321 Report No.: FC06-025 Volume 4 of 9

Test Location: Overhead Test Site #2 •Westford Street West of Cochran Street Streetlight Pole #465477 • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:21:24
Equipment: BPL MV Gateway Sequence#: 344
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

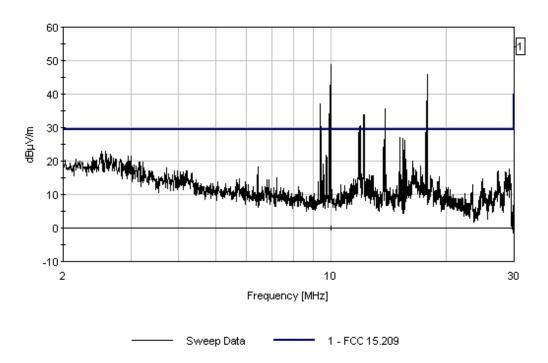
Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 10 Meter	rs.	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.405M	20.8	+0.2	+0.2	+8.4	-12.8	+0.0	16.8	29.5	-12.7	Perpe
2	29.230M	22.0	+0.3	+0.3	+5.3	-12.8	+0.0	15.1	29.5	-14.4	Perpe
3	18.910M	18.6	+0.2	+0.3	+8.2	-12.8	+0.0	14.5	29.5	-15.0	Perpe
4	27.505M	20.4	+0.3	+0.3	+5.9	-12.8	+0.0	14.1	29.5	-15.4	Perpe
5	24.730M	19.0	+0.2	+0.3	+7.0	-12.8	+0.0	13.7	29.5	-15.8	Perpe
6	17.165M	17.7	+0.2	+0.2	+8.4	-12.8	+0.0	13.7	29.5	-15.8	Perpe
7	12.700M	17.2	+0.2	+0.2	+8.8	-12.8	+0.0	13.6	29.5	-15.9	Perpe

Page 221 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 14:21:24 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 344 Perpendicular Overhead Test Site 2 Position 12 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 222 of 321 Report No.: FC06-025 Volume 4 of 9

Test Location: Overhead Test Site #2 •Westford Street West of Cochran Street Streetlight Pole #465477 • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/29/2006
Test Type: Radiated Scan Time: 14:26:15
Equipment: BPL MV Gateway Sequence#: 345
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: 6213625658

Equipment Under Test (* = EUT):

1.1			
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	6213625658
Overhead Coupler	Arteche	Overcap-S-17	0517347/61
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

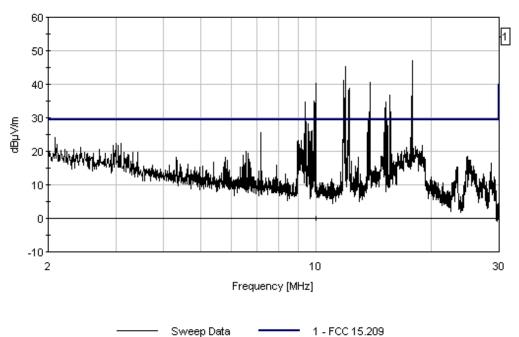
Support Devices:

Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

Test Conditions / Notes:

Formal Overhead Test Site #2 Westford Street west of Cochran Street, Houston, TX. Unit on pole streetlight number 465477. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.35 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.4 meters at 1 meter. Slant Distance correction factor is -40*LOG(30/14.4) = -12.8dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S2

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.910M	24.9	+0.2	+0.3	+8.2	-12.8	+0.0	20.8	29.5	-8.7	Paral
2	16.910M	24.2	+0.2	+0.2	+8.4	-12.8	+0.0	20.2	29.5	-9.3	Paral
3	16.415M	23.2	+0.2	+0.2	+8.4	-12.8	+0.0	19.2	29.5	-10.3	Paral
4	24.740M	23.9	+0.2	+0.3	+7.0	-12.8	+0.0	18.6	29.5	-10.9	Paral
5	23.425M	18.9	+0.2	+0.3	+7.2	-12.8	+0.0	13.8	29.5	-15.7	Paral
6	14.820M	16.8	+0.2	+0.2	+8.6	-12.8	+0.0	13.0	29.5	-16.5	Paral
7	27.275M	18.8	+0.2	+0.3	+6.0	-12.8	+0.0	12.5	29.5	-17.0	Paral
8	28.495M	19.1	+0.3	+0.3	+5.5	-12.8	+0.0	12.4	29.5	-17.1	Paral

Page 223 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #1 Date: 3/29/2006 Time: 14:26:15 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 345 Parallel Overhead Test Site 2 Position 12 Medium Lines only. Notches off. MODE 2/3. Formal Power

34400p Data 1-1 CC 13.203

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 14:35:18
Equipment: BPL MV Gateway Sequence#: 439
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

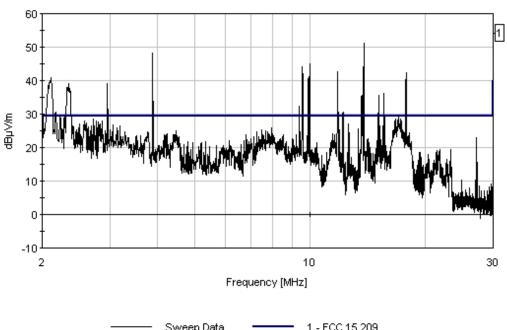
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly across from the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

Transaucer Ecgena.	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.953M	29.2	+0.2	+0.2	+8.4	-12.3	+0.0	25.7	29.5	-3.8	Paral
	QP										
^	16.953M	33.0	+0.2	+0.2	+8.4	-12.3	+0.0	29.5	29.5	+0.0	Paral
3	15.275M	26.5	+0.2	+0.2	+8.6	-12.3	+0.0	23.2	29.5	-6.3	Paral
4	4.448M	25.5	+0.1	+0.2	+9.2	-12.3	+0.0	22.7	29.5	-6.8	Paral
5	18.332M	26.0	+0.2	+0.3	+8.3	-12.3	+0.0	22.5	29.5	-7.0	Paral
6	11.470M	24.6	+0.1	+0.2	+8.9	-12.3	+0.0	21.5	29.5	-8.0	Paral
7	9.010M	24.3	+0.1	+0.2	+9.1	-12.3	+0.0	21.4	29.5	-8.1	Paral

Page 225 of 321 Report No.: FC06-025 Volume 4 of 9

8	7.800M	24.2	+0.1	+0.2	+9.1	-12.3	+0.0	21.2	29.5	-8.3	Paral
9	21.675M	23.3	+0.2	+0.3	+7.7	-12.3	+0.0	19.2	29.5	-10.3	Paral
10	20.300M	19.9	+0.2	+0.3	+8.0	-12.3	+0.0	16.1	29.5	-13.4	Paral
11	23.350M	18.9	+0.2	+0.3	+7.3	-12.3	+0.0	14.4	29.5	-15.1	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 14:35:18 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 439 Parallel Overhead Test Site 3 Position 1 Medium Lines only, Notches off, MODE 1/2. Formal Power

Sweep Data 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 14:50:21
Equipment: BPL MV Gateway Sequence#: 440
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 1: 10 meters out from medium voltage lines the BPL is connected directly across from the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

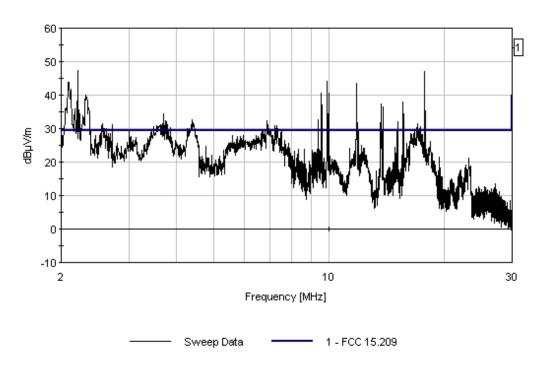
Transducer Legend:

Transancer Eegena.	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters

					6						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	16.952M	31.8	+0.2	+0.2	+8.4	-12.3	+0.0	28.3	29.5	-1.2	Perpe
()P										
٨	16.952M	35.3	+0.2	+0.2	+8.4	-12.3	+0.0	31.8	29.5	+2.3	Perpe
3	6.963M	30.4	+0.1	+0.2	+9.2	-12.3	+0.0	27.6	29.5	-1.9	Perpe
)P										
^	6.963M	34.8	+0.1	+0.2	+9.2	-12.3	+0.0	32.0	29.5	+2.5	Perpe
5	16.373M	29.2	+0.2	+0.2	+8.4	-12.3	+0.0	25.7	29.5	-3.8	Perpe
()P										
٨	16.373M	32.1	+0.2	+0.2	+8.4	-12.3	+0.0	28.6	29.5	-0.9	Perpe
											•

Page 227 of 321 Report No.: FC06-025 Volume 4 of 9



QP ^ 3.607M 32.3 +0.1 +0.2 +9.3 -12.3 +0.0 29.6 29.5 +0.1 Per 9 18.309M 27.2 +0.2 +0.3 +8.3 -12.3 +0.0 23.7 29.5 -5.8 Per 10 6.180M 26.3 +0.1 +0.1 +9.2 -12.3 +0.0 23.4 29.5 -6.1 Per QP ^ 6.180M 30.1 +0.1 +9.2 -12.3 +0.0 27.2 29.5 -2.3 Per 12 4.346M 26.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per 12 4.346M 36.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 +3.8 Per 14 9.347M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.1 Per 15 11.610												
^ 3.607M 32.3 +0.1 +0.2 +9.3 -12.3 +0.0 29.6 29.5 +0.1 Per 9 18.309M 27.2 +0.2 +0.3 +8.3 -12.3 +0.0 23.7 29.5 -5.8 Per 10 6.180M 26.3 +0.1 +0.1 +9.2 -12.3 +0.0 23.4 29.5 -6.1 Per QP ^ 6.180M 30.1 +0.1 +0.1 +9.2 -12.3 +0.0 27.2 29.5 -2.3 Per 12 4.346M 26.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per 14 9.347M 24.3 +0.1 +0.2 +9.2 -12.3 +0.0 33.3 29.5 +3.8 Per 15 11.610M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5			28.2	+0.1	+0.2	+9.3	-12.3	+0.0	25.5	29.5	-4.0	Perpe
^ 3.607M 32.3 +0.1 +0.2 +9.3 -12.3 +0.0 29.6 29.5 +0.1 Per 9 18.309M 27.2 +0.2 +0.3 +8.3 -12.3 +0.0 23.7 29.5 -5.8 Per 10 6.180M 26.3 +0.1 +0.1 +9.2 -12.3 +0.0 23.4 29.5 -6.1 Per QP ^ 6.180M 30.1 +0.1 +0.1 +9.2 -12.3 +0.0 27.2 29.5 -2.3 Per 12 4.346M 26.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per 14 9.347M 24.3 +0.1 +0.2 +9.2 -12.3 +0.0 33.3 29.5 +3.8 Per 15 11.610M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5		QP										
10 6.180M 26.3 +0.1 +0.1 +9.2 -12.3 +0.0 23.4 29.5 -6.1 Per ^ 6.180M 30.1 +0.1 +0.1 +9.2 -12.3 +0.0 27.2 29.5 -2.3 Per 12 4.346M 26.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per QP ^ 4.346M 36.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per 14 9.347M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.1 Per 15 11.610M 24.3 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.			32.3	+0.1	+0.2	+9.3	-12.3	+0.0	29.6	29.5	+0.1	Perpe
QP ^ 6.180M 30.1 +0.1 +0.1 +9.2 -12.3 +0.0 27.2 29.5 -2.3 Per 12 4.346M 26.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per QP ^ 4.346M 36.1 +0.1 +0.2 +9.2 -12.3 +0.0 33.3 29.5 +3.8 Per 14 9.347M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.1 Per 15 11.610M 24.3 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.6 -12.3 +0.0 17.5	9	18.309M	27.2	+0.2	+0.3	+8.3	-12.3	+0.0	23.7	29.5	-5.8	Perpe
^ 6.180M 30.1 +0.1 +0.1 +9.2 -12.3 +0.0 27.2 29.5 -2.3 Per 12 4.346M 26.1 +0.1 +0.2 +9.2 -12.3 +0.0 23.3 29.5 -6.2 Per QP ^ 4.346M 36.1 +0.1 +0.2 +9.2 -12.3 +0.0 33.3 29.5 +3.8 Per 14 9.347M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.1 Per 15 11.610M 24.3 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29			26.3	+0.1	+0.1	+9.2	-12.3	+0.0	23.4	29.5	-6.1	Perpe
QP ^ 4.346M 36.1 +0.1 +0.2 +9.2 -12.3 +0.0 33.3 29.5 +3.8 Per 14 9.347M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.1 Per 15 11.610M 24.3 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29.5 -9.1 Per 19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per		•	30.1	+0.1	+0.1	+9.2	-12.3	+0.0	27.2	29.5	-2.3	Perpe
^ 4.346M 36.1 +0.1 +0.2 +9.2 -12.3 +0.0 33.3 29.5 +3.8 Per 14 9.347M 24.3 +0.1 +0.2 +9.1 -12.3 +0.0 21.4 29.5 -8.1 Per 15 11.610M 24.3 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29.5 -9.1 Per 19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per			26.1	+0.1	+0.2	+9.2	-12.3	+0.0	23.3	29.5	-6.2	Perpe
15 11.610M 24.3 +0.1 +0.2 +8.9 -12.3 +0.0 21.2 29.5 -8.3 Per 16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29.5 -9.1 Per 19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per			36.1	+0.1	+0.2	+9.2	-12.3	+0.0	33.3	29.5	+3.8	Perpe
16 8.290M 24.1 +0.1 +0.2 +9.1 -12.3 +0.0 21.2 29.5 -8.3 Per 17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29.5 -9.1 Per 19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per	14	9.347M	24.3	+0.1	+0.2	+9.1	-12.3	+0.0	21.4	29.5	-8.1	Perpe
17 12.500M 23.7 +0.2 +0.2 +8.8 -12.3 +0.0 20.6 29.5 -8.9 Per 18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29.5 -9.1 Per 19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per	15	11.610M	24.3	+0.1	+0.2	+8.9	-12.3	+0.0	21.2	29.5	-8.3	Perpe
18 23.450M 25.0 +0.2 +0.3 +7.2 -12.3 +0.0 20.4 29.5 -9.1 Per 19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per	16	8.290M	24.1	+0.1	+0.2	+9.1	-12.3	+0.0	21.2	29.5	-8.3	Perpe
19 21.913M 21.7 +0.2 +0.3 +7.6 -12.3 +0.0 17.5 29.5 -12.0 Per	17	12.500M	23.7	+0.2	+0.2	+8.8	-12.3	+0.0	20.6	29.5	-8.9	Perpe
	18	23.450M	25.0	+0.2	+0.3	+7.2	-12.3	+0.0	20.4	29.5	-9.1	Perpe
20 22.875M 21.5 +0.2 +0.3 +7.4 -12.3 +0.0 17.1 29.5 -12.4 Per	19	21.913M	21.7	+0.2	+0.3	+7.6	-12.3	+0.0	17.5	29.5	-12.0	Perpe
	20	22.875M	21.5	+0.2	+0.3	+7.4	-12.3	+0.0	17.1	29.5	-12.4	Perpe

Page 228 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 14:50:21 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 440 Perpendicular Overhead Test Site 3 Position 1 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 229 of 321 Report No.: FC06-025

Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 14:12:40
Equipment: BPL MV Gateway Sequence#: 436
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	
----------	--------------	---------	-----	--

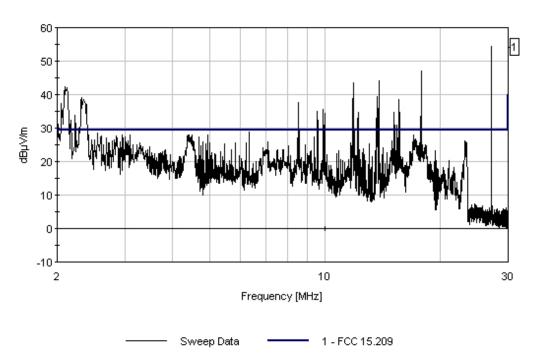
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	dBμV/m	dB	Ant
1	18.124M	28.1	+0.2	+0.3	+8.3	-12.3	+0.0	24.6	29.5	-4.9	Paral
2	17.034M)P	28.1	+0.2	+0.2	+8.4	-12.3	+0.0	24.6	29.5	-4.9	Paral
۸	17.034M	30.8	+0.2	+0.2	+8.4	-12.3	+0.0	27.3	29.5	-2.2	Paral
4 (4.462M)P	26.8	+0.1	+0.2	+9.2	-12.3	+0.0	24.0	29.5	-5.5	Paral
۸	4.462M	31.7	+0.1	+0.2	+9.2	-12.3	+0.0	28.9	29.5	-0.6	Paral
6	3.330M	26.5	+0.1	+0.1	+9.3	-12.3	+0.0	23.7	29.5	-5.8	Paral

Page 230 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.440M	28.0	+0.2	+0.3	+7.2	-12.3	+0.0	23.4	29.5	-6.1	Paral
	QΡ										
^	23.440M	31.2	+0.2	+0.3	+7.2	-12.3	+0.0	26.6	29.5	-2.9	Paral
9	14.840M	26.7	+0.2	+0.2	+8.6	-12.3	+0.0	23.4	29.5	-6.1	Paral
1.0	7.0403.6	260	0.1	0.0	0.0	10.0	0.0	22.2	20.5		D 1
10	7.040M	26.0	+0.1	+0.2	+9.2	-12.3	+0.0	23.2	29.5	-6.3	Paral
11	7.505M	25.2	+0.1	+0.2	+9.1	-12.3	+0.0	22.3	29.5	-7.2	Paral
12	8.500M	24.9	+0.1	+0.2	+9.1	-12.3	+0.0	22.0	29.5	-7.5	Paral
- 10	21.0253.5		0.2	0.0	5 0	10.0	0.0	10.0	20.7	11.0	. .
13	21.025M	22.3	+0.2	+0.3	+7.8	-12.3	+0.0	18.3	29.5	-11.2	Paral
1.4	11 420M	20.0	ι Ω 1	10.2	100	-12.3	ι Ο Ο	16.0	20.5	12.6	Doro1
14	11.420M	20.0	+0.1	+0.2	+8.9	-12.3	+0.0	16.9	29.5	-12.6	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 14:12:40 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 436 Parallel Overhead Test Site 3 Position 2 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 231 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 14:17:56
Equipment: BPL MV Gateway Sequence#: 437
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

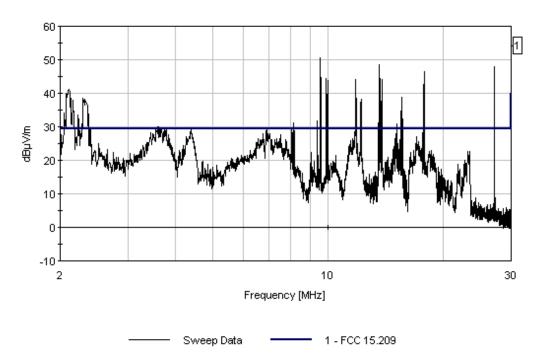
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	3.598M	30.2	+0.1	+0.2	+9.3	-12.3	+0.0	27.4	29.5	-2.1	Perpe
)P										
٨	3.598M	33.0	+0.1	+0.2	+9.3	-12.3	+0.0	30.3	29.5	+0.8	Perpe
3	4.377M	29.8	+0.1	+0.2	+9.2	-12.3	+0.0	27.0	29.5	-2.5	Perpe
Ç)P										
٨	4.377M	32.9	+0.1	+0.2	+9.2	-12.3	+0.0	30.1	29.5	+0.6	Perpe
											_
5	6.908M	29.2	+0.1	+0.2	+9.2	-12.3	+0.0	26.3	29.5	-3.2	Perpe
Ç	QP										
٨	6.908M	33.7	+0.1	+0.2	+9.2	-12.3	+0.0	30.9	29.5	+1.4	Perpe

Page 232 of 321 Report No.: FC06-025 Volume 4 of 9

Perpe	-4.3	29.5	25.2	+0.0	-12.3	+9.1	+0.2	+0.1	28.1	7.549M	7
Perpe	-4.9	29.5	24.6	+0.0	-12.3	+8.4	+0.2	+0.2	28.1	17.150M	8
Perpe	-6.6	29.5	22.9	+0.0	-12.3	+8.9	+0.2	+0.1	26.0	11.408M QP	9
Perpe	-3.2	29.5	26.3	+0.0	-12.3	+8.9	+0.2	+0.1	29.4	11.408M	۸
Perpe	-7.3	29.5	22.2	+0.0	-12.3	+7.2	+0.3	+0.2	26.8	23.463M	11
Perpe	-7.6	29.5	21.9	+0.0	-12.3	+8.3	+0.3	+0.2	25.4	18.290M	12
Perpe	-8.0	29.5	21.5	+0.0	-12.3	+8.6	+0.2	+0.2	24.8	15.290M	13
Perpe	-8.0	29.5	21.5	+0.0	-12.3	+9.2	+0.1	+0.1	24.4	6.245M	14
Perpe	-10.6	29.5	18.9	+0.0	-12.3	+7.4	+0.3	+0.2	23.3	22.663M	15

Overhead Test Site #3 Date: 3/31/2006 Time: 14:17:56 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 437 Perpendicular Overhead Test Site 3 Position 2 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 233 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 13:59:56
Equipment: BPL MV Gateway Sequence#: 434
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

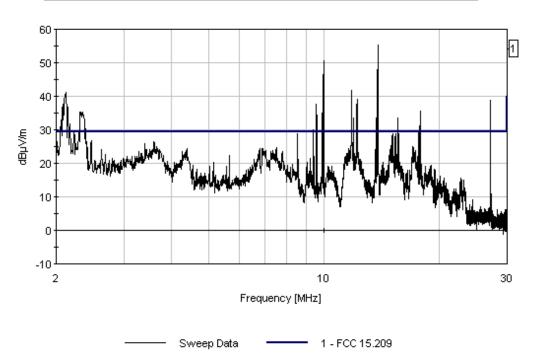
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


			- 0								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	3.593M	29.5	+0.1	+0.2	+9.3	-12.3	+0.0	26.8	29.5	-2.7	Perpe
2	7.505M	27.4	+0.1	+0.2	+9.1	-12.3	+0.0	24.5	29.5	-5.0	Perpe
3	6.915M	27.2	+0.1	+0.2	+9.2	-12.3	+0.0	24.4	29.5	-5.1	Perpe
4	11.410M	26.3	+0.1	+0.2	+8.9	-12.3	+0.0	23.2	29.5	-6.3	Perpe
5	4.261M	25.6	+0.1	+0.2	+9.2	-12.3	+0.0	22.8	29.5	-6.7	Perpe
6	16.985M	25.8	+0.2	+0.2	+8.4	-12.3	+0.0	22.3	29.5	-7.2	Perpe

Page 234 of 321 Report No.: FC06-025 Volume 4 of 9

7	12.285M	24.6	+0.2	+0.2	+8.8	-12.3	+0.0	21.5	29.5	-8.0	Perpe
8	15.200M	24.1	+0.2	+0.2	+8.6	-12.3	+0.0	20.8	29.5	-8.7	Perpe
9	10.310M	20.9	+0.1	+0.2	+9.1	-12.3	+0.0	18.0	29.5	-11.5	Perpe
10	16.055M	21.0	+0.2	+0.2	+8.5	-12.3	+0.0	17.6	29.5	-11.9	Perpe
11	18.935M	21.0	+0.2	+0.3	+8.2	-12.3	+0.0	17.4	29.5	-12.1	Perpe
12	8.275M	20.3	+0.1	+0.2	+9.1	-12.3	+0.0	17.3	29.5	-12.2	Perpe
13	22.675M	21.6	+0.2	+0.3	+7.4	-12.3	+0.0	17.2	29.5	-12.3	Perpe
14	23.113M	21.1	+0.2	+0.3	+7.3	-12.3	+0.0	16.6	29.5	-12.9	Perpe
15	20.600M	18.5	+0.2	+0.3	+7.9	-12.3	+0.0	14.6	29.5	-14.9	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 13:59:56 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 434 Perpendicular Overhead Test Site 3 Position 3 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 235 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 14:05:46
Equipment: BPL MV Gateway Sequence#: 435
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

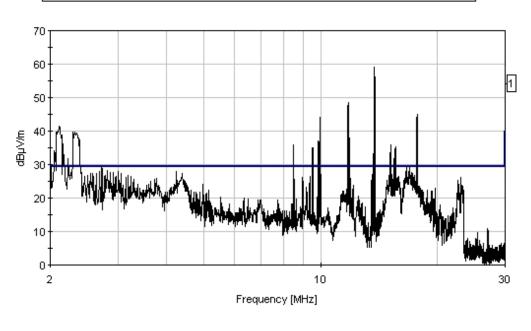
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.033M	30.2	+0.2	+0.2	+8.4	-12.3	+0.0	26.7	29.5	-2.8	Paral
	QP										
/	17.033M	32.7	+0.2	+0.2	+8.4	-12.3	+0.0	29.2	29.5	-0.3	Paral
3	3 23.080M	30.0	+0.2	+0.3	+7.3	-12.3	+0.0	25.5	29.5	-4.0	Paral
4	22.816M	29.4	+0.2	+0.3	+7.4	-12.3	+0.0	25.0	29.5	-4.5	Paral
5	5 15.740M	27.9	+0.2	+0.2	+8.5	-12.3	+0.0	24.5	29.5	-5.0	Paral
ϵ	4.377M	27.3	+0.1	+0.2	+9.2	-12.3	+0.0	24.5	29.5	-5.0	Paral
	QP										
/	4.377M	30.5	+0.1	+0.2	+9.2	-12.3	+0.0	27.7	29.5	-1.8	Paral

Page 236 of 321 Report No.: FC06-025 Volume 4 of 9

8	18.331M	26.5	+0.2	+0.3	+8.3	-12.3	+0.0	23.0	29.5	-6.5	Paral
9	14.975M	25.8	+0.2	+0.2	+8.6	-12.3	+0.0	22.5	29.5	-7.0	Paral
10	19.325M	24.6	+0.2	+0.3	+8.2	-12.3	+0.0	21.0	29.5	-8.5	Paral
11	11.405M	22.5	+0.1	+0.2	+8.9	-12.3	+0.0	19.4	29.5	-10.1	Paral
12	6.885M	22.1	+0.1	+0.2	+9.2	-12.3	+0.0	19.3	29.5	-10.2	Paral
13	12.600M	22.0	+0.2	+0.2	+8.8	-12.3	+0.0	18.9	29.5	-10.6	Paral
	12.0001.1		. 0.2	. 0.2	. 0.0	12.0	. 0.0	10.5	27.0	10.0	1 4141

Overhead Test Site #3 Date: 3/31/2006 Time: 14:05:46 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 435 Parallel Overhead Test Site 3 Position 3 Medium Lines only. Notches off. MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:13:50:51Equipment:BPL MV GatewaySequence#:432Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

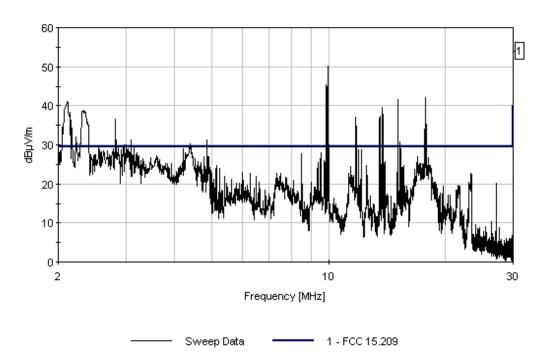
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	4.381M	30.4	+0.1	+0.2	+9.2	-12.3	+0.0	27.6	29.5	-1.9	Paral
	QΡ										
^	4.381M	32.4	+0.1	+0.2	+9.2	-12.3	+0.0	29.6	29.5	+0.1	Paral
3	17.028M	28.6	+0.2	+0.2	+8.4	-12.3	+0.0	25.1	29.5	-4.4	Paral
(QP										
^	17.028M	31.6	+0.2	+0.2	+8.4	-12.3	+0.0	28.1	29.5	-1.4	Paral
5	3.595M	26.1	+0.1	+0.2	+9.3	-12.3	+0.0	23.4	29.5	-6.1	Paral
(QΡ										
٨	3.595M	30.7	+0.1	+0.2	+9.3	-12.3	+0.0	27.9	29.5	-1.6	Paral

Page 238 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.450M	27.0	+0.2	+0.3	+7.2	-12.3	+0.0	22.4	29.5	-7.1	Paral
8	18.202M	25.7	+0.2	+0.3	+8.3	-12.3	+0.0	22.2	29.5	-7.3	Paral
9	11.438M	24.7	+0.1	+0.2	+8.9	-12.3	+0.0	21.6	29.5	-7.9	Paral
10	7.500M QP	24.1	+0.1	+0.2	+9.1	-12.3	+0.0	21.2	29.5	-8.3	Paral
٨	7.500M	28.6	+0.1	+0.2	+9.1	-12.3	+0.0	25.7	29.5	-3.8	Paral
12	14.990M	23.0	+0.2	+0.2	+8.6	-12.3	+0.0	19.7	29.5	-9.8	Paral
13	21.738M	23.7	+0.2	+0.3	+7.7	-12.3	+0.0	19.6	29.5	-9.9	Paral
14	8.285M	20.1	+0.1	+0.2	+9.1	-12.3	+0.0	17.2	29.5	-12.3	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 13:50:51 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 432 Parallel Overhead Test Site 3 Position 4 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 239 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:13:54:57Equipment:BPL MV GatewaySequence#:433Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	
			D/1N	

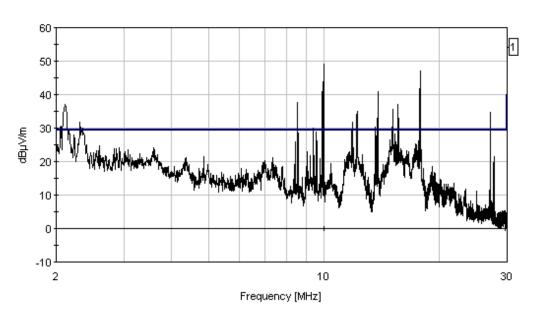
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


					8						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.112M	30.8	+0.2	+0.2	+8.6	-12.3	+0.0	27.5	29.5	-2.0	Perpe
Ç)P										
٨	15.112M	36.9	+0.2	+0.2	+8.6	-12.3	+0.0	33.6	29.5	+4.1	Perpe
											_
3	15.771M	26.4	+0.2	+0.2	+8.5	-12.3	+0.0	23.0	29.5	-6.5	Perpe
4	16.407M	26.2	+0.2	+0.2	+8.4	-12.3	+0.0	22.7	29.5	-6.8	Perpe
											_
5	17.372M	26.1	+0.2	+0.3	+8.3	-12.3	+0.0	22.6	29.5	-6.9	Perpe
											_
6	3.605M	23.9	+0.1	+0.2	+9.3	-12.3	+0.0	21.2	29.5	-8.3	Perpe
											_

Page 240 of 321 Report No.: FC06-025 Volume 4 of 9

7	12.245M	23.7	+0.1	+0.2	+8.9	-12.3	+0.0	20.6	29.5	-8.9	Perpe
											Ι.
8	11.435M	23.6	+0.1	+0.2	+8.9	-12.3	+0.0	20.5	29.5	-9.0	Perpe
0	11. 4 331 v 1	23.0	+0.1	±0.2	±0.9	-12.5	+0.0	20.5	29.5	-9.0	rcipc
9	7.380M	21.0	+0.1	+0.2	+9.2	-12.3	+0.0	18.2	29.5	-11.3	Perpe
)	7.500IVI	21.0	+0.1	±0.2	⊤J.∠	-12.5	+0.0	10.2	49.5	-11.5	respe
10	19.083M	19.3	+0.2	+0.3	+8.2	-12.3	+0.0	15.7	29.5	-13.8	Perpe
10	17.065W1	17.5	+0.2	+0.5	+6.2	-12.3	+0.0	13.7	49.3	-13.6	respe
11	10.590M	16.2	+0.1	+0.2	+9.0	-12.3	+0.0	13.2	29.5	-16.3	Perpe
11	10.5501	10.2	+0.1	±0.2	±2.0	-12.5	+0.0	13.2	49.5	-10.5	rcipc
12	21.738M	16.0	+0.2	+0.3	+7.7	-12.3	+0.0	11.9	29.5	-17.6	Perpe
12	21./JOIVI	10.0	±0.∠	±0.5	⊤/./	-12.3	+0.0	11.7	49.3	-17.0	rcipe

Overhead Test Site #3 Date: 3/31/2006 Time: 13:54:57 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 433 Perpendicular Overhead Test Site 3 Position 4 Medium Lines only. Notches off. MODE 1/2. Formal Power

—— Sweep Data —— 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:13:37:30Equipment:BPL MV GatewaySequence#:430Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

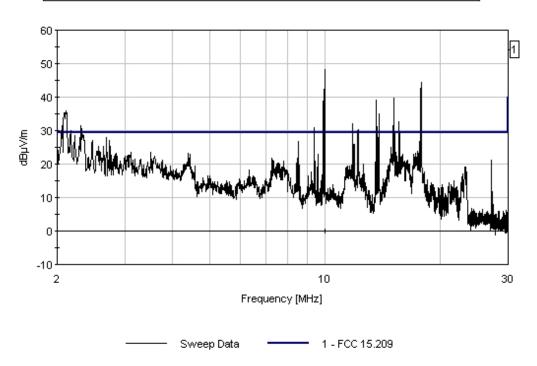
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	17.180M	26.9	+0.2	+0.2	+8.4	-12.3	+0.0	23.4	29.5	-6.1	Perpe
2	14.870M	26.7	+0.2	+0.2	+8.6	-12.3	+0.0	23.4	29.5	-6.1	Perpe
3	15.935M	26.6	+0.2	+0.2	+8.5	-12.3	+0.0	23.2	29.5	-6.3	Perpe
4	4.365M	24.7	+0.1	+0.2	+9.2	-12.3	+0.0	21.9	29.5	-7.6	Perpe
5	7.495M	23.4	+0.1	+0.2	+9.1	-12.3	+0.0	20.5	29.5	-9.0	Perpe
6	11.558M	22.1	+0.1	+0.2	+8.9	-12.3	+0.0	19.0	29.5	-10.5	Perpe

Page 242 of 321 Report No.: FC06-025 Volume 4 of 9

7	3.578M	21.4	+0.1	+0.2	+9.3	-12.3	+0.0	18.7	29.5	-10.8	Perpe
8	23.088M	22.9	+0.2	+0.3	+7.3	-12.3	+0.0	18.4	29.5	-11.1	Perpe
9	22.663M	21.4	+0.2	+0.3	+7.4	-12.3	+0.0	17.0	29.5	-12.5	Perpe
10	12.415M	19.8	+0.2	+0.2	+8.8	-12.3	+0.0	16.7	29.5	-12.8	Perpe
10	12.713111	17.0	10.2	10.2	10.0	-12.3	10.0	10.7	27.5	-12.0	respe

Overhead Test Site #3 Date: 3/31/2006 Time: 13:37:30 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 430 Perpendicular Overhead Test Site 3 Position 5 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 243 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 13:43:42
Equipment: BPL MV Gateway Sequence#: 431
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

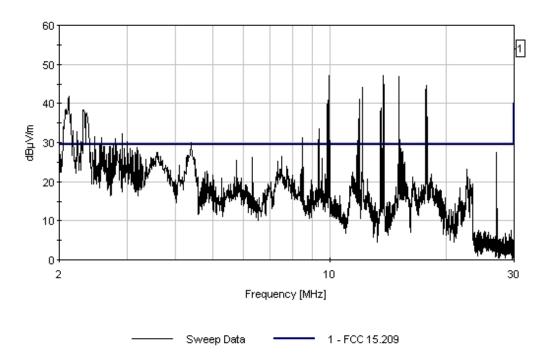
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	4.374M	29.6	+0.1	+0.2	+9.2	-12.3	+0.0	26.8	29.5	-2.7	Paral
)P										
٨	4.374M	32.9	+0.1	+0.2	+9.2	-12.3	+0.0	30.1	29.5	+0.6	Paral
3	3.592M	27.6	+0.1	+0.2	+9.3	-12.3	+0.0	24.9	29.5	-4.6	Paral
Ç)P										
٨	3.592M	31.7	+0.1	+0.2	+9.3	-12.3	+0.0	29.0	29.5	-0.5	Paral
5	7.500M	24.9	+0.1	+0.2	+9.1	-12.3	+0.0	22.0	29.5	-7.5	Paral
Ç)P										
٨	7.500M	29.3	+0.1	+0.2	+9.1	-12.3	+0.0	26.4	29.5	-3.1	Paral

Page 244 of 321 Report No.: FC06-025 Volume 4 of 9

7	22.675M	25.9	+0.2	+0.3	+7.4	-12.3	+0.0	21.5	29.5	-8.0	Paral
8	16.340M	24.0	+0.2	+0.2	+8.5	-12.3	+0.0	20.6	29.5	-8.9	Paral
9	23.088M	24.4	+0.2	+0.3	+7.3	-12.3	+0.0	19.9	29.5	-9.6	Paral
10	5.485M	22.5	+0.1	+0.1	+9.2	-12.3	+0.0	19.6	29.5	-9.9	Paral
11	18.305M	22.9	+0.2	+0.3	+8.3	-12.3	+0.0	19.4	29.5	-10.1	Paral
12	15.740M	22.7	+0.2	+0.2	+8.5	-12.3	+0.0	19.2	29.5	-10.3	Paral
13	8.415M	21.1	+0.1	+0.2	+9.1	-12.3	+0.0	18.2	29.5	-11.3	Paral
14	11.455M	21.2	+0.1	+0.2	+8.9	-12.3	+0.0	18.1	29.5	-11.4	Paral
15	12.495M	20.2	+0.2	+0.2	+8.8	-12.3	+0.0	17.1	29.5	-12.4	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 13:43:42 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 431 Parallel Overhead Test Site 3 Position 5 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 245 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 12:52:12
Equipment: BPL MV Gateway Sequence#: 428
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

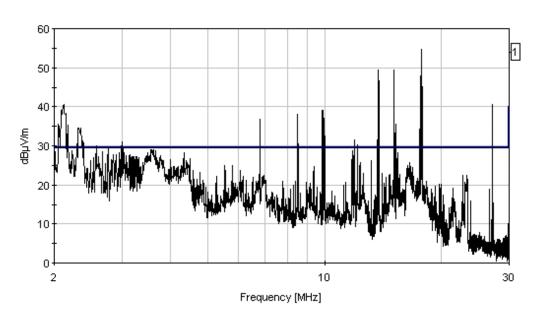
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	3.595M	29.5	+0.1	+0.2	+9.3	-12.3	+0.0	26.8	29.5	-2.7	Paral
Ç)P										
٨	3.595M	34.7	+0.1	+0.2	+9.3	-12.3	+0.0	32.0	29.5	+2.5	Paral
3	16.565M	26.8	+0.2	+0.2	+8.4	-12.3	+0.0	23.3	29.5	-6.2	Paral
)P										
٨	16.565M	29.9	+0.2	+0.2	+8.4	-12.3	+0.0	26.4	29.5	-3.1	Paral
5	6.973M	25.5	+0.1	+0.2	+9.2	-12.3	+0.0	22.7	29.5	-6.8	Paral
6	23.313M	26.7	+0.2	+0.3	+7.3	-12.3	+0.0	22.2	29.5	-7.3	Paral

Page 246 of 321 Report No.: FC06-025 Volume 4 of 9

7	4.373M	25.0	+0.1	+0.2	+9.2	-12.3	+0.0	22.2	29.5	-7.3	Paral
)P										
٨	4.373M	29.0	+0.1	+0.2	+9.2	-12.3	+0.0	26.2	29.5	-3.3	Paral
9	14.810M	23.7	+0.2	+0.2	+8.6	-12.3	+0.0	20.4	29.5	-9.1	Paral
10	18.360M	22.5	+0.2	+0.3	+8.2	-12.3	+0.0	18.9	29.5	-10.6	Paral
11	12.485M	21.7	+0.2	+0.2	+8.8	-12.3	+0.0	18.6	29.5	-10.9	Paral
12	21.350M	20.6	+0.2	+0.3	+7.7	-12.3	+0.0	16.5	29.5	-13.0	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 12:52:12 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 428 Parallel Overhead Test Site 3 Position 6 Medium Lines only. Notches off. MODE 1/2. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

north side. · Houston, TX ·

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 13:28:10
Equipment: BPL MV Gateway Sequence#: 429
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

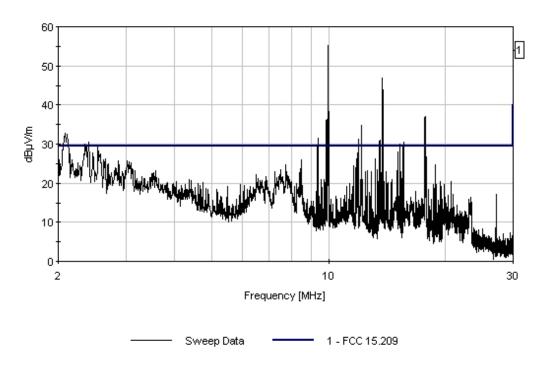
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq MHz	Rdng dBuV	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
1	6.561M	25.2	+0.1	+0.2	+9.2	-12.3	+0.0	22.4	29.5	-7.1	Perpe
2	7.500M	23.8	+0.1	+0.2	+9.1	-12.3	+0.0	20.9	29.5	-8.6	Perpe
	<u>P</u> 7.500M	28.7	+0.1	+0.2	+9.1	-12.3	+0.0	25.8	29.5	-3.7	Perpe
	7.500WI	20.7	+0.1	+0.2	+7.1	-12.3	+0.0	23.6	29.3	-3.7	reipe
4	8.440M	21.7	+0.1	+0.2	+9.1	-12.3	+0.0	18.8	29.5	-10.7	Perpe
5	19.730M	20.7	+0.2	+0.3	+8.1	-12.3	+0.0	17.0	29.5	-12.5	Perpe
6	16.370M	19.3	+0.2	+0.2	+8.4	-12.3	+0.0	15.8	29.5	-13.7	Perpe

Page 248 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.113M	20.0	+0.2	+0.3	+7.3	-12.3	+0.0	15.5	29.5	-14.0	Perpe
8	17.450M	17.8	+0.2	+0.3	+8.3	-12.3	+0.0	14.3	29.5	-15.2	Perpe
9	14.855M	15.6	+0.2	+0.2	+8.6	-12.3	+0.0	12.3	29.5	-17.2	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 13:28:10 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 429 Perpendicular Overhead Test Site 3 Position 6 Medium Lines only. Notches off. MODE 1/2. Formal Power

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 12:35:56
Equipment: BPL MV Gateway Sequence#: 426
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

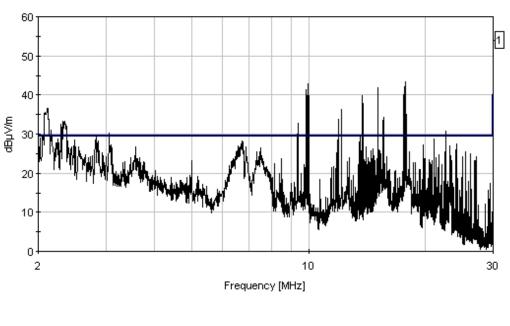
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	6.738M	28.2	+0.1	+0.2	+9.2	-12.3	+0.0	25.4	29.5	-4.1	Perpe
	QΡ										
٨	6.738M	32.0	+0.1	+0.2	+9.2	-12.3	+0.0	29.2	29.5	-0.3	Perpe
											_
3	7.500M	26.5	+0.1	+0.2	+9.1	-12.3	+0.0	23.6	29.5	-5.9	Perpe
	QΡ										
^	7.500M	30.6	+0.1	+0.2	+9.1	-12.3	+0.0	27.7	29.5	-1.8	Perpe
5	18.140M	24.1	+0.2	+0.3	+8.3	-12.3	+0.0	20.6	29.5	-8.9	Perpe
											_
6	3.520M	23.0	+0.1	+0.2	+9.3	-12.3	+0.0	20.3	29.5	-9.2	Perpe

Page 250 of 321 Report No.: FC06-025 Volume 4 of 9

7	21.463M	21.2	+0.2	+0.3	+7.7	-12.3	+0.0	17.1	29.5	-12.4	Perpe
8	8.277M	18.4	+0.1	+0.2	+9.1	-12.3	+0.0	15.5	29.5	-14.0	Perpe
	0.27711	10.1	10.1	10.2	17.1	12.3	10.0	13.3	27.5	11.0	respe
9	15.815M	18.5	+0.2	+0.2	+8.5	-12.3	+0.0	15.1	29.5	-14.4	Perpe
10	12.345M	16.6	+0.2	+0.2	+8.8	-12.3	+0.0	13.5	29.5	-16.0	Perpe
11	23.350M	17.6	+0.2	+0.3	+7.3	-12.3	+0.0	13.1	29.5	-16.4	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 12:35:56 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 426 Perpendicular Overhead Test Site 3 Position 7 Medium Lines only. Notches off. MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

north side. · Houston, TX ·

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 12:43:13
Equipment: BPL MV Gateway Sequence#: 427
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

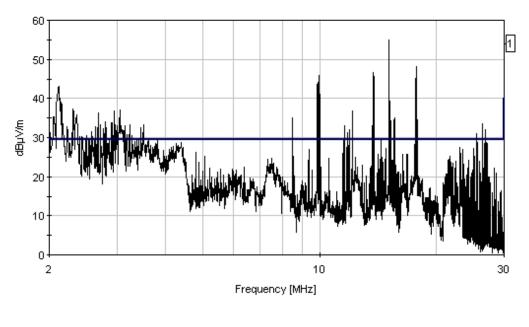
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	4.377M	29.6	+0.1	+0.2	+9.2	-12.3	+0.0	26.7	29.5	-2.8	Paral
QP											
٨	4.377M	33.1	+0.1	+0.2	+9.2	-12.3	+0.0	30.3	29.5	+0.8	Paral
3	3.605M	27.3	+0.1	+0.2	+9.3	-12.3	+0.0	24.5	29.5	-5.0	Paral
QP											
٨	3.605M	31.1	+0.1	+0.2	+9.3	-12.3	+0.0	28.4	29.5	-1.1	Paral
5	7.500M	25.3	+0.1	+0.2	+9.1	-12.3	+0.0	22.4	29.5	-7.1	Paral
QP											
٨	7.500M	29.5	+0.1	+0.2	+9.1	-12.3	+0.0	26.6	29.5	-2.9	Paral

Page 252 of 321 Report No.: FC06-025 Volume 4 of 9

7	12.388M	23.7	+0.2	+0.2	+8.8	-12.3	+0.0	20.6	29.5	-8.9	Paral
8	17.330M	23.6	+0.2	+0.3	+8.3	-12.3	+0.0	20.1	29.5	-9.4	Paral
9	18.365M	22.6	+0.2	+0.3	+8.2	-12.3	+0.0	19.0	29.5	-10.5	Paral
10	16.430M	22.5	+0.2	+0.2	+8.4	-12.3	+0.0	19.0	29.5	-10.5	Paral
11	19.310M	22.5	+0.2	+0.3	+8.2	-12.3	+0.0	18.9	29.5	-10.6	Paral
12	8.345M	21.0	+0.1	+0.2	+9.1	-12.3	+0.0	18.1	29.5	-11.4	Paral
13	23.525M	22.3	+0.2	+0.3	+7.2	-12.3	+0.0	17.7	29.5	-11.8	Paral
14	6.658M	20.4	+0.1	+0.2	+9.2	-12.3	+0.0	17.6	29.5	-11.9	Paral
15	21.575M	21.6	+0.2	+0.3	+7.7	-12.3	+0.0	17.5	29.5	-12.0	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 12:43:13 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 427 Parallel Overhead Test Site 3 Position 7 Medium Lines only. Notches off. MODE 1/2. Formal Power

_____ Sweep Data _____ 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:12:18:36Equipment:BPL MV GatewaySequence#:424Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

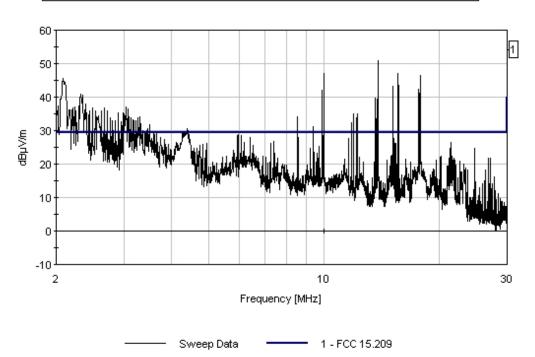
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	4.378M	30.8	+0.1	+0.2	+9.2	-12.3	+0.0	28.0	29.5	-1.5	Paral
	QP										
,	^ 4.378M	35.8	+0.1	+0.2	+9.2	-12.3	+0.0	33.0	29.5	+3.5	Paral
3	6.578M	27.6	+0.1	+0.2	+9.2	-12.3	+0.0	24.8	29.5	-4.7	Paral
2	4 3.355M	26.5	+0.1	+0.1	+9.3	-12.3	+0.0	23.7	29.5	-5.8	Paral
	QP										
,	^ 3.355M	30.1	+0.1	+0.1	+9.3	-12.3	+0.0	27.2	29.5	-2.3	Paral
(5 17.045M	23.3	+0.2	+0.2	+8.4	-12.3	+0.0	19.8	29.5	-9.7	Paral

Page 254 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.063M	23.8	+0.2	+0.3	+7.3	-12.3	+0.0	19.3	29.5	-10.2	Paral
8	14.990M	22.1	+0.2	+0.2	+8.6	-12.3	+0.0	18.8	29.5	-10.7	Paral
9	16.355M	21.9	+0.2	+0.2	+8.4	-12.3	+0.0	18.4	29.5	-11.1	Paral
10	11.265M	21.3	+0.1	+0.2	+9.0	-12.3	+0.0	18.3	29.5	-11.2	Paral
11	21.725M	22.2	+0.2	+0.3	+7.7	-12.3	+0.0	18.0	29.5	-11.5	Paral
12	12.480M	20.8	+0.2	+0.2	+8.8	-12.3	+0.0	17.7	29.5	-11.8	Paral
13	19.325M	18.9	+0.2	+0.3	+8.2	-12.3	+0.0	15.3	29.5	-14.2	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 12:18:36 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 424 Parallel Overhead Test Site 3 Position 8 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 255 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 12:26:49
Equipment: BPL MV Gateway Sequence#: 425
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

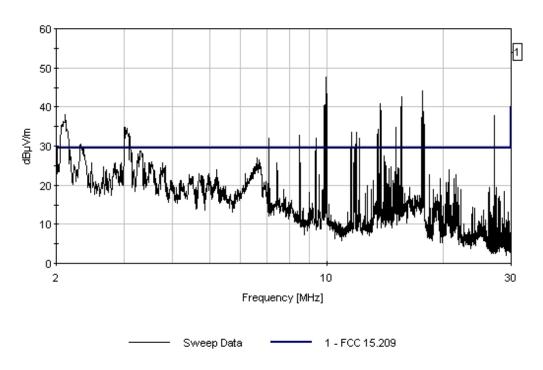
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


			8								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	3.147M	25.7	+0.1	+0.1	+9.3	-12.3	+0.0	22.9	29.5	-6.6	Perpe
2	6.558M	25.3	+0.1	+0.2	+9.2	-12.3	+0.0	22.5	29.5	-7.0	Perpe
	QΡ										
٨	6.558M	29.1	+0.1	+0.2	+9.2	-12.3	+0.0	26.3	29.5	-3.2	Perpe
4	15.485M	22.0	+0.2	+0.2	+8.5	-12.3	+0.0	18.6	29.5	-10.9	Perpe
5	19.325M	20.9	+0.2	+0.3	+8.2	-12.3	+0.0	17.3	29.5	-12.2	Perpe
											•

Page 256 of 321 Report No.: FC06-025 Volume 4 of 9

6	7.380M	20.0	+0.1	+0.2	+9.2	-12.3	+0.0	17.2	29.5	-12.3	Perpe
7	17.015M	19.4	+0.2	+0.2	+8.4	-12.3	+0.0	15.9	29.5	-13.6	Perpe
8	21.569M	16.6	+0.2	+0.3	+7.7	-12.3	+0.0	12.4	29.5	-17.1	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 12:26:49 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 425 Perpendicular Overhead Test Site 3 Position 8 Medium Lines only. Notches off. MODE 1/2. Formal Power

north side. · Houston, TX ·

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 12:03:56
Equipment: BPL MV Gateway Sequence#: 422
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

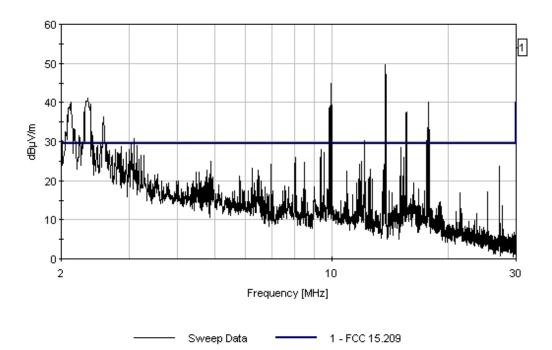
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

			8								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	3.055M	25.7	+0.1	+0.1	+9.3	-12.3	+0.0	22.8	29.5	-6.7	Perpe
)P										
٨	3.055M	31.1	+0.1	+0.1	+9.3	-12.3	+0.0	28.3	29.5	-1.2	Perpe
											_
3	15.990M	18.5	+0.2	+0.2	+8.5	-12.3	+0.0	15.1	29.5	-14.4	Perpe
											_
4	14.610M	16.9	+0.2	+0.2	+8.6	-12.3	+0.0	13.6	29.5	-15.9	Perpe
											-
5	22.388M	11.3	+0.2	+0.3	+7.5	-12.3	+0.0	7.0	29.5	-22.5	Perpe
											•

Page 258 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 12:03:56 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 422 Perpendicular Overhead Test Site 3 Position 9 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 259 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 12:10:08
Equipment: BPL MV Gateway Sequence#: 423
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

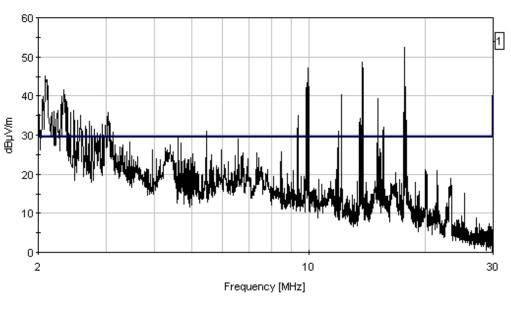
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


								_	_		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBuV/m	dBuV/m	dB	Ant
1	4.377M	26.9	+0.1	+0.2	+9.2	-12.3	+0.0	24.1	29.5	-5.4	Paral
1 6		20.7	10.1	10.2	17.2	-12.3	10.0	27.1	27.5	-J. -	1 arai
)P										
^	4.377M	33.7	+0.1	+0.2	+9.2	-12.3	+0.0	30.9	29.5	+1.4	Paral
3	15.320M	26.3	+0.2	+0.2	+8.6	-12.3	+0.0	23.0	29.5	-6.5	Paral
4	6.732M	25.7	+0.1	+0.2	+9.2	-12.3	+0.0	22.8	29.5	-6.7	Paral
	0.732IVI	23.1	10.1	10.2	17.2	-12.3	10.0	22.0	27.5	-0.7	1 arai
5	3.588M	23.7	+0.1	+0.2	+9.3	-12.3	+0.0	21.0	29.5	-8.5	Paral
6	16.280M	22.4	+0.2	+0.2	+8.5	-12.3	+0.0	19.0	29.5	-10.5	Paral

Page 260 of 321 Report No.: FC06-025 Volume 4 of 9

7	7.499M	21.1	+0.1	+0.2	+9.1	-12.3	+0.0	18.2	29.5	-11.3	Paral
	QР										
٨	7.499M	29.3	+0.1	+0.2	+9.1	-12.3	+0.0	26.4	29.5	-3.1	Paral
9	23.338M	22.5	+0.2	+0.3	+7.3	-12.3	+0.0	18.0	29.5	-11.5	Paral
10	17.975M	19.9	+0.2	+0.3	+8.3	-12.3	+0.0	16.4	29.5	-13.1	Paral
11	11.370M	17.6	+0.1	+0.2	+8.9	-12.3	+0.0	14.5	29.5	-15.0	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 12:10:08 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 423 Parallel Overhead Test Site 3 Position 9 Medium Lines only. Notches off. MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:50:07
Equipment: BPL MV Gateway Sequence#: 420
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

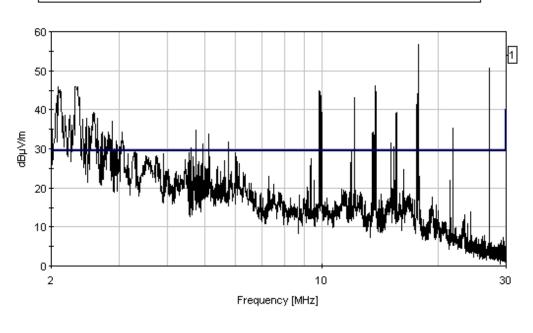
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBµV/m	dB	Ant
1	3.505M	26.5	+0.1	+0.2	+9.3	-12.3	+0.0	23.8	29.5	-5.7	Paral
)P										
٨	3.505M	32.0	+0.1	+0.2	+9.3	-12.3	+0.0	29.3	29.5	-0.2	Paral
3	6.279M	24.0	+0.1	+0.1	+9.2	-12.3	+0.0	21.1	29.5	-8.4	Paral
Ç	(P										
٨	6.279M	29.9	+0.1	+0.1	+9.2	-12.3	+0.0	27.0	29.5	-2.5	Paral
5	11.299M	23.4	+0.1	+0.2	+8.9	-12.3	+0.0	20.3	29.5	-9.2	Paral
6	16.714M	23.4	+0.2	+0.2	+8.4	-12.3	+0.0	19.9	29.5	-9.6	Paral

Page 262 of 321 Report No.: FC06-025 Volume 4 of 9

7	7.769M	21.9	+0.1	+0.2	+9.1	-12.3	+0.0	19.0	29.5	-10.5	Paral
8	14.849M	19.9	+0.2	+0.2	+8.6	-12.3	+0.0	16.6	29.5	-12.9	Paral
9	15.964M	19.9	+0.2	+0.2	+8.5	-12.3	+0.0	16.5	29.5	-13.0	Paral
10	12.729M	18.0	+0.2	+0.2	+8.8	-12.3	+0.0	14.9	29.5	-14.6	Paral
11	23.363M	17.4	+0.2	+0.3	+7.3	-12.3	+0.0	12.9	29.5	-16.6	Paral
12	20.624M	15.1	+0.2	+0.3	+7.9	-12.3	+0.0	11.2	29.5	-18.3	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 11:50:07 Corinex WO#: 84818
FCC 15:209 Test Distance: 10 Meters Sequence#: 420 Parallel
Overhead Test Site 3 Position 10 Medium Lines only. Notches off. MODE 1/2. Formal Power

------ Sweep Data ------ 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:58:34
Equipment: BPL MV Gateway Sequence#: 421
Manufacturer: Corinex Tested By: C. Nicklas
Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

			_
Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

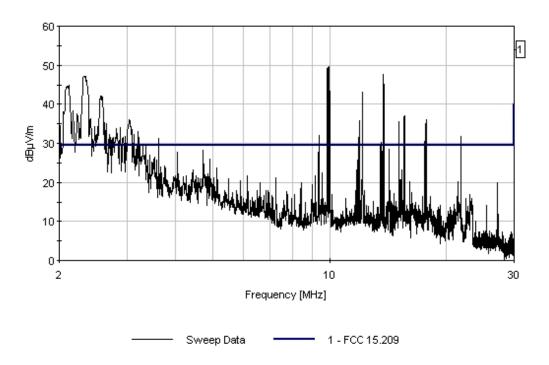
Support Devices:

Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measur	ement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	3.295M	26.2	+0.1	+0.1	+9.3	-12.3	+0.0	23.4	29.5	-6.1	Perpe
	QР										
٨	3.295M	33.5	+0.1	+0.1	+9.3	-12.3	+0.0	30.7	29.5	+1.2	Perpe
3	15.140M	20.8	+0.2	+0.2	+8.6	-12.3	+0.0	17.5	29.5	-12.0	Perpe
4	16.265M	20.2	+0.2	+0.2	+8.5	-12.3	+0.0	16.8	29.5	-12.7	Perpe
5	21.550M	20.1	+0.2	+0.3	+7.7	-12.3	+0.0	16.0	29.5	-13.5	Perpe
6	23.313M	19.1	+0.2	+0.3	+7.3	-12.3	+0.0	14.6	29.5	-14.9	Perpe
7	5.380M	17.2	+0.1	+0.1	+9.2	-12.3	+0.0	14.3	29.5	-15.2	Perpe
8	18.575M	16.2	+0.2	+0.3	+8.2	-12.3	+0.0	12.6	29.5	-16.9	Perpe

Page 264 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 11:58:34 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 421 Perpendicular
Overhead Test Site 3 Position 10 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 265 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:32:50
Equipment: BPL MV Gateway Sequence#: 418
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

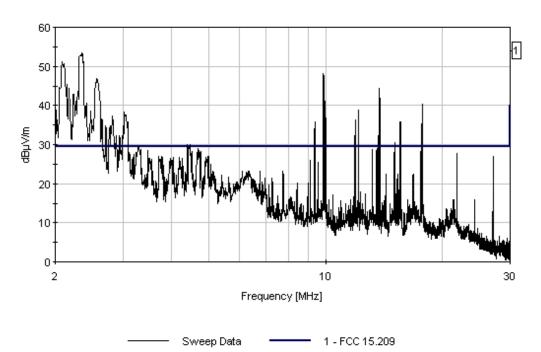
Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410	
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3	

Measur	ement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 10 Meter	rs.	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	6.405M	25.8	+0.1	+0.1	+9.2	-12.3	+0.0	22.9	29.5	-6.6	Perpe
2	4.080M	22.2	+0.1	+0.2	+9.2	-12.3	+0.0	19.4	29.5	-10.1	Perpe
3	8.170M	16.8	+0.1	+0.2	+9.1	-12.3	+0.0	13.9	29.5	-15.6	Perpe
4	21.400M	17.6	+0.2	+0.3	+7.7	-12.3	+0.0	13.4	29.5	-16.1	Perpe
5	12.355M	16.1	+0.2	+0.2	+8.8	-12.3	+0.0	13.0	29.5	-16.5	Perpe
6	16.552M	15.7	+0.2	+0.2	+8.4	-12.3	+0.0	12.2	29.5	-17.3	Perpe
7	23.438M	13.4	+0.2	+0.3	+7.2	-12.3	+0.0	8.8	29.5	-20.7	Perpe

Page 266 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 11:32:50 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 418 Perpendicular
Overhead Test Site 3 Position 11 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 267 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:40:58
Equipment: BPL MV Gateway Sequence#: 419
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	

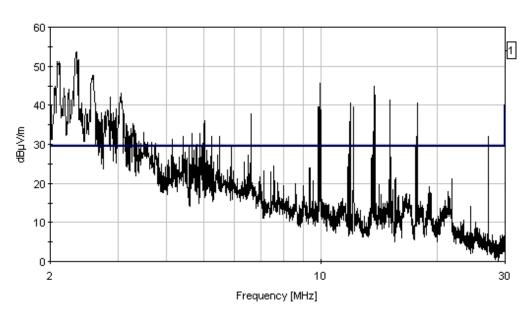
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
3.500M	28.8	+0.1	+0.2	+9.3	-12.3	+0.0	26.1	29.5	-3.4	Paral
P										
3.500M	34.6	+0.1	+0.2	+9.3	-12.3	+0.0	31.9	29.5	+2.4	Paral
5.436M	24.1	+0.1	+0.1	+9.2	-12.3	+0.0	21.2	29.5	-8.3	Paral
6.571M	21.3	+0.1	+0.2	+9.2	-12.3	+0.0	18.5	29.5	-11.0	Paral
19.161M	20.1	+0.2	+0.3	+8.2	-12.3	+0.0	16.5	29.5	-13.0	Paral
16.961M	19.9	+0.2	+0.2	+8.4	-12.3	+0.0	16.4	29.5	-13.1	Paral
	3.500M 3.500M 3.500M 5.436M 6.571M 19.161M	MHz dBμV 3.500M 28.8 3.500M 34.6 5.436M 24.1 6.571M 21.3 19.161M 20.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

Page 268 of 321 Report No.: FC06-025 Volume 4 of 9

7	21.638M	19.9	+0.2	+0.3	+7.7	-12.3	+0.0	15.8	29.5	-13.7	Paral
8	14.891M	18.9	+0.2	+0.2	+8.6	-12.3	+0.0	15.6	29.5	-13.9	Paral
9	16.481M	18.7	+0.2	+0.2	+8.4	-12.3	+0.0	15.2	29.5	-14.3	Paral
10	20.650M	18.4	+0.2	+0.3	+7.9	-12.3	+0.0	14.5	29.5	-15.0	Paral
11	11.506M	17.6	+0.1	+0.2	+8.9	-12.3	+0.0	14.4	29.5	-15.1	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 11:40:58 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 419 Parallel
Overhead Test Site 3 Position 11 Medium Lines only. Notches off. MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

north side. · Houston, TX ·

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:22:25
Equipment: BPL MV Gateway Sequence#: 416
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function	Manufacturer	Model #	S/N	
			D/1N	

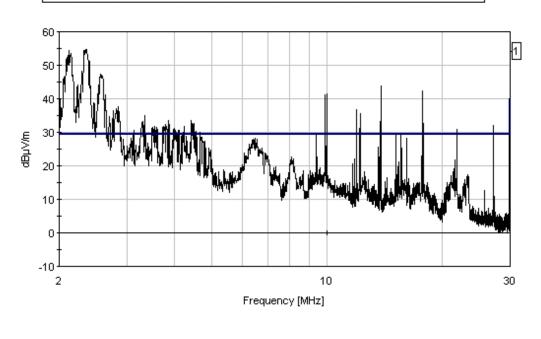
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	6.458M	27.9	+0.1	+0.1	+9.2	-12.3	+0.0	25.0	29.5	-4.5	Perpe
Q	P										_
^	6.458M	31.6	+0.1	+0.1	+9.2	-12.3	+0.0	28.7	29.5	-0.8	Perpe
											-
3	3.472M	27.6	+0.1	+0.2	+9.3	-12.3	+0.0	24.9	29.5	-4.6	Perpe
											-
4	8.137M	25.3	+0.1	+0.2	+9.1	-12.3	+0.0	22.4	29.5	-7.1	Perpe
											1
5	4.640M	21.6	+0.1	+0.1	+9.2	-12.3	+0.0	18.6	29.5	-10.9	Perpe
											1
6	4.766M	19.8	+0.1	+0.1	+9.2	-12.3	+0.0	16.9	29.5	-12.6	Perpe

Page 270 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.330M	21.1	+0.2	+0.3	+7.3	-12.3	+0.0	16.6	29.5	-12.9	Perpe
8	21.230M	19.3	+0.2	+0.3	+7.8	-12.3	+0.0	15.3	29.5	-14.2	Perpe
9	16.803M	17.6	+0.2	+0.2	+8.4	-12.3	+0.0	14.0	29.5	-15.5	Perpe
10	25.750M	12.6	+0.2	+0.3	+6.6	-12.3	+0.0	7.4	29.5	-22.1	Perpe
11	28.650M	11.3	+0.3	+0.3	+5.5	-12.3	+0.0	5.1	29.5	-24.4	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 11:22:25 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 416 Perpendicular Overhead Test Site 3 Position 12 Medium Lines only. Notches off, MODE 1/2. Formal Power

——— Sweep Data ———— 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:11:26:35Equipment:BPL MV GatewaySequence#:417Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 1	Corinex	CXF-MVA-M1	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none

Support Devices:

Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

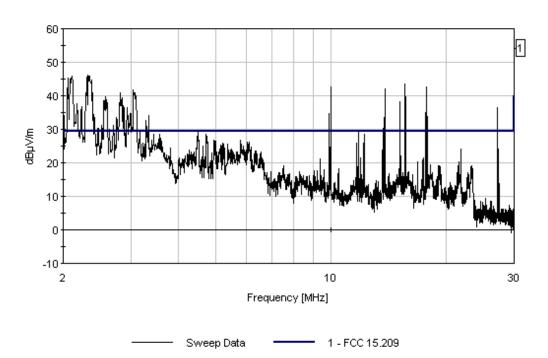
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE1/MODE2.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
L		MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBµV/m	dB	Ant
	1	5.553M	28.1	+0.1	+0.1	+9.2	-12.3	+0.0	25.2	29.5	-4.3	Paral
-	2	3.593M)P	26.6	+0.1	+0.2	+9.3	-12.3	+0.0	23.9	29.5	-5.6	Paral
	۸	3.593M	31.2	+0.1	+0.2	+9.3	-12.3	+0.0	28.5	29.5	-1.0	Paral
	4	6.537M	26.0	+0.1	+0.2	+9.2	-12.3	+0.0	23.2	29.5	-6.3	Paral
	5	23.100M	23.2	+0.2	+0.3	+7.3	-12.3	+0.0	18.7	29.5	-10.8	Paral
	6	19.130M	22.1	+0.2	+0.3	+8.2	-12.3	+0.0	18.5	29.5	-11.0	Paral

Page 272 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.140M	21.5	+0.2	+0.3	+8.3	-12.3	+0.0	18.0	29.5	-11.5	Paral
8	15.935M	21.1	+0.2	+0.2	+8.5	-12.3	+0.0	17.7	29.5	-11.8	Paral
9	15.410M	21.0	+0.2	+0.2	+8.6	-12.3	+0.0	17.7	29.5	-11.8	Paral
10	21.713M	20.1	+0.2	+0.3	+7.7	-12.3	+0.0	15.9	29.5	-13.6	Paral
11	11.572M	16.3	+0.1	+0.2	+8.9	-12.3	+0.0	13.2	29.5	-16.3	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 11:26:35 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 417 Parallel Overhead Test Site 3 Position 12 Medium Lines only. Notches off. MODE 1/2. Formal Power

Page 273 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:08:59:25Equipment:BPL MV GatewaySequence#:392Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

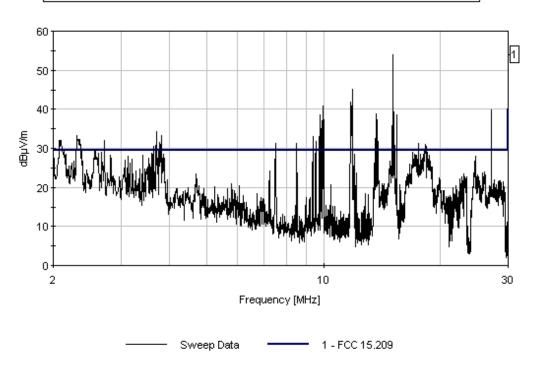
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 1: Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

Transaucer Ecgena.	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


					6						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	18.366M	29.5	+0.2	+0.3	+8.2	-12.3	+0.0	25.9	29.5	-3.6	Perpe
(QP										
٨	18.366M	32.2	+0.2	+0.3	+8.2	-12.3	+0.0	28.6	29.5	-0.9	Perpe
3	24.749M	30.5	+0.2	+0.3	+7.0	-12.3	+0.0	25.7	29.5	-3.8	Perpe
(QP										
٨	24.749M	33.4	+0.2	+0.3	+7.0	-12.3	+0.0	28.6	29.5	-0.9	Perpe
5	18.909M	28.5	+0.2	+0.3	+8.2	-12.3	+0.0	24.9	29.5	-4.6	Perpe
(QΡ										
٨	18.909M	30.7	+0.2	+0.3	+8.2	-12.3	+0.0	27.1	29.5	-2.4	Perpe
											•

Page 274 of 321 Report No.: FC06-025 Volume 4 of 9

7 O	14.849M P	27.1	+0.2	+0.2	+8.6	-12.3	+0.0	23.8	29.5	-5.7	Perpe
٨	14.849M	32.3	+0.2	+0.2	+8.6	-12.3	+0.0	29.0	29.5	-0.5	Perpe
9	28.593M	28.7	+0.3	+0.3	+5.5	-12.3	+0.0	22.4	29.5	-7.1	Perpe
10	23.064M	26.6	+0.2	+0.3	+7.3	-12.3	+0.0	22.1	29.5	-7.4	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 08:59:25 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 392 Perpendicular Overhead Test Site 3 Position 1 Medium Lines only. Notches off. MODE 2/3. Formal Power

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 09:03:30
Equipment: BPL MV Gateway Sequence#: 393
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

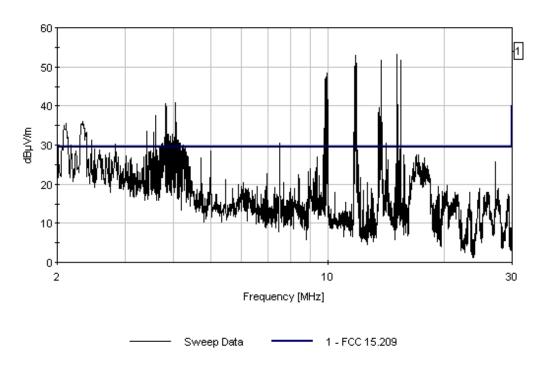
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 1: Testing using the Magnetic Loop Antenna from 2-30MHz. Test distance of antenna to pole is 10 meters. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

Transaucer Ecgena.	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	14.116M	27.7	+0.2	+0.2	+8.7	-12.3	+0.0	24.5	29.5	-5.0	Paral
	2	16.954M	28.0	+0.2	+0.2	+8.4	-12.3	+0.0	24.5	29.5	-5.0	Paral
	(QΡ										
	٨	16.954M	31.8	+0.2	+0.2	+8.4	-12.3	+0.0	28.3	29.5	-1.2	Paral
	4	18.293M	27.0	+0.2	+0.3	+8.3	-12.3	+0.0	23.5	29.5	-6.0	Paral
	5	20.255M	22.7	+0.2	+0.3	+8.0	-12.3	+0.0	18.9	29.5	-10.6	Paral
	6	24.698M	22.6	+0.2	+0.3	+7.0	-12.3	+0.0	17.8	29.5	-11.7	Paral

Page 276 of 321 Report No.: FC06-025 Volume 4 of 9

7	27.588M	22.4	+0.3	+0.3	+5.9	-12.3	+0.0	16.6	29.5	-12.9	Paral
8	29.263M	23.0	+0.3	+0.3	+5.3	-12.3	+0.0	16.6	29.5	-12.9	Paral
9	25.850M	21.0	+0.2	+0.3	+6.6	-12.3	+0.0	15.8	29.5	-13.7	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 09:03:30 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 393 Parallel Overhead Test Site 3 Position 1 Medium Lines only. Notches off. MODE 2/3. Formal Power

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 09:10:31
Equipment: BPL MV Gateway Sequence#: 394
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

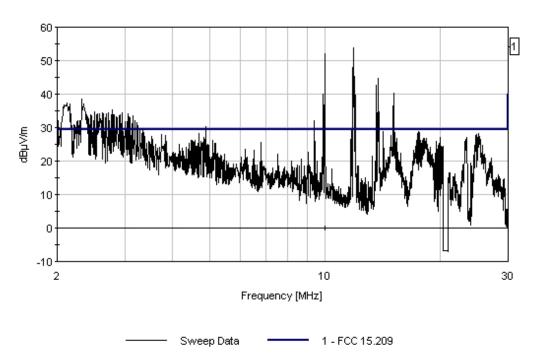
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


ш	P	D.1	Tr1	TO	TO	Tr.4	D'	O	C	14	D.1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	24.749M	30.5	+0.2	+0.3	+7.0	-12.3	+0.0	25.7	29.5	-3.8	Paral
	QP										
٨	24.749M	33.5	+0.2	+0.3	+7.0	-12.3	+0.0	28.7	29.5	-0.8	Paral
3	25.207M OP	30.0	+0.2	+0.3	+6.8	-12.3	+0.0	25.0	29.5	-4.5	Paral
^	25.207M	33.3	+0.2	+0.3	+6.8	-12.3	+0.0	28.3	29.5	-1.2	Paral
5	23.340M QP	28.8	+0.2	+0.3	+7.3	-12.3	+0.0	24.3	29.5	-5.2	Paral
^	23.340M	31.3	+0.2	+0.3	+7.3	-12.3	+0.0	26.8	29.5	-2.7	Paral

Page 278 of 321 Report No.: FC06-025 Volume 4 of 9

7 14.8	347M 27.0	+0.2	+0.2	+8.6	-12.3	+0.0	23.7	29.5	-5.8	Paral
QP										
^ 14.8	30.7 30.7	+0.2	+0.2	+8.6	-12.3	+0.0	27.4	29.5	-2.1	Paral
9 18.2	262M 26.7	+0.2	+0.3	+8.3	-12.3	+0.0	23.2	29.5	-6.3	Paral
QP										
^ 18.2	262M 31.7	+0.2	+0.3	+8.3	-12.3	+0.0	28.2	29.5	-1.3	Paral
11 17.1	83M 25.0	+0.2	+0.2	+8.4	-12.3	+0.0	21.5	29.5	-8.0	Paral
QP										
^ 17.1	83M 29.3	+0.2	+0.2	+8.4	-12.3	+0.0	25.8	29.5	-3.7	Paral
13 26.0	98M 25.8	+0.2	+0.3	+6.5	-12.3	+0.0	20.5	29.5	-9.0	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 09:10:31 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 394 Parallel Overhead Test Site 3 Position 2 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 279 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:09:15:44Equipment:BPL MV GatewaySequence#:395Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

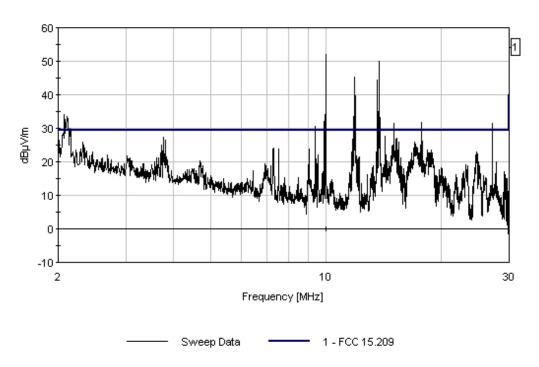
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 2: 10 meters out from medium voltage lines the BPL is connected 4.17 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


			8									
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant	
1	17.028M	28.7	+0.2	+0.2	+8.4	-12.3	+0.0	25.2	29.5	-4.3	Perpe	
2	24.780M	27.9	+0.2	+0.3	+6.9	-12.3	+0.0	23.0	29.5	-6.5	Perpe	
											_	
3	18.412M	26.3	+0.2	+0.3	+8.2	-12.3	+0.0	22.7	29.5	-6.8	Perpe	
4	14.920M	24.3	+0.2	+0.2	+8.6	-12.3	+0.0	21.0	29.5	-8.5	Perpe	
(QP										_	
٨	14.920M	29.4	+0.2	+0.2	+8.6	-12.3	+0.0	26.1	29.5	-3.4	Perpe	
											•	

Page 280 of 321 Report No.: FC06-025 Volume 4 of 9

6	23.459M	23.8	+0.2	+0.3	+7.2	-12.3	+0.0	19.2	29.5	-10.3	Perpe
7	28.412M	23.5	+0.3	+0.3	+5.6	-12.3	+0.0	17.4	29.5	-12.1	Perpe
8	27.238M	23.0	+0.2	+0.3	+6.0	-12.3	+0.0	17.2	29.5	-12.3	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 09:15:44 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 395 Perpendicular Overhead Test Site 3 Position 2 Medium Lines only. Notches off, MODE 2/3. Formal Power

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 09:18:55
Equipment: BPL MV Gateway Sequence#: 396
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

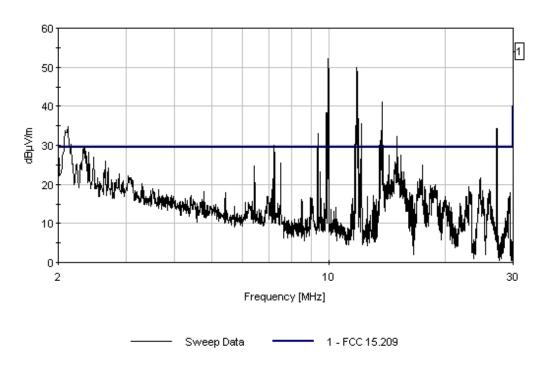
Support Devices:

Function	Manufacturer	Model #	S/N	
1 differion	Manaractarer	1110001 11	D/11	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410	
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3	

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.845M	26.4	+0.2	+0.2	+8.6	-12.3	+0.0	23.1	29.5	-6.4	Perpe
	QР										
^	14.845M	30.8	+0.2	+0.2	+8.6	-12.3	+0.0	27.5	29.5	-2.0	Perpe
3	24.691M	26.8	+0.2	+0.3	+7.0	-12.3	+0.0	22.0	29.5	-7.5	Perpe
4	17.268M	24.8	+0.2	+0.2	+8.4	-12.3	+0.0	21.3	29.5	-8.2	Perpe
5	18.917M	24.3	+0.2	+0.3	+8.2	-12.3	+0.0	20.7	29.5	-8.8	Perpe
6	23.093M	23.3	+0.2	+0.3	+7.3	-12.3	+0.0	18.8	29.5	-10.7	Perpe
7	26.057M	23.8	+0.2	+0.3	+6.5	-12.3	+0.0	18.5	29.5	-11.0	Perpe
8	29.382M	23.3	+0.3	+0.3	+5.2	-12.3	+0.0	16.8	29.5	-12.7	Perpe

Page 282 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 09:18:55 Corinex VVO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 396 Perpendicular Overhead Test Site 3 Position 3 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 283 of 321 Report No.: FC06-025

Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:09:26:20Equipment:BPL MV GatewaySequence#:397Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 3: 10 meters out from medium voltage lines the BPL is connected 8.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	ŧ	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
	1	24.687M	33.0	+0.2	+0.3	+7.0	-12.3	+0.0	28.2	29.5	-1.3	Paral
	Ç)P										
	٨	24.687M	36.2	+0.2	+0.3	+7.0	-12.3	+0.0	31.4	29.5	+1.9	Paral
	3	15.218M	30.4	+0.2	+0.2	+8.6	-12.3	+0.0	27.1	29.5	-2.4	Paral
	Ç)P										
	٨	15.218M	37.9	+0.2	+0.2	+8.6	-12.3	+0.0	34.6	29.5	+5.1	Paral
	5	23.078M	29.1	+0.2	+0.3	+7.3	-12.3	+0.0	24.6	29.5	-4.9	Paral
	Ç)P										
	٨	23.078M	32.1	+0.2	+0.3	+7.3	-12.3	+0.0	27.6	29.5	-1.9	Paral

Page 284 of 321 Report No.: FC06-025 Volume 4 of 9

7	26.719M	29.9	+0.2	+0.3	+6.2	-12.3	+0.0	24.3	29.5	-5.2	Paral
8	16.952M	27.4	+0.2	+0.2	+8.4	-12.3	+0.0	23.9	29.5	-5.6	Paral
)P										
٨	16.952M	30.9	+0.2	+0.2	+8.4	-12.3	+0.0	27.4	29.5	-2.1	Paral
10	18.408M	26.4	+0.2	+0.3	+8.2	-12.3	+0.0	22.8	29.5	-6.7	Paral
)P										
٨	18.408M	30.7	+0.2	+0.3	+8.2	-12.3	+0.0	27.0	29.5	-2.5	Paral
12	28.552M	28.3	+0.3	+0.3	+5.5	-12.3	+0.0	22.1	29.5	-7.4	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 09:26:20 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 397 Parallel Overhead Test Site 3 Position 3 Medium Lines only. Notches off. MODE 2/3. Formal Power

—— Sweep Data —— 1 - FCC 15.209

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 09:36:32
Equipment: BPL MV Gateway Sequence#: 398
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

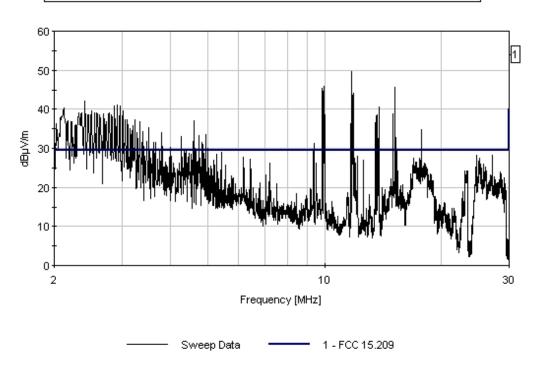
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	24.750M	30.4	+0.2	+0.3	+7.0	-12.3	+0.0	25.6	29.5	-3.9	Paral
(QΡ										
٨	24.750M	33.5	+0.2	+0.3	+7.0	-12.3	+0.0	28.7	29.5	-0.8	Paral
3	23.287M	29.5	+0.2	+0.3	+7.3	-12.3	+0.0	25.0	29.5	-4.5	Paral
4	28.436M	31.0	+0.3	+0.3	+5.6	-12.3	+0.0	24.9	29.5	-4.6	Paral
5	16.954M	27.5	+0.2	+0.2	+8.4	-12.3	+0.0	24.0	29.5	-5.5	Paral
	OP	27.5	. 0.2	. 3.2	. 3. 1	12.3	. 0.0		_>	5.5	2 4241
		21.4	.0.2	.0.2	+ 0 4	10.2	. 0. 0	27.0	20.5	1.6	Dana1
^	16.954M	31.4	+0.2	+0.2	+8.4	-12.3	+0.0	27.9	29.5	-1.6	Paral

Page 286 of 321 Report No.: FC06-025 Volume 4 of 9

7 18 OP	8.134M	25.7	+0.2	+0.3	+8.3	-12.3	+0.0	22.2	29.5	-7.3	Paral
^ 18	8.134M	29.2	+0.2	+0.3	+8.3	-12.3	+0.0	25.6	29.5	-3.9	Paral
9 14	4.848M	24.8	+0.2	+0.2	+8.6	-12.3	+0.0	21.5	29.5	-8.0	Paral
10 29	9.081M	27.6	+0.3	+0.3	+5.3	-12.3	+0.0	21.2	29.5	-8.3	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 09:36:32 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 398 Parallel Overhead Test Site 3 Position 4 Medium Lines only. Notches off. MODE 2/3. Formal Power

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:09:42:28Equipment:BPL MV GatewaySequence#:399Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

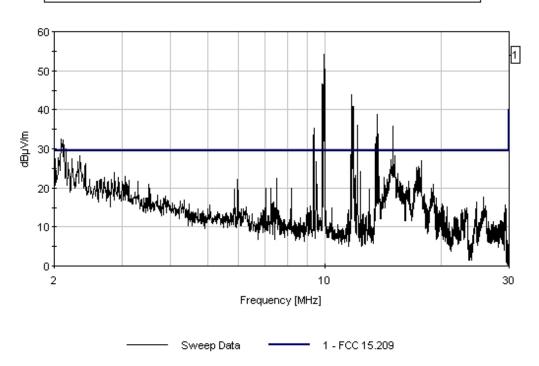
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 4: 10 meters out from medium voltage lines the BPL is connected 12.5 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	\overline{MHz}	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.849M	28.6	+0.2	+0.2	+8.6	-12.3	+0.0	25.3	29.5	-4.2	Perpe
QP									_		
٨	14.849M	32.4	+0.2	+0.2	+8.6	-12.3	+0.0	29.1	29.5	-0.4	Perpe
											•
3	17.643M	28.2	+0.2	+0.3	+8.3	-12.3	+0.0	24.7	29.5	-4.8	Perpe
											-
4	15.622M	25.7	+0.2	+0.2	+8.5	-12.3	+0.0	22.3	29.5	-7.2	Perpe
											•
5	19.163M	23.2	+0.2	+0.3	+8.2	-12.3	+0.0	19.6	29.5	-9.9	Perpe
											•
6	24.700M	21.5	+0.2	+0.3	+7.0	-12.3	+0.0	16.7	29.5	-12.8	Perpe
											•

Page 288 of 321 Report No.: FC06-025 Volume 4 of 9

7	25.800M	20.7	+0.2	+0.3	+6.6	-12.3	+0.0	15.5	29.5	-14.0	Perpe
8	23.338M	19.2	+0.2	+0.3	+7.3	-12.3	+0.0	14.7	29.5	-14.8	Perpe
9	29.425M	20.9	+0.3	+0.3	+5.2	-12.3	+0.0	14.4	29.5	-15.1	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 09:42:28 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 399 Perpendicular Overhead Test Site 3 Position 4 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 289 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 09:52:30
Equipment: BPL MV Gateway Sequence#: 400
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

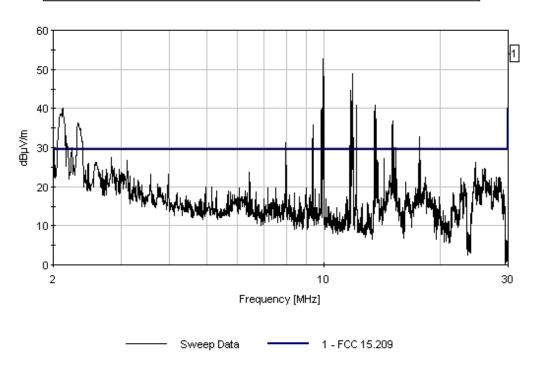
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	26.111M	30.2	+0.2	+0.3	+6.4	-12.3	+0.0	24.8	29.5	-4.7	Paral
2	24.751M QP	28.8	+0.2	+0.3	+7.0	-12.3	+0.0	24.0	29.5	-5.5	Paral
^	24.751M	31.9	+0.2	+0.3	+7.0	-12.3	+0.0	27.1	29.5	-2.4	Paral
4	28.600M	28.4	+0.3	+0.3	+5.5	-12.3	+0.0	22.2	29.5	-7.3	Paral
5	14.853M	25.0	+0.2	+0.2	+8.6	-12.3	+0.0	21.7	29.5	-7.8	Paral
6	23.096M	25.7	+0.2	+0.3	+7.3	-12.3	+0.0	21.2	29.5	-8.3	Paral

Page 290 of 321 Report No.: FC06-025 Volume 4 of 9

7	18.310M	24.5	+0.2	+0.3	+8.3	-12.3	+0.0	21.0	29.5	-8.5	Paral
8	16.564M	22.2	+0.2	+0.2	+8.4	-12.3	+0.0	18.7	29.5	-10.8	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 09:52:30 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 400 Parallel Overhead Test Site 3 Position 5 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 291 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 09:56:23
Equipment: BPL MV Gateway Sequence#: 401
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

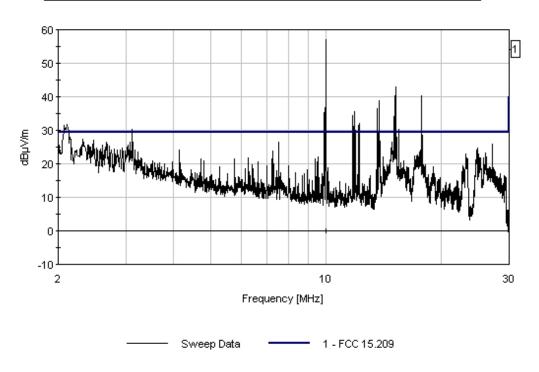
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 5: 10 meters out from medium voltage lines the BPL is connected 16.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	24.700M	28.9	+0.2	+0.3	+7.0	-12.3	+0.0	24.1	29.5	-5.4	Perpe
											_
2	14.849M	26.9	+0.2	+0.2	+8.6	-12.3	+0.0	23.6	29.5	-5.9	Perpe
(QΡ										_
٨	14.849M	30.8	+0.2	+0.2	+8.6	-12.3	+0.0	27.5	29.5	-2.0	Perpe
											_
4	17.244M	26.3	+0.2	+0.2	+8.4	-12.3	+0.0	22.8	29.5	-6.7	Perpe
											•
5	23.088M	26.9	+0.2	+0.3	+7.3	-12.3	+0.0	22.4	29.5	-7.1	Perpe
											•

Page 292 of 321 Report No.: FC06-025 Volume 4 of 9

6	26.063M	27.5	+0.2	+0.3	+6.5	-12.3	+0.0	22.2	29.5	-7.3	Perpe
7	27.688M	25.4	+0.3	+0.3	+5.8	-12.3	+0.0	19.5	29.5	-10.0	Perpe
8	29.375M	23.0	+0.3	+0.3	+5.2	-12.3	+0.0	16.5	29.5	-13.0	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 09:56:23 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 401 Perpendicular Overhead Test Site 3 Position 5 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 293 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:10:03:24Equipment:BPL MV GatewaySequence#:402Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufa	cturer Model #	S/N
-----------------	----------------	-----

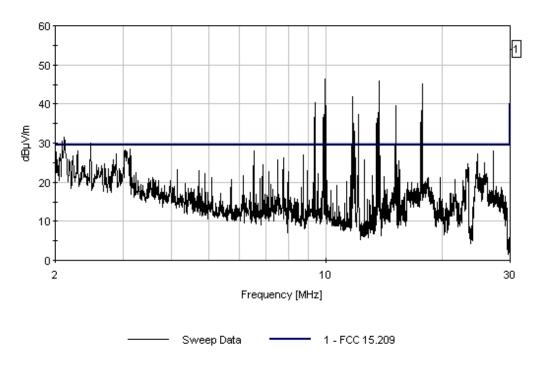
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	24.749M	29.4	+0.2	+0.3	+7.0	-12.3	+0.0	24.6	29.5	-4.9	Perpe
	QΡ										_
٨	24.749M	32.6	+0.2	+0.3	+7.0	-12.3	+0.0	27.8	29.5	-1.7	Perpe
											-
3	23.080M	28.5	+0.2	+0.3	+7.3	-12.3	+0.0	24.0	29.5	-5.5	Perpe
											•
4	15.440M	26.7	+0.2	+0.2	+8.5	-12.3	+0.0	23.2	29.5	-6.3	Perpe
											•
5	25.734M	28.3	+0.2	+0.3	+6.6	-12.3	+0.0	23.1	29.5	-6.4	Perpe
											•

Page 294 of 321 Report No.: FC06-025 Volume 4 of 9

6	18.420M	24.6	+0.2	+0.3	+8.2	-12.3	+0.0	21.0	29.5	-8.5	Perpe
7	16.280M	22.5	+0.2	+0.2	+8.5	-12.3	+0.0	19.1	29.5	-10.4	Perpe
8	27.978M	24.7	+0.3	+0.3	+5.7	-12.3	+0.0	18.7	29.5	-10.8	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 10:03:24 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 402 Perpendicular Overhead Test Site 3 Position 6 Medium Lines only. Notches off, MODE 2/3, Formal Power

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:07:09
Equipment: BPL MV Gateway Sequence#: 403
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

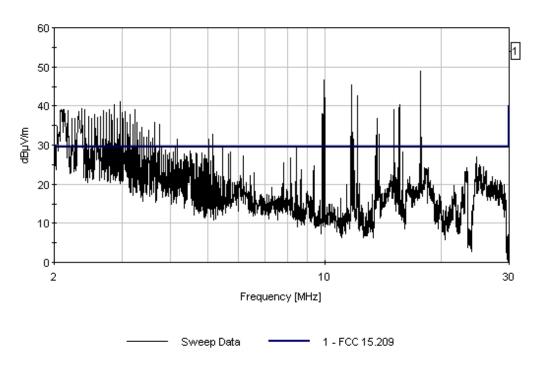
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 6: 10 meters out from medium voltage lines the BPL is connected 25.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	24.748M	29.4	+0.2	+0.3	+7.0	-12.3	+0.0	24.6	29.5	-4.9	Paral
	QP										
٨	24.748M	32.5	+0.2	+0.3	+7.0	-12.3	+0.0	27.7	29.5	-1.8	Paral
3	18.380M	28.2	+0.2	+0.3	+8.2	-12.3	+0.0	24.6	29.5	-4.9	Paral
4	23.188M	28.9	+0.2	+0.3	+7.3	-12.3	+0.0	24.4	29.5	-5.1	Paral
5	25.141M	29.2	+0.2	+0.3	+6.8	-12.3	+0.0	24.2	29.5	-5.3	Paral
6	16.580M	25.1	+0.2	+0.2	+8.4	-12.3	+0.0	21.6	29.5	-7.9	Paral

Page 296 of 321 Report No.: FC06-025 Volume 4 of 9

7	14.760M	24.9	+0.2	+0.2	+8.6	-12.3	+0.0	21.6	29.5	-7.9	Paral
8	27.584M	27.1	+0.3	+0.3	+5.9	-12.3	+0.0	21.3	29.5	-8.2	Paral
9	29.107M	24.6	+0.3	+0.3	+5.3	-12.3	+0.0	18.2	29.5	-11.3	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 10:07:09 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 403 Parallel Overhead Test Site 3 Position 6 Medium Lines only. Notches off, MODE 2/3, Formal Power

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:12:42
Equipment: BPL MV Gateway Sequence#: 404
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

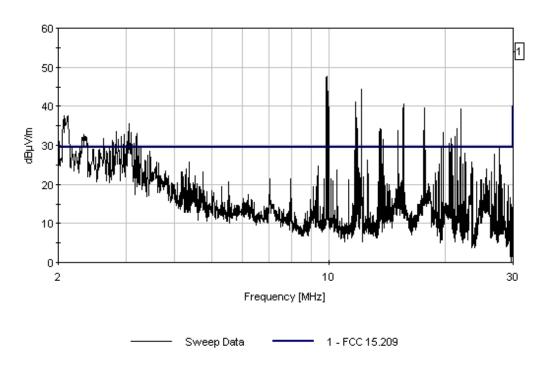
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.3 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	18.160M	22.8	+0.2	+0.3	+8.3	-12.3	+0.0	19.3	29.5	-10.2	Perpe
2	15.000M	22.3	+0.2	+0.2	+8.6	-12.3	+0.0	19.0	29.5	-10.5	Perpe
3	24.775M	23.5	+0.2	+0.3	+6.9	-12.3	+0.0	18.6	29.5	-10.9	Perpe
4	25.338M	22.9	+0.2	+0.3	+6.8	-12.3	+0.0	17.9	29.5	-11.6	Perpe
5	23.250M	21.0	+0.2	+0.3	+7.3	-12.3	+0.0	16.5	29.5	-13.0	Perpe
6	20.613M	18.5	+0.2	+0.3	+7.9	-12.3	+0.0	14.6	29.5	-14.9	Perpe

Page 298 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:12:42 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 404 Perpendicular Overhead Test Site 3 Position 7 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 299 of 321 Report No.: FC06-025

Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:16:38
Equipment: BPL MV Gateway Sequence#: 405
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

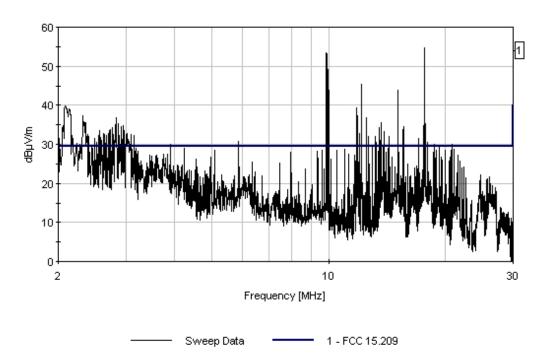
Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 7: 10 meters out from medium voltage lines the BPL is connected 33.3 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410	
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3	

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	24.700M	26.4	+0.2	+0.3	+7.0	-12.3	+0.0	21.6	29.5	-7.9	Paral
2	18.180M	24.4	+0.2	+0.3	+8.3	-12.3	+0.0	20.9	29.5	-8.6	Paral
3	14.840M	23.9	+0.2	+0.2	+8.6	-12.3	+0.0	20.6	29.5	-8.9	Paral
4	26.188M	25.1	+0.2	+0.3	+6.4	-12.3	+0.0	19.6	29.5	-9.9	Paral
5	21.400M	21.3	+0.2	+0.3	+7.7	-12.3	+0.0	17.2	29.5	-12.3	Paral
6	23.438M	18.7	+0.2	+0.3	+7.2	-12.3	+0.0	14.1	29.5	-15.4	Paral
7	28.450M	18.0	+0.3	+0.3	+5.6	-12.3	+0.0	11.9	29.5	-17.6	Paral

Page 300 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:16:38 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 405 Parallel Overhead Test Site 3 Position 7 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 301 of 321 Report No.: FC06-025

Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:19:55
Equipment: BPL MV Gateway Sequence#: 406
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

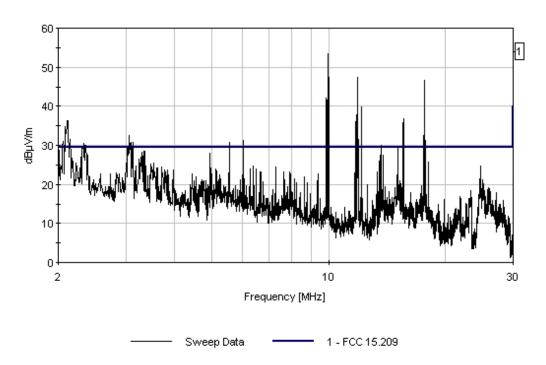
Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410	
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3	

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	24.775M	27.2	+0.2	+0.3	+6.9	-12.3	+0.0	22.3	29.5	-7.2	Perpe
2	26.175M	24.5	+0.2	+0.3	+6.4	-12.3	+0.0	19.1	29.5	-10.4	Perpe
3	15.335M	22.4	+0.2	+0.2	+8.6	-12.3	+0.0	19.1	29.5	-10.4	Perpe
4	23.100M	23.0	+0.2	+0.3	+7.3	-12.3	+0.0	18.5	29.5	-11.0	Perpe
5	21.850M	21.0	+0.2	+0.3	+7.6	-12.3	+0.0	16.8	29.5	-12.7	Perpe
6	17.330M	19.1	+0.2	+0.3	+8.3	-12.3	+0.0	15.6	29.5	-13.9	Perpe
7	27.688M	21.4	+0.3	+0.3	+5.8	-12.3	+0.0	15.5	29.5	-14.0	Perpe

Page 302 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:19:55 Corinex VVO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 406 Perpendicular Overhead Test Site 3 Position 8 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 303 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:10:23:13Equipment:BPL MV GatewaySequence#:407Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

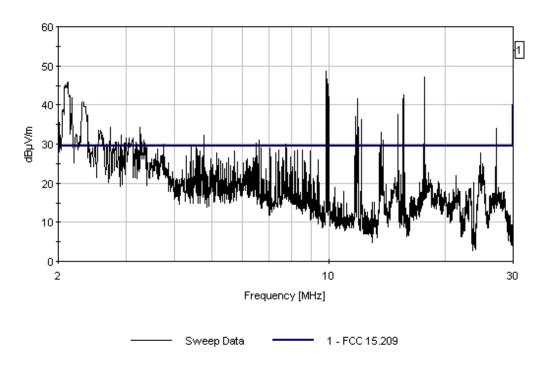
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 8: 10 meters out from medium voltage lines the BPL is connected 41.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

g	
T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	24.751M	29.5	+0.2	+0.3	+7.0	-12.3	+0.0	24.7	29.5	-4.8	Paral
(QP										
^	24.751M	32.6	+0.2	+0.3	+7.0	-12.3	+0.0	27.8	29.5	-1.7	Paral
3	25.138M	28.4	+0.2	+0.3	+6.8	-12.3	+0.0	23.4	29.5	-6.1	Paral
4	21.700M	26.3	+0.2	+0.3	+7.7	-12.3	+0.0	22.2	29.5	-7.3	Paral
5	14.840M	24.8	+0.2	+0.2	+8.6	-12.3	+0.0	21.5	29.5	-8.0	Paral
6	18.365M	24.9	+0.2	+0.3	+8.2	-12.3	+0.0	21.3	29.5	-8.2	Paral

Page 304 of 321 Report No.: FC06-025 Volume 4 of 9

7	23.200M	23.6	+0.2	+0.3	+7.3	-12.3	+0.0	19.1	29.5	-10.4	Paral
8	28.450M	23.8	+0.3	+0.3	+5.6	-12.3	+0.0	17.7	29.5	-11.8	Paral
9	26.225M	22.4	+0.2	+0.3	+6.4	-12.3	+0.0	17.0	29.5	-12.5	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 10:23:13 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 407 Parallel Overhead Test Site 3 Position 8 Medium Lines only. Notches off, MODE 2/3, Formal Power

Page 305 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:31:21
Equipment: BPL MV Gateway Sequence#: 408
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

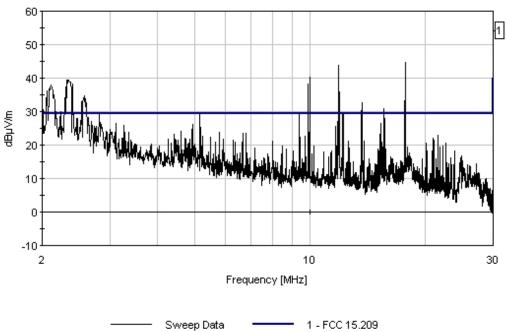
Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.00 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 10 Metei	rs	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	17.915M	22.0	+0.2	+0.3	+8.3	-12.3	+0.0	18.5	29.5	-11.0	Perpe
2	15.440M	21.8	+0.2	+0.2	+8.5	-12.3	+0.0	18.4	29.5	-11.1	Perpe
3	24.775M	21.3	+0.2	+0.3	+6.9	-12.3	+0.0	16.3	29.5	-13.2	Perpe
4	27.363M	18.5	+0.2	+0.3	+6.0	-12.3	+0.0	12.7	29.5	-16.8	Perpe
5	23.438M	16.6	+0.2	+0.3	+7.2	-12.3	+0.0	12.0	29.5	-17.5	Perpe
6	26.088M	17.1	+0.2	+0.3	+6.5	-12.3	+0.0	11.8	29.5	-17.7	Perpe
7	28.350M	15.4	+0.3	+0.3	+5.6	-12.3	+0.0	9.3	29.5	-20.2	Perpe

Page 306 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:31:21 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 408 Perpendicular Overhead Test Site 3 Position 9 Medium Lines only. Notches off, MODE 2/3. Formal Power

Page 307 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:33:55
Equipment: BPL MV Gateway Sequence#: 409
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

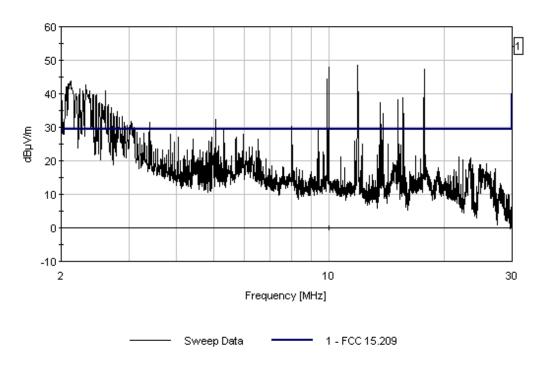
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 9: 10 meters out from medium voltage lines the BPL is connected 50.00 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	ŧ	Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
	1	23.463M	25.6	+0.2	+0.3	+7.2	-12.3	+0.0	20.9	29.5	-8.6	Paral
	2	14.900M	23.4	+0.2	+0.2	+8.6	-12.3	+0.0	20.1	29.5	-9.4	Paral
	3	24.763M	23.3	+0.2	+0.3	+7.0	-12.3	+0.0	18.5	29.5	-11.0	Paral
	4	17.345M	20.9	+0.2	+0.3	+8.3	-12.3	+0.0	17.4	29.5	-12.1	Paral
	5	19.280M	20.4	+0.2	+0.3	+8.2	-12.3	+0.0	16.8	29.5	-12.7	Paral

Page 308 of 321 Report No.: FC06-025 Volume 4 of 9

6	25.763M	21.7	+0.2	+0.3	+6.6	-12.3	+0.0	16.5	29.5	-13.0	Paral
7	27.900M	18.1	+0.3	+0.3	+5.8	-12.3	+0.0	12.2	29.5	-17.3	Paral
8	29.438M	16.0	+0.3	+0.3	+5.2	-12.3	+0.0	9.5	29.5	-20.0	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 10:33:55 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 409 Parallel Overhead Test Site 3 Position 9 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 309 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:38:16
Equipment: BPL MV Gateway Sequence#: 410
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

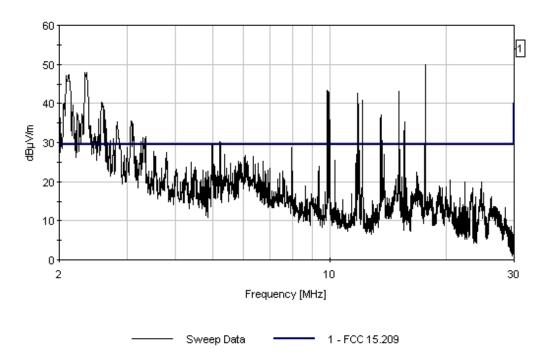
Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin.				Te	est Distance	e: 10 Metei	rs				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	14.990M	22.5	+0.2	+0.2	+8.6	-12.3	+0.0	19.2	29.5	-10.3	Paral
2	24.763M	23.8	+0.2	+0.3	+7.0	-12.3	+0.0	19.0	29.5	-10.5	Paral
3	19.250M	21.6	+0.2	+0.3	+8.2	-12.3	+0.0	18.0	29.5	-11.5	Paral
4	16.715M	21.5	+0.2	+0.2	+8.4	-12.3	+0.0	18.0	29.5	-11.5	Paral
5	23.350M	21.9	+0.2	+0.3	+7.3	-12.3	+0.0	17.4	29.5	-12.1	Paral
6	26.225M	21.3	+0.2	+0.3	+6.4	-12.3	+0.0	15.9	29.5	-13.6	Paral
7	28.300M	16.7	+0.3	+0.3	+5.6	-12.3	+0.0	10.6	29.5	-18.9	Paral

Page 310 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:38:16 Corinex WO#: 84818 FCC 15.209 Test Distance: 10 Meters Sequence#: 410 Parallel Overhead Test Site 3 Position 10 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 311 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #:84818Date:3/31/2006Test Type:Radiated ScanTime:10:42:35Equipment:BPL MV GatewaySequence#:411Manufacturer:CorinexTested By:C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

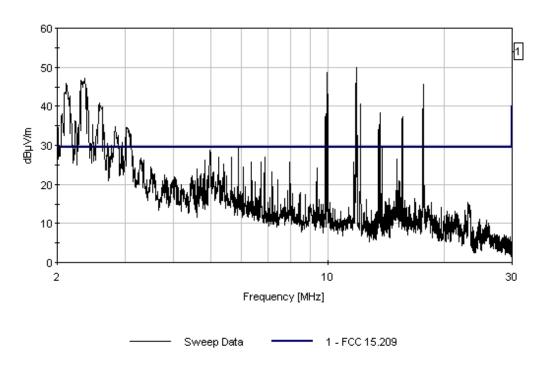
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 10: 10 meters out from medium voltage lines the BPL is connected 58.33 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3


Measurement Data: Reading listed by margin. Test Distance: 10 Meters

#	Freq MHz	Rdng dBuV	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
1	23.163M	19.5	+0.2	+0.3	+7.3	-12.3	+0.0	15.0	29.5	-14.5	Perpe
2	18.305M	18.2	+0.2	+0.3	+8.3	-12.3	+0.0	14.7	29.5	-14.8	Perpe
3	15.440M	17.2	+0.2	+0.2	+8.5	-12.3	+0.0	13.8	29.5	-15.7	Perpe
4	24.775M	15.2	+0.2	+0.3	+6.9	-12.3	+0.0	10.3	29.5	-19.2	Perpe
5	25.775M	15.4	+0.2	+0.3	+6.6	-12.3	+0.0	10.2	29.5	-19.3	Perpe
6	28.450M	13.8	+0.3	+0.3	+5.6	-12.3	+0.0	7.7	29.5	-21.8	Perpe

Page 312 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:42:35 Corinex WO#: 84818
FCC 15.209 Test Distance: 10 Meters Sequence#: 411 Perpendicular
Overhead Test Site 3 Position 10 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 313 of 321 Report No.: FC06-025

Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 10:51:25
Equipment: BPL MV Gateway Sequence#: 412
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

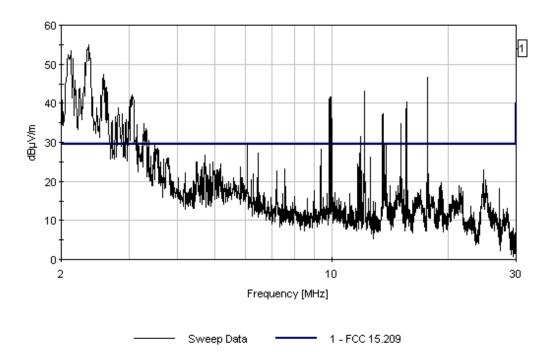
Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measur	ement Data:	Re	ading lis	ted by ma	ırgin.		Te	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	24.713M	26.0	+0.2	+0.3	+7.0	-12.3	+0.0	21.2	29.5	-8.3	Paral
2	19.070M	22.7	+0.2	+0.3	+8.2	-12.3	+0.0	19.1	29.5	-10.4	Paral
3	25.188M	23.6	+0.2	+0.3	+6.8	-12.3	+0.0	18.6	29.5	-10.9	Paral
4	14.990M	21.3	+0.2	+0.2	+8.6	-12.3	+0.0	18.0	29.5	-11.5	Paral
5	21.363M	21.9	+0.2	+0.3	+7.7	-12.3	+0.0	17.8	29.5	-11.7	Paral
6	16.730M	20.9	+0.2	+0.2	+8.4	-12.3	+0.0	17.4	29.5	-12.1	Paral
7	28.300M	18.6	+0.3	+0.3	+5.6	-12.3	+0.0	12.5	29.5	-17.0	Paral
8	26.663M	17.2	+0.2	+0.3	+6.2	-12.3	+0.0	11.6	29.5	-17.9	Paral

Page 314 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 10:51:25 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 412 Parallel Overhead Test Site 3 Position 11 Medium Lines only, Notches off, MODE 2/3, Formal Power

Page 315 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:00:07
Equipment: BPL MV Gateway Sequence#: 413
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway

S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

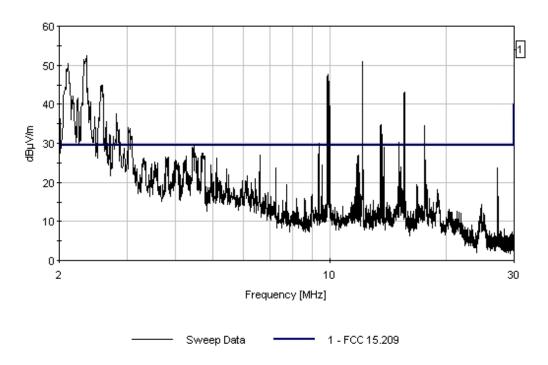
Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 11: 10 meters out from medium voltage lines the BPL is connected 66.67 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:


T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measur	ement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	15.335M	19.8	+0.2	+0.2	+8.6	-12.3	+0.0	16.5	29.5	-13.0	Perpe
2	19.055M	19.1	+0.2	+0.3	+8.2	-12.3	+0.0	15.5	29.5	-14.0	Perpe
3	24.711M	19.1	+0.2	+0.3	+7.0	-12.3	+0.0	14.3	29.5	-15.2	Perpe
4	21.847M	17.0	+0.2	+0.3	+7.6	-12.3	+0.0	12.8	29.5	-16.7	Perpe
5	25.063M	16.7	+0.2	+0.3	+6.9	-12.3	+0.0	11.8	29.5	-17.7	Perpe
6	27.713M	13.1	+0.3	+0.3	+5.8	-12.3	+0.0	7.2	29.5	-22.3	Perpe
7	29.363M	11.3	+0.3	+0.3	+5.2	-12.3	+0.0	4.8	29.5	-24.7	Perpe

Page 316 of 321 Report No.: FC06-025 Volume 4 of 9

Overhead Test Site #3 Date: 3/31/2006 Time: 11:00:07 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 413 Perpendicular Overhead Test Site 3 Position 11 Medium Lines only. Notches off. MODE 2/3. Formal Power

Page 317 of 321 Report No.: FC06-025 Volume 4 of 9

north side. • Houston, TX •

Customer: Corinex Specification: FCC 15.209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:08:12
Equipment: BPL MV Gateway Sequence#: 414
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

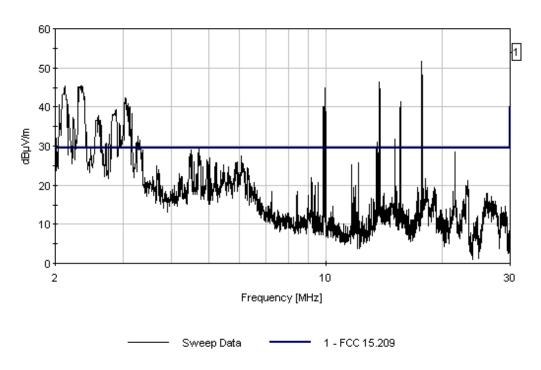
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	23.175M	25.2	+0.2	+0.3	+7.3	-12.3	+0.0	20.7	29.5	-8.8	Paral
2	19.235M	23.7	+0.2	+0.3	+8.2	-12.3	+0.0	20.1	29.5	-9.4	Paral
3	18.140M	23.0	+0.2	+0.3	+8.3	-12.3	+0.0	19.5	29.5	-10.0	Paral
4	26.238M	23.0	+0.2	+0.3	+6.4	-12.3	+0.0	17.6	29.5	-11.9	Paral
5	21.400M	21.6	+0.2	+0.3	+7.7	-12.3	+0.0	17.5	29.5	-12.0	Paral
6	14.825M	20.2	+0.2	+0.2	+8.6	-12.3	+0.0	16.9	29.5	-12.6	Paral

Page 318 of 321 Report No.: FC06-025 Volume 4 of 9

7	27.513M	22.4	+0.3	+0.3	+5.9	-12.3	+0.0	16.6	29.5	-12.9	Paral
8	16.280M	18.0	+0.2	+0.2	+8.5	-12.3	+0.0	14.6	29.5	-14.9	Paral
9	28.888M	19.6	+0.3	+0.3	+5.4	-12.3	+0.0	13.3	29.5	-16.2	Paral

Overhead Test Site #3 Date: 3/31/2006 Time: 11:08:12 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 414 Parallel Overhead Test Site 3 Position 12 Medium Lines only. Notches off. MODE 2/3. Formal Power

north side. • Houston, TX •

Customer: Corinex
Specification: FCC 15,209

Work Order #: 84818 Date: 3/31/2006
Test Type: Radiated Scan Time: 11:12:31
Equipment: BPL MV Gateway Sequence#: 415
Manufacturer: Corinex Tested By: C. Nicklas

Model: MV Gateway S/N: ENG2

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
BPL MV Gateway*	Corinex	MV Gateway	ENG2
Overhead Coupler	Arteche	Overcap-S-17	0517347/78
Combiner	Corinex	CXP-MVA-COM	none
Medium Voltage Powerline Filter Mode 2	Corinex	CXF-MVA-M2	none
Medium Voltage Powerline Filter Mode 3	Corinex	CXF-MVA-M3	none

Support Devices:

Function	Manufacturer	Model #	S/N	

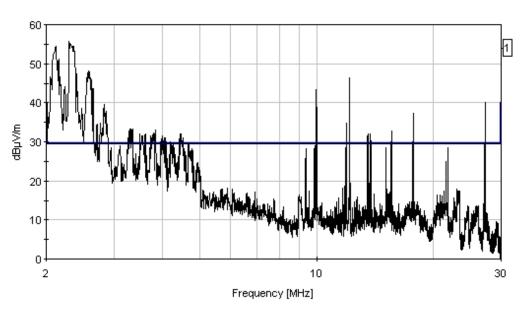
Test Conditions / Notes:

Formal Overhead Test Site #3 on Bennington Street west of Cochran Street at 4th pole from Cochran Street on the north side. Testing using the Mag Loop Antenna from 2-30MHz. Medium voltage wires are 11.95 meters above the street. Test Position 12: 10 meters out from medium voltage lines the BPL is connected 75.0 meters laterally down the power line. Slant Distance is 14.8 meters. Slant Distance correction factor is -40*LOG(30/14.8) = -12.3dB at 1 meter test height. Unit is setup for maximum transmission over the medium voltage lines at the maximum power profile for Overhead lines. Notch Filters are off line. Tested from 2-30MHz. Unit in MODE2/MODE3.

Transducer Legend:

T1=PO 05440 RG214/U Cable	T2=Cable 2410
T3=Mag Loop - AN 00432- 9kHz-30M	T4=Slant Distance S3

Measurement Data: Reading listed by margin. Test Distance: 10 Meters


	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		\overline{MHz}	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	23.463M	22.1	+0.2	+0.3	+7.2	-12.3	+0.0	17.4	29.5	-12.1	Perpe
	2	21.375M	21.1	+0.2	+0.3	+7.7	-12.3	+0.0	17.0	29.5	-12.5	Perpe
•	3	17.225M	18.9	+0.2	+0.2	+8.4	-12.3	+0.0	15.4	29.5	-14.1	Perpe
	4	15.320M	18.6	+0.2	+0.2	+8.6	-12.3	+0.0	15.3	29.5	-14.2	Perpe
	5	18.410M	18.5	+0.2	+0.3	+8.2	-12.3	+0.0	14.9	29.5	-14.6	Perpe
	6	16.250M	18.2	+0.2	+0.2	+8.5	-12.3	+0.0	14.8	29.5	-14.7	Perpe

Page 320 of 321 Report No.: FC06-025 Volume 4 of 9

7	26.100M	19.5	+0.2	+0.3	+6.5	-12.3	+0.0	14.2	29.5	-15.3	Perpe
8	24.563M	18.3	+0.2	+0.3	+7.0	-12.3	+0.0	13.5	29.5	-16.0	Perpe
9	27.450M	15.8	+0.3	+0.3	+5.9	-12.3	+0.0	10.0	29.5	-19.5	Perpe
10	29.388M	15.7	+0.3	+0.3	+5.2	-12.3	+0.0	9.2	29.5	-20.3	Perpe

Overhead Test Site #3 Date: 3/31/2006 Time: 11:12:31 Corinex WO#: 84818 FCC 15:209 Test Distance: 10 Meters Sequence#: 415 Perpendicular Overhead Test Site 3 Position 12 Medium Lines only, Notches off, MODE 2/3, Formal Power

——— Sweep Data ———— 1 - FCC 15.209