

FCC RF Test Report

APPLICANT	:	Huawei Technologies Co., Ltd.
EQUIPMENT	:	Smart Phone
BRAND NAME	:	Honor
MODEL NAME	:	YAL-L41
FCC ID	:	QISYAL-L41
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter

The product was received on May 10, 2019 and testing was completed on May 25, 2019. We, Sporton International (ShenZhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc., the test report shall not be reproduced except in full.

Derreck Chen

Reviewed by: Derreck Chen / Supervisor

File Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

TABLE	OF CONTENTS	2
REVISI	ON HISTORY	3
SUMM/	ARY OF THE TEST RESULT	4
1. GEN	ERAL DESCRIPTION	5
1.1	Applicant	5
1.2	Product Feature of Equipment Under Test	5
1.3	Product Specification of Equipment Under Test	6
1.4	Modification of EUT	6
1.5	Testing Location	7
1.6	Applicable Standards	
2. TEST	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
2.1	Descriptions of Test Mode	
2.2	Connection Diagram of Test System	
2.3	Table for Supporting Units	
2.4	EUT Operation Test Setup	
3. TES1	T RESULTS	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	
3.6	Antenna Requirements	
	OF MEASURING EQUIPMENT	
5. UNC	ERTAINTY OF EVALUATION	21
APPEN	IDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPEN	IDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B1.	Test Result of 20dB Spectrum Bandwidth	
B2.	Test Result of Frequency Stability	
APPEN	IDIX C. TEST RESULTS OF RADIATED TEST ITEMS	
C1.	Test Result of Field Strength of Fundamental Emissions	

- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	May 27, 2019

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 7.27 dB at 0.17MHz
	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 61.79 dBµV/m at 13.56 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 9.28 dB at 61.04MHz
3.6	15.203	Antenna Requirements	Complies	-

1. General Description

1.1 Applicant

Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment Smart Phone				
Brand Name	Honor			
Model Name	YAL-L41			
FCC ID	QISYAL-L41			
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/ DC-HSDPA/HSPA+(16QAM uplink is not supported)/LTE WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80/VHT160 Bluetooth BR/EDR/LE NFC and GNSS			
IMEI Code	Conducted: 869436040038461/869436040042968 Conduction: 869436040038560/869436040043065 Radiation: 867285040040809/867285040042052			
HW Version HL2YALEM04				
SW Version	9.1.0.119(C900E119R1P2)			

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- **2.** There are two types of EUT sample 1 and sample 2, the differences between two samples is for Battery which is different suppliers. We only choose sample 1 to perform full tests.

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	13.553 ~ 13.567MHz			
Channel Number	1			
20dBW	2.46 kHz			
99%OBW	2.09 kHz			
Antenna Type	FPC Antenna			
Type of Modulation	ASK			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Site	Sporton International (Shenzhen) Inc.					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No.		FCC Designation No.	FCC Test Firm Registration No.		
	TH01-SZ	CO01-SZ				
Test Engineer	Jensen Wu	LiuDaLin				
Temperature	22~24 ℃	22~25 ℃	CN1256	421272		
Relative Humidity	53~55%	50~55%				

Test Site	Sporton International (Shenzhen) Inc.			
Test Site Location	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse, Nanshan Shenzhen, 518055 People's Republic of China TEL: +86-755-33202398			
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
	03CH01-SZ		421272	
Test Engineer	Reid Huang			
Temperature	23~25 ℃	CN1256		
Relative Humidity	48~49%			

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

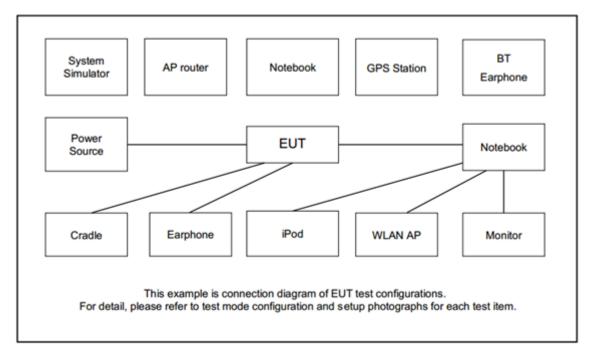
- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.


Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			

The EUT pre-scanned in four NFC type, A, B, F. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

	Test Cases					
AC Conducted Emission	Mode 1: PCS1900 Idle + Bluetooth Link + WLAN (2.4G) Link + USB Cable 1(Charging from Adapter 1) + NFC TX + SIM 1					
Remark: 1. For Radiated Test Cases, The tests were performance with Adapter 1 and USB Cable 1						

2.2 Connection Diagram of Test System

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8m
2.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
3.	NFC Card	N/A	N/A	N/A	N/A	N/A
4.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded, 1.8m
5.	Bluetooth Earphone	Samsung	EO-MG900	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

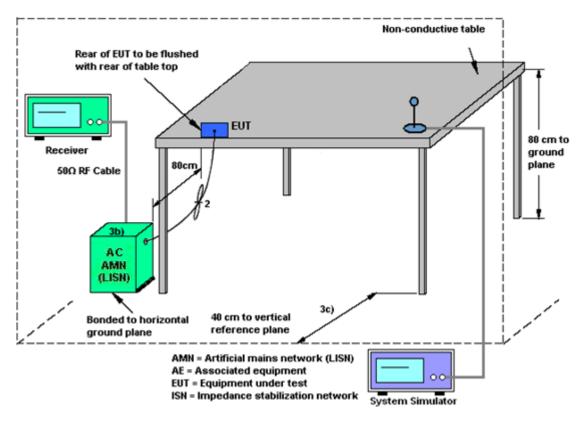
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

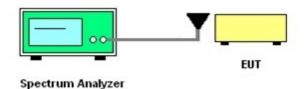
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

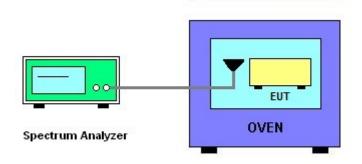
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

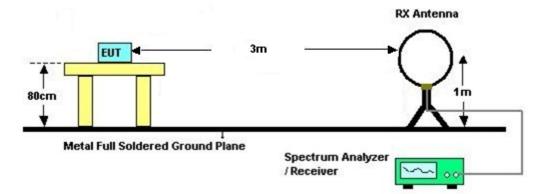
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225							
Description	Compliance with th	Compliance with the spectrum mask is tested with RBW set to 9kHz.						
	Field Strength	Field Strength	Field Strength	Field Strength				
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m				
1.705~13.110	30	29.5	48.58	69.5				
13.110~13.410	106	40.5	59.58	80.5				
13.410~13.553	334	50.5	69.58	90.5				
13.553~13.567	15848	84.0	103.08	124.0				
13.567~13.710	334	50.5	69.58	90.5				
13.710~14.010	106	40.5	59.58	80.5				
14.010~30.000	30	29.5	48.58	69.5				

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

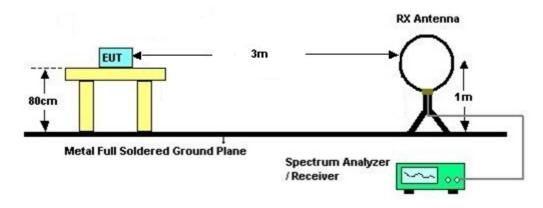
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

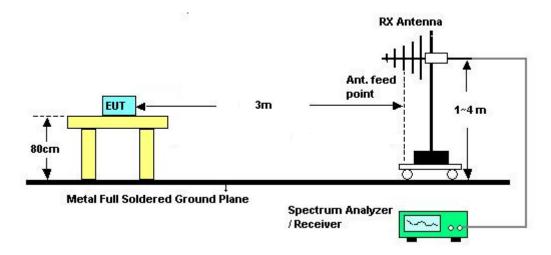
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Serial No. Characteristics		Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 18, 2019	May 21, 2019	Apr. 17, 2020	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangroup	LP-150U	H201408180 3	-40~+150°C	Dec. 22, 2018	May 21, 2019	Dec. 21, 2019	Conducted (TH01-SZ)
EMI Test Receiver&SA	Agilent	N9038A	MY52260185	20Hz~26.5GHz	Aug. 30, 2018	May 21, 2019	Aug. 29, 2019	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May. 29, 2018	May 21, 2019	May. 29, 2020	Radiation (03CH01-KS)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Jun. 05, 2018	May 21, 2019	Jun. 04, 2019	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 19, 2019	May 21, 2019	Apr. 18, 2020	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	6160100019 85	N/A	NCR	May 21, 2019	NCR	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	May 21, 2019	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	May 21, 2019	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 23, 2018	May 18, 2019~ May 25, 2019	Dec. 22, 2019	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Oct. 18, 2018	May 18, 2019~ May 25, 2019	Oct. 17, 2019	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Dec. 23, 2018	May 18, 2019~ May 25, 2019	Dec. 22, 2019	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	6160200008 91	100Vac~250Vac	Jul. 18, 2018	May 18, 2019~ May 25, 2019	Jul. 17, 2019	Conduction (CO01-SZ)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

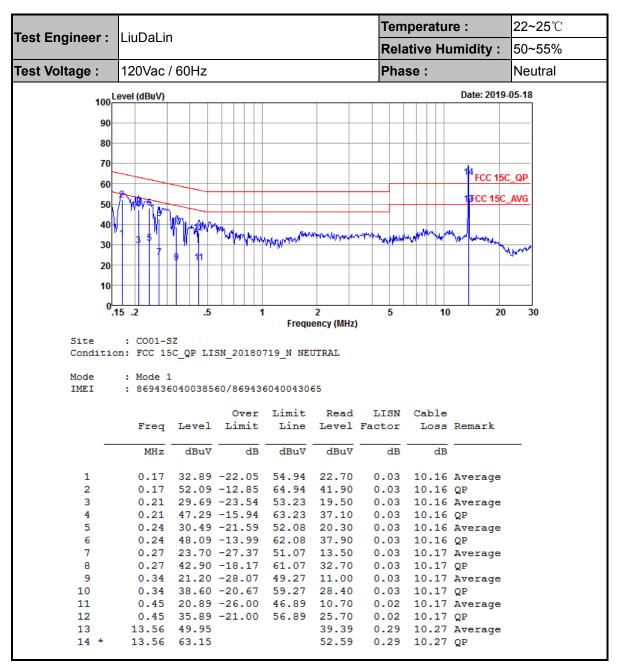
Measuring Uncertainty for a Level of Confidence	2.6 dB
of 95% (U = 2Uc(y))	2:0 dB

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.8 dB
of 95% (U = 2Uc(y))	2.0 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

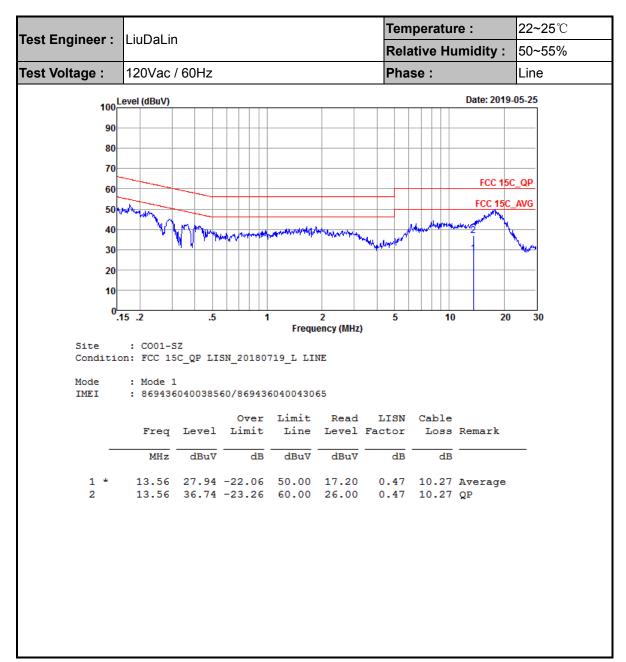
Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	4.0 UB


Appendix A. Test Results of Conducted Emission Test

Teet Engineer.						Terr	nperatu	22~25° ℃	
Test Engineer :	LiuDaLii	LiuDaLin					ative Hu	umidity :	50~55%
Test Voltage :	120Vac	/ 60Hz				Pha	se :		Line
400	Level (dBuV)							Date: 2019	-05-18
100									
90									
80									
70					+			1.	
60	2							¹⁴ FCC 15	C_QP
	Allan							FCC 15C	AVG
50		1/2-10						1300 130	
40	۳۲ L T	IN MARY MA	month	and and the second	-	When			
	"	1		Add. 4.	' " "	The	my why	h I	
30	3 1							W AND DE	weiter
20									
10					+ +				
0	45 0								
0 Site	.15 .2 : CO01-S	.5	1		2 ency (MHz)	5	10	20	30
Site Conditi Mode	: CO01-S on: FCC 15 : Mode 1	Z C_QP LI	SN_20180	Frequ	ency (MHz) NE	-	10	0 20	30
Site Conditi	: CO01-S on: FCC 15 : Mode 1	Z C_QP LI	SN_20180' 60/869430	Frequ 719_L LI1 604004300	ency (MHz) NE 65)		0 20	30
Site Conditi Mode	: CO01-5 on: FCC 15 : Mode 1 : 869436	Z C_QP LI 0400385	SN_20180 60/869430 Over	Frequ 719_L LI1 604004300 Limit	ency (MHz) NE 65 Read	LISN	Cable		30
Site Conditi Mode	: CO01-5 on: FCC 15 : Mode 1 : 869436	Z C_QP LI 0400385	SN_20180' 60/869430	Frequ 719_L LI1 604004300 Limit	ency (MHz) NE 65 Read)	Cable	Remark	30
Site Conditi Mode	: CO01-5 on: FCC 15 : Mode 1 : 869436	Z C_QP LI 0400385	SN_20180 60/869430 Over	Frequ 719_L LI1 604004300 Limit	ency (MHz) NE 65 Read	LISN	Cable		30
Site Conditi Mode	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq 	C_QP LI 0400385 Level dBuV	SN_20180 60/869430 Over Limit	Frequ 719_L LI 604004300 Limit Line dBuV	NE 65 Read Level dBuV	LISN Factor dB	Cable Loss ——————————————————————————————————		30
Site Conditi Mode IMEI	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17	2 50400385 Level dBuV 41.19	SN_20180 60/869430 Over Limit dB	Frequ 719_L LI1 604004300 Limit Line dBuV 54.86	NE Read Level dBuV 31.00	LISN Factor dB 0.03	Cable Loss dB 10.16	Remark 	30
Site Conditi Mode IMEI 	: C001-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17	2 C_QP LI 0400385 Level dBuV 41.19 57.59	SN_20180 60/869430 Over Limit dB -13.67	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86	ency (MHz NE 65 Read Level dBuV 31.00 47.40	LISN Factor dB 0.03 0.03	Cable Loss dB 10.16 10.16	Remark 	30
Site Conditi Mode IMEI 	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21	2 C_QP LI 0400385 Level dBuV 41.19 57.59 24.19 46.69	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40	ency (MHz NE 65 Read Level dBuV 31.00 47.40 14.00 36.50	LISN Factor dB 0.03 0.03 0.03 0.03 0.03	Cable Loss dB 10.16 10.16 10.16 10.16	Remark Average QP Average QP	30
Site Conditi Mode IMEI 1 2 3 4 5	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23	2 30400385 Level dBuV 41.19 57.59 24.19 46.69 35.79	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35	Read Level dBuV 31.00 47.40 14.00 36.50 25.60	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03	Cable Loss dB 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average	30
Site Conditi Mode IMEI 1 2 3 4 5 6	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23 0.23	2 30400385 Level dBuV 41.19 57.59 24.19 46.69 35.79 51.39	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 62.35	Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP	30
Site Conditi Mode IMEI 	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23 0.23 0.27	2 30400385 Level dBuV 41.19 57.59 24.19 46.69 35.79 51.39 21.10	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 62.35 51.25	ency (MHz) NE 65 Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.16 10.17	Remark Average QP Average QP Average QP Average	30
Site Conditi Mode IMEI 	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23 0.23 0.27 0.27	2 30400385 Level dBuV 41.19 57.59 24.19 46.69 35.79 51.39 21.10 44.00	SN_20180' 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15 -17.25	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 62.35 51.25 61.25	ency (MHz) NE 65 Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90 33.80	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.16 10.17 10.17	Remark Average QP Average QP Average QP Average QP	30
Site Conditi Mode IMEI 	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.17 0.21 0.21 0.23 0.23 0.23 0.27 0.27 0.34	2 3 3 3 3 3 3 3 3 4 4 3 5 7 5 3 5 4 3 5 7 9 3 5 7 9 3 5 7 9 3 5 7 9 3 5 7 9 3 5 7 9 3 5 7 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 5 7 5 9 2 4 1 9 2 4 1 9 2 4 1 9 2 4 2 0 9 2 4 1 9 2 4 1 9 2 4 1 9 2 1 2 1 9 2 1 0 2 2 8 0 2 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 8 7	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15 -17.25 -26.42	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 51.25 51.25 61.25 49.22	Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90 33.80 12.60	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.16 10.17 10.17	Average QP Average QP Average QP Average QP Average QP Average	30
Site Conditi Mode IMEI 1 2 3 4 5 6 7 8 9 10	: CO01-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23 0.23 0.23 0.27 0.27 0.34 0.34	2 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15 -17.25 -26.42 -17.52	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 51.25 61.25 49.22 59.22	ency (MHz) NE 65 Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90 33.80 12.60 31.50	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.16 10.17 10.17 10.17	Average QP Average QP Average QP Average QP Average QP Average QP	30
Site Conditi Mode IMEI 1 2 3 4 5 6 7 8 9 10 11	: CO01-S on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23 0.23 0.23 0.27 0.27 0.34 0.34 0.40	Z GQP LI GO400385 Level dBuV 41.19 57.59 24.19 46.69 35.79 51.39 21.10 44.00 22.80 41.70 28.30	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15 -17.25 -26.42 -17.52 -19.56	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 51.25 61.25 51.25 61.25 49.22 59.22 47.86	ency (MHz) NE 65 Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90 33.80 12.60 31.50 18.10	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.17 10.17 10.17 10.17	Average QP Average QP Average QP Average QP Average QP Average QP	30
Site Conditi Mode IMEI 1 2 3 4 5 6 7 7 8 9 10 11 12	: CO01-S on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.17 0.21 0.21 0.23 0.23 0.23 0.23 0.27 0.27 0.34 0.34 0.40 0.40	Z GQP LI G0400385 Level dBuV 41.19 57.59 24.19 46.69 35.79 51.39 21.10 44.00 22.80 41.70 28.30 42.30	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15 -17.25 -26.42 -17.52	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 51.25 61.25 51.25 61.25 49.22 59.22 47.86	ency (MHz) NE 65 Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90 33.80 12.60 31.50 18.10 32.10	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.17 10.17 10.17 10.17 10.17	Average QP Average QP Average QP Average QP Average QP Average QP	30
Site Conditi Mode IMEI 1 2 3 4 5 6 7 8 9 10 11	: C001-5 on: FCC 15 : Mode 1 : 869436 Freq MHz 0.17 0.21 0.21 0.23 0.23 0.27 0.27 0.27 0.34 0.34 0.40 0.40 13.56	Z GQP LI GO400385 Level dBuV 41.19 57.59 24.19 46.69 35.79 51.39 21.10 44.00 22.80 41.70 28.30	SN_20180 60/869430 Over Limit dB -13.67 -7.27 -29.21 -16.71 -16.56 -10.96 -30.15 -17.25 -26.42 -17.52 -19.56	Frequ 719_L LII 604004300 Limit Line dBuV 54.86 64.86 53.40 63.40 52.35 51.25 61.25 51.25 61.25 49.22 59.22 47.86	ency (MHz) NE 65 Read Level dBuV 31.00 47.40 14.00 36.50 25.60 41.20 10.90 33.80 12.60 31.50 18.10	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.16 10.16 10.16 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.17	Average QP Average QP Average QP Average QP Average QP Average QP Average QP	30

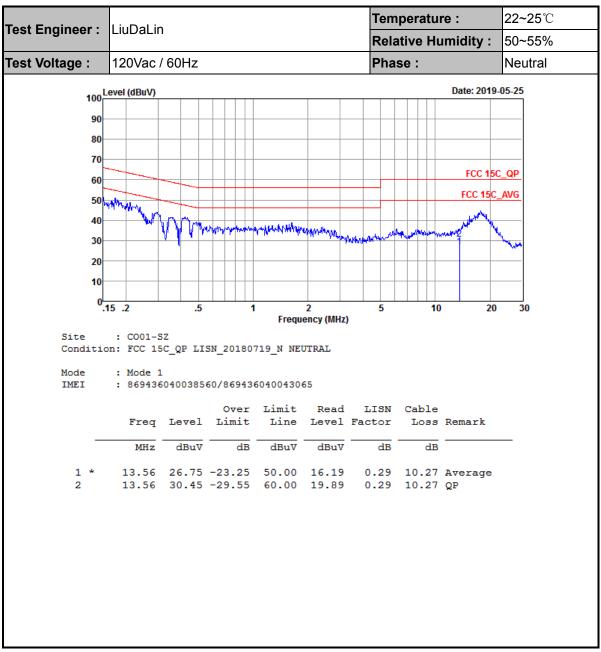
(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.



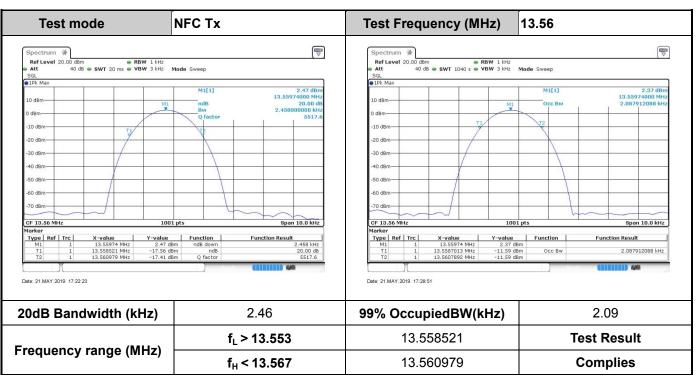
(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.



(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

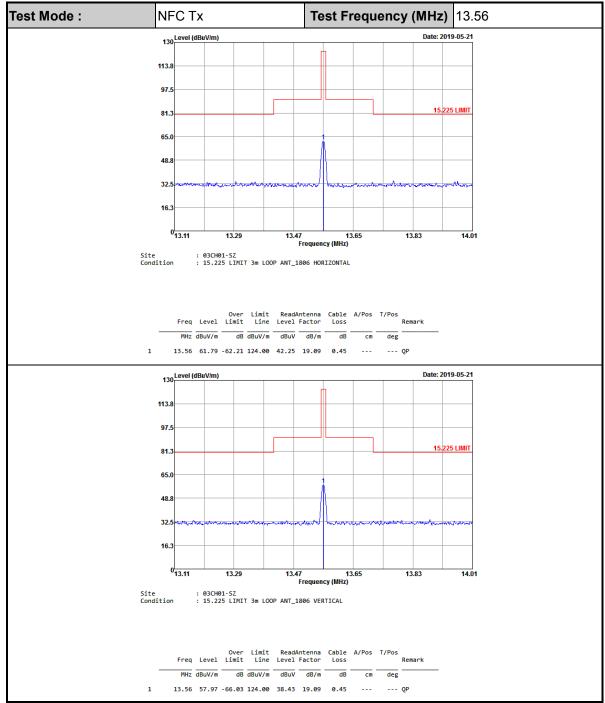


(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth


Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B3. Voltage vs. Fre	quency Stability	Temperature vs. Fr	equency Stability
Voltage (Vdc)	Measurement Frequency (MHz)	Temperature (℃)	Measurement Frequency (MHz)
3.6	13.559740	-20	13.559730
3.8	13.559731	-10	13.559730
4.4	13.559740	0	13.559730
-	-	10	13.559730
-	-	20	13.559730
-	-	30	13.559730
-	-	40	13.559730
-	-	50	13.559730
Max.Deviation (MHz)	-0.000269	Max.Deviation (MHz)	-0.000270
Max.Deviation (ppm)	-19.8746	Max.Deviation (ppm)	-19.9115
Limit	FS < ±100 ppm	Limit	FS < ±100 ppm
Test Result	PASS	Test Result	PASS

B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

Test Mode :	le: NFC Tx			Polariz	Polarization : Horiz			rizontal			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark		
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)			
0.00925	60.71	-67.57	128.28	41.56	19.1	0.05	-	-	Average		
0.0768	55.06	-54.84	109.9	35.7	19.3	0.06	-	-	Average		
0.11508	49.91	-56.47	106.38	30.24	19.59	0.08	-	-	Average		
0.13233	42.4	-62.77	105.17	22.73	19.59	0.08	-	-	Average		
0.1537	48.96	-54.91	103.87	29.29	19.57	0.1	-	-	Average		
2.162	37	-33	70	17.3	19.51	0.19	-	-	QP		
10.92	35.86	-34.14	70	16.01	19.45	0.4	-	-	QP		
24.091	34.9	-35.1	70	14.72	19.6	0.58	-	-	QP		
25.355	35.62	-34.38	70	15.42	19.6	0.6	-	-	QP		

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode :	est Mode : NFC Tx			Polariz	zation :	Ver	/ertical			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark	
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)		
0.00976	56.05	-71.76	127.81	36.9	19.1	0.05	-	-	Average	
0.07677	55.48	-54.42	109.9	36.12	19.3	0.06	-	-	Average	
0.1149	50.38	-56.02	106.4	30.71	19.59	0.08	-	-	Average	
0.14256	40.18	-64.34	104.52	20.51	19.59	0.08	-	-	Average	
0.1574	47.25	-56.41	103.66	27.58	19.57	0.1	-	-	Average	
2.348	35.92	-34.08	70	16.21	19.52	0.19	-	-	QP	
9.096	35.85	-34.15	70	15.94	19.54	0.37	-	-	QP	
24.433	35.28	-34.72	70	15.1	19.6	0.58	-	-	QP	
25.515	34.9	-35.1	70	14.7	19.6	0.6	-	-	QP	

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits ($dB\mu V$) + distance extrapolation factor.

Test Mode : NFC Tx				P	olarization	Horizontal				
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m		(dBµV/m)	(dBµV)		(dB)	(dB)	(cm)	(deg)	
30	24.72	-15.28	40	30.66	24.4	0.96	31.3	-	-	Peak
61.04	20.31	-19.69	40	37.99	12.54	1.38	31.6	-	-	Peak
191.99	22.09	-21.41	43.5	35.49	15.44	2.47	31.31	-	-	Peak
505.3	27.92	-18.08	46	31.67	23.45	4.01	31.21	-	-	Peak
800.18	30.99	-15.01	46	31.04	26.2	5.05	31.3	166	278	Peak
967.99	31.41	-22.59	54	30.01	27.11	5.55	31.26	-	-	Peak

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode :		NFC Tx			Polarization :		Vertical			
Frequency	Leve		Limit	Read	Antenna	Cable	Preamp		Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV	/m)(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
40.67	26.6	1 -13.39	40	38.73	18.19	1.14	31.45	-	-	Peak
61.04	30.7	2 -9.28	40	48.4	12.54	1.38	31.6	158	288	Peak
103.72	23.3	8 -20.12	43.5	36.21	16.95	1.81	31.59	-	-	Peak
191.99	23.1	6 -20.34	43.5	36.56	15.44	2.47	31.31	-	-	Peak
638.19	30.5	8 -15.42	46	32.88	24.65	4.5	31.45	-	-	Peak
975.75	31.5	6 -22.44	54	30.06	27.18	5.57	31.25	-	-	Peak

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor= Level.