Dipole Internal Calibration Record NO.: | Asset No. : | E-431 | Model No. : | D1900MHzV2 | Cal. Dat | te: | 2015/9/29 | |--------------------|----------------------|--------------|------------|-------------|--------|-----------| | Equipment : | ENA Network Analyzer | Serial No. : | 5d179 | Next Cal. [| Date : | 2018/9/29 | | Environmental cond | dition: | Temp : | 23.3 °C | R.H. : | | 56% | | | | | | | | | ### Standard List | 1 | IFFF Std 1528-2013 | IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013 | |---|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | IEC 62209-2 | Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010 | | 3 | KDB865664 | SAR Measurement Requirements for 100 MHz to 6 GHz | #### **Equipment Information** | Equipment : | Manufacturer : | Model No. : | Serial No. : | Cal.Organization: | Certificate No. : | Cal. Date : | |-------------|----------------|-------------|--------------|-------------------|-------------------|-----------------| | ENA Network | Agilent | E5071C | MY46102965 | NA | NA | Mar. 27. 2016 | | Analyzer | Agilent | E307 TC | W1140102903 | INA | INA | IVIAI. 21, 2010 | #### Calibration Value: #### For Head Tissue | Frequency | Item | Original Cal. Result | Verified on 2016/7/28 | Deviation | Result | Annex | |-----------|--------------------------------------------------|----------------------|-----------------------|-----------|--------|-------| | | Impedance, transformed to feed point(Ω) | 51.5Ω+3.1jΩ | 47.5Ω-1.1jΩ | <5Ω | Pass | | | | Return Loss(dB) | -29.4 | -31.5 | -7.1% | Pass | | #### For Body Tissue | Frequency | Item | Original Cal. Result | Verified on 2016/8/12 | Deviation | | | |-----------|--------------------------------------|----------------------|-----------------------|-----------|------|--| | 1900MHz | Impedance, transformed to feed point | 48.3Ω+4.3jΩ | 46.27Ω+6.2jΩ | <5Ω | Pass | | | | Return Loss(dB) | -26.6 | -27.09 | -1.8% | Pass | | ### Impedance Test- Head ### Return Loss-Head Impedance Test- Body Return Loss-Body FM-xxx-xx Ver.1.0 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BTL-CN (Auden)** Accreditation No.: SCS 0108 Certificate No: D2450V2-919_Sep15 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 919 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 28, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Jeton Kastrati Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 28, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-919_Sep15 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-919_Sep15 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.2 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.2 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.02 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $55.5 \Omega + 3.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.4 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $51.0 \Omega + 4.7 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 26.5 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 19, 2012 | ## **DASY5 Validation Report for Head TSL** Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.67, 7.67, 7.67); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Date: 28.09.2015 Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Certificate No: D2450V2-919_Sep15 Page 5 of 8 ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 28.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.53, 7.53, 7.53); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.9 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dBW/kg ## Impedance Measurement Plot for Body TSL #### **Dipole Internal Calibration Record** NO.: D2450MHzV2 E-434 Model No.: Cal. Date: ENA Network Analyzer Serial No.: 919 Next Cal. Date : Equipment: Environmental condition: Temp: 23.2°C R.H.: Standard List IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton Rate(SAR) in 1 IEEE Std 1528-2013 the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013 Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close 2 IEC 62209-2 proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010 SAR Measurement Requirements for 100 MHz to 6 GHz 3 KDB865664 **Equipment Information** Manufacturer: Model No. : Serial No. : Cal.Organization: Certificate No. : Equipment: **ENA Network** MY46102965 Agilent E5071C NA NA Analyzer Calibration Value: For Head Tissue Verified on 2016/8/12 Original Cal. Result Frequency Deviation Result Impedance, transformed to 54.28Ω+3.56jΩ $55.5\Omega + 3.2j\Omega$ <5Ω Pass 2450MHz feed point Return Loss(dB) -24.4 -23.65 3.1% Pass For Body Tissue Frequency Item Original Cal. Result Verified on 2016/8/12 Deviation Impedance, transformed to 51Ω+4.7jΩ 46.41Ω+1.94jΩ <5Ω Pass 2450MHz feed point -26.5 -27.91 -5.3% Pass Return Loss(dB) Impedance Test- Head Return Loss-Head #### Return Loss-Body 2015/9/28 2018/9/28 58% Cal. Date: Mar. 27, 2016 Annex From NO. : E_YYMMDD ; E=Dipole NO. ,YYMMDD=Year/Month/Date。 FM-xxx-xx Ver.1.0 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BTL-CN (Auden)** Certificate No: D2600V2-1067_Sep15 Accreditation No.: SCS 0108 ## **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1067 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 28, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Nama | Function | Signature | Name Function Signated by: Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Issued: September 28, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1067_Sep15 Approved by: ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 2.04 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.8 ± 6 % | 2.19 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.02 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.5 Ω - 7.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.6 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 44.3 Ω - 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.6 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) 1.154 ns | Electrical Delay (one direction) | 1.154 ns | |-------------------------------------------|----------------------------------|----------| |-------------------------------------------|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | | | |-----------------|---------------|--|--| | Manufactured on | July 17, 2013 | | | ## **DASY5 Validation Report for Head TSL** Date: 28.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1067 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.4, 7.4, 7.4); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 17.08.2015 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.8 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 24.9 W/kg 0 dB = 24.9 W/kg = 13.96 dBW/kg Certificate No: D2600V2-1067_Sep15 Page 5 of 8 ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 28.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1067 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ S/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.52, 7.52, 7.52); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 17.08.2015 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.2 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg ## Impedance Measurement Plot for Body TSL ## **Dipole Internal Calibration Record** NO.: | Asset No. : | E-435 | Model No. : | D2600MHzV2 | Cal. Date : | | 2015/9/28 | |-------------------|----------------------|--------------|------------|-----------------|--|-----------| | Equipment: | ENA Network Analyzer | Serial No. : | 1067 | Next Cal. Date: | | 2018/9/28 | | Environmental cor | ndition: | Temp: | 23.4°C | R.H. : | | 62% | #### Standard List | 1 | 1 IEEE Std 1528-2013 IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton R the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013 | | | |---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | 2 | IEC 62209-2 | Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010 | | | 3 | KDB865664 | SAR Measurement Requirements for 100 MHz to 6 GHz | | #### **Equipment Information** | Equipment information | | | | | | | |-------------------------|----------------|-------------|--------------|-------------------|-------------------|---------------| | Equipment : | Manufacturer: | Model No. : | Serial No. : | Cal.Organization: | Certificate No. : | Cal. Date : | | ENA Network
Analyzer | Agilent | E5071C | MY46102965 | NA | NA | Mar. 27, 2016 | | Originak Cal. Report | | | | | | | | Equipment : | Manufacturer : | Model No. : | Serial No. : | Cal.Organization: | Certificate No. : | Cal. Date : | | Network Analyzer | NΛ | NΙΛ | NΙΔ | NA | NΙΛ | NΙΛ | #### Calibration Value: #### For Head Tissue | Frequency | Item | Originak Cal. Result | Verified on 2016/7/26 | Deviation | Result | Annex | |-----------|--|----------------------|-----------------------|-----------|--------|-------| | | Impedance, transformed to feed point(Ω) | 48.5Ω-7.2jΩ | 51.8Ω-8.5jΩ | <5Ω | Pass | | | | Return Loss(dB) | -22.6 | -21.5 | 4.9% | Pass | | | | | | | | | | ### For Body Tissue | Frequency | Item | Originak Cal. Result | Verified on 2016/7/26 | Deviation | | | |-----------|--------------------------------------|----------------------|-----------------------|-----------|------|--| | | Impedance, transformed to feed point | 44.3Ω-5.4jΩ | 47Ω-6.7jΩ | <5Ω | Pass | | | | Return Loss(dB) | -21.6 | -22.2 | -2.8% | Pass | | | 2600MHz | feed point | , | . , | - | | | SAR System Uncertainty: %, (95% CONFIDENCE LEVEL, Expanded uncertainty K=2) Note: #### Impedance Test- Head ### Impedance Test- Body Return Loss-Body From NO. : E_YYMMDD ; E=Dipole NO. ,YYMMDD=Year/Month/Date。 FM-xxx-xx Ver.1.0