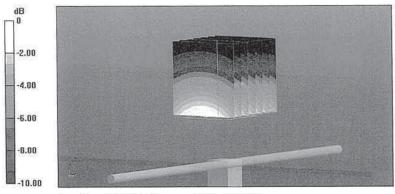
DASY5 Validation Report for Head TSL

Date: 24.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d126


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.92 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

Impedance Measurement Plot for Head TSL

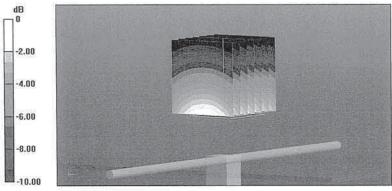
							<u> </u>	\square	J: 8	35.00	00000 N			9.536 C
					Ć	ł	XAX			35.00	102.15 30000 M		19.	.8659 C 313 mL 102.89 1
(Ch1:St	Ch 1 Avg = art 635.000		-		\searrow		E	SI				Stop	1.03500 GH
5.0		dB \$11						>	1: 8	135.d(00000 N	Hz	-34	.283 dE
5.01 0.01		dB \$11						>	1 8	135.00	N 0000C	/Hz	-34	.283 dE
5.0(0.0) -5.0 -10.) -) ; 0 -	dB \$11			/			>	1: 8	135.00	N 00000	/Hz	-34	.283 dE
5.0(5.0) 5.0 -10.) -) - 0 - 00 -	dB S11						>	1: 8	135.00	10000 N	/Hz	-34	.283 dE
5.0(-5.0 -10, -15, -20,	0 - 0 - 00 - 00 -	dB S11					7	>	1: 8	135.d(N 0000 N	/Hz	-34	.283 dE
5.0(-5.0 -10. -15. -20.	0 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	dB S11						> 	1: 8	:35.d0	N 0000 N		-34	.283 dE
10.0 5.0 -5.0 -10. -15. -20. -25. -30.	0	dB S11						~		35.00	JOODO N	/Hz	-34	.283 dE
5.00 0.00 -5.0 -10, -15, -20, -25, -30, -35, -40	0 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	dB S11	20 MH2					~		35.00				1.03500 GH

DASY5 Validation Report for Body TSL

Date: 23.07.2018

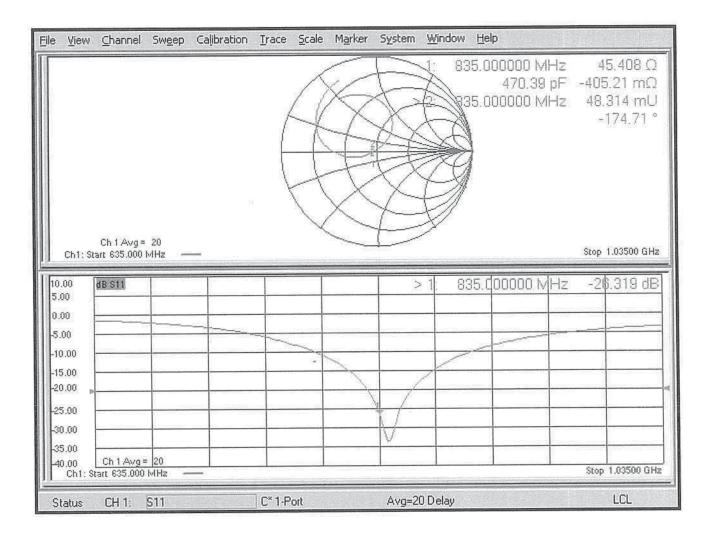
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d126


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.39 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Huawei-SZ (Auden) Certificate No: D1750V2-1123_Jul17

Dbject	D1750V2 - SN:1	102	
ojeci	D1750V2 - 5N.1	120	
alibration procedure(s)	QA CAL-05.v9		
	Calibration proce	dure for dipole validation kits abo	ove 700 MHz
alibration date:	July 27, 2017		
		ional standards, which realize the physical un	
he measurements and the unce	intainties with confidence p	probability are given on the following pages an	id are part of the certificate.
I colibrations have been condu	ated in the strend laborate		
ill calibrations have been condu	cted in the closed laborato	ry facility: environment temperature $(22 \pm 3)^{\circ}$	C and humidity < 70%.
Calibration Equipment used (M&	TE critical (or calibration)		
valibilation Equipment used (Mo	re chicarior calibration)		
rimary Standards		Cal Date (Certificate No.)	Scheduled Calibration
	ID #	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
ower meter NRP		04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91	SN: 104778	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-10 In house check: Oct-10
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-10 In house check: Oct-10 In house check: Oct-10
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Cype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Cype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 2X3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Cype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 2X3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 2X3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

- Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage
- C Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	9.13 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.83 W/kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 0.8 jΩ	
Return Loss	- 40.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω - 1.0 jΩ
Return Loss	- 29.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.220 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

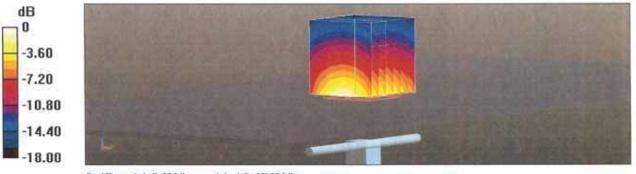
Manufactured by	SPEAG	
Manufactured on	June 03, 2014	

DASY5 Validation Report for Head TSL

Date: 21.07.2017

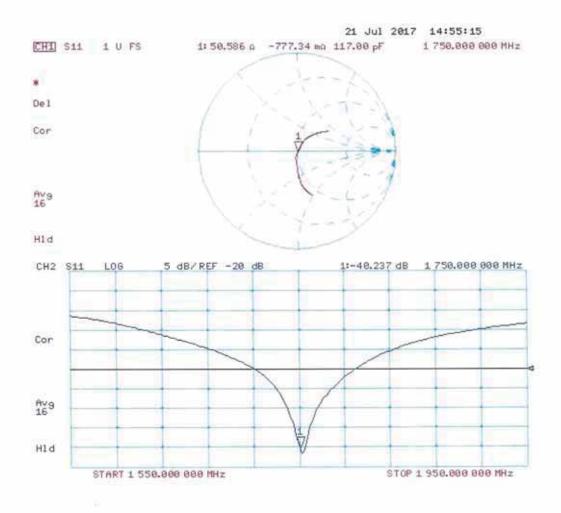
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1123


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.35 S/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.73, 8.73, 8.73); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 14.0 W/kg

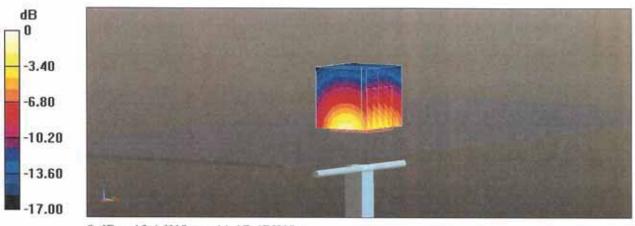
0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

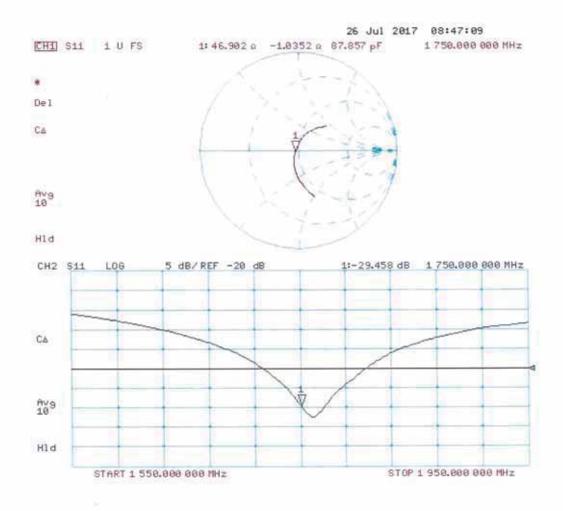
Date: 27.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1123

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

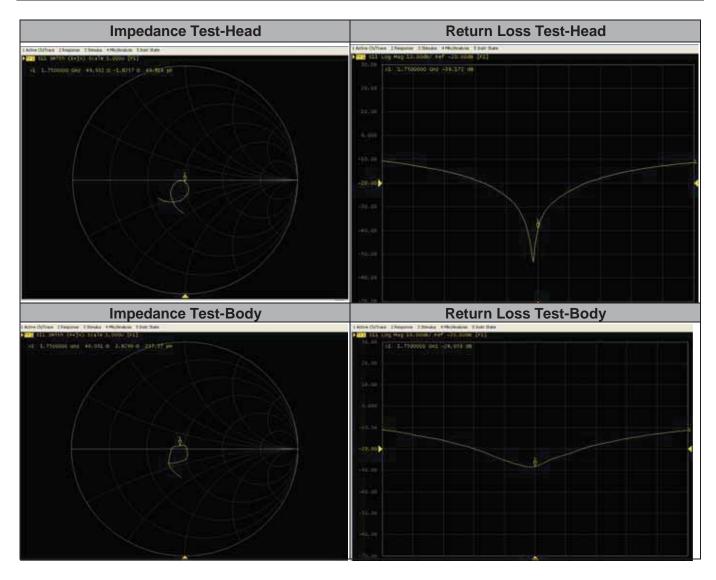
DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.09 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.86 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Body TSL



Justification of the extended calibration of Dipole D1750V2 SN:1123

Per KDB 865664, we have measured the Impedance and Return Loss as below.

- 1) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
- 2) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5 ohm from the previous measurement.

Dipole 835 Head TST	Target Value	Measured Value	Difference
Impedance transformed to feed point	50.6Ω-0.8j Ω	49.93Ω-1.83j Ω	R=-0.67Ω,X=-1.03j Ω
Return Loss	-40.2dB	-39.17 dB	-2.56%
Dipole 835 Body TST	Target Value	Measured Value	Difference
Impedance transformed to feed point	46.9Ω-1.0j Ω	46.05Ω+2.83j Ω	R=-0.85Ω,X=3.83j Ω
Return Loss	-29.5 dB	-28.05 dB	-4.92%
Measured Date	2017-07-27	2018-07-17	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S C S

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Huawei-SZ (Auden)

Certificate No: D1900V2-5d143_Sep17

CALIBRATION CERTIFICATE

Object	D1900V2 - SN:50	1143	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	September 20, 2	017	
The measurements and the uncer	tainties with confidence p	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)	Cal Data (Cadillanta Na.)	Sabadulad Colligation
Primary Standards	SN: 104778	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP Power sensor NRP-Z91		04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-291	SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521)	Apr-18
Reference 20 dB Attenuator		04-Apr-17 (No. 217-02522)	Apr-18
Type-N mismatch combination	SN: 5058 (20k) SN: 5047.2 / 06327	07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	= 122
Approved by:	Katja Pokovic	Technical Manager	fel 14
This calibration cartificate shall no	the reproduced event is	n full without written approval of the laboratory	Issued: September 21, 2017

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

540	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1	1.2222

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 4.3 jΩ	
Return Loss	- 25.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.1 Ω + 5.9 jΩ	
Return Loss	- 24.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

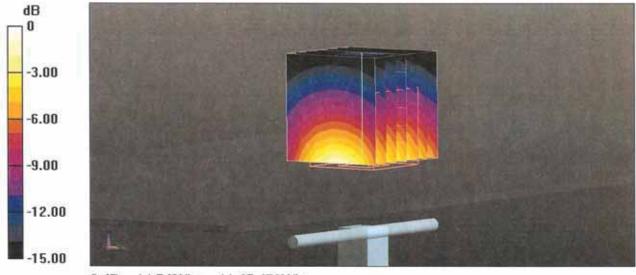
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 20.09.2017

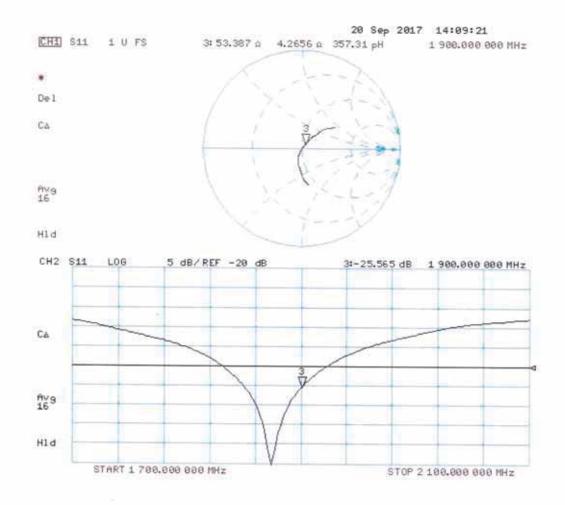
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d143


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 S/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.3 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

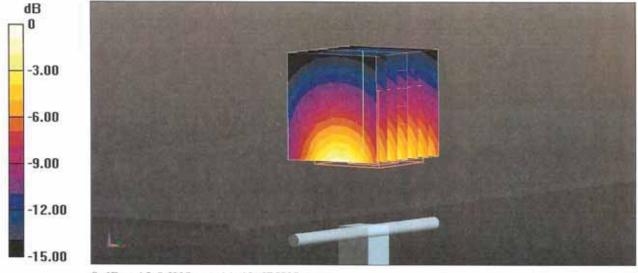
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.09.2017

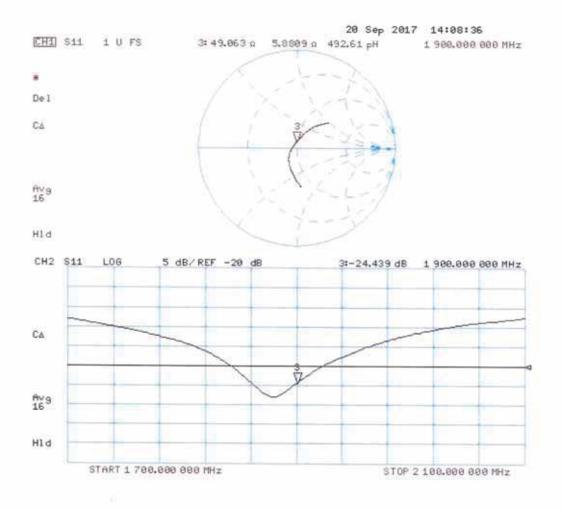
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d143


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 54.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.7 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.61 W/kg; SAR(10 g) = 5.13 W/kg Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Huawei-SZ (Auden)

Certificate No: D2450V2-860_Nov17

s

CALIBRATION CERTIFICATE

0	bj	ec	:t	

D2450V2 - SN:860

Calibration procedure(s)

QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

November 15, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID #	Cal Date (Certificate No.)	Scheduled Calibration	
SN: 104778			_
SN: 103244			
SN: 103245			
SN: 5058 (20k)	GENERAL CONTROL AND CONTROL OF AND		
SN: 5047.2 / 06327			
SN: 7349			
SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18	
ID #	Check Date (in house)	Schodulad Chack	
SN: GB37480704			
SN: MY41092317			
SN: 100972			
SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18	
Name	Function	Signature	
Michael Weber	Laboratory Technician	MAGE	
Katja Pokovic	Technical Manager	1110	
	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Michael Weber	SN: 104778 O4-Apr-17 (No. 217-02521/02522) SN: 103244 04-Apr-17 (No. 217-02521) SN: 103245 04-Apr-17 (No. 217-02522) SN: 103245 04-Apr-17 (No. 217-02522) SN: 5058 (20k) 07-Apr-17 (No. 217-02528) SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) SN: 7349 31-May-17 (No. 217-02529) SN: 601 26-Oct-17 (No. DAE4-601_Oct17) ID # Check Date (in house) SN: GB37480704 07-Oct-15 (in house check Oct-16) SN: US37292783 07-Oct-15 (in house check Oct-16) SN: 100972 15-Jun-15 (in house check Oct-16) SN: 100972 15-Jun-15 (in house check Oct-17) Name Function Michael Weber Laboratory Technician	SN: 104778 O4-Apr-17 (No. 217-02521/02522) Apr-18 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 SN: 103245 04-Apr-17 (No. 217-02521) Apr-18 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 SN: 5058 (20k) 07-Apr-17 (No. 217-02529) Apr-18 SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 SN: 7349 31-May-17 (No. EX3-7349_May17) May-18 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 ID # Check Date (in house) Scheduled Check SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Michael Weber Laboratory Technician Michael Weber

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-860 Nov17

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage
- C Service suisse d'etalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.06 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.96 W/kg

Certificate No: D2450V2-860_Nov17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 4.5 jΩ	
Return Loss	- 23.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω + 5.7 jΩ		
Return Loss	- 24.9 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.165 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

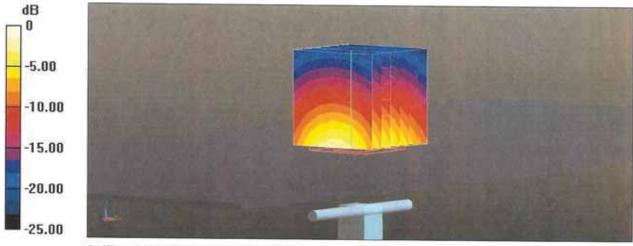
Manufactured by	SPEAG		
Manufactured on	April 23, 2010		

DASY5 Validation Report for Head TSL

Date: 15.11.2017

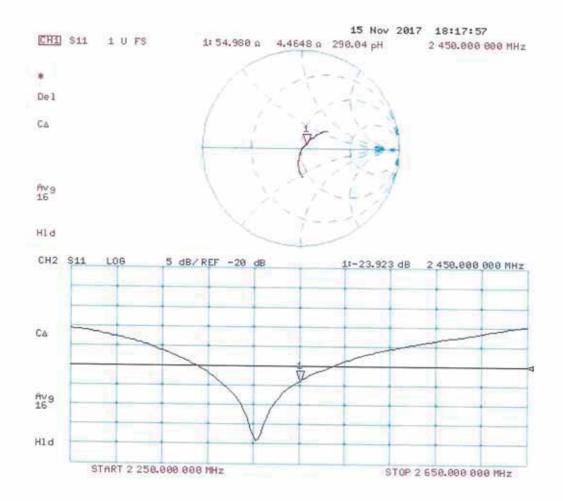
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:860


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.5 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

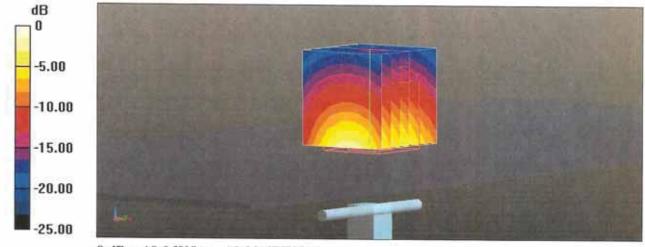
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

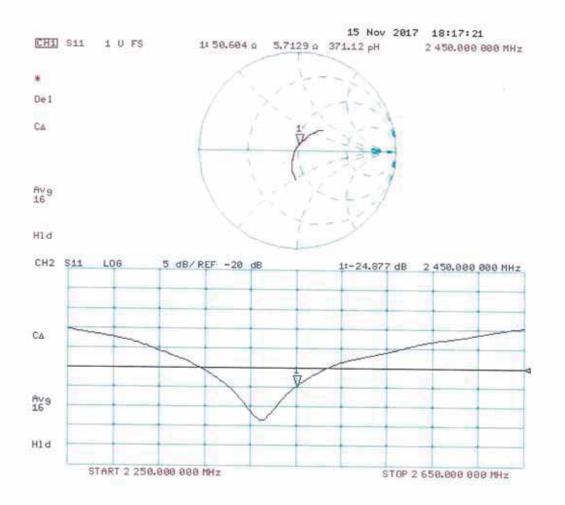
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:860


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.96 W/kg Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

Certificate No: D2450V2-860_Nov17

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Certificate No: D2600V2-1021_Jul18

Client	Huawei-SZ (Auden)
	THE OTHER STREET, AND

Client

CALIBRATION CE	RIFICATE		
Dbject	D2600V2 - SN:10	21	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	July 26, 2018		
		onal standards, which realize the physical uni	
The measurements and the uncerta	anties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conducte	d in the closed laborator	y facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Milleter
Approved by:	Katja Pokovic	Technical Manager	flitte
			Issued: July 26, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	V
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	(1999-9)	0122201

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 6.0 jΩ	
Return Loss	- 24.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9 Ω - 4.0 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns
· · · · · · · · · · · · · · · · · · ·	Michael Michael Michael

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

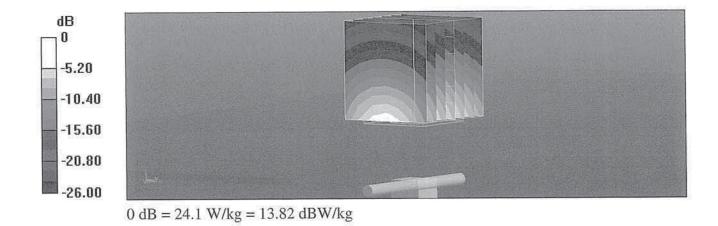
Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 13, 2008	

DASY5 Validation Report for Head TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1021

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.02 S/m; ϵ_r = 37.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.46 W/kg Maximum value of SAR (measured) = 24.1 W/kg

Impedance Measurement Plot for Head TSL

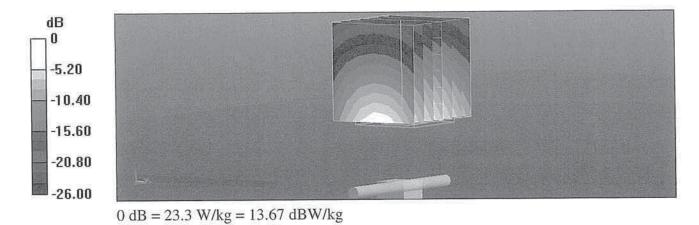
Э	View	⊆hannel	Sw <u>e</u> ep	Calibration	Trace	<u>5</u> cale	Marker	System	Window	Help	P			
					f	× {		EXE EXE	A A		00000 GI 10.229 00000 GI	рF	-5. 60.1	9.601 C 9841 C 105 mL 30.376
		Ch 1 Avg=	20		F	X	X	X	Ì	1			Char 1	2.80000 GF
0.	00	art 2.40000 dB S11	GHz —	1				0	 1 	2.8	00000 G	Hz	nya ¹ a	.422 dl
10. 5.0 5.1 -10	00 00 00 00 00 00		GHz —						s 1.	2.6	00000 G	Hz	nya ¹ a	
-10. 5.0 -5.0 -10 -15 -20 -25 -30	00 00 00 00 00	dB \$11							• 1.	2.6		Hz	nya ¹ a	
10. 5.0 -5.0 -10 -15 -20 -25 -30	000 00 00 000 000 000 0.00 0.00 0.00 5.00		= 20						• 1.	2.6	00000 @	Hz	-24	

DASY5 Validation Report for Body TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1021


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.2 S/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.7 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.3 W/kg Maximum value of SAR (measured) = 23.3 W/kg

Impedance Measurement Plot for Body TSL

	⊻iew	Channel	Sw <u>e</u> ep	Calibration	Trace	Scale	Marker	System	Window	Help				和4.4446
					4	XXX	XA				0000 C 15.150 0000 C) pF	-4. 60.0	5.891 C 0404 C 142 mL 33.07 1
		Ch 1 Avg =	20		7	\swarrow	Ś	Ê	I				Stop 2	
0.0	00	dB \$11	GHz —					2	1	2.80	00000	EHz	NAME OF BRIDE	.80000 GH .431 dB
0.0 5.0 5.0 10	00							>		2.80		3Hz	NAME OF BRIDE	
0.0 5.0 5.0 10 15 20 25 30 -35 -40	00 0 0 00 .00 .00 .00 .00 .00		= 20							2.80		3Hz	-24	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SN: 3503

Client Huawei-SZ (Auden)

Certificate No: D5GHzV2-1155_Jun18

Dec-18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:	1155	
Calibration procedure(s)	QA CAL-22.v3 Calibration proce	edure for dipole validation kits be	tween 3-6 GHz
Calibration date:	June 08, 2018		
This calibration certificate docum The measurements and the unce	ents the traceability to nat rtainties with confidence p	ional standards, which realize the physical u probability are given on the following pages a	nits of measurements (SI). Ind are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19

30-Dec-17 (No. EX3-3503 Dec17)

DAE4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Calibrated by: Manu Seitz Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: June 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Reference Probe EX3DV4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst S
 - Service suisse d'étalonnage
- С Servizio svizzero di taratura
- s Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5400 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5850 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.35 W/kg

Head TSL parameters at 5400 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.8	4.86 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.73 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5400 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.3 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	(2002)	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5850 MHz

The following parameters and calculations were applied.

124.0	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.2	5.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.20 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 c) of Body TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.11 W/kg

normalized to 1W

20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5400 MHz

SAR for nominal Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.7	5.53 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.71 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5400 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2 8 • • • •	

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5850 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.1	6.06 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.33 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.3 Ω - 8.1 jΩ	
Return Loss	- 20.8 dB	

Antenna Parameters with Head TSL at 5400 MHz

Impedance, transformed to feed point	49.5 Ω - 5.4 jΩ
Return Loss	- 25.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	59.2 Ω - 6.3 jΩ	
Return Loss	- 19.8 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	57.3 Ω - 2.8 jΩ	
Return Loss	- 22.8 dB	

Antenna Parameters with Head TSL at 5850 MHz

Impedance, transformed to feed point	55.4 Ω - 6.7 jΩ	
Return Loss	- 21.8 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	53.4 Ω - 5.5 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL at 5400 MHz

Impedance, transformed to feed point	49.9 Ω - 3.3 jΩ	
Return Loss	- 29.6 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	60.6 Ω - 5.0 jΩ
Return Loss	- 19.5 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	58.2 Ω - 1.6 jΩ
Return Loss	- 22.3 dB

Antenna Parameters with Body TSL at 5850 MHz

Impedance, transformed to feed point	56.3 Ω - 6.3 jΩ	
Return Loss	- 21.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.127 ns	Electrical Delay (one direction)	1.127 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 20, 2012	

DASY5 Validation Report for Head TSL

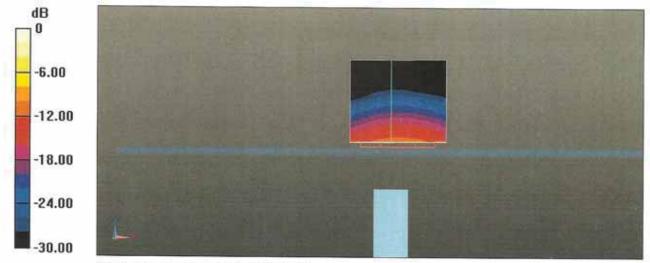
Date: 06.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

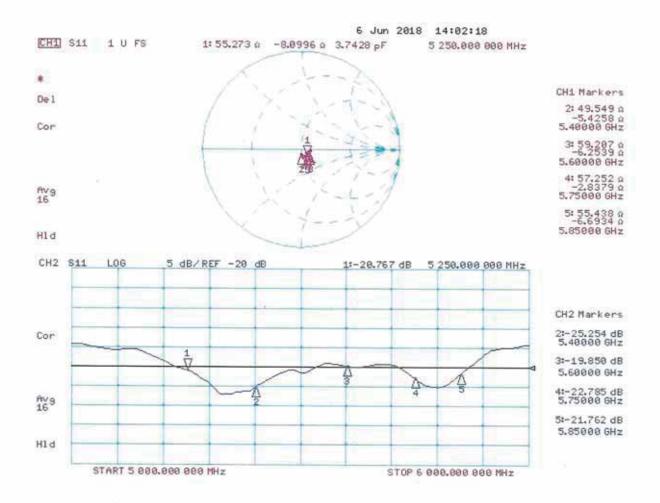
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1155

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5400 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.57$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5400 MHz; $\sigma = 4.73$ S/m; $\varepsilon_r = 35.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.09$ S/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 5.2$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 5.2$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz, ConvF(5.5, 5.5, 5.5) @ 5400 MHz, ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.94, 4.94, 4.94) @ 5850 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.63 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 18.4 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5400 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.16 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.94 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 20.1 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.32 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.54 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 36.0 W/kg SAR(1 g) = 8.5 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

DASY5 Validation Report for Body TSL

Date: 08.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1155

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5400 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.51$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5400 MHz; $\sigma = 5.71$ S/m; $\varepsilon_r = 46.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 6.19$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 6.33$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 6.33$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³

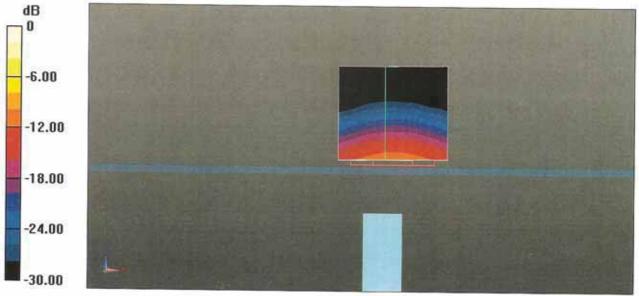
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.7, 4.7, 4.7) @ 5400 MHz, ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz, ConvF(4.47, 4.47, 4.47) @ 5850 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

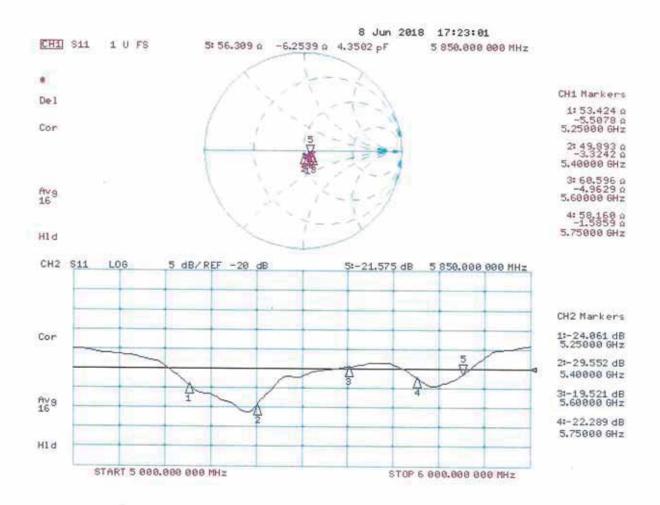
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.19 V/m; Power Drift = -0.06dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5400 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.41 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.66 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.2 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.78 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.06 W/kg Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 65.90 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.8 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.18 W/kgMaximum value of SAR (measured) = 19.1 W/kg

0 dB = 17.2 W/kg = 12.36 dBW/kg

