

FCC RF Test Report

Product Name: Smart Phone

Model Number: MRD-LX1N

Report No.: SYBH(Z-RF)20181117006001-2001

FCC ID: QISMRD-LX1N

Authorizad	APPROVED	PREPARED	
Autheorized	(Lab Manager)	(Test Engineer)	
BY	He Hao	M aowenli	
DATE	2018-12-27	2018-12-27	

Reliability Laboratory of Huawei Technologies Co., Ltd.

(Global Compliance and Testing Center of Huawei Technologies Co., Ltd)

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

* * Notice * *

- 1. The Reliability Laboratory of Huawei Technologies Co., Ltd has passed the accreditation by The American Association for Laboratory Accreditation (A2LA). The accreditation number is 2174.01
- 2. The Laboratory of Sporton International (Shenzhen) Inc has passed the accreditation by National Voluntary Laboratory Accreditation Program (NVLAP). The NVLAP LAB CODE is 600156-0.
- 3. The Reliability Laboratory of Huawei Technologies Co., Ltd has been recognized by the US Federal Communications Commission (FCC) to perform compliance testing subject to the Commission's Certification rules. The Designation Number is CN1173, and the Test Firm Registration Number is 294140.
- 4. The Laboratory of Sporton International (Shenzhen) Inc has been recognized by the US Federal Communications Commission (FCC) to perform compliance testing subject to the Commission's Certification rules. The Designation Number is CN5019, and the Test Firm Registration Number is 577730.
- 5. The Reliability Laboratory of Huawei Technologies Co., Ltd has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 6369A-1.
- 6. The Reliability Laboratory of Huawei Technologies Co., Ltd is also named "Global Compliance and Testing Center of Huawei Technologies Co., Ltd", the both names have coexisted since 2009.
- 7. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 8. The test report is invalid if there is any evidence of erasure and/or falsification.
- 9. The test report is only valid for the test samples.
- 10. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Public

MODIFICATION RECORD

No.	Report No	Modification Description
1	SYBH(Z-RF)20181117006001-2	First release.
	001	

DECLARATION

Туре	Description
Multiple	
Models	☐ The present report applies to several models. The practical measurements are
Applications	performed with the model.
	The present report only presents the worst test case of all modes, see relevant test
	results for detailed.

1 Table of contents

1	Table	e of contents	4
2	Gene	eral Information	5
	2.1	Test standard/s	5
	2.2	Test Environment	5
	2.3	Test Laboratories	6
	2.4	Applicant and Manufacturer	7
	2.5	Application details	7
3	Test S	Summary	8
	3.1	Cellular Band (824-849 MHz paired with 869-894 MHz)	8
	3.2	PCS Band (1850-1910 MHz paired with 1930-1990 MHz)	10
	3.3	BRS&EBS Band (2500-2570 MHz paired with 2620-2690 MHz)	11
4	Desc	ription of the Equipment under Test (EUT)	13
	4.1	General Description	13
	4.2	EUT Identity	14
	4.3	Technical Specification	15
5	Gene	eral Test Conditions / Configurations	17
	5.1	Test Modes	17
	5.2	Test Frequency	18
	5.3	DESCRIPTION OF TESTS	21
	5.4	Test Setups	25
	5.5	Test Conditions	28
6	Main	Test Instruments	30
7	Meas	surement Uncertainty	33

2 **General Information**

2.1 Test standard/s

	47 CFR FCC Part 02		
Applied Dules	47 CFR FCC Part 22		
Applied Rules :	47 CFR FCC Part 24		
	47 CFR FCC Part 27		
Took Makhadi.	FCC KDB 971168 D01 Power Meas License Digital Systems v03r01		
Test Method :	ANSI C63.26		

2.2 Test Environment

Temperature :	TN	15 to 30	°C d	uring room temperature tests
Ambient Relative Humidity:	20 to	85 %		
Atmospheric Pressure:	Not applicable			
	VL	3.6	V	
Power supply :	VN	3.82	V	DC by Battery
	VH	4.4	V	

NOTE 1: 1) VN= nominal voltage, VL= low extreme test voltage, VH= High extreme test voltage;

TN= normal temperature, TL= low extreme test temperature, TH= High extreme test temperature.

NOTE 2: The values used in the test report may be stringent than the declared.

2.3 Test Laboratories

Test Location 1 :	RELIABILITY LABORATORY OF HUAWEI TECHNOLOGIES CO.,			
Test Location 1.	LTD.			
Address of Test Location 1 :	No.2 New City Avenue Songshan Lake Sci. &Tech. Industry Park,			
Address of Test Location 1.	Dongguan, Guangdong, P.R.C			
Sub-contracted Test Location	Sporten International (Shanzhan) Inc			
1:	Sporton International (Shenzhen) Inc.			
Address of Sub-contracted Test	No.3 Building, the third floor of south, Shahe River west, Fengzeyuan			
Location 1:	warehouse, Nanshan District, Shenzhen, Guangdong, P.R.China			

2.4 Applicant and Manufacturer

Company Name : HUAWEI TECHNOLOGIES CO., LTD			
Address	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,		
Address:	Bantian, Longgang District, Shenzhen, 518129, P.R.C		

2.5 Application details

Date of Receipt Sample:	2018-12-04
Start of test:	2018-12-05
End of test:	2018-12-24

3 Test Summary

3.1 Cellular Band (824-849 MHz paired with 869-894 MHz)

Test Item	FCC Rule No.	Requirements	Test Result	Verdict (Note1)	Testing location
Effective (Isotropic) Radiated Power Output Data	§2.1046, §22.913	FCC: ERP ≤ 7 W	Appendix A	Refer to No. SYBH(Z-R F)2018101 1024001-2 001	Test Location 1
Peak-Average Ratio		Limit≤13 dB	Appendix B	Refer to No. SYBH(Z-R F)2018101 1024001-2 001	Test Location 1
Modulation Characteristics	§2.1047	Digital modulation	Appendix C	Refer to No. SYBH(Z-R F)2018101 1024001-2 001	Test Location 1
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Appendix D	Refer to No. SYBH(Z-R F)2018101 1024001-2 001	Test Location 1
Band Edges Compliance	§2.1051, §22.917	FCC: ≤ -13 dBm/1%*EBW, in 1 MHz bands immediately outside and adjacent to the frequency block. Note 1): EBW is -26 dBc EBW.	Appendix E	Refer to No. SYBH(Z-R F)2018101 1024001-2 001	Test Location 1
Spurious Emission at Antenna Terminals	§2.1051, §22.917	FCC: ≤ -13 dBm/RefBW, from max(lowest internal frequency, 9 kHz) to min(10 * highest fundamental frequency, 40 GHz), after 1 MHz bands immediately outside and adjacent to the frequency block. (RefBW: ≥100 kHz for frequency below	Appendix F	Refer to No. SYBH(Z-R F)2018101 1024001-2 001	Test Location 1

Test Item	FCC	Requirements	Test Result	Verdict	Testing
rest item	Rule No.	Requirements	rest Result	(Note1)	location
		1 GHz, and =1 MHz above 1 GHz)			
		FCC: ≤ -13 dBm/RefBW, from			Test
		max(lowest internal frequency, 9 kHz)		Refer to	Location
Field Strongth		to min(10 * highest fundamental		No.	1(above
Field Strength	§2.1053,	frequency, 40 GHz), after 1 MHz bands	A m m a m diss C	SYBH(Z-R	30MHz);
of Spurious	§22.917	immediately outside and adjacent to the	Appendix G	F)2018101	Sub-contrac
Radiation		frequency block.		1024001-2	ted Test
		(RefBW: ≥100 kHz for frequency below		001	Location 1
		1 GHz, and =1 MHz above 1 GHz)			(9K-30MHz)
	§2.1055, §22.355			Refer to	Test
				No.	Location 1
Frequency			A m m m m disk l l	SYBH(Z-R	
Stability		≤ ±2.5ppm	Appendix H	F)2018101	
				1024001-2	
				001	

3.2 PCS Band (1850-1910 MHz paired with 1930-1990 MHz)

Test Item	FCC Rule No.	Requirements	Test Result	Verdict (Note1)	Testing location	
Effective (Isotropic) Radiated Power Output Data	§2.1046, §24.232	EIRP ≤ 2 W	Appendix A	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location	
Peak-Average Ratio	§2.1046, §24.232	Limit≤13 dB	Appendix B	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location 1	
Modulation Characteristics	§2.1047	Digital modulation	Appendix C	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location	
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Appendix D	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location	
Band Edges Compliance	§2.1051, §24.238	≤ -13 dBm/1%*EBW, in 1 MHz bands immediately outside and adjacent to the frequency block. Note 1): EBW is -26 dBc EBW.	Appendix E	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location 1	
Spurious Emission at Antenna Terminals	§2.1051, §24.238	≤ -13 dBm/1 MHz, from max(lowest internal frequency, 9 kHz) to min(10 * highest fundamental frequency, 40 GHz) but outside authorized operating frequency blocks.	Appendix F	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location 1	
Field Strength of Spurious Radiation	§2.1053, §24.238	≤ -13 dBm/1 MHz, from max(lowest internal frequency, 9 kHz) to min(10 * highest fundamental frequency, 40 GHz) but outside authorized operating frequency blocks.	Appendix G	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Test Location 1(above 30MHz); Sub-contracte d Test Location 1 (9K-30MHz)	
Frequency Stability	§2.1055, §24.235	Within authorized bands of operation/frequency block.	Appendix H	Refer to No. SYBH(Z-RF)2018 1011024001-2001	Location 1	
NOTE: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested".						

3.3 BRS&EBS Band (2500-2570 MHz paired with 2620-2690 MHz)

Test Item	FCC Rule No.	Requirements	Test Result	Verdict (Note1)	Testing location
Effective (Isotropic) Radiated Power Output Data	§2.1046, §27.50(h)	EIRP ≤ 2W	Appendix A	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Test Location 1
Peak-Average Ratio	§27.50(a)	Limit≤13 dB	Appendix B	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Test Location 1
Modulation Characteristics	§2.1047	Digital modulation	Appendix C	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Test Location 1
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Appendix D	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Test Location 1
Band Edges Compliance	§2.1051, §27.53(m4)	## Company	Appendix E	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Test Location 1

Spurious Emission at Antenna		Channel Edge 25 dBm/ 1 M/12 1			Test Location 1
Terminals	§2.1051, §27.53(m)	Note 1): EBW is -26 dBc EBW. Note 2): MeasFrom: max(lowest internal frequency, 9 kHz). Note 3): MeasTo: min(10 * highest fundamental frequency, 40 GHz).	Appendix F	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	
Field Strength of Spurious Radiation	§2.1053, §27.53(m)	Channel Edge 25 dBm/ 1 MHz 1 MHz 25 dBm/ 1 MHz 26 dBc EBW. Note 1): EBW is -26 dBc EBW. Note 2): MeasFrom: max(lowest internal frequency, 9 kHz). Note 3): MeasTo: min(10 * highest fundamental frequency, 40 GHz).	Appendix G	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Location 1(above 30MHz); Sub-contrac ted Test Location 1 (9K-30MHz)
Frequency Stability	§2.1055, §27.54	Within authorized bands of operation/frequency block.	Appendix H	Refer to No. SYBH(Z-RF)2 01810110240 01-2001	Test Location 1

4 Description of the Equipment under Test (EUT)

4.1 General Description

MRD-LX1N is subscriber equipment in the GSM/WCDMA/LTE system. The GSM frequency bands include GSM850, GSM900, DCS1800 and PCS1900. The UMTS frequency band includes band I, band II, band V and band VIII. The LTE frequency bands include band 1, band 3, band 5, band 7, band8, band20. The Mobile Phone implements such functions as RF signal receiving/transmitting, LTE/HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, AGPS and WIFI etc. Externally it provides one micro SD card interface, earphone port (to provide voice service), and dual SIM card interface. MRD-LX1N is dual SIM smart phone. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

The difference between model MRD-LX1 and MRD-LX1N is show in the below table.

	Model	MRD-LX1	MRD-LX1N
	LTE BAND	the same	the same
	UMTS BAND	the same	the same
	GSM	the same	the same
Licensed Frequency	IC	the same	the same
	Antenna	the same	the same
	RF conducted power	the same	the same
	NFC	Not support	Support
	Bluetooth	the same	the same
Unlicensed	2.4G Wi-Fi	the same	the same
Frequency	IC	the same	the same
	Antenna	the same	the same
	Ram / Rom	the same	the same
	Camera	the same	the same
Hardware	PCB	the same	the same
Haluwale	USB Port	the same	the same
	SIM	the same	the same
	Fingerprint	the same	the same
Annogrange	Dimension	the same	the same
Appearance	Color	the same	the same
	Battery	the same	the same
Accessory	Charger	the same	the same
Accessory	USB label	the same	the same
	Earphone	the same	the same

Note1: Only GSM850 and GSM1900, UMTS B2 and B5, LTE B5 and B7 test data included in this report.

Note2: We do not test GSM, UMTS, LTE bands of MRD-LX1N, all test data can refer to SYBH(Z-RF)20181011024001 of MRD-LX1(FCC ID: QISMRD-LX1).

4.2 EUT Identity

NOTE:

Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

4.2.1Board

Board				
Description	Hardware Version	Software Version		
Main Board	HL1JATM	5.0.1.57 (SP1C900E64R1P3)		

4.2.2 Sub-Assembly

Sub-Assembly Sub-Assembly						
Sub-Assembly Name	Model	Manufacturer	Description			
Adapter	HW-050100U01	Huawei Technologies Co., Ltd.	Input Voltage: 100V-240V Output Voltage: 5V —— 1A			
Li-ion Battery	HB405979ECW	Huawei Technologies Co., Ltd.	Rated capacity: 2920mAh Nominal Voltage: +3.82V Charging Voltage: +4.40V			

4.3 Technical Specification

NOTE: For the detailed technical descriptions, see the applicant/manufacturer's specifications or user manual.

Characteristics	Description				
Radio System Type	⊠ GSM				
	☑ UMTS				
Supported Frequency	GSM850/ WCDMA850	Transmission (TX):	824 to 849 MHz		
Range	GSW030/ WCDWA630	Receiving (RX):	869 to 894 MHz		
	PCS1900/ WCDMA1900	Transmission (TX):	1850 to 1910 MHz		
	1 C31900/ WCDIVIA1900	Receiving (RX):	1930 to 1990 MHz		
	LTE BAND5	Transmission (TX):	824 to 849 MHz		
		Receiving (RX):	869 to 894 MHz		
	LTE BAND7	Transmission (TX):	2500 to 2570 MHz		
		Receiving (RX):	2620 to 2690 MHz		
Antenna	Description	Isotropic Antenna			
	Type				
		☐ External			
		☐ Dedicated			
	TX and RX Antenna	TX & RX port: 1			
	Ports(one band)	TX-only port: 0			
		RX-only port: 1			
	Smart Antenna(for uplink)	□ МІМО			
		☑ Non MIMO			
	Gain	GSM850: -2.1 dBi (pe	r antenna port, max)		
		PCS1900: 1.1 dBi (pe	r antenna port, max)		
		WCDMA 850: -2.1 dB	i (per antenna port, max)		
		WCDMA 1900: 1.1 dB	Bi (per antenna port, max)		
		LTE Band 5: -2.1 dBi	(per antenna port, max)		
		LTE Band 7: -1 dBi (p	er antenna port, max)		
	Remark	When the EUT is put i	into service, the practical maximum		
		_	NOT exceed the value as described		
		above.			
Target TX Output Power	GSM850: 33 dBm				
	GSM1900: 30 dBm				
	UMTS850: 24 dBm				
	UMTS1900: 23.5 dBm				
	LTE Band 5: 23.5 dBm				
	LTE Band 7: 23.0 dBm	Γ			
Supported Channel	GSM system:	☑ 200 kHz			
Bandwidth	UMTS system:	⊠ 5 MHz			

Characteristics	Description	
	LTE band 5	⊠1.4MHz, ⊠3MHz, ⊠5MHz, ⊠10MHz
	LTE band 7	⊠5MHz, ⊠10MHz ,⊠15MHz ,⊠20MHz
Type of Modulation for	GSM	⊠ GMSK
uplink		⊠ 8PSK
	WCDMA	□ QPSK
		☐ 16QAM(only for HSPA+)
		☐ 64QAM
	LTE	□ QPSK
		☐ 16QAM
		☐ 64QAM
Designation of Emissions	GSM850:	245KGXW, 252KG7W
(Note: the necessary	GSM1900:	247KGXW, 248KG7W
bandwidth of which is the	UMTS850:	4M18F9W
worst value from the	UMTS1900:	4M18F9W
measured occupied	LTE BAND5:	1M10G7D (1.4 MHz QPSK modulation),
bandwidths for each type		1M09W7D (1.4 MHz 16QAM modulation)
of channel bandwidth		2M69G7D (3 MHz QPSK modulation),
configuration.)		2M69W7D (3 MHz 16QAM modulation)
		4M51G7D (5 MHz QPSK modulation),
		4M51W7D (5 MHz 16QAM modulation)
		9M00G7D (10 MHz QPSK modulation),
		9M01W7D (10 MHz 16QAM modulation)
	LTE BAND7:	4M52G7D (5 MHz QPSK modulation),
		4M49W7D (5 MHz 16QAM modulation)
		8M99G7D (10 MHz QPSK modulation),
		9M00W7D (10 MHz 16QAM modulation)
		13M5G7D (15 MHz QPSK modulation),
		13M5W7D (15 MHz 16QAM modulation)
		18M0G7D (20 MHz QPSK modulation),
	_	18M0W7D (20 MHz 16QAM modulation)
Power Supply	Туре	☐ External DC mains,
		□ Battery,
		☐ AC/DC Adapter,
		☐ Powered over Ethernet (PoE).
		☐ Other

5 General Test Conditions / Configurations

5.1 Test Modes

NOTE1: The test mode(s) are selected according to relevant radio technology specifications.

NOTE2: The modulation for WCDMA, HSUPA, HSDPA, DC-HSDPA is the same, which is QPSK, and the WCDMA is the worst, so we test the WCDMA only.

NOTE3: The power of HSPA+ system with 16QAM modulation is lower than that of QPSK, so we did not test 16QAM modulation.

Test Mode	Test Modes Description
GSM/TM1	GSM system, GSM/GPRS, GMSK modulation
GSM/TM2	GSM system, EDGE, 8PSK modulation
UMTS/TM1	WCDMA system, QPSK modulation
LTE/TM1	LTE system, QPSK modulation
LTE/TM2	LTE system, 16QAM modulation

5.2 Test Frequency

Took Mode	TX / RX		RF Channel	
Test Mode		Low (L)	Middle (M)	High (H)
	TX	Channel 128	Channel 190	Channel 251
GSM850	17	824.2MHz	836.6MHz	848.8MHz
GSIVIOSU	RX	Channel 128	Channel 190	Channel 251
	KA	869.2MHz	881.6MHz	893.8MHz
	TX	Channel 4132	Channel 4182	Channel 4233
WCDMA850	17	826.4MHz	836.4MHz	846.6MHz
WCDIVIAGGO	RX	Channel 4357	Channel 4407	Channel 4458
		871.4MHz	881.4MHz	891.6MHz
Test Mode	TX / RX	RF Channel		
r est Mode		Low (L)	Middle (M)	High (H)
	TX 	Channel 512	Channel 661	Channel 810
GSM1900		1850.2MHz	1880.0MHz	1909.8MHz
G5W1300		Channel 512	Channel 661	Channel 810
	IXX	1930.2 MHz	1960.0 MHz	1989.8 MHz
	TX	Channel 9262	Channel9400	Channel9538
WCDMA1900	17	1852.4MHz	1880.0MHz	1907.6MHz
VV OBIVIA 1900	RX	Channel 9662	Channel 9800	Channel 9938
	KX	1932.4 MHz	1960.0 MHz	1987.6 MHz
Test Meda	TX/RX		RF Channel	
Test Mode		Low (L)	Middle (M)	High (H)

Took Mode	TX / RX		RF Channel	
Test Mode		Low (B)	Middle (M)	High (T)
		Channel 20407	Channel 20525	Channel 20643
	TX(1.4M)	824.7 MHz	836.5 MHz	848.3 MHz
	TV(2M)	Channel 20415	Channel 20525	Channel 20635
	TX(3M)	825.5 MHz	836.5 MHz	847.5 MHz
	TV/FNA)	Channel 20425	Channel 20525	Channel 20625
	TX(5M)	826.5 MHz	836.5 MHz	846.5 MHz
	TX(10M)	Channel 20450	Channel 20525	Channel 20600
LTE Band 5		829 MHz	836.5 MHz	844 MHz
ETE Bana 3	RX(1.4M)	Channel 2407	Channel 2525	Channel 2643
		869.7 MHz	881.5 MHz	893.3 MHz
		Channel 2415	Channel 2525	Channel 2635
	RX (3M)	870.5 MHz	881.5 MHz	892.5 MHz
	RX(5M)	Channel 2425	Channel 2525	Channel 2625
	TCX(SIVI)	871.5 MHz	881.5 MHz	891.5 MHz
	RX (10M)	Channel 2450	Channel 2525	Channel 2600
	TOX (TOW)	874 MHz	881.5 MHz	889 MHz

Test Mode	TX / RX	RF Channel		
rest Mode		Low (B)	Middle (M)	High (T)
	TV (FM)	Channel 20775	Channel 21100	Channel 21425
	TX (5M)	2502.5 MHz	2535 MHz	2567.5 MHz
LTE Band 7	and 7 TX (10M)	Channel 20800	Channel 21100	Channel 21400
		2505 MHz	2535 MHz	2565 MHz
	TX (15M)	Channel 20825	Channel 21100	Channel 21375

Toot Mode	TX / RX	RF Channel		
Test Mode		Low (B)	Middle (M)	High (T)
		2507.5 MHz	2535 MHz	2562.5 MHz
	TY (20M)	Channel 20850	Channel 21100	Channel 21350
	TX (20M)	2510 MHz	2535 MHz	2560 MHz
	DV (EM)	Channel 2775	Channel 3100	Channel 3425
	RX (5M)	2622.5 MHz	2655 MHz	2687.5 MHz
	DV (40M)	Channel 2800	Channel 3100	Channel 3400
	RX (10M)	2625 MHz	2655 MHz	2685 MHz
	DV (45M)	Channel 2825	Channel 3100	Channel 3375
	RX (15M)	2627.5 MHz	2655 MHz	2682.5 MHz
	DV (20M)	Channel 2850	Channel 3100	Channel 3350
	RX (20M)	2630 MHz	2655 MHz	2680 MHz

5.3 DESCRIPTION OF TESTS

5.3.1 Radiated Power and Radiated Spurious Emissions

Radiated spurious emissions are investigated indoors in a full-anechoic chamber to determine the frequencies producing the worst case emissions. Final measurements for radiated power and radiated spurious emissions are performed on the 3 meter OATS per the guidelines of ANSI/TIA-603-E-2016. The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 150cm above the ground plane and 3 meters from the receive antenna. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Emissions are also investigated with the receive antenna horizontally and vertically polarized.

A portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other non-metallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal (x, y, z) axis positions such that emissions from the EUT are maximized. Measure the EUT maximum RF power and record the result.

A half-wave dipole is then substituted in place of the EUT. For emissions above 3GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT.

The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi]

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] – cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]).

Test Procedures Used

KDB 971168 D01 v03-Section 5

ANSI/TIA-603-E-2016-Section 2.2.17 / ANSI/TIA-603-E-2016-Section 2.2.12

Note: Reference test setup 3

5.3.2 Peak-Average Ratio

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth.

Test Procedures Used

KDB 971168 D01 v03-Section 5.7.2

Test Settings

- 1. The signal analyzer's CCDF measurement profile enabled
- 2. Frequency= carrier center frequency
- 3. Measurement BW > EBW of signal
- 4, for continuous transmissions, set to 1ms
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

Note: Reference test setup 1

5.3.3 Occupied Bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

Test Procedures Used

KDB 971168 D01 v03-Section 4.3

Test Settings

- 1、SET RBW=1-5% of OBW
- 2、SET VBW ≥ 3*RBW
- 3. Detector: Peak
- 4. Trace mode= max hold.
- 5. Sweep= auto couple
- 6. Steps 1-5 were repeated after it is stable

Note: Reference test setup 1.

Public

HIAWE

5.3.4 Band Edge Compliance

The test complies with the requirements in clause 2 of the present report according to test procedures in KDB 971168 D01 v03-Section 6 with corresponding test settings.

Note: Reference test setup 1.

5.3.5 Spurious and Harmonic Emissions at Antenna Terminal

The test complies with the requirements in clause 2 of the present report according to test procedures in KDB 971168 D01 v03-Section 6 with corresponding test settings.

Note: Reference test setup 1.

5.3.6 Frequency Stability / Temperature Variation

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

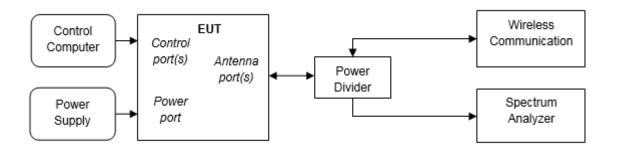
- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

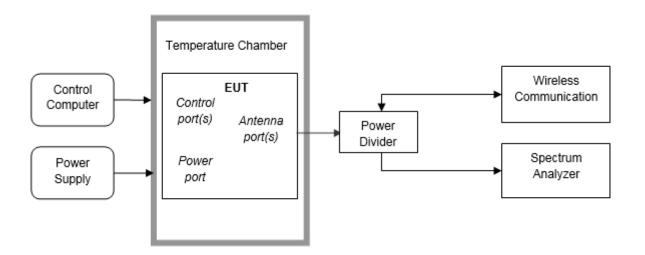
Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Procedures Used

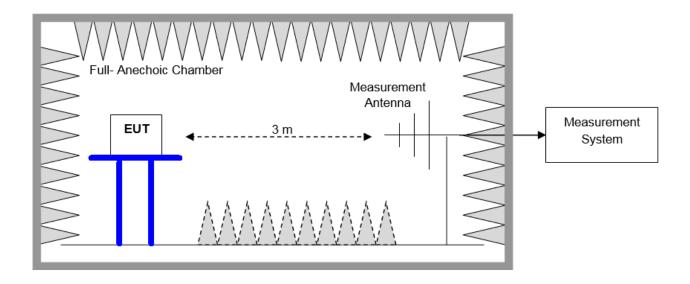

ANSI/TIA-603-E-2016

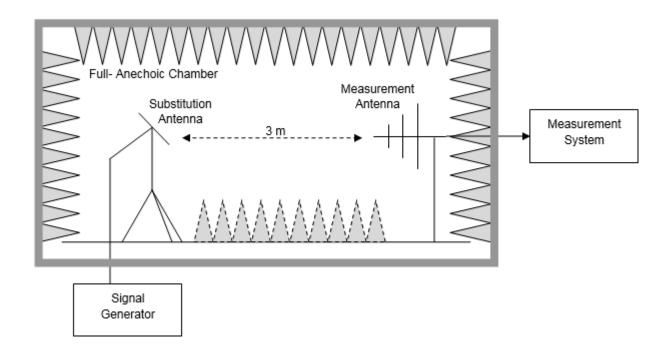
Note: Reference test setup 2.


5.4 Test Setups

5.4.1 Test Setup 1

5.4.2 Test Setup 2




5.4.3 Test Setup 3

NOTE: Effective radiated power (ERP) and Equivalent Isotropic Radiated Power(EIRP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

5.4.3.1 Step 1: Pre-test

5.4.3.2 Step 2: Substitution method to verify the maximum ERP/EIRP

5.5 Test Conditions

Test Case		Test Conditions		
Transmit	Average Power,	Test Env.	Ambient Climate & Rated Voltage	
Output	Total	Test Setup	Test Setup 1	
Power Data		RF Channels	L, M, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
	Average Power,	Test Env.	Ambient Climate & Rated Voltage	
	Spectral Density	Test Setup	Test Setup 1	
	(if required)	RF Channels	L, M, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
Peak-to-Aver	age Ratio	Test Env.	Ambient Climate & Rated Voltage	
(if required)		Test Setup	Test Setup 1	
		RF Channels	L, M, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
Modulation C	haracteristics	Test Env.	Ambient Climate & Rated Voltage	
		Test Setup	Test Setup 1	
		RF Channels	M	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
Bandwidth Occupied		Test Env.	Ambient Climate & Rated Voltage	
	Bandwidth	Test Setup	Test Setup 1	
		RF Channels	L, M, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
	Emission	Test Env.	Ambient Climate & Rated Voltage	
	Bandwidth	Test Setup	Test Setup 1	
	(if required)	RF Channels	L, M, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
Band Edges	Compliance	Test Env.	Ambient Climate & Rated Voltage	
		Test Setup	Test Setup 1	
		RF Channels	L, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	
		Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2	
Spurious Emission at Antenna		Test Env.	Ambient Climate & Rated Voltage	
Terminals		Test Setup	Test Setup 1	
		RF Channels	L, M, H	
		(TX)	(L= low channel, M= middle channel, H= high channel)	

Test Case	Test Condition	ns		
	Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2		
Field Strength of Spurious	Test Env.	Ambient Climate & Rated Voltage		
Radiation	Test Setup	Test Setup 3		
	Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1/TM2/TM3,LTE/TM1,LTE/TM2		
		NOTE: If applicable, the EUT conf. that has maximum power		
		density (based on the equivalent power level) is		
		selected.		
	RF Channels	L, M, H		
	(TX)	(L= low channel, M= middle channel, H= high channel)		
Frequency Stability	Test Env.	(1) -30 °C to +50 °C with step 10 °C at Rated Voltage;		
		(2) VL, VN and VH of Rated Voltage at Ambient Climate.		
	Test Setup	Test Setup 2		
	RF Channels	L, M, H		
	(TX)	(L= low channel, M= middle channel, H= high channel)		
	Test Mode	GSM/TM1,GSM/TM2,UMTS/TM1,LTE/TM1,LTE/TM2		

6 Main Test Instruments

6.1.1 Test Location 1:

This table gives a complete overview of the RF measurement equipment.

Devices used during the test described are marked ⊠

Main						
Marked	Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal-Due
	DC Power Supply	KEITHLEY	2303	1342889	2018/10/24	2019/10/24
	DC Power Supply	KEITHLEY	2303	000500E	2018/05/21	2019/05/21
	DC Power Supply	KEITHLEY	2303	1288003	2018/12/21	2019/12/21
\boxtimes	DC Power Supply	KEITHLEY	2303	000381E	2018/05/21	2019/05/21
	DC Power Supply	KEITHLEY	2303	000510E	2018/05/21	2019/05/21
	DC Power Supply	KEITHLEY	2303	1342896	2018/10/24	2019/10/24
\boxtimes	Temperature Chamber	WEISS	WKL64	562460029400 10	2018/12/13	2019/12/13
	Universal Radio Communication Tester	R&S	CMW500	159302	2018/07/23	2019/07/23
	Universal Radio Communication Tester	R&S	CMW500	126854	2018/07/23	2019/07/23
\boxtimes	Universal Radio Communication Tester	R&S	CMW500	164698	2018/06/17	2019/06/17
\boxtimes	Universal Radio Communication Tester	R&S	CMU200	110932	2018/4/27	2019/4/27
	Universal Radio Communication Tester	R&S	CMU200	123299	2018/11/23	2019/11/23
	Universal Radio Communication Tester	R&S	CMU200	117341	2018/12/09	2019/12/09
	Signal Analyzer F	R&S	FSQ31	200021	2018/7/23	2019/7/23
	,	R&S	FSU26	201069	2018/11/02	2019/11/02
	,	Agilent	N9030A	MY51380032	2018/07/23	2019/07/23
\boxtimes		Agilent	N9030A	MY49431698	2018/07/23	2019/07/23
		Keysight	N9040B	MY57212529	2018/06/28	2019/06/28
		Agilent	E8257D	MY51500314	2018/04/27	2019/04/27
\boxtimes	-	Agilent	E8257D	MY49281095	2018/07/23	2019/07/23

Vector Signal Generator	R&S	SMU200A	104162	2018/07/23	2019/07/23
Vector Signal Generator	R&S	SMW200A	103447	2018/05/31	2019/05/31

☑ Main Test Equipments(RSE test system)						
Marked	Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal-Due
	Universal Radio Communication Tester	R&S	CMU200	117385	2018/05/08	2019/05/07
\boxtimes	Universal Radio Communication Tester	R&S	MT8821C	6261760791	2018/04/02	2019/04/01
\boxtimes	Spectrum analyzer	R&S	FSU3	200474	2018/01/20	2019/01/19
\boxtimes	Spectrum analyzer	R&S	FSU43	100144	2018/01/20	2019/01/19
	Trilog Broadband Antenna (30M~3GHz)	SCHWARZB ECK	VULB 9163	9163-490	2017/03/29	2019/03/28
\boxtimes	Trilog Broadband Antenna (30M~3GHz)	SCHWARZB ECK	VULB 9163	9163-521	2018/04/09	2020/04/08
\boxtimes	Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100304	2017/05/27	2019/05/26
\boxtimes	double ridged horn antenna (0.8G-18GHz)	R&S	HF907	100391	2017/7/20	2019/7/19
\boxtimes	Pyramidal Horn Antenna(18GHz-26.5 GHz)	ETS-Lindgre	3160-09	5140299	2017/07/20	2019/07/19
	Pyramidal Horn Antenna(18GHz-26.5 GHz)	ETS-Lindgre	3160-09	00206665	2018/4/21	2020/4/20
\boxtimes	Pyramidal Horn Antenna(26.5GHz-40 GHz)	ETS-Lindgre	3160-10	00205695	2018/04/20	2020/04/19
	Pyramidal Horn Antenna(26.5GHz-40 GHz)	ETS-Lindgre	3160-10	LM5947	2017/07/20	2019/07/19
\boxtimes	Measurement Software	R&S	EMC32 V8.40.0	/	/	/

6.1.2 Sub-contracted Test Location 1:

Test Location 1:Main Test Equipments						
Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal- Due	
EMI Test Receiver&SA	Agilent	N9038A	N9038A	2018/8/30	2019/8/29	
Loop Antenna	R&S	HFH2-Z2	HFH2-Z2	2018/5/30	2020/5/29	
Bilog Antenna	TeseQ	CBL6112D	CBL6112D	2018/6/5	2019/6/4	
LF Amplifier	Burgeon	BPA-530	BPA-530	2018/4/20	2019/4/19	
Software Information						
Test Item	Software Name		Manufacturer		Version	
RE	E3		AUDIX		6.2009-8-24(sporton)	

7 <u>Measurement Uncertainty</u>

For a 95% confidence level (k = 2), the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Test Item	Extended Uncertainty			
Transmit Output Power	Power [dBm]	U = 0.64 dB		
Conducted				
RF Power Density, Conducted	Power [dBm]	U = 0.64 dB		
Bandwidth	Magnitude [kHz]	200kHz: U=9.06kHz		
		1.4MHz: U=9.48kHz		
		3MHz: U=10.86kHz		
		5MHz: U=13.84kHz		
		10MHz: U=22.32kHz		
		15MHz: U=31.9kHz		
		20MHz: U=41.78kHz		
Band Edge Compliance	Disturbance Power [dBm]	U = 0.9 dB		
Spurious Emissions, Conducted	Disturbance Power [dBm]	20MHz~3.6GHz: U=0.88dB		
		3.6GHz~8.4GHz: U=1.08dB		
		8.4GHz~13.6GHz: U=1.24dB		
		13.6GHz~22GHz: U=1.34dB		
		22GHz~26.5GHz: U=1.36dB		
Field Strength of Spurious	ERP/EIRP [dBm]	For 3 m Chamber:		
Radiation		U = 5.94 dB (30 MHz to 3GHz)		
		U = 5.54 dB (3GHz to 18GHz)		
		U = 4.94 dB (18GHz to 26.5GHz)		
Frequency Stability	Frequency Accuracy [Hz]	800MHz: U=24.08Hz		
		900MHz: U=24.54Hz		
		1900MHz: U=34.7Hz		
		2100MHz: U=36.96Hz		
		2300MHz: U=39.24Hz		
		2500MHz: U=41.58Hz		
		2600MHz: U=42.74Hz		

END