

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1. GENERAL SUMMARY	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 EUT OPERATING CONDITIONS	9
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.5 DESCRIPTION OF SUPPORT UNITS	10
4. EMC EMISSION TEST	11
4.1 CONDUCTED EMISSION MEASUREMENT	11
4.1.1 POWER LINE CONDUCTED EMISSION 4.1.2 MEASUREMENT INSTRUMENTS LIST	11 11
4.1.2 MEASOREMENT INSTROMENTS LIST 4.1.3 TEST PROCEDURE	12
4.1.4 DEVIATION FROM TEST STANDARD	12
4.1.5 TEST SETUP	12
4.1.6 TEST RESULTS	12
4.2 RADIATED EMISSION MEASUREMENT	15
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	15
4.2.2 MEASUREMENT INSTRUMENTS LIST	16
4.2.3 TEST PROCEDURE	16
4.2.4 DEVIATION FROM TEST STANDARD	16
4.2.5 TEST SETUP 4.2.6 TEST RESULTS-BELOW 1 GHZ	17 17
4.2.0 TEST RESULTS-BELOW 1 GHZ 4.2.7 TEST RESULTS-ABOVE 1 GHZ	20

REPORT ISSUED HISTORY		
Report Version	Description	Issued Date
R00	Original Issue.	Jul. 23, 2019

1. GENERAL SUMMARY

Equipment :	LTE Module
Brand Name :	HUAWEI
Test Model :	ME919Bs-567bNb
Series Model :	N/A
Applicant :	Huawei Technologies Co., Ltd.
Manufacturer :	Huawei Technologies Co., Ltd.
Address :	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, China
Factory :	Huawei Technologies Co., Ltd.
Address :	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, China
Date of Test :	Jul. 10, 2019 ~ Jul. 20, 2019
Test Sample :	Engineering Sample No.: DG190708165
Standard(s) :	FCC Part 15, Subpart B
	ANSI C63.4-2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCE-1-1907C062) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of A2LA according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

EMC Emission				
Standard(s)	Test Item	Limit	Judgment	Remark
	Conducted Emission	Class B	PASS	
FCC Part15, Subpart B ANSI C63.4-2014	Radiated emission Below 1 GHz	Class B	PASS	
	Radiated emission Above 1 GHz	Class B	PASS	NOTE(1)

NOTE:

(1) The EUT's max operating frequency is exceeds 108 MHz, so the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150 kHz ~ 30MHz	2.32

B. Radiated Measurement

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30MHz ~ 200MHz	V	4.56
DG-CB02	CISPR	30MHz ~ 200MHz	Н	3.60
(3m)	CISER	200MHz ~ 1,000MHz	V	4.16
		200MHz ~ 1,000MHz	Н	4.00

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-CB02	CISPR	1GHz ~ 6GHz	4.38
(3m)	CIOFK	6GHz ~ 18GHz	5.36

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LTE Module
Brand Name	HUAWEI
Test Model	ME919Bs-567bNb
Series Model	N/A
Model Difference(s)	N/A
Work Frequency	Please refer to Note 2.
Hardware Version	RM3ME919BSM34
Software Version	11.789.07.05.1400
Power Source	DC Voltage supplied from AC/DC adapter (support unit).
Power Rating	I/P: 100-240V ~50/60Hz O/P: 12V === 1.5A EUT: 4V ===

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2.

		Work Frequency	
Mode		Transmitt	Receive
		Frequency(MHz)	Frequency(MHz)
GSM/GPRS/EDGE	GSM 850	824-849	869-894
GSIM/GPRS/EDGE	GSM 1900(PCS)	1850-1910	1930-1990
	UMTS Band II	1850-1910	1930-1990
WCDMA/HSDPA/HS UPA	UMTS Band IV	1710-1755	2110-2155
	UMTS Band V	824-849	869-894
	LTE Band 2	1850-1910	1930-1990
	LTE Band 4	1710-1755	2110-2155
	LTE Band 5	824-849	869-894
LTE	LTE Band 7	2500-2570	2620-2690
	LTE Band 12	699-716	729-746
	LTE Band 13	777-787	746-756
	LTE Band 29	1	717-728

*The above work frequency is exemption frequency.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	LTE transmission
Mode 2	WCDMA transmission
Mode 3	GSM transmission

	For Conducted Test
Final Test Mode	Description
Mode 1	LTE transmission

	For Radiated Test
Final Test Mode	Description
Mode 1	LTE transmission

Evaluation description:

1. The worst case is recorded in this report.

3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to adapter via DC cable for power supply.
- 2. EUT connected to wireless communication test SET via radio signal.
- 3. EUT connected to wideband radio communication tester via radio signal.
- 4. The SIM card is plugged into the EUT.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Adapter 1 EUT (A) SIM Card AC 100~240V (B) GSM/WCDMA LTE (C) Wireless (D)Wideband Radio Communication **Communication Tester** Test SET Ground plane Remote System

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
А	Adapter	HUAWEI	HW-120200C1W	N/A
В	SIM Card	RS	N/A	N/A
С	Wireless Communication Test SET	Agilent	(8960 Series) E5515C	MY48364183
D	Wideband Radio Communication Tester	RS	CMW500	122125

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

FREQUENCY (MHz)	Class B (dBuV)			
	Quasi-peak	Average		
0.15 - 0.5	66 - 56 *	56 - 46 *		
0.5 - 5.0	56.00	46.00		
5.0 - 30.0	60.00	50.00		

Note:

(1) The tighter limit applies at the band edges.

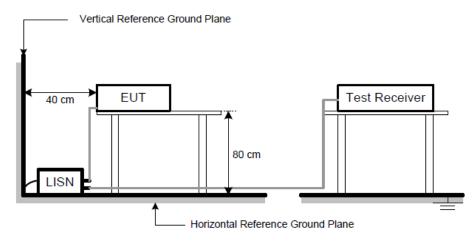
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Mar. 10, 2020
2	LISN	EMCO	3816/2	52765	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	May. 19, 2020
4	50Ω Terminator	SHX	TF5-3	15041305	Mar. 10, 2020
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 12, 2020

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.


4.1.3 TEST PROCEDURE

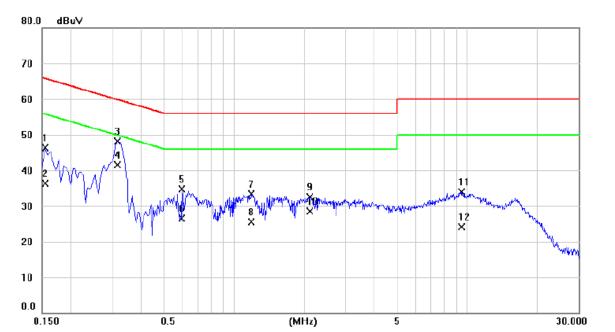
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

4.1.6 TEST RESULTS


Remark

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.

	r				
EUT	LTE Module	Model Name	ME919Bs-567bNb		
Temperature	25°C	Relative Humidity	53%		
Test Voltage	AC 120V/60Hz Phase		Line		
Test Mode	Mode 1				
Test Engineer Simon Ling					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	36.41	9.82	46.23	65.75	-19.52	QP	
2		0.1545	26.57	9.82	36.39	55.75	-19.36	AVG	
3		0.3165	38.25	9.85	48.10	59.80	-11.70	QP	
4	*	0.3165	31.57	9.85	41.42	49.80	-8.38	AVG	
5		0.5955	24.82	9.89	34.71	56.00	-21.29	QP	
6		0.5955	16.58	9.89	26.47	46.00	-19.53	AVG	
7		1.1850	23.38	9.93	33.31	56.00	-22.69	QP	
8		1.1850	15.57	9.93	25.50	46.00	-20.50	AVG	
9		2.1210	22.54	10.01	32.55	56.00	-23.45	QP	
10		2.1210	18.47	10.01	28.48	46.00	-17.52	AVG	
11		9.4830	23.41	10.47	33.88	60.00	-26.12	QP	
12		9.4830	13.57	10.47	24.04	50.00	-25.96	AVG	

EUT	LTE Module	Model Name	ME919Bs-567bNb	
Temperature	25°C	Relative Humidity	53%	
Test Voltage	AC 120V/60Hz Phase		Neutral	
Test Mode	Mode 1			
Test Engineer	Simon Ling			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1725	33.72	9.91	43.63	64.84	-21.21	QP	
2		0.1725	23.57	9.91	33.48	54.84	-21.36	AVG	
3		0.3210	37.85	9.97	47.82	59.68	-11.86	QP	
4	*	0.3210	30.24	9.97	40.21	49.68	-9.47	AVG	
5		0.5775	24.78	10.04	34.82	56.00	-21.18	QP	
6		0.5775	14.59	10.04	24.63	46.00	-21.37	AVG	
7		1.2030	22.99	10.13	33.12	56.00	-22.88	QP	
8		1.2030	12.57	10.13	22.70	46.00	-23.30	AVG	
9		3.1785	21.79	10.27	32.06	56.00	-23.94	QP	
10		3.1785	11.58	10.27	21.85	46.00	-24.15	AVG	
11		9.1950	21.92	10.70	32.62	60.00	-27.38	QP	
12		9.1950	11.59	10.70	22.29	50.00	-27.71	AVG	

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

_	Class B (at 3m)				
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			

Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Frequency (MHz)	Class B			
	(dBuV/m) (at 3m)			
	Peak	Average		
Above 1000	74	54		

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.2.2 MEASUREMENT INSTRUMENTS LIST

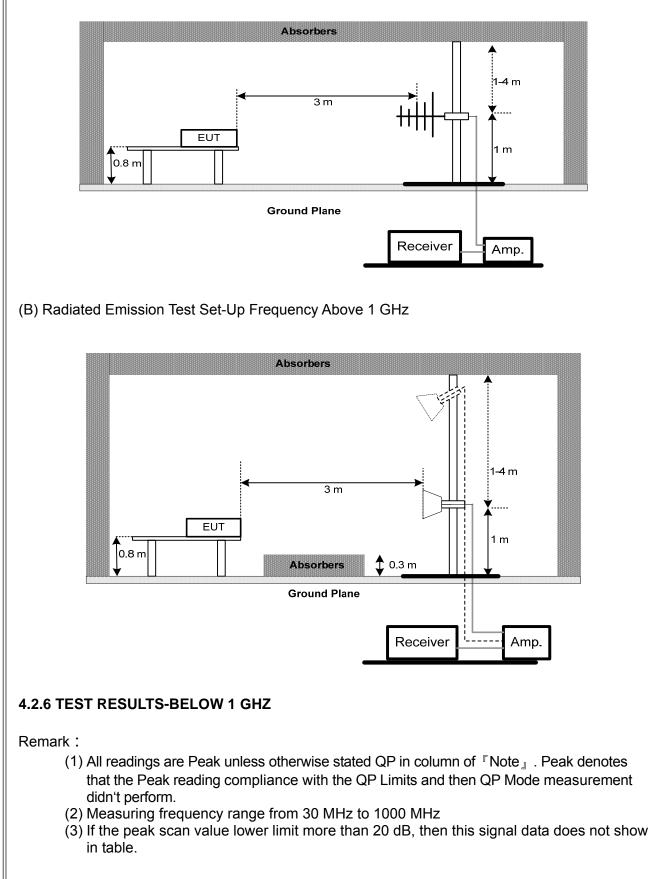
Below 1GHz & Above 1 GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 09, 2020
2	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Mar. 09, 2020
3	Amplifier	Agilent	8449B	3008A02274	Mar. 10, 2020
4	Amplifier	HP	8447D	1937A02847	Mar. 10, 2020
5	Cable	emci	LMR-400(30MHz-1GHz)(10m+2.5m)	N/A	Jun. 19, 2020
6	Cable	mitron	B10-01-01-12M	18072743	Jul. 30, 2019
7	Controller MF		MF-7802BS	N/A	N/A
8	Measurement Software Farad		EZ-EMC Ver.NB-03A1-01	N/A	N/A
9	EMI Test Receiver	Keysight	N9038A	MY56400060	Mar. 10, 2020

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

4.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.4).


4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

EUT		LTE	LTE Module			Model Name			ME919Bs-567bNb		
Tempera	iture	25°C	25°C			Relative	e Humi	dity	60%		
Test Voltage		AC [·]	120V/60	Hz		Polariza	ation		Vertical		
Fest Mod	est Mode		Mode 1								
est Engineer		Sim	on Ling								
80.0	dBuV/m										
70 -											
60 -											
50											
40									_	6	
I										Ū	
-	╶┯──			2 X			3 1	ALL ALLAN	worked with the	when my and the strategies	
30	X			2 X Multina Marthan	undreader	housemaker	alon Sula	and the	normal operation	hyperally affectively and	
30	A purpose	Law Martin Marth	nundade	2 And And And And And And And And And And	uninaalambert	holden roken linghor	3 Mirin Hilly	A MARTINE	and an the	hattan an a	
ſ	A warden	14 Martin Mart	nondrahum	2 Marina	unternal (smiller	haddgearaida a dhadhad	3 Muriu Millin	ann tha	narinada initikori	6 hathalmaddindinad	
ſ	A whee	la vyerseranje klena	gandhelenten	2 Mh. And M. M.	untetmakterheid	holdenselverholten	3 Mrth-Xiller		namadan dikin	n main a the determined	
20 10 0.0											
20 10 0.0	000 127.00	224.00	321.00	418.00	515.00	612.00			06.00	1000.00 M	1Hz
20 10 0.0	000 127.00										1Hz
20 - 10 - 0.0 _ 30.0	000 127.00	224.00 Reading	321.00 Correct	418.00 Measure-	515.00	612.00			06.00		1Hz
20 - 10 - 0.0 _ 30.0	000 127.00 . Freq.	224.00 Reading Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	612.00 Margin) 709.	00 8	06.00		1Hz
20 10 0.0 30.1 No. Mk.	000 127.00 Freq. MHz 57.6450 404.9050	224.00 Reading Level dBuV 36.62 34.99	321.00 Correct Factor dB -5.50 -0.94	418.00 Measure- ment dBuV/m 31.12 34.05	515.00 Limit dBuV/m 40.00 46.00	612.00 Margin dB -8.88 -11.95	Detector QP QP	00 8	06.00		1Hz
20 10 0.0 30.1 No. Mk. 1 2 3	000 127.00 Freq. MHz 57.6450 404.9050 685.7200	224.00 Reading Level dBuV 36.62 34.99 28.28	321.00 Correct Factor dB -5.50 -0.94 5.00	418.00 Measure- ment dBuV/m 31.12 34.05 33.28	515.00 Limit dBuV/m 40.00 46.00	612.00 Margin dB -8.88 -11.95 -12.72	Detector QP QP QP	00 8	06.00		IHz
20 10 0.0 30.1 No. Mk. 1 2 4	000 127.00 Freq. MHz 57.6450 404.9050 685.7200 753.6200	224.00 Reading Level dBuV 36.62 34.99 28.28 29.66	321.00 Correct Factor dB -5.50 -0.94 5.00 6.43	418.00 Measure- ment dBuV/m 31.12 34.05 33.28 36.09	515.00 Limit dBuV/m 40.00 46.00 46.00	612.00 Margin dB -8.88 -11.95 -12.72 -9.91	Detector QP QP QP QP QP	00 8	06.00		1Hz
20 10 0.0 30.0 No. Mk. 1 2 4 3 4	000 127.00 Freq. MHz 57.6450 404.9050 685.7200	224.00 Reading Level dBuV 36.62 34.99 28.28	321.00 Correct Factor dB -5.50 -0.94 5.00	418.00 Measure- ment dBuV/m 31.12 34.05 33.28	515.00 Limit dBuV/m 40.00 46.00	612.00 Margin dB -8.88 -11.95 -12.72	Detector QP QP QP	00 8	06.00		1Hz

			1
EUT	LTE Module	Model Name	ME919Bs-567bNb
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Mode 1		
Test Engineer	Simon Ling		
80.0dBu∀/m			
70			
60			
50			
40			F 6
40	1 2 3 X X Land Ale Market Ale	4	margine to realization attender and the second stand
30	- X X	whether when we want the strate of the state	
with white	have a descention of Market Market Market Jack State Market Market		
20	TNY .		
10			
0.0			
30.000 127.00	224.00 321.00 418.00 515.0	0 612.00 709.00	806.00 1000.00 MHz
	eading Correct Measure-	Margin	
	evel Factor ment Limit dBuV dB dBuV/m dBuV/n	-	ment
1 366.5900 32	2.00 -2.15 29.85 46.00	-16.15 QP	
	2.00 -2.15 29.85 46.00 3.66 -0.94 32.72 46.00	-	
2 404.9050 33		-13.28 QP	
2 404.9050 33 3 445.1600 33	3.66 -0.94 32.72 46.00	-13.28 QP -14.71 QP	
2 404.9050 33 3 445.1600 3 4 622.1850 29	33.66-0.9432.7246.001.44-0.1531.2946.00	-13.28 QP -14.71 QP -12.99 QP	

4.2.7 TEST RESULTS-ABOVE 1 GHZ

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of Note . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (3) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EUT		LTE	LTE Module				Name	ME919Bs-567bNb		
Temper	ature	25°0	25°C				e Humidity	60%		
Test Vo	Itage	AC	AC 120V/60Hz				ation	Vertical		
Test Mo	de	Mod	Mode 1							
Test En	aineer	Sim	on Ling							
	0		5							
80.0	dBu∨/m									
70										
60										
50										
40		÷ ž		Z				9	11	
30	mounterstation	Munderhow	www.	wuhuhuhuhahuv Wuhuhahuv	howard	har in a start of the second	mylevenenenenym	umuh 10hrampur X	12 ×	
20	·									
10										
0.0										
10	00.000 1500.00) 2000.00	2500.00	3000.00	3500.00	0 4000.0	0 4500.00	5000.00	6000.00 MHz	
No. Mk		Reading Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector Com	ment		
1	1000.000	40.44	-7.20	33.24	74.00	-40.76	peak			
2	1000.000	33.40	-7.20	26.20	54.00	-27.80	AVG			
3	1725.000	40.66	-3.92	36.74	74.00	-37.26	peak			
4	1725.000	34.12	-3.92	30.20		-23.80				
5	1897.500	47.10	-3.37	43.73	74.00	-30.27	peak			
6 *	1897.500	35.65	-3.37	32.28	54.00	-21.72	AVG			
7	3062.500	36.92	0.19	37.11	74.00	-36.89	peak			
8	3062.500	30.20	0.19	30.39	54.00	-23.61	AVG			
9	5040.000	32.16	5.62	37.78	74.00	-36.22	peak			
10	5040.000	25.45	5.62 6.12	31.07 37.83	54.00 74.00	-22.93	AVG			
4.4		41 / 1	b 12	37.83	74 00	-36.17	peak			
11 12	5905.000 5905.000	31.71 24.31	6.12	30.43	54.00	-23.57	-			

EUT LTE Module Model Name ME919Bs-567bNb Temperature 25°C Relative Humidity 60% Test Voltage AC 120V/60Hz Polarization Horizontal Test Mode Mode 1 Horizontal Horizontal Test Engineer Simon Ling Simon Ling Simon Ling Simon Ling 80.0 dBuV/m Gov/m Simon Ling Simon Ling Simon Ling Simon Ling 90.0 dBuV/m Simon Ling Simon										
Test Voltage AC 120V/60Hz Polarization Horizontal Test Engineer Simon Ling Simon Ling Horizontal 80.0 dBw/m	EUT	LTE	LTE Module				Name	ME919Bs-567bNb		
Test Mode Mode 1 Test Engineer Simon Ling 80.0 dBw/m 70 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 70 0 60 0 60 0 70 0 60 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70	Temperature	25°0	25°C				e Humidity	60%		
Test Mode Mode 1 Test Engineer Simon Ling 80.0 dBw/m 70 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 70 0 60 0 60 0 70 0 60 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70	Test Voltage	AC	AC 120V/60Hz			Polariza	ation	Horizon	tal	
Test Engineer Simon Ling 80.0 $dBuV/m$ 70		Мос	le 1							
80.0 dBuV/m 70										
No. Mk. Freq. Level Factor Measure- ment Limit Margin 1 1745.000 48.74 -3.85 36.27 54.00 -17.73 AVG 3 24 25.00.00 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz 10 30 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz 20 10 10 10 10 12 12 10 100.000 1500.00 2000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz No. Mk. Freq. Level Factor ment Limit Margin 1 1745.000 48.74 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 30.12 -1.11 35.48 74.00 -38.52 peak 4 2642.500 36.50 74.00 -36.51 peak										
60 2 3 4 4 5 4 5 4 7 8 11 12 11 10 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12 11 12 12 11 12 12 11 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 11 12 12 11 12 12 12 11 12 12 11 12 12 11 12 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	80.0 dBuV/m									
60 2 3 4 4 5 4 5 4 7 8 11 12 11 10 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12 11 12 12 11 12 12 11 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 12 11 12 11 12 12 11 12 12 12 11 12 12 11 12 12 11 12 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	70									
Image: No. Mk. Freq. Reading Correct Pactor Measure-ment Image: No. Mk. State State <td>60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	60									
40 3 5 7 9 11 30 X 6 X X 10 12 20 X 6 X X 10 12 10 0.0 2000.00 2000.00 2000.00 3000.00 3000.00 4500.00 5000.00 6000.00 1000.000 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 1000.000 1500.00 2000.00 2500.00 3000.00 3000.00 4500.00 5000.00 6000.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit 										
10 2 3 11 30 x 6 x x 12 20 x 6 x x x x 20 x 6 x x x x x 20 x 6 x x x x x x 20 x x 6 x x x x x 20 x x 6 x x x x x 20 x x 6 x x x x 20 x x 6 x x x x 1000.0001500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 6000.00 10 MHz dBuV dB dBuV/m dB Detector Comment 1 1745.000 40.12 -3.85 44.89 74.00	50	1								
30 X X X X X X 20 X	40				5			9		
X X	March and Ashiller	minum	ummm	manguestantimut	Korpanin	when when	www.	10	12	
III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	30		×		6 X		×	×		
0.0 1000.000 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 1745.000 48.74 -3.85 44.89 74.00 -29.11 peak 2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 <t< td=""><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	20									
0.0 1000.000 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 1745.000 48.74 -3.85 44.89 74.00 -29.11 peak 2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1000.000 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz No. Mk. Freq. Level Factor Measure- ment Limit Margin Margin MHz dBuV dB dBuV/m dB Detector Comment 1 1745.000 48.74 -3.85 44.89 74.00 -29.11 peak 2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -26.85 AVG 5 3265.000 35.80 0.70 36.50 74.00 -36.18 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 26.78 2.99 29.77 54.00 -24.23	10									
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 1745.000 48.74 -3.85 44.89 74.00 -29.11 peak 2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000<		00 2000 00	2500.00	2000.00	2500.00	4000.0	0 4500.00	E000 00	5000 00 MHz	
No. Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 1745.000 48.74 -3.85 44.89 74.00 -29.11 peak 2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9					3300.00	4000.0	0 4500.00	5000.00	6000.00 MHz	
1 1745.000 48.74 -3.85 44.89 74.00 -29.11 peak 2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 p	No. Mk. Freq.	-			Limit	Margin				
2 * 1745.000 40.12 -3.85 36.27 54.00 -17.73 AVG 3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak			dB	dBuV/m			Detector Com	iment		
3 2642.500 36.59 -1.11 35.48 74.00 -38.52 peak 4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak							· ·			
4 2642.500 30.12 -1.11 29.01 54.00 -24.99 AVG 5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak										
5 3265.000 35.80 0.70 36.50 74.00 -37.50 peak 6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak							-			
6 3265.000 26.45 0.70 27.15 54.00 -26.85 AVG 7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak										
7 4447.500 34.83 2.99 37.82 74.00 -36.18 peak 8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak										
8 4447.500 26.78 2.99 29.77 54.00 -24.23 AVG 9 5060.000 31.70 5.65 37.35 74.00 -36.65 peak 10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak										
10 5060.000 24.45 5.65 30.10 54.00 -23.90 AVG 11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak							-			
11 5865.000 31.10 6.09 37.19 74.00 -36.81 peak	9 5060.000	31.70	5.65	37.35	74.00	-36.65	peak			
· · ·	10 5060.000	24.45	5.65	30.10	54.00	-23.90	AVG			
							-			
12 5865.000 23.45 6.09 29.54 54.00 -24.46 AVG	12 5865.000	23.45	6.09	29.54	54.00	-24.46	AVG			

EUT		LTE	Module			Model	Name	ME919E	ME919Bs-567bNb		
Tempe	rature	25°0	25°C			Relativ	e Humidit	y 60%			
Test Vo	ltage	AC ·	AC 120V/60Hz			Polariz	ation	Vertical			
Test Mo	ode	Mod	Mode 1								
Test Er			on Ling								
	igineei		<u>on Eng</u>								
80.0	dBu∀/m										
70											
60											
							Z	q X	11		
50	mound	-		torm more the	one ofference	Mennenyer me	8	10	12 X		
40	Cauro a transmit Martina		2 X	4 ×	>	,	×	×	^		
30											
20											
10											
10											
0.0 61	000.000 7200.00	8400.00	9600.00	10800.00	12000.0	0 13200	.00 14400.0	0 15600.00	18000.00MHz		
				Measure-							
No. M		Reading	Correct	Measure-							
		Reading Level	Correct Factor	ment	Limit	Margin					
	MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment			
1	MHz 9420.000	Level dBuV 33.82	Factor dB 12.90	ment dBuV/m 46.72	dBuV/m 74.00	dB -27.28	Detector peak	Comment			
2	MHz 9420.000 9420.000	Level dBuV 33.82 24.56	Factor dB 12.90 12.90	ment dBuV/m 46.72 37.46	dBuV/m 74.00 54.00	dB -27.28 -16.54	Detector peak AVG	Comment			
2	MHz 9420.000 9420.000 11232.00	Level dBuV 33.82 24.56 31.77	Factor dB 12.90 12.90 16.38	ment dBuV/m 46.72 37.46 48.15	dBuV/m 74.00 54.00 74.00	dB -27.28 -16.54 -25.85	Detector peak AVG peak	Comment			
2 3 4	MHz 9420.000 9420.000 11232.00 11232.00	Level dBuV 33.82 24.56 31.77 23.84	Factor dB 12.90 12.90 16.38 16.38	ment dBuV/m 46.72 37.46 48.15 40.22	dBuV/m 74.00 54.00 74.00 54.00	dB -27.28 -16.54 -25.85 -13.78	Detector peak AVG peak AVG	Comment			
2 3 4 5	MHz 9420.000 9420.000 11232.00 11232.00 12384.00	Level dBuV 33.82 24.56 31.77 23.84 31.23	Factor dB 12.90 12.90 16.38 16.38 17.61	ment dBuV/m 46.72 37.46 48.15 40.22 48.84	dBuV/m 74.00 54.00 74.00 54.00 74.00	dB -27.28 -16.54 -25.85 -13.78 -25.16	Detector peak AVG peak AVG peak	Comment			
2 3 4 5 6	MHz 9420.000 9420.000 11232.00 11232.00 12384.00 12384.00	Level dBuV 33.82 24.56 31.77 23.84 31.23 22.87	Factor dB 12.90 16.38 16.38 17.61 17.61	ment dBuV/m 46.72 37.46 48.15 40.22 48.84 40.48	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00	dB -27.28 -16.54 -25.85 -13.78 -25.16 -13.52	Detector peak AVG peak AVG peak AVG	Comment			
2 3 4 5 6 7	MHz 9420.000 9420.000 11232.00 11232.00 12384.00 12384.00 14184.00	Level dBuV 33.82 24.56 31.77 23.84 31.23 22.87 29.02	Factor dB 12.90 12.90 16.38 16.38 17.61 17.61 20.64	ment dBuV/m 46.72 37.46 48.15 40.22 48.84 40.48 49.66	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00	dB -27.28 -16.54 -25.85 -13.78 -25.16 -13.52 -24.34	Detector peak AVG peak AVG peak AVG peak	Comment			
2 3 4 5 6 7 8	MHz 9420.000 9420.000 11232.00 11232.00 12384.00 12384.00 14184.00 14184.00	Level dBuV 33.82 24.56 31.77 23.84 31.23 22.87 29.02 21.57	Factor dB 12.90 16.38 16.38 17.61 17.61 20.64 20.64	ment dBuV/m 46.72 37.46 48.15 40.22 48.84 40.48 49.66 42.21	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	dB -27.28 -16.54 -25.85 -13.78 -25.16 -13.52 -24.34 -24.34	Detector peak AVG peak AVG peak AVG peak	Comment			
2 3 4 5 6 7	MHz 9420.000 9420.000 11232.00 11232.00 12384.00 12384.00 14184.00	Level dBuV 33.82 24.56 31.77 23.84 31.23 22.87 29.02	Factor dB 12.90 12.90 16.38 16.38 17.61 17.61 20.64	ment dBuV/m 46.72 37.46 48.15 40.22 48.84 40.48 49.66 42.21	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00	dB -27.28 -16.54 -25.85 -13.78 -25.16 -13.52 -24.34	Detector peak AVG peak AVG peak AVG peak	Comment			
2 3 4 5 6 7 8	MHz 9420.000 9420.000 11232.00 11232.00 12384.00 12384.00 14184.00 14184.00 15444.00	Level dBuV 33.82 24.56 31.77 23.84 31.23 22.87 29.02 21.57	Factor dB 12.90 16.38 16.38 17.61 17.61 20.64 20.64	ment dBuV/m 46.72 37.46 48.15 40.22 48.84 40.48 49.66 42.21 50.46	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	dB -27.28 -16.54 -25.85 -13.78 -25.16 -13.52 -24.34 -24.34	Detector peak AVG peak AVG peak AVG peak	Comment			
2 3 4 5 6 7 8 9	MHz 9420.000 9420.000 11232.00 11232.00 12384.00 12384.00 14184.00 14184.00	Level dBuV 33.82 24.56 31.77 23.84 31.23 22.87 29.02 21.57 32.69	Factor dB 12.90 16.38 16.38 17.61 17.61 20.64 20.64 17.77	ment dBuV/m 46.72 37.46 48.15 40.22 48.84 40.48 49.66 42.21 50.46 42.23	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	dB -27.28 -16.54 -25.85 -13.78 -25.16 -13.52 -24.34 -11.79 -23.54	Detector peak AVG peak AVG peak AVG peak AVG	Comment			

					_						
UT		LTE	LTE Module			Model N	lame	ME919Bs-567bNb			
Temper	ature	25°0	25°C			Relative	Humidity	60%	60%		
Fest Vol	ltage	AC	AC 120V/60Hz			Polariza	ition	Horizon	tal		
Fest Mo	de	Mod	Mode 1								
Fest Eng	gineer	Sim	on Ling								
80.0	dBuV/m	1		ĺ							
70											
60											
				-		7		9 .			
50			1 marine	moundur Shu	والممعروب لمرواسمعيه و	murminter	and the manufacture	AM a series as the second	0,4,4,4,4,4,4,4 12		
40	half with marked	(www.hisona.ed s.	2 5 X	1 6 X		8 ×			×		
			^								
30											
20											
10											
0.0											
60	100.000 7200.0			10800.00	12000.00	D 13200.0	0 14400.00	15600.00	18000.0 0 MHz		
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector Com	iment			
1	9084.000	34.99	12.69	47.68	74.00	-26.32	peak				
2	9084.000	25.36	12.69	38.05	54.00	-15.95	AVG				
3	10092.00	33.78	14.20	47.98	74.00	-26.02	peak				
4 5	10092.00	25.30 32.67	14.20 16.21		54.00 74.00	-14.50 -25.12	AVG peak				
6	11160.00	23.12	16.21		54.00	-25.12	AVG				
7	13356.00	30.79	18.75	49.54	74.00	-24.46	peak				
8	13356.00	22.37	18.75		54.00	-12.88	AVG				
9	15672.00	32.06	17.57	49.63	74.00	-24.37	peak				
10	15672.00	24.15	17.57	41.72	54.00	-12.28	AVG				
11	16608.00	32.62	18.74	51.36	74.00	-22.64	peak				
12 *	16608.00	23.87	18.74	42.61	54.00	-11.39	AVG				

End of Test Report