

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents F	Page
REPORT ISSUED HISTORY	4
1. GENERAL SUMMARY	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 EUT OPERATING CONDITIONS	9
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.5 DESCRIPTION OF SUPPORT UNITS	10
4. EMC EMISSION TEST	11
4.1 CONDUCTED EMISSION MEASUREMENT	11
4.1.1 POWER LINE CONDUCTED EMISSION	11
	11
4.1.3 TEST PROCEDURE 4.1.4 DEVIATION EROM TEST STANDARD	12
4.1.5 TEST SETUP	12
4.1.6 TEST RESULTS	12
4.2 RADIATED EMISSION MEASUREMENT	15
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	15
4.2.2 MEASUREMENT INSTRUMENTS LIST	16
4.2.3 TEST PROCEDURE	16
4.2.4 DEVIATION FROM TEST STANDARD	16
4.2.5 TEST SETUP	17
4.2.6 TEST RESULTS-BELOW 1 GHZ	17
4.2.7 TEST RESULTS-ABOVE 1 GHZ	20

REPORT ISSUED HISTORY

	REPORT ISSUED HISTORY	
Report Version	Description	Issued Date
R00	Original Issue.	Jul. 25, 2019

1. GENERAL SUMMARY

Equipment : Brand Name : Test Model : Series Model :	LTE Module HUAWEI ME919Bs-567ab N/A
Applicant :	Huawei Technologies Co., Ltd.
Manufacturer :	Huawei Technologies Co., Ltd.
Address :	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, China
Factory :	Huawei Technologies Co., Ltd.
Address :	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, China
Date of Test :	Jul. 17, 2019 ~ Jul. 23, 2019
Test Sample :	Engineering Sample No.: DG19071641
Standard(s) :	FCC Part 15, Subpart B
	ANSI C63.4-2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCE-1-1907C127) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of A2LA according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

EMC Emission				
Standard(s)	Test Item	Limit	Judgment	Remark
FCC Part15, Subpart B ANSI C63.4-2014	Conducted Emission	Class B	PASS	
	Radiated emission Below 1 GHz	Class B	PASS	
	Radiated emission Above 1 GHz	Class B	PASS	NOTE(1)

NOTE:

(1) The EUT's max operating frequency is exceeds 108 MHz, so the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150 kHz ~ 30MHz	2.32

B. Radiated Measurement

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
DG-CB02	30MHz ~ 200MHz	V	4.56	
		30MHz ~ 200MHz	Н	3.60
(3m)	CISER	200MHz ~ 1,000MHz	V	4.16
	200MHz ~ 1,000MHz	Н	4.00	

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-CB02	CIEDD	1GHz ~ 6GHz	4.38
(3m)	CISER	6GHz ~ 18GHz	5.36

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LTE Module		
Brand Name	HUAWEI		
Test Model	ME919Bs-567ab		
Series Model	N/A		
Model Difference(s)	N/A		
Work Frequency	Please refer to Note 2.		
Hardware Version	RM3ME919BSM31		
Software Version	11.790.01.05.1419		
Power Source	DC Voltage supplied from AC/DC adapter (support unit).		
Power Rating	I/P: 100-240V ~50/60Hz O/P: 12V === 1.5A EUT: 4V ===		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2.

Mode		Work Frequency		
		Transmitt	Receive	
		Frequency(MHz)	Frequency(MHz)	
	GSM 850	824-849	869-894	
GSIM/GPRS/EDGE	GSM 1900(PCS)	1850-1910	1930-1990	
	UMTS Band II	1850-1910	1930-1990	
UPA	UMTS Band IV	1710-1755	2110-2155	
	UMTS Band V	824-849	869-894	
LTE	LTE Band 2	1850-1910	1930-1990	
	LTE Band 4	1710-1755	2110-2155	
	LTE Band 5	824-849	869-894	
	LTE Band 7	2500-2570	2620-2690	
	LTE Band 12	699-716	729-746	
	LTE Band 13	777-787	746-756	
	LTE Band 29	1	717-728	

*The above work frequency is exemption frequency.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	LTE transmission
Mode 2	WCDMA transmission
Mode 3	GSM transmission

For Conducted Test		
Final Test Mode	Description	
Mode 1	LTE transmission	

For Radiated Test		
Final Test Mode	Description	
Mode 1	LTE transmission	

Evaluation description:

1. The worst case is recorded in this report.

3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to adapter via DC cable for power supply.
- 2. EUT connected to Notebook(F&G&H&I) via RJ45 cable.
- 3. EUT connected to Notebook(D&E) via 2.4G&5G WIFI function.
- 4. EUT connected to wireless communication test SET via radio signal.
- 5. EUT connected to wideband radio communication tester via radio signal.
- 6. The SIM card and USB Flash Disk are plugged into the EUT.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Adapter 1 EUT (A) SIM Card AC 100~240V (B) GSM/WCDMA LTE (C) Wireless (D)Wideband Radio Communication **Communication Tester** Test SET Ground plane Remote System

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
Α	Adapter	HUAWEI	HW-120200C1W	N/A
В	SIM Card	RS N/A		N/A
С	Wireless Communication Test SET	Agilent	(8960 Series) E5515C	MY48364183
D	Wideband Radio Communication Tester	RS	CMW500	122125

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

	Class B	(dBuV)
	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.5 - 5.0	56.00	46.00
5.0 - 30.0	60.00	50.00

Note:

(1) The tighter limit applies at the band edges.

- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Mar. 10, 2020
2	LISN	EMCO	3816/2	52765	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	May. 19, 2020
4	50Ω Terminator	SHX	TF5-3	15041305	Mar. 10, 2020
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 12, 2020

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

4.1.6 TEST RESULTS

Remark

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.

EUT	LTE Module	Model Name	ME919Bs-567ab
Temperature	25°C	Relative Humidity	53%
Test Voltage	AC 120V/60Hz	Phase	Line
Test Mode	Mode 1		
Test Engineer	Simon Ling		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	34.82	9.82	44.64	66.00	-21.36	QP	
2		0.1500	24.15	9.82	33.97	56.00	-22.03	AVG	
3	*	0.3390	34.55	9.85	44.40	59.23	-14.83	QP	
4		0.3390	23.48	9.85	33.33	49.23	-15.90	AVG	
5		0.5865	22.19	9.89	32.08	56.00	-23.92	QP	
6		0.5865	12.79	9.89	22.68	46.00	-23.32	AVG	
7		2.2200	19.43	10.01	29.44	56.00	-26.56	QP	
8		2.2200	9.18	10.01	19.19	46.00	-26.81	AVG	
9		7.0845	20.75	10.33	31.08	60.00	-28.92	QP	
10		7.0845	10.49	10.33	20.82	50.00	-29.18	AVG	
11		15.3600	32.14	10.77	42.91	60.00	-17.09	QP	
12		15.3600	22.87	10.77	33.64	50.00	-16.36	AVG	

EUT	LTE Module	Model Name	ME919Bs-567ab
Temperature	25°C	Relative Humidity	53%
Test Voltage	AC 120V/60Hz	Phase	Neutral
Test Mode	Mode 1		
Test Engineer	Simon Ling		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	36.39	9.91	46.30	65.75	-19.45	QP	
2		0.1545	27.48	9.91	37.39	55.75	-18.36	AVG	
3		0.3390	32.14	9.98	42.12	59.23	-17.11	QP	
4	*	0.3390	23.15	9.98	33.13	49.23	-16.10	AVG	
5		0.8115	20.42	10.09	30.51	56.00	-25.49	QP	
6		0.8115	11.56	10.09	21.65	46.00	-24.35	AVG	
7		1.9275	17.15	10.18	27.33	56.00	-28.67	QP	
8		1.9275	7.15	10.18	17.33	46.00	-28.67	AVG	
9		9.4965	19.75	10.72	30.47	60.00	-29.53	QP	
10		9.4965	10.15	10.72	20.87	50.00	-29.13	AVG	
11		15.5535	29.57	11.12	40.69	60.00	-19.31	QP	
12		15.5535	19.79	11.12	30.91	50.00	-19.09	AVG	

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

_	Class B (at 3m)				
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			

Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Fraguanay	Class B				
	(dBuV/m) (at 3m)				
(IVIHZ)	Peak	Average			
Above 1000	74	54			

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.2.2 MEASUREMENT INSTRUMENTS LIST

Below 1GHz & Above 1 GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 09, 2020
2	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Mar. 09, 2020
3	Amplifier	Agilent	8449B	3008A02274	Mar. 10, 2020
4	Amplifier	HP	8447D	1937A02847	Mar. 10, 2020
5	Cable	emci	LMR-400(30MHz-1GHz)(10m+2.5m)	N/A	Jun. 19, 2020
6	Cable	mitron	B10-01-01-12M	18072743	Jul. 30, 2019
7	Controller	MF	MF-7802BS	N/A	N/A
8	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
9	EMI Test Receiver	Keysight	N9038A	MY56400060	Mar. 10, 2020

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

4.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.4).

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

CUT			Model Nema	ME010Pa 567ab
				MEA1AD2-2019D
Temperature	25°C		Relative Humidity	60%
Test Voltage	AC 120V/60Hz		Polarization	Vertical
Test Mode	Mode 1			
Test Engineer	Simon Ling			
80.0 dBu∀/m				
70				
60				
50				
40				
30 × 3 × 3			. here doubt	4 5 6
20		1. h. mark and marked by	where where the state of the st	
10	hand a superior and the second			
0.0				
30.000 127.00	224.00 321.00	418.00 515.00	612.00 709.00 8	06.00 1000.00 MHz
Re No. Mk. Freq. L	ading Correct Me evel Factor r	easure- ment Limit	Margin	
MHz	IBuV dB dE	BuV/m dBuV/m	dB Detector Comm	nent
1 * 36.7900 4	6.95 -15.97 3	0.98 40.00	-9.02 QP	
2 62.0100 4	8.83 -22.78 2	6.05 40.00	-13.95 QP	
3 95.9600 4	7.03 -21.89 2	5.14 43.50	-18.36 QP	
4 793.3900 2	9.69 -4.80 2	4.89 46.00	-21.11 QP	
5 854.5000 3	0.14 -4.11 2	46.03 46.00	-19.97 QP	
6 943.7400 2	9.96 -3.41 2	6.55 46.00	-19.45 QP	

EUT	LTE Module	Model Name	ME919Bs-567ab		
Temperature	25°C	Relative Humidity	60%		
Test Voltage	AC 120V/60Hz	Polarization Horizontal			
Test Mode	Mode 1				
Test Engineer	Simon Ling				
80.0 dBu∀/m					
70					
60					
50					
40					
30 2	4		5 6 X (X)		
20 X	when the and manipulation and and the	we provide when you a sub-the way to a spectra			
10 Martine					
0.0					
30.000 127.00	224.00 321.00 418.00 515.0	0 612.00 709.00 6	306.00 1000.00 MHz		
Rea No.Mk. Freq. Le	ading Correct Measure- evel Factor ment Limit	Margin			
MHz de	BuV dB dBuV/m dBuV/m	dB Detector Comr	ment		
1 * 86.2600 55	5.71 -22.62 33.09 40.00	-6.91 QP			
2 127.9700 47	7.13 -22.27 24.86 43.50	-18.64 QP			
3 249.2200 39	9.27 -16.64 22.63 46.00	-23.37 QP			
4 416.0600 38	8.03 -12.27 25.76 46.00	-20.24 QP			
5 876.8100 30	0.10 -3.88 26.22 46.00	-19.78 QP			
6 937.9200 29	9.97 -3.44 26.53 46.00	-19.47 QP			

4.2.7 TEST RESULTS-ABOVE 1 GHZ

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of Note . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (3) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EUT			LTE	Module			Model	Name	ME919Bs-567ab		
Temper	rature		25°C				Relativ	ve Humidity 60%			
Test Vo	ltage		AC ·	120V/60I	Hz		Polariz	Polarization Vertical			
Test Mo	ode		Mod	le 1							
Test En	naineer		Sim	on Lina							
	igineei		OIIII								
80.0	dBuV/m										
70											
60											
50		3 X									
40	1	k			5	Man Alle	5. a.h.		www.	And the star man	
30	Mynum Man	nord MAN	Whyten hi	NUNIAN	_λ γγηγαλημός γους - 6	advad for a r	A North Control of the Control of th	www.	10	12	
	2 X				x		×		×	×	
20											
10											
10											
0.0 11	000 000 1500	00 2	חח חח	2500.00	3000.00	3500.00	1 4000	00 4500.00	5000.00	6000 00 MHz	
		Rea	dina	Correct	Measure-						
No. M	k. Freq.	Lev	vel	Factor	ment	Limit	Margin	1			
	MHz	dB	uV	dB	dBuV/m	dBuV/m	dB	Detector Con	nment		
1	1082.500	40.	.47	-6.78	33.69	74.00	-40.31	peak			
2	1082.500	30.	23	-6.78	23.45	54.00	-30.55	AVG			
3	1730.731	52.	20	-3.91	48.62	74.00	-25.38	реак			
4 ° 5	3102 500	40.	.38	-3.81	37 20	74.00	-17.53	neak			
6	3102.500	26	54	0.30	26.84	54.00	-30.70	AVG			
7	4007 500	33	46	1.63	35.09	74.00	-38.91	peak			
. 8	4007.500	24.	.56	1.63	26.19	54.00	-27.81	AVG			
9	4922.500	31.	73	5.23	36.96	74.00	-37.04	peak			
10	4922.500	22	03	5.23	27.26	54.00	-26.74	AVG			
11	5750.000	31.	.65	6.02	37.67	74.00	-36.33	peak			
12	5750.000	20	.89	6.02	26.91	54.00	-27.09	AVG			

сит						Madal	Nomo		10Da 567ab		
<u>EUI</u>							iname		ME919BS-56780		
Temper	rature	25°C				Relativ	/e Humidity	/ 60%	60%		
Test Vo	ltage	AC 1	20V/60F	lz		Polarization Horizontal					
Test Mo	ode	Mode	e 1								
Test En	igineer	Simo	n Ling								
80.0) dBu∀/m										
70											
60											
50											
40	3 X								11		
30	Mar Marine	Mary Markathe	แห่งผู้เหาง	and a start and the second	ntur Ann	Whenevery	www.Andersela	present	Mandhamannyahay. 12		
50	2 X		×		×		X		×		
20											
10											
0.0		0000.00						5000.00			
I	000.000 1500.00	2000.00	2500.00	JUUU.UU	3500.0	U 4000	.00 4500.00	5000.00	6000.00 MHz		
No. M	k. Freq. L	evel	Factor	ment	Limit	Margir	n				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector C	omment			
1	1075.000 4	0.19	-6.81	33.38	74.00	-40.62	peak				
2	1075.000 3	1.24	-6.81	24.43	54.00	-29.57	AVG				
3	1712.500 4	5.94	-3.95	41.99	74.00	-32.01	peak				
4 *	1712.500 3	5.42	-3.95	31.47	54.00	-22.53	AVG				
5	2487.500 3	0.09	-1.60	35.49	74.00	-38.51	peak				
6	2487.500 3	5.00	-1.60	28.64	54.00	-25.36	AVG .				
	3547.500 3	5.80	1.33	37.13	74.00	-36.87	peak				
8 	3547.500 2	0.54	1.33	21.87	24.00	-20.13	AVG				
9	4330.000 3	94.ZZ	2.02	30.84	F4.00	-37.10	реак				
10	4330.000 Z	2.65	5.75	20.03	74.00	-21.31	AVG				
12	5285.000 3	1 47	5.75	27.22	54.00	-35.00					
	0200.000 2		0.10	21.22	54.00	-20.10	AVO				

EUT	LTE Mod	lule	ſ	Model Na	me	ME919Bs	s-567ab	
Temperature	25°C	25°C			Humidity	60%		
Test Voltage	AC 120V	//60Hz	F	Polarization Vertical				
Test Mode	Mode 1							
Test Engineer	Simon Li	ng						
80.0 dBuV/m				1				
70								
60								
60					_	. 11		
50	*	Munimut Stranger	numper 5	Alla Carry Concern M		- marken when	n when any type	
40	2 X	4 ×	6 X		8 ×	10 12 X X		
30								
20								
10								
0.0 6000.000 7200.00	8400.00 960	0.00 10800.00	12000.00) 13200.00	14400.00	15600.00	18000.00MHz	
F	eading Corre	ect Measure-	1.1	Manaia				
No. Mk. Freq.	Level Fact	dRul//m			tector Com	mont		
1 8028 000	36.63 10.8	9 47 52	74 00	-26.48 n	eak	ment		
2 8028.000	26.54 10.8	9 37.43	54.00	-16.57 A	VG			
3 10344.00	33.32 14.5	6 47.88	74.00	-26.12 p	eak			
4 10344.00	22.52 14.5	6 37.08	54.00	-16.92 A	VG			
5 12252.00	31.71 17.6	9 49.40	74.00	-24.60 p	eak			
6 12252.00	20.35 17.6	9 38.04	54.00	-15.96 A	VG			
7 13896.00	30.14 20.1	1 50.25	74.00	-23.75 p	eak			
8 13896.00	18.98 20.1	1 39.09	54.00	-14.91 A	VG			
9 15924.00	33.35 17.7	1 51.06	74.00	-22.94 p	eak			
10 15924.00	22.46 17.7	40.17	54.00	-13.83 A	VG			
11 16608.00	33.02 18.7	4 51.76	74.00	-22.24 p	eak			
12 * 16608.00	21.89 18.7	4 40.63	54.00	-13.37 A	VG			

-1 IT		1.7								
:01					r			ME919BS-567ab		
emper	rature	25	°C		F	Relative	Humidity	60%	60%	
est Vo	ltage	AC	AC 120V/60Hz			Polarization Horizontal				
est Mo	ode	Mo	ode 1							
est En	ngineer	Sir	mon Ling							
80.0	dBuV/m									
70										
60										
50			1			5	Z	9	Lane and the	
40	mannam	able and a manager of the f	mon degraphic mark	in more than	annorm	6 6	8 X	10	12 X	
30			x	×		Â				
50										
20										
10										
0.0 61	000.000 7200.	00 8400.0	00 9600.00	10800.00	12000.00	13200.00) 14400.00	15600.00	18000.00MHz	
No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB D	etector Com	ment		
1	9984.000	33.46	14.03	47.49	74.00	-26.51	peak			
2	9984.000	22.98	14.03	37.01	54.00	-16.99	AVG			
3	10980.00	31.93	15.80	47.73	74.00	-26.27	peak			
4	10980.00	20.64	15.80	36.44	54.00	-17.56	AVG			
Б	12272.00	20.01	10 75	40.44	74.00	24 66	nook			
5	13272.00	30.69	18.75	49.44	74.00	-24.56	peak AVG			
5 6 7	13272.00 13272.00 14388.00	30.69 20.46 28.99	18.75 18.75 20.84	49.44 39.21 49.83	74.00 54.00 74.00	-24.56 -14.79 -24.17	peak AVG peak			
5 6 7 8	13272.00 13272.00 14388.00 14388.00	30.69 20.46 28.99 19.68	18.75 18.75 20.84 20.84	49.44 39.21 49.83 40.52	74.00 54.00 74.00 54.00	-24.56 -14.79 -24.17 -13.48	peak AVG peak AVG			
5 6 7 8 9	13272.00 13272.00 14388.00 14388.00 15420.00	30.69 20.46 28.99 19.68 32.79	18.75 18.75 20.84 20.84 17.89	49.44 39.21 49.83 40.52 50.68	74.00 54.00 74.00 54.00 74.00	-24.56 -14.79 -24.17 -13.48 -23.32	peak AVG peak AVG peak			
5 6 7 8 9 10	13272.00 13272.00 14388.00 14388.00 15420.00 15420.00	20.07 30.69 20.46 28.99 19.68 32.79 21.57	18.75 18.75 20.84 20.84 17.89 17.89	49.44 39.21 49.83 40.52 50.68 39.46	74.00 54.00 74.00 54.00 74.00 54.00	-24.56 -14.79 -24.17 -13.48 -23.32 -14.54	peak AVG peak AVG peak AVG			
5 6 7 8 9 10 11	13272.00 13272.00 14388.00 14388.00 15420.00 15420.00 16992.00	20.01 30.69 20.46 28.99 19.68 32.79 21.57 31.54	18.75 18.75 20.84 20.84 17.89 17.89 19.82	49.44 39.21 49.83 40.52 50.68 39.46 51.36	74.00 54.00 74.00 54.00 74.00 54.00 74.00	-24.56 -14.79 -24.17 -13.48 -23.32 -14.54 -22.64	peak AVG peak AVG peak AVG peak			

End of Test Report