

| r                          | CO CAD TEST DEDO                                          | Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r                          | CC SAR TEST REPO                                          | and the second sec |
| Report No:                 | E5/2019/30014                                             | ILAC-MRA TAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Applicant:                 | Huawei Technologies Co., Ltd.                             | Best Jak reary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Manufacturer:              | Huawei Technologies Co., Ltd.                             | "Straindow"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Factory:                   | Huawei Technologies Co., Ltd.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Product Name:              | Smart Phone                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Model No.(EUT):            | MAR-LX1A                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trade Mark:                | HUAWEI                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FCC ID:                    | QISMAR-LX1A                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Standards:                 | FCC 47CFR §2.1093                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date of Receipt:           | 2019-03-06                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date of Test:              | 2019-03-08 to 2019-03-15                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date of Issue:             | 2019-03-18                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test conclusion:           | PASS *                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| * In the configuration tes | ted, the EUT detailed in this report complied with the st | andards specified above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

#### Signed on behalf of SGS

Sr. Engineer

Supervisor

Matt Kuo

Date: Mar. 18, 2019

John Yeh Date: Mar. 18, 2019

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Mate Kno

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd.

f (886-2) 2298-0488

www.tw.sas.com



# **REVISION HISTORY**

| Revision Record |        |            |  |          |  |  |  |
|-----------------|--------|------------|--|----------|--|--|--|
| Version         | Remark |            |  |          |  |  |  |
| 01              |        | 2019-03-18 |  | Original |  |  |  |
|                 |        |            |  |          |  |  |  |
|                 |        |            |  |          |  |  |  |



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告報單個測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be preserved to the fullest extent of the law. prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488

www.tw.sgs.com

Member of SGS Group



# **TEST SUMMARY**

| Fraguanay Pand    | Maximum Reported SAR(W/kg) |                       |         |                             |  |  |  |
|-------------------|----------------------------|-----------------------|---------|-----------------------------|--|--|--|
| Frequency Band    | Head                       | Body-worn             | Hotspot | Product specific<br>10g SAR |  |  |  |
| GSM850            | 0.51                       | 0.35                  | 0.61    | 1                           |  |  |  |
| GSM1900           | 0.38                       | 0.22                  | 0.58    | 1                           |  |  |  |
| WCDMA Band II     | 0.81                       | 0.35                  | 0.95    | 1                           |  |  |  |
| WCDMA Band IV     | 0.69                       | 0.33                  | 0.80    | 1                           |  |  |  |
| WCDMA Band V      | 0.51                       | 0.39                  | 0.74    | 1                           |  |  |  |
| LTE Band 4        | 0.68                       | 0.25                  | 0.70    | /                           |  |  |  |
| LTE Band 7        | 0.56                       | 0.27                  | 0.63    | /                           |  |  |  |
| LTE Band 38       | 0.60                       | 0.16                  | 0.39    | /                           |  |  |  |
| WI-FI (2.4GHz)    | 0.23                       | 0.12                  | 0.29    | /                           |  |  |  |
| WI-FI (5GHz)      | 0.09                       | 0.13                  | 0.40    | 1.24                        |  |  |  |
| BT                | 0.30                       | /                     | /       | 1                           |  |  |  |
| SAR Limited(W/kg) |                            | 1.6                   |         | 4                           |  |  |  |
| N                 | aximum Simultaneo          | us Transmission SAR ( | (W/kg)  |                             |  |  |  |
| Scenario          | Head                       | Body-worn Hotspot     |         | Product specific<br>10g SAR |  |  |  |
| Sum SAR           | 0.87                       | 0.64                  | 1.31    | 1.24                        |  |  |  |
| SPLSR             | N/A                        | N/A                   | N/A     | N/A                         |  |  |  |
| SPLSR Limited     |                            | 0.04                  |         | 0.1                         |  |  |  |

The Simultaneous transmission SAR is the same test position of the main/second antenna + WiFi/BT antenna.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.



# CONTENTS

| 1 | GENERAL INFORMATION                                      | 6  |
|---|----------------------------------------------------------|----|
|   | 1.1 DETAILS OF CLIENT                                    | 6  |
|   | 1.2 TEST LOCATION                                        | 6  |
|   | 1.3 GENERAL DESCRIPTION OF EUT                           | 7  |
|   | 1.3.1 DUT Antenna Locations                              |    |
|   | 1.3.2 Dynamic antenna switching specification            |    |
|   | 1.3.3 Downlink LTE CA additional specification           |    |
|   | 1.3.4 Power reduction specification                      |    |
|   | 1.4 TEST SPECIFICATION                                   |    |
|   | 1.5 RF EXPOSURE LIMITS                                   |    |
| 2 | LABORATORY ENVIRONMENT                                   | 17 |
| 3 | SAR MEASUREMENTS SYSTEM CONFIGURATION                    |    |
|   | 3.1 THE SAR MEASUREMENT SYSTEM                           | 18 |
|   | 3.2 ISOTROPIC E-FIELD PROBE EX3DV4                       |    |
|   | 3.3 DATA ACQUISITION ELECTRONICS (DAE)                   |    |
|   | 3.4 SAM Twin Phantom                                     |    |
|   | 3.5 ELI PHANTOM                                          |    |
|   | 3.6 DEVICE HOLDER FOR TRANSMITTERS                       |    |
|   | 3.7 MEASUREMENT PROCEDURE                                |    |
|   | 3.7.1 Scanning procedure                                 |    |
|   | 3.7.2 Data Storage                                       |    |
|   | 3.7.3 Data Evaluation by SEMCAD                          | 25 |
| 4 | SAR MEASUREMENT VARIABILITY AND UNCERTAINTY              | 27 |
|   | 4.1 SAR MEASUREMENT VARIABILITY                          | 27 |
|   | 4.2 SAR MEASUREMENT UNCERTAINTY                          | 28 |
| 5 | DESCRIPTION OF TEST POSITION                             | 29 |
|   | 5.1 HEAD EXPOSURE CONDITION                              | 29 |
|   | 5.1.1 SAM Phantom Shape                                  |    |
|   | 5.1.2 EUT constructions.                                 |    |
|   | 5.1.3 Definition of the "cheek" position                 | 31 |
|   | 5.1.4 Definition of the "tilted" position                | 32 |
|   | 5.2 BODY EXPOSURE CONDITION                              | 33 |
|   | 5.2.1 Body-worn accessory exposure conditions            | 33 |
|   | 5.2.2 Wireless Router exposure conditions                | 34 |
|   | 5.3 EXTREMITY EXPOSURE CONDITIONS                        | 34 |
| 6 | SAR SYSTEM VERIFICATION PROCEDURE                        | 35 |
|   | 6.1 TISSUE SIMULATE LIQUID                               | 35 |
|   | 6.1.1 Recipes for Tissue Simulate Liquid                 | 35 |
|   | 6.1.2 Measurement for Tissue Simulate Liquid             | 36 |
|   | 6.2 SAR SYSTEM CHECK                                     |    |
|   | 6.2.1 Justification for Extended SAR Dipole Calibrations |    |
|   | 6.2.2 Summary System Check Result(s)                     |    |
|   | 6.2.3 Detailed System Check Results                      | 39 |
|   |                                                          |    |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號



| 7  | TEST CONFIGURATION                                     | 40 |
|----|--------------------------------------------------------|----|
|    | 7.1 3G SAR TEST REDUCTION PROCEDURE                    | 40 |
|    | 7.2 OPERATION CONFIGURATIONS                           | 40 |
|    | 7.2.1 GSM Test Configuration                           |    |
|    | 7.2.2 WCDMA Test Configuration                         |    |
|    | 7.2.3 WiFi Test Configuration                          |    |
|    | 7.2.4 LTE Test Configuration                           | 54 |
| 8  | TEST RESULT                                            |    |
|    | 8.1 MEASUREMENT OF RF CONDUCTED POWER                  |    |
|    | 8.1.1 Conducted Power of Main Antenna                  |    |
|    | 8.1.2 Conducted Power of Second Antenna                |    |
|    | 8.1.3 Conducted Power of Downlink LTE CA               |    |
|    | 8.1.4 Conducted Power of WIFI and BT                   |    |
|    | 8.2 STAND-ALONE SAR TEST EVALUATION                    |    |
|    | 8.3 MEASUREMENT OF SAR DATA                            |    |
|    | 8.3.1 SAR Result of GSM850                             |    |
|    | 8.3.2 SAR Result of GSM1900                            |    |
|    | 8.3.3 SAR Result of WCDMA Band II                      |    |
|    | 8.3.4 SAR Result of WCDMA Band IV                      |    |
|    | 8.3.5 SAR Result of WCDMA Band V                       |    |
|    | 8.3.1 SAR Result of LTE Band 4                         |    |
|    | 8.3.2 SAR Result of LTE Band 7                         |    |
|    | 8.3.3 SAR Result of LTE Band 38                        |    |
|    | 8.3.4 SAR Result of WIFI 2.4G                          |    |
|    | 8.3.5 SAR Result of WIFI 5G                            |    |
|    | 8.3.1 SAR Result of BT                                 |    |
|    | 8.4 MULTIPLE TRANSMITTER EVALUATION                    |    |
|    | 8.4.1 Simultaneous SAR SAR test evaluation             |    |
|    | 8.4.2 Estimated SAR                                    |    |
|    | 8.4.3 Simultaneous Transmission SAR Summation Scenario |    |
| 9  | EQUIPMENT LIST                                         |    |
| 10 |                                                        |    |
| 11 | PHOTOGRAPHS                                            |    |
| AP | PPENDIX A: DETAILED SYSTEM CHECK RESULTS               |    |
| AP | PPENDIX B: DETAILED TEST RESULTS                       |    |
| AP | PPENDIX C: CALIBRATION CERTIFICATE                     |    |
| AP | PPENDIX D: PHOTOGRAPHS                                 |    |
| AP | PPENDIX E: ANTENNA LOCATIONS                           |    |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.



# **1** General Information

# 1.1 Details of Client

| Applicant:    | Huawei Technologies Co., Ltd.                                                              |              |      |       |          |
|---------------|--------------------------------------------------------------------------------------------|--------------|------|-------|----------|
| Address:      | Administration Building, Headquarters of Huawei Longgang District, Shenzhen, 518129, P.R.C | Technologies | Co., | Ltd., | Bantian, |
| Manufacturer: | Huawei Technologies Co., Ltd.                                                              |              |      |       |          |
| Address:      | Administration Building, Headquarters of Huawei Longgang District, Shenzhen, 518129, P.R.C | Technologies | Co., | Ltd., | Bantian, |
| Factory:      | Huawei Technologies Co., Ltd.                                                              |              |      |       |          |
| Address:      | Administration Building, Headquarters of Huawei Longgang District, Shenzhen, 518129, P.R.C | Technologies | Co., | Ltd., | Bantian, |

# 1.2 Test Location

| SGS Taiwan Li  | td. Electronics & Communication Laboratory |     |
|----------------|--------------------------------------------|-----|
| No.134, Wu Ku  | ung Road, New Taipei Industrial Park       |     |
| Wuku District, | New Taipei City, Taiwan                    |     |
| Tel            | +886-2-2299-3279                           |     |
| Fax            | +886-2-2298-0488                           | CIU |
| Internet       | http://www.tw.sgs.com/                     |     |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

t (886-2) 2299-3279



# 1.3 General Description of EUT

| Device Type :                  | portable device                                          |                                                                                             |             |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Exposure Category:             | uncontrolled environm                                    | uncontrolled environment / general population                                               |             |  |  |  |  |  |
| Product Name:                  | Smart Phone                                              |                                                                                             |             |  |  |  |  |  |
| Model No.(EUT):                | MAR-LX1A                                                 | MAR-LX1A                                                                                    |             |  |  |  |  |  |
| FCC ID:                        | QISMAR-LX1A                                              |                                                                                             |             |  |  |  |  |  |
| Trade Mark:                    | HUAWEI                                                   | HUAWEI                                                                                      |             |  |  |  |  |  |
| Product Phase:                 | production unit                                          |                                                                                             |             |  |  |  |  |  |
| SN:                            |                                                          | L2NDU19220000046/ L2NDU19220000020/ L2NDU19220000016/<br>L2NDU19220000029/ L2NDU19220000050 |             |  |  |  |  |  |
| Hardware Version:              | HL3MARLM                                                 |                                                                                             |             |  |  |  |  |  |
| Software Version:              | 9.0.1.118(SP1C900E                                       | 118R1P6)                                                                                    |             |  |  |  |  |  |
| Antenna Type:                  | Inner Antenna                                            |                                                                                             |             |  |  |  |  |  |
| Device Operating Configuration | tions :                                                  | A                                                                                           |             |  |  |  |  |  |
| Modulation Mode:               | GSM: GMSK, 8PSK;                                         | WCDMA: QPSK; LTE: QPSK,<br>BT: GFSK, π/4DQPSK,8DPSk                                         |             |  |  |  |  |  |
| Device Class:                  | В                                                        |                                                                                             |             |  |  |  |  |  |
| GPRS Multi-slots Class:        | 12                                                       | EGPRS Multi-slots Class:                                                                    | 12          |  |  |  |  |  |
| HSDPA UE Category:             | 14                                                       | HSUPA UE Category                                                                           | 6           |  |  |  |  |  |
| DC-HSDPA UE Category:          | 24                                                       |                                                                                             |             |  |  |  |  |  |
|                                | 4,tested with power level 5(GSM850)                      |                                                                                             |             |  |  |  |  |  |
|                                | 1,tested with power level 0(GSM1900)                     |                                                                                             |             |  |  |  |  |  |
| Power Class                    | 3, tested with power control "all 1"(WCDMA Band II/IV/V) |                                                                                             |             |  |  |  |  |  |
|                                | 3, tested with power control Max Power(LTE Band 4/7/38)  |                                                                                             |             |  |  |  |  |  |
|                                | Band                                                     | Tx (MHz)                                                                                    | Rx (MHz)    |  |  |  |  |  |
|                                | GSM850                                                   | 824~849                                                                                     | 869~894     |  |  |  |  |  |
|                                | GSM1900                                                  | 1850~1910                                                                                   | 1930~1990   |  |  |  |  |  |
|                                | WCDMA Band II                                            | 1850~1910                                                                                   | 1930~1990   |  |  |  |  |  |
|                                | WCDMA Band IV                                            | 1710~1755                                                                                   | 2110~2155   |  |  |  |  |  |
|                                | WCDMA Band V                                             | 824~849                                                                                     | 869~894     |  |  |  |  |  |
|                                | LTE Band 4                                               | 1710~1755                                                                                   | 2110~2155   |  |  |  |  |  |
|                                | LTE Band 7                                               | 2500~2570                                                                                   | 2620~2690   |  |  |  |  |  |
| Frequency Bands:               | LTE Band 38                                              | 2570~2620                                                                                   | 2570~2620   |  |  |  |  |  |
|                                | Bluetooth                                                | 2400~2483.5                                                                                 | 2400~2483.5 |  |  |  |  |  |
|                                | 2.4G Wi-Fi                                               | 2400~2483.5                                                                                 | 2400~2483.5 |  |  |  |  |  |
|                                | 2.40 00-11                                               | 5150~5250                                                                                   | 5150~5250   |  |  |  |  |  |
|                                |                                                          |                                                                                             |             |  |  |  |  |  |
|                                | 5G Wi-Fi                                                 | 5250~5350                                                                                   | 5250~5350   |  |  |  |  |  |
|                                |                                                          | 5470~5725                                                                                   | 5470~5725   |  |  |  |  |  |
|                                |                                                          | 5725~5850                                                                                   | 5725~5850   |  |  |  |  |  |
|                                | NFC                                                      | 13.56                                                                                       | 13.56       |  |  |  |  |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



|                        | Model:          | HB356687ECW                                          |
|------------------------|-----------------|------------------------------------------------------|
| Pottory Information 1# | Normal Voltage: | +3.82V                                               |
| Battery Information1#: | Rated capacity: | 3240mAh                                              |
|                        | Manufacturer:   | Huawei Technologies Co., Ltd.(Manufacturer: Desay)   |
|                        | Model:          | HB356687ECW                                          |
| Pottony Information 2# | Normal Voltage: | +3.82V                                               |
| Battery Information2#: | Rated capacity: | 3240mAh                                              |
|                        | Manufacturer:   | Huawei Technologies Co., Ltd.(Manufacturer: SCUD)    |
|                        | Model:          | HB356687ECW                                          |
| Battery Information3#: | Normal Voltage: | +3.82V                                               |
|                        | Rated capacity: | 3240mAh                                              |
|                        | Manufacturer:   | Huawei Technologies Co., Ltd.(Manufacturer: Sunwoda) |
| Headset Information1#: | Model:          | MEND1532B528A02                                      |
| neauset information #. | Manufacturer:   | Jiangxi Lianchuang Hongsheng Electronic Co., LTD.    |
| Headset Information2#: | Model:          | 1293-3283-3.5mm-322                                  |
| neadset mormation2#.   | Manufacturer:   | Boluo County Quancheng Electronic Co., Ltd.          |
| Headset Information3#: | Model:          | MEND1532B528B00                                      |
| neadset mormations#.   | Manufacturer:   | Jiangxi Lianchuang Hongsheng Electronic Co., LTD.    |
| Headset Information4#: | Model:          | 1293-3283-3.5mm-336                                  |
|                        | Manufacturer:   | Boluo County Quancheng Electronic Co., Ltd.          |
| Headact Information5#  | Model:          | EPAB542-2WH06-DH                                     |
| Headset Information5#: | Manufacturer:   | Hong Fu Jin Precision Industry (Shenzhen) Co., LTD.  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告報單個測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be preserved to the fullest extent of the law. prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279



## 1.3.1 DUT Antenna Locations

Please see the Appendix E.

The test device is a mobile phone. The overall diagonal dimension of this device is 161 mm.

According to the distance between LTE/WCDMA/GSM&WIFI&BT antennas and the sides of the EUT we can draw the conclusion that:

| EUT Sides for SAR Testing                  |                                     |     |     |     |     |     |        |
|--------------------------------------------|-------------------------------------|-----|-----|-----|-----|-----|--------|
| Mode Exposure Condition Front Back Left Ri |                                     |     |     |     |     |     | Bottom |
| Ant.1(Main Ant.)                           | Hotspot/Product<br>specific 10g SAR | Yes | Yes | Yes | Yes | No  | Yes    |
| Ant.2(Second Ant.)                         | Hotspot/Product<br>specific 10g SAR | Yes | Yes | Yes | Yes | Yes | No     |
| Ant.3(WIFI&BT Ant.)                        | Yes                                 | Yes | No  | Yes | Yes | No  |        |

Table 1: EUT Sides for SAR Testing Note:

- When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested. 1)
- 2) main antenna(Ant1) and Secondary antenna (Ant 2) can't transmit simultaneously which will be chosen based on the RSSI. Only one antenna can be used for 2G/3G/4G transmission at a time.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司

SGS Taiwan Ltd.

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 www.tw.sas.com



### 1.3.2 Dynamic antenna switching specification

The device has two 2G/3G/4G Tx antennas (Main Antenna and Second Antenna). It can transmit from either Main Antenna or Second Antenna, but they cannot transmit simultaneously.

SAR test procedure for dynamic antenna switching is as below:

The Main Antenna and Second Antenna are set to the MAX transmit power level respectively and test the SAR respectively in all applicable RF exposure conditions. Some commands or test scripts are supplied to fix the operation state and choose the antenna so that only one TX antenna is chosen and tested at a time. All independent antennas will be completely covered by the appropriate SAR measurements and all simultaneous transmission possibilities will be fully considered to ensure SAR compliance.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

> No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279 www.tw.sas.com



### 1.3.3 Downlink LTE CA additional specification

The device supports downlink LTE Carrier Aggregation (CA) only. When carrier aggregation applies, implementation and measurement details for the following are necessary.

a) Intra-band carrier aggregation requirements for downlink.

b) Support of contiguous component carriers for intra-band aggregation.

The possible downlink LTE CA combinations supported by this device are as below tables per 3GPP TS 36.101 V12.5.0. The conducted power measurement results of downlink LTE CA are provided in Section 8.3 of this report per 3GPP TS 36.521-1 V12.3.0. The downlink LTE CA SAR test is not required since the maximum output power for downlink LTE CA was not more than 0.25dB higher than the maximum output power for without downlink LTE CA.

Intra-band contiguous CA operating bands:

| E-UTRA  | E-UTRA | Uplink (UL) operating band                 | Downlink (DL) operating band               | Duplex |
|---------|--------|--------------------------------------------|--------------------------------------------|--------|
| CA Band | Band   | BS receive / UE transmit                   | BS transmit / UE receive                   | Mode   |
|         |        | F <sub>UL_low</sub> – F <sub>UL_high</sub> | F <sub>DL_low</sub> – F <sub>DL_high</sub> |        |
| CA_7    | 7      | 2500 MHz – 2570 MHz                        | 2620 MHz – 2690 MHz                        | FDD    |

contiguous intra-band CA:

|                         |                          | E-UTRA CA configuration / Bandwidth combination set            |                                               |                                               |                                               |                                  |                                 |  |  |  |
|-------------------------|--------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------|---------------------------------|--|--|--|
| E-UTRA CA configuration |                          | Component carriers in order of increasing carrier<br>frequency |                                               |                                               |                                               |                                  |                                 |  |  |  |
|                         | Uplink CA configurations | Channel<br>bandwidths<br>for carrier<br>[MHz]                  | Channel<br>bandwidths<br>for carrier<br>[MHz] | Channel<br>bandwidths<br>for carrier<br>[MHz] | Channel<br>bandwidths<br>for carrier<br>[MHz] | aggregated<br>bandwidth<br>[MHz] | Bandwidth<br>combination<br>set |  |  |  |
|                         |                          | 15                                                             | 15                                            |                                               |                                               | - 40                             | 0                               |  |  |  |
|                         |                          | 20                                                             | 20                                            |                                               |                                               |                                  |                                 |  |  |  |
|                         |                          | 10                                                             | 20                                            |                                               |                                               |                                  |                                 |  |  |  |
| CA_7C                   | NA                       | 15                                                             | 15, 20                                        | 1                                             |                                               | 40                               | 1                               |  |  |  |
|                         |                          | 20                                                             | 10, 15, 20                                    |                                               |                                               | - 40                             |                                 |  |  |  |
|                         |                          | 15                                                             | 10, 15                                        |                                               |                                               |                                  | 0                               |  |  |  |
|                         |                          | 20                                                             | 15, 20                                        |                                               |                                               |                                  | 2                               |  |  |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



#### Test frequencies for CA 7C:

| Range   | CC-Combo /<br>NRB_agg<br>[RB] |            | G               | CC1<br>Note1             |                 |                          |            |                 | CC2<br>Note1             |                 |                          |
|---------|-------------------------------|------------|-----------------|--------------------------|-----------------|--------------------------|------------|-----------------|--------------------------|-----------------|--------------------------|
|         |                               | BW<br>[RB] | N <sub>UL</sub> | f <sub>∪∟</sub><br>[MHz] | N <sub>DL</sub> | f <sub>DL</sub><br>[MHz] | BW<br>[RB] | N <sub>UL</sub> | f <sub>∪∟</sub><br>[MHz] | N <sub>DL</sub> | f <sub>DL</sub><br>[MHz] |
| Low     | 50+100                        | 50         | 20805           | 2505.5                   | 2805            | 2625.5                   | 100        | 20949           | 2519.9                   | 2949            | 2639.9                   |
|         |                               | 100        | 20850           | 2510                     | 2850            | 2630                     | 50         | 20994           | 2524.4                   | 2994            | 2644.4                   |
| 6.00    | 75+75                         | 75         | 20825           | 2507.5                   | 2825            | 2627.5                   | 75         | 20975           | 2522.5                   | 2975            | 2642.5                   |
|         | 75+100                        | 75         | 20828           | 2507.8                   | 2828            | 2627.8                   | 100        | 20999           | 2524.9                   | 2999            | 2644.9                   |
|         |                               | 100        | 20850           | 2510                     | 2850            | 2630                     | 75         | 21021           | 2527.1                   | 3021            | 2647.1                   |
|         | 100+100                       | 100        | 20850           | 2510                     | 2850            | 2630                     | 100        | 21048           | 2529.8                   | 3048            | 2649.8                   |
| Mid     | 50+100                        | 50         | 21006           | 2525.6                   | 3006            | 2645.6                   | 100        | 21150           | 2540                     | 3150            | 2660                     |
|         | -                             | 100        | 21051           | 2530.1                   | 3051            | 2650.1                   | 50         | 21195           | 2544.5                   | 3195            | 2664.5                   |
|         | 75+75                         | 75         | 21025           | 2527.5                   | 3025            | 2647.5                   | 75         | 21175           | 2542.5                   | 3175            | 2662.5                   |
|         | 75+100                        | 75         | 21003           | 2525.3                   | 3003            | 2645.3                   | 100        | 21174           | 2542.4                   | 3174            | 2662.4                   |
|         |                               | 100        | 21026           | 2527.6                   | 3026            | 2647.6                   | 75         | 21197           | 2544.7                   | 3197            | 2664.7                   |
|         | 100+100                       | 100        | 21001           | 2525.1                   | 3001            | 2645.1                   | 100        | 21199           | 2544.9                   | 3199            | 2664.9                   |
| High    | 50+100                        | 50         | 21206           | 2545.6                   | 3206            | 2665.6                   | 100        | 21350           | 2560                     | 3350            | 2680                     |
| -       |                               | 100        | 21251           | 2550.1                   | 3251            | 2670.1                   | 50         | 21395           | 2564.5                   | 3395            | 2684.5                   |
|         | 75+75                         | 75         | 21225           | 2547.5                   | 3225            | 2667.5                   | 75         | 21375           | 2562.5                   | 3375            | 2682.5                   |
|         | 75+100                        | 75         | 21179           | 2542.9                   | 3179            | 2662.9                   | 100        | 21350           | 2560                     | 3350            | 2680                     |
|         |                               | 100        | 21201           | 2545.1                   | 3201            | 2665.1                   | 75         | 21372           | 2562.2                   | 3372            | 2682.2                   |
| 100     | 100+100                       | 100        | 21152           | 2540.2                   | 3152            | 2660.2                   | 100        | 21350           | 2560                     | 3350            | 2680                     |
| Note 1: | Carriers in incr              | reasing f  | requency        | / order.                 |                 | •                        |            |                 | 10                       |                 |                          |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告報單個測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be preserved to the fullest extent of the law. prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



### 1.3.4 Power reduction specification

This device uses a single fixed level of power reduction through static table look-up for SAR compliance and it is triggered by a single event or operation

- A fixed level power reduction is applied for some frequency bands when hotspot mode becomes active. 1) When the hotspot is disabled, the power value will be recovered.
- A fixed level power reduction is applied for some frequency bands when handset operate "held to the ear" 2) condition, the power reduction triggered by Accelerometer & Gyroscope and audio receiver detection. The audio receiver detection is used to determine head or body scenario. The Accelerometer & Gyroscope sensor is used to determine proximity to head scenario.

The following tables summarize the key power reduction information. The detailed full power which is the Max. power the state can use and reduced tune-up specifications and conducted power measurement results are provided in Section 8 of this report.

| Second antenna P                                                                                                                                                     | ower Redu | ction Level | Amount ( | dBm)   |        |        |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------|--------|--------|--------|---------|
| Power Reduction Scenario                                                                                                                                             | GSM850    | WCDMA       | WCDMA    | WCDMA  | LTE    | LTE    | LTE     |
|                                                                                                                                                                      | 0310000   | Band II     | Band IV  | Band V | Band 4 | Band 7 | Band 38 |
| Full Power/Receiver off(body)                                                                                                                                        | 0.0       | 0.0         | 0.0      | 0.0    | 0.0    | 0.0    | 0.0     |
| Receiver on(head)                                                                                                                                                    | 2.0       | 5.4         | 4.2      | 2.5    | 4.2    | 5.5    | 5.0     |
| WiFi 2.4G (Connect/P2P/Hotspot), BT off or<br>WiFi 5.0G (Connect/P2P/Hotspot), BTNA or<br>WiFi 2.4G + P2P 5.0G + BT off /WiFi 5.0G +<br>P2P 2.4G + BT off (rec off)  | 0.0       | 0.5         | 0.0      | 0.0    | 0.0    | 0.0    | 0.0     |
| WiFi 2.4G (Connect/P2P/Hotspot), BT off or<br>WiFi 5.0G (Connect/P2P/Hotspot), BTNA or<br>WiFi 2.4G + P2P 5.0G + BT off or WiFi 5.0G +<br>P2P 2.4G + BT off (rec on) | 0.0       | 4.6         | 0.0      | 0.0    | 0.0    | 0.0    | 0.0     |

| Main antenna Power Reduction Level Amount (dBm) |     |  |  |  |
|-------------------------------------------------|-----|--|--|--|
| Power Reduction Scenario WCDMA Band II          |     |  |  |  |
| Full Power/Receiver on(head)                    | 0.0 |  |  |  |
| Receiver off(body) 0.5                          |     |  |  |  |

| WiFi antenna Power Reduction Level Amount (dBm) |     |     |  |  |  |
|-------------------------------------------------|-----|-----|--|--|--|
| Power Reduction Scenario WiFi 2.4G WiFi 5G      |     |     |  |  |  |
| Receiver off                                    | 0.0 | 0.0 |  |  |  |
| Receiver on 6.9 8.4                             |     |     |  |  |  |

Note: For Head SAR test of 2G/3G/4G Antenna and WiFi 2.4G Antenna, Standalone Head SAR should be evaluated at with audio receiver on. As the audio receiver only works in voice mode when the user is making a call in head scenario, and the lack of the third-party VoIP server and the unstandardized VOIP operating characteristics, so a test script is used to trigger the receiver on during the test. The test script function is only used to trigger audio receiver on and simulate voice and VOIP usage scene. It can be ensured that the unmodified settings in production units, including maximum output power, amplifier gain and other RF performance or tuning parameters, are used for SAR measurement.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279

www.tw.sas.com

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Report No.: E5/2019/30014 Page : 14 of 131



This device uses the mobile country code (MCC) to indicate whether the users in CE countries or FCC 3) countries. The selection between CE countries and FCC countries power levels is based on the country code detection mechanism. It can determine the countries where users are and set the relevant power level for 4G and WiFi antennas accordingly. The conducted power measurement results are provided in Section 8 of this report.

| Power Reduction Level Amount (dBm) |                   |              |             |              |     |
|------------------------------------|-------------------|--------------|-------------|--------------|-----|
| Band/Mode(Ant)                     | MCC OF CE COUNTRY |              | MCC OF FC   | Full Power   |     |
| Band/Mode(Ant)                     | Receiver on       | Receiver off | Receiver on | Receiver off |     |
| LTE Band 7<br>(Second antenna)     | 3.0               | 0.0          | 5.5         | 0.0          | 0.0 |
| LTE Band 38<br>(Second antenna)    | 2.2               | 0.0          | 5.0         | 0.0          | 0.0 |
| WiFi 2.4G<br>802.11b               | 7.0               | 0.0          | 6.9         | 0.0          | 0.0 |
| WiFi 2.4G<br>802.11g               | 7.9               | 0.0          | 8.5         | 5.0          | 0.0 |
| WiFi 2.4G<br>802.11n 20M           | 6.5               | 0.0          | 7.0         | 4.5          | 0.0 |
| WiFi 2.4G<br>802.11n 40M           | 6.8               | 0.0          | 7.0         | 6.5          | 0.0 |
| WiFi 5G<br>802.11a                 | 9.4               | 0.0          | 9.4         | 1.0          | 0.0 |
| WiFi 5G<br>802.11n 20M             | 9.0               | 0.0          | 9.0         | 1.0          | 0.0 |
| WiFi 5G<br>802.11n 40M             | 9.0               | 0.0          | 9.0         | 3.0          | 0.0 |
| WiFi 5G<br>802.11ac 20M            | 9.0               | 0.0          | 9.0         | 1.0          | 0.0 |
| WiFi 5G<br>802.11ac 40M            | 9.0               | 0.0          | 9.0         | 3.0          | 0.0 |
| WiFi 5G<br>802.11ac 80M            | 9.0               | 0.0          | 9.0         | 3.0          | 0.0 |

For FCC SAR test, SAR test should be evaluated at the power level of FCC mobile country code for each exposure conditions.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



# 1.4 Test Specification

| Identity              | Document Title                                                                                                                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC 47CFR §2.1093     | Radiofrequency Radiation Exposure Evaluation: Portable Devices                                                                                                                    |
| IEEE Std C95.1 – 1991 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.                                                        |
| IEEE 1528-2013        | Recommended Practice for Determining the Peak Spatial-Average<br>Specific Absorption Rate (SAR) in the Human Head from Wireless<br>Communications Devices: Measurement Techniques |
| KDB 941225 D01        | 3G SAR Measurement Procedures v03r01                                                                                                                                              |
| KDB 941225 D05        | SAR for LTE Devices v02r05                                                                                                                                                        |
| KDB 941225 D05A       | LTE Rel.10 KDB Inquiry Sheet v01r02                                                                                                                                               |
| KDB 941225 D06        | Hotspot Mode SAR v02r01                                                                                                                                                           |
| KDB 248227 D01        | SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02                                                                                                                                     |
| KDB 648474 D04        | Handset SAR v01r03                                                                                                                                                                |
| KDB447498 D01         | General RF Exposure Guidance v06                                                                                                                                                  |
| KDB 865664 D01        | SAR Measurement 100 MHz to 6 GHz v01r04                                                                                                                                           |
| KDB 865664 D02        | RF Exposure Reporting v01r02                                                                                                                                                      |
| KDB 616217 D04        | SAR for laptop and tablets v01r02                                                                                                                                                 |
| KDB 690783 D01        | SAR Listings on Grants v01r03                                                                                                                                                     |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 www.tw.sgs.com



## 1.5 RF exposure limits

| Human Exposure                                  | Uncontrolled Environment<br>General Population | Controlled Environment<br>Occupational |  |
|-------------------------------------------------|------------------------------------------------|----------------------------------------|--|
| Spatial Peak SAR*<br>(Brain*Trunk)              | 1.60 mW/g                                      | 8.00 mW/g                              |  |
| Spatial Average SAR**<br>(Whole Body)           | 0.08 mW/g                                      | 0.40 mW/g                              |  |
| Spatial Peak SAR***<br>(Hands/Feet/Ankle/Wrist) | 4.00 mW/g                                      | 20.00 mW/g                             |  |

#### Notes:

\* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

\*\* The Spatial Average value of the SAR averaged over the whole body.

\*\*\* The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488

www.tw.sas.com



#### Laboratory Environment 2

| Temperature                                                                                                                                                                                     | Min. = 18°C, Max. = 25 °C |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Relative humidity                                                                                                                                                                               | Min. = 30%, Max. = 70%    |  |  |
| Ground system resistance                                                                                                                                                                        | < 0.5 <b>Ω</b>            |  |  |
| Ambient noise is checked and found very low and in compliance with requirement of standards.<br>Reflection of surrounding objects is minimized and in compliance with requirement of standards. |                           |  |  |

Table 2: The Ambient Conditions

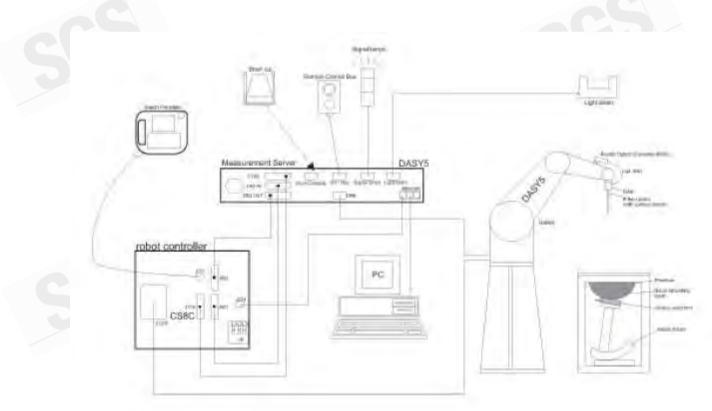
Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 www.tw.sgs.com



#### SAR Measurements System Configuration 3 3.1 The SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR=  $\sigma$  (|Ei|2)/  $\rho$  where  $\sigma$  and  $\rho$  are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.



F-1. SAR Measurement System Configuration

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

> No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279

台灣檢驗科技股份有限公司

f (886-2) 2298-0488

Member of SGS Group

www.tw.sas.com



- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

## 3.2 Isotropic E-field Probe EX3DV4

| /             | Symmetrical design with triangular core<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, e.g., DGBE)                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration   | ISO/IEC 17025 calibration service available.                                                                                                                                                                  |
| Frequency     | 10 MHz to > 6 GHz<br>Linearity: ± 0.2 dB (30 MHz to 6 GHz)                                                                                                                                                    |
| Directivity   | ± 0.3 dB in TSL (rotation around probe axis)<br>± 0.5 dB in TSL (rotation normal to probe axis)                                                                                                               |
| Dynamic Range | 10 μW/g to > 100 mW/g<br>Linearity: ± 0.2 dB (noise: typically < 1 μW/g)                                                                                                                                      |
| Dimensions    | Overall length: 337 mm (Tip: 20 mm)<br>Tip diameter: 2.5 mm (Body: 12 mm)<br>Typical distance from probe tip to dipole centers: 1 mm                                                                          |
| Application   | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. |
| Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI                                                                                                                                                                |

t (886-2) 2299-3279

```
f (886-2) 2298-0488
```

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



# 3.3 Data Acquisition Electronics (DAE)

| Model                | DAE                                                                                                                                                                                                                                                                      |       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Construction         | Signal amplifier, multiplexer, A/D converter<br>and control logic. Serial optical link for<br>communication with DASY4/5 embedded<br>system (fully remote controlled). Two step<br>probe touch detector for mechanical<br>surface detection and emergency robot<br>stop. | 1 Ale |
| Measurement<br>Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)                                                                                                                                                                                                    |       |
| Input Offset Voltage | < 5µV (with auto zero)                                                                                                                                                                                                                                                   |       |
| Input Bias Current   | < 50 f A                                                                                                                                                                                                                                                                 |       |
| Dimensions           | 60 x 60 x 68 mm                                                                                                                                                                                                                                                          |       |

## 3.4 SAM Twin Phantom

| Material                                | Vinylester, glass fiber reinforced (VE-<br>GF)                        |       |
|-----------------------------------------|-----------------------------------------------------------------------|-------|
| Liquid Compatibility                    | Compatible with all SPEAG tissue simulating liquids (incl. DGBE type) | an in |
| Shell Thickness                         | $2 \pm 0.2$ mm (6 ± 0.2 mm at ear point)                              | I     |
| Dimensions<br>(incl. Wooden<br>Support) | Length: 1000 mm<br>Width: 500 mm<br>Height: adjustable feet           | do -  |
| Filling Volume                          | approx. 25 liters                                                     |       |
| Wooden Support                          | SPEAG standard phantom table                                          |       |

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd.



## 3.5 ELI Phantom

| Material        | Vinylester, glass fiber reinforced (VE-GF) |  |
|-----------------|--------------------------------------------|--|
| Liquid          | Compatible with all SPEAG tissue           |  |
| Compatibility   | simulating liquids (incl. DGBE type)       |  |
| Shell Thickness | 2.0 ± 0.2 mm (bottom plate)                |  |
| Dimensions      | Major axis: 600 mm                         |  |
|                 | Minor axis: 400 mm                         |  |
| Filling Volume  | approx. 30 liters                          |  |
| Wooden Support  | SPEAG standard phantom table               |  |

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's indication of this document is advised that information contained reflects the Company's information in the office of the intervention only and within the initial contained reflects and company's information of the intervention of the intervention of the initial contained reflects and company's information of the intervention of the initial contained reflects and company's information of the initial contained reflects and company's information of the initial contained reflects and company's initial contained refle prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 www.tw.sas.com



## 3.6 Device Holder for Transmitters



F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon$ =3 and loss tangent  $\delta$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



#### 3.7 Measurement procedure

### 3.7.1 Scanning procedure

### Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

### Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm\*15mm or 12mm\*12mm or 10mm\*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

### Step 3: Zoom scan

Around this point, a volume of 32mm\*32mm\*30mm (f≤2GHz), 30mm\*30mm\*30mm (f for 2-3GHz) and 24mm\*24mm\*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

> No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279 www.tw.sas.com



|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 2.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 0112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30°±1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20°±1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} 3-4 \ \text{GHz:} \leq 12 \ \text{mm} \\ 4-6 \ \text{GHz:} \leq 10 \ \text{mm} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| oatial resolu                                                                                             | ation: ∆x <sub>Area</sub> , ∆y <sub>Area</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | When the x or y dimension of the test device, in the<br>measurement plane orientation, is smaller than the above,<br>the measurement resolution must be ≤ the corresponding<br>x or y dimension of the test device with at least one<br>measurement point on the test device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| spatial reso                                                                                              | lution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3 - 4 \text{ GHz}: \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz}: \le 4 \text{ mm}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| uniform                                                                                                   | grid: ∆z <sub>Z∞m</sub> (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\leq 5 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} 3-4 \ \text{GHz:} \leq 4 \ \text{mm} \\ 4-5 \ \text{GHz:} \leq 3 \ \text{mm} \\ 5-6 \ \text{GHz:} \leq 2 \ \text{mm} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| graded                                                                                                    | ∆z <sub>Zoom</sub> (1): between<br>1 <sup>st</sup> two points closest<br>to phantom surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\leq 4 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| grid<br>∆z <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| x, y, z                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\geq$ 30 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 – 4 GHz: ≥ 28 mm<br>4 – 5 GHz: ≥ 25 mm<br>5 – 6 GHz: ≥ 22 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                           | spatial resolution of the second seco | $\frac{1}{2} \frac{1}{2} \frac{1}$ | from probe axis to phantom<br>measurement location $30^{\circ} \pm 1^{\circ}$ $30^{\circ} \pm 1^{\circ}$ $\leq 2 \text{ GHz}: \leq 15 \text{ mm}$<br>$2 - 3 \text{ GHz}: \leq 12 \text{ mm}$ $2 - 3 \text{ GHz}: \leq 12 \text{ mm}$ When the x or y dimension o<br>measurement plane orientation<br>the measurement resolution r<br>x or y dimension of the test d<br>measurement point on the testspatial resolution: $\Delta x_{Zoom}, \Delta y_{Zoom}$ $\leq 2 \text{ GHz}: \leq 8 \text{ mm}$<br>$2 - 3 \text{ GHz}: \leq 5 \text{ mm}^*$ uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}$ graded<br>grid $\Delta z_{Zoom}(n)$ :<br>between subsequent<br>points $\Delta z_{Zoom}(n>1)$ :<br>between subsequent<br>points $\leq 1.5 \cdot \Delta z$ |  |  |

### Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.



### 3.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

## 3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

| Probe parameters: - Sensitivi | Normi, ai0, ai1, ai2 |   |
|-------------------------------|----------------------|---|
| - Conversion factor           | ConvFi               |   |
| - Diode compression point     | Dcpi                 |   |
| Device parameters: - Frequen  | су                   | f |
| - Crest factor                | cf                   |   |
| Media parameters: - Conduct   | ivity                | 3 |
| - Density                     | ρ                    |   |

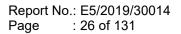
These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

# $V_i = U_i + U_i^2 \cdot c f / d c p_i$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp i = diode compression point (DASY parameter)


From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:  $E_{i} = (V_{i} / Norm_{i} \cdot ConvF)^{1/2}$ H-field probes:

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Member of SGS Group





# $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

Vi = compensated signal of channel i With (i = x, y, z) (i = x, y, z)Normi = sensor sensitivity of channel I [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

# $E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$

The primary field data are used to calculate the derived field units.

# $SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

with SAR = local specific absorption rate in mW/g Etot = total field strength in V/m  $\sigma$ = conductivity in [mho/m] or [Siemens/m]  $\epsilon$ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

# $P_{pwe} = E_{tot}^2 2 / 3770$ or $P_{pwe} = H_{tot}^2 \cdot 37.7$

Ppwe = equivalent power density of a plane wave in mW/cm2 with Etot = total electric field strength in V/m Htot = total magnetic field strength in A/m

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



# SAR measurement variability and uncertainty

## 4.1 SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04. SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is  $\ge$  0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is  $\ge$  1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is  $\geq$ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

t (886-2) 2299-3279 台灣檢驗科技股份有限公司

SGS Taiwan Ltd.

No.134.Wu Kung Road. New Taipei Industrial Park. Wuku District. New Taipei City. Taiwan 24803/新北市五股區新北產業園區五工路134號 f (886-2) 2298-0488

www.tw.sas.com

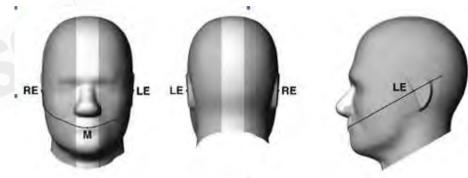


## 4.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

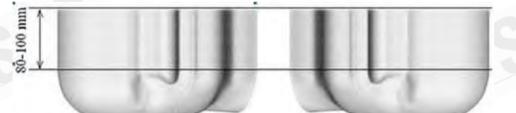
Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format the contract is back to be a the contraction is decreased in the contraction of the contraction is decreased in the contraction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be contracted by the full the form. prosecuted to the fullest extent of the law.

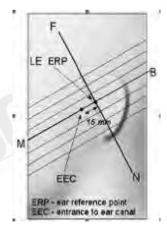

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 f (886-2) 2298-0488 台灣檢驗科技股份有限公司



#### **Description of Test Position** 5


## 5.1 Head Exposure Condition

**SAM** Phantom Shape 5.1.1




Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration F-3. purposes only-procedures in this recommended practice are intended primarily for the phantom setup.

Note: The centre strip including the nose region has a different thickness tolerance.

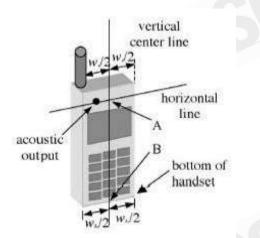


F-4 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

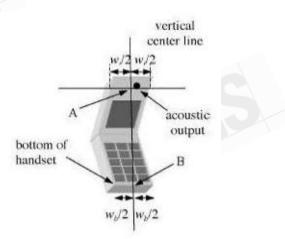


E (ERF 10 mm squ

F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven crosssectional plane locations


F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.


除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



#### 5.1.2 **EUT** constructions



F-7. Handset vertical and horizontal reference lines-"fixed case"



F-8. Handset vertical and horizontal reference lines-"clam-shell case"



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司

SGS Taiwan Ltd.

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 www.tw.sgs.com

Member of SGS Group

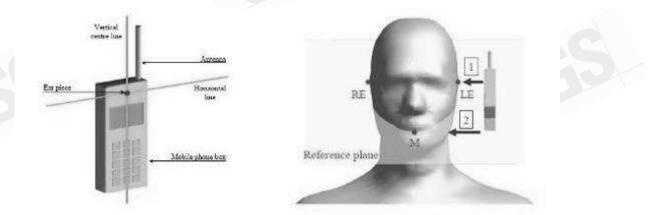


#### 5.1.3 Definition of the "cheek" position

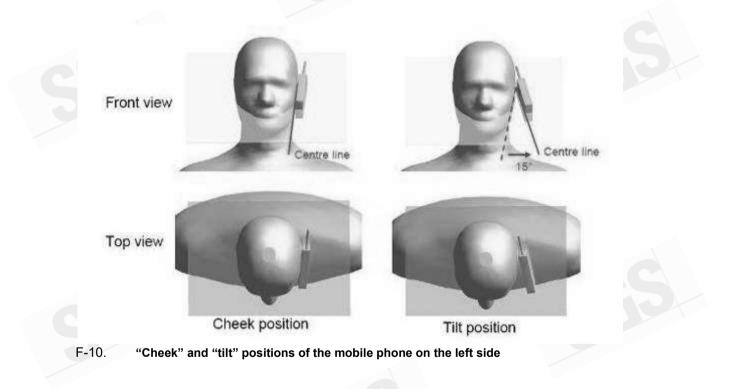
a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE. b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.


No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 f (886-2) 2298-0488 www.tw.sas.com




#### 5.1.4 Definition of the "tilted" position

a) Position the device in the "cheek" position described above;

b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.



F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's indication of this document is advised that information contained reflects the Company's information in the office of the intervention only and within the initial contained reflects and company's information of the intervention of the intervention of the initial contained reflects and company's information of the intervention of the initial contained reflects and company's information of the initial contained reflects and company's information of the initial contained reflects and company's initial contained refle prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. www.tw.sas.com



# 5.2 Body Exposure Condition

#### 5.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Bodyworn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.



F-11. Test positions for body-worn devices

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

> No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. www.tw.sas.com

t (886-2) 2299-3279 台灣檢驗科技股份有限公司



#### 5.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W  $\ge$  9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

# 5.3 Extremity exposure conditions

Per FCC KDB 648474D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the device is marketed as "Phablet". The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for Product Specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Due to the SAR result, the main/second antenna frequency bands are not required to test with 0mm for the Product Specific 10-g SAR.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



#### **SAR System Verification Procedure** 6

#### **Tissue Simulate Liquid** 6.1

#### 6.1.1 **Recipes for Tissue Simulate Liquid**

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

| Ingredients                                                                                                     | Frequency (MHz)                                                                                                              |             |            |       |           |       |           |       |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------|-----------|-------|-----------|-------|--|--|
| (% by weight)                                                                                                   | 450                                                                                                                          |             | 700-950    |       | 1700-2000 |       | 2300-2700 |       |  |  |
| Tissue Type                                                                                                     | Head                                                                                                                         | Body        | Head       | Body  | Head      | Body  | Head      | Body  |  |  |
| Water                                                                                                           | 38.56                                                                                                                        | 51.16       | 40.30      | 50.75 | 55.24     | 70.17 | 55.00     | 68.53 |  |  |
| Salt (NaCl)                                                                                                     | 3.95                                                                                                                         | 1.49        | 1.38       | 0.94  | 0.31      | 0.39  | 0.2       | 0.1   |  |  |
| Sucrose                                                                                                         | 56.32                                                                                                                        | 46.78       | 57.90      | 48.21 | 0         | 0     | 0         | 0     |  |  |
| HEC                                                                                                             | 0.98                                                                                                                         | 0.52        | 0.24       | 0     | 0         | 0     | 0         | 0     |  |  |
| Bactericide                                                                                                     | 0.19                                                                                                                         | 0.05        | 0.18       | 0.10  | 0         | 0     | 0         | 0     |  |  |
| Tween                                                                                                           | 0                                                                                                                            | 0           | 0          | 0     | 44.45     | 29.44 | 44.80     | 31.37 |  |  |
| Water: De-ionized                                                                                               | Sodium ChlorideSucrose: 98*% Pure Sucroseed, 16 MΩ* resistivityHEC: Hydroxyethyl Celluloseethylene (20) sorbitan monolaurate |             |            |       |           |       |           |       |  |  |
| HSL5GHz is comp<br>Water: 50-65%<br>Mineral oil: 10-30 <sup>o</sup><br>Emulsifiers: 8-25%<br>Sodium salt: 0-1.5 | %                                                                                                                            | he followir | ng ingredi | ents: |           |       |           |       |  |  |
| MSL5GHz is com<br>Water: 64-78%<br>Mineral oil: 11-18 <sup>0</sup><br>Emulsifiers: 9-15%<br>Sodium salt: 2-3%   | %                                                                                                                            | he followi  | ng ingredi | ents: |           |       |           |       |  |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.



## 6.1.2 Measurement for Tissue Simulate Liquid

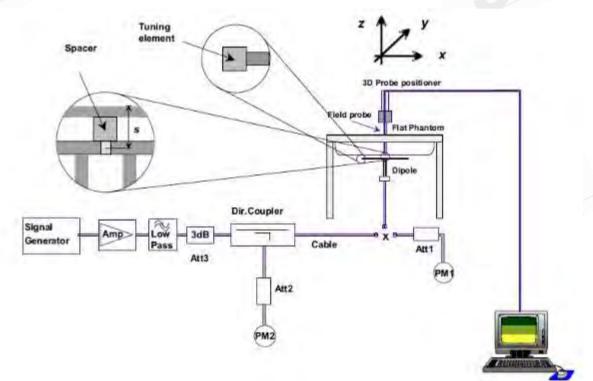
The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity ( $\sigma$ ) and Permittivity ( $\rho$ ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

| Tissue Type Measured<br>Frequency<br>(MHz) |                | Target Tissue (±5%)    |                     | Measured Tissue |       | Liquid<br>Temp. | Measured  |
|--------------------------------------------|----------------|------------------------|---------------------|-----------------|-------|-----------------|-----------|
|                                            | ٤ <sub>r</sub> | σ(S/m)                 | ٤ <sub>r</sub>      | σ(S/m)          | (°C)  | Date            |           |
| 835 Head                                   | 835            | 41.5<br>(39.43~43.58)  | 0.90<br>0.86~0.95)  | 42.040          | 0.909 | 22.1            | 2019/3/11 |
| 835 Body                                   | 835            | 55.2<br>(52.44~57.96)  | 0.97<br>0.92~1.02)  | 57.435          | 1.012 | 22.1            | 2019/3/12 |
| 1750 Head                                  | 1750           | 40.1<br>(38.10~42.11)  | 1.37<br>(1.30~1.44) | 39.548          | 1.333 | 22.2            | 2019/3/9  |
| 1750 Body                                  | 1750           | 53.4<br>(50.73~56.07)  | 1.49<br>(1.42~1.56) | 54.624          | 1.448 | 22.2            | 2019/3/10 |
| 1900 Head                                  | 1900           | 40.0<br>(38.00~42.00)  | 1.40<br>(1.33~1.47) | 40.221          | 1.369 | 22.3            | 2019/3/8  |
| 1900 Body                                  | 1900           | 53.3<br>(50.64~55.97)  | 1.52<br>(1.44~1.60) | 53.190          | 1.513 | 22.3            | 2019/3/11 |
| 2450 Head                                  | 2450           | 39.20<br>(37.24~41.16) | 1.80<br>(1.71~1.89) | 40.177          | 1.803 | 22.0            | 2019/3/15 |
| 2450 Body                                  | 2450           | 52.70<br>(50.07~55.34) | 1.95<br>(1.85~2.05) | 51.490          | 1.889 | 22.0            | 2019/3/14 |
| 2600 Head                                  | 2600           | 39.0<br>(37.05~40.95)  | 1.96<br>(1.86~2.06) | 39.679          | 1.966 | 22.1            | 2019/3/13 |
| 2600 Body                                  | 2600           | 52.50<br>(49.88~55.13) | 2.16<br>(2.05~2.27) | 51.124          | 2.055 | 22.1            | 2019/3/14 |
| 5250Head                                   | 5250           | 35.9<br>(34.11~37.70)  | 4.71<br>(4.47~4.95) | 36.011          | 4.767 | 22.2            | 2019/3/14 |
| 5250 Body                                  | 5250           | 48.9<br>(46.46~51.35)  | 5.36<br>(5.09~5.63) | 48.122          | 5.426 | 22.2            | 2019/3/15 |
| 5600 Head                                  | 5600           | 35.5<br>(33.73~37.28)  | 5.07<br>(4.82~5.32) | 35.059          | 5.157 | 22.2            | 2019/3/14 |
| 5600 Body                                  | 5600           | 48.5<br>(46.08~50.93)  | 5.77<br>(5.48~6.06) | 47.190          | 5.850 | 22.2            | 2019/3/15 |
| 5750 Head                                  | 5750           | 35.4<br>(33.63~37.17)  | 5.22<br>(4.96~5.48) | 34.695          | 5.329 | 22.2            | 2019/3/14 |
| 5750 Body                                  | 5750           | 48.3<br>(45.89~50.72)  | 5.94<br>(5.64~6.24) | 46.850          | 6.017 | 22.2            | 2019/3/15 |

Measurement result of Tissue electric parameters Table 4:

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_ad\_conditions.htm</u> and for electronic format documents, subject to tis document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.


No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279

f (886-2) 2298-0488 www.tw.sas.com



#### 6.2 **SAR System Check**

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.



F-12. the microwave circuit arrangement used for SAR system check

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



## 6.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole:
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within  $5\Omega$  from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



## 6.2.2 Summary System Check Result(s)

| Valida   | Validation Kit    |                          | Measured<br>SAR<br>250mW | Measured<br>SAR<br>(normalized<br>to 1W) | Measured<br>SAR<br>(normalized<br>to 1W) | Target SAR<br>(normalized<br>to 1W)<br>(±10%) | Target SAR<br>(normalized<br>to 1W)<br>(±10%) | Liquid<br>Temp.<br>(°C) | Measured<br>Date |
|----------|-------------------|--------------------------|--------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------|------------------|
|          |                   | 1g (W/kg)                | 10g (W/kg)               | 1g (W/kg)                                | 10g (W/kg)                               | 1-g(W/kg)                                     | 10-g(W/kg)                                    |                         |                  |
| D835V2   | Head              | 2.40                     | 1.58                     | 9.60                                     | 6.32                                     | 9.59<br>(8.63~10.55)                          | 6.29<br>(5.66~6.92)                           | 22.1                    | 2019/3/11        |
| 000072   | Body              | 2.45                     | 1.61                     | 9.80                                     | 6.44                                     | 9.65<br>(8.69~10.62)                          | 6.46<br>(5.81~7.11)                           | 22.1                    | 2019/3/12        |
| D1750V2  | Head              | 8.96                     | 4.80                     | 35.84                                    | 19.20                                    | 36.7<br>(33.03~40.37)                         | 19.5<br>(17.55~21.45)                         | 22.2                    | 2019/3/9         |
| D1750V2  | Body              | 9.20                     | 4.90                     | 36.80                                    | 19.60                                    | 37<br>(33.30~40.70)                           | 19.7<br>(17.73~21.67)                         | 22.2                    | 2019/3/10        |
| D1000\/2 | Head              | 10.20                    | 5.28                     | 40.80                                    | 21.12                                    | 40.7<br>(36.63~44.77)                         | 21.1<br>(18.99~23.21)                         | 22.3                    | 2019/3/8         |
| D1900V2  | Body              | 10.00                    | 5.29                     | 40.00                                    | 21.16                                    | 41.6<br>(37.44~45.76)                         | 21.4<br>(19.26~23.54)                         | 22.3                    | 2019/3/11        |
| D0450\/0 | Head              | 13.30                    | 6.10                     | 53.20                                    | 24.40                                    | 53.1<br>(47.79~58.41)                         | 24.9<br>(22.41~27.39)                         | 22.0                    | 2019/3/15        |
| D2450V2  | Body              | 11.60                    | 5.45                     | 46.40                                    | 21.80                                    | 51.0<br>(45.9~56.1)                           | 23.5<br>(21.15~25.85)                         | 22.0                    | 2019/3/14        |
| D20001/2 | Head              | 13.90                    | 6.13                     | 55.60                                    | 24.52                                    | 56.6<br>(50.94~62.26)                         | 25.4<br>(22.86~27.94)                         | 22.1                    | 2019/3/13        |
| D2600V2  | Body              | 12.80                    | 5.79                     | 51.20                                    | 23.16                                    | 54.2<br>(48.78~59.62)                         | 24.3<br>(21.87~26.73)                         | 22.1                    | 2019/3/14        |
| Valida   | tion Kit          | Measured<br>SAR<br>100mW | SAR<br>100mW             | Measured<br>SAR<br>(normalized<br>to 1W) | Measured<br>SAR<br>(normalized<br>to 1W) | Target SAR<br>(normalized<br>to 1W)<br>(±10%) | Target SAR<br>(normalized<br>to 1W)<br>(±10%) | Liquid<br>Temp.<br>(℃)  | Measured<br>Date |
|          | -                 | 1g (W/kg)                | 10g (W/kg)               | 1g (W/kg)                                | 10g (W/kg)                               | 1-g(W/kg)                                     | 10-g(W/kg)                                    |                         |                  |
|          | Head<br>(5.25GHz) | 7.10                     | 2.02                     | 71.00                                    | 20.20                                    |                                               | 21.9<br>(19.71~24.09)                         | 22.2                    | 2019/3/14        |
|          | Body<br>(5.25GHz) | 8.11                     | 2.21                     | 81.10                                    | 22.10                                    | 75.6<br>(68.04~83.16)                         | 21.3<br>(19.17~23.43)                         | 22.2                    | 2019/3/15        |
| D5GHzV2  | Head<br>(5.6GHz)  | 7.92                     | 2.23                     | 79.20                                    | 22.30                                    | 80.4<br>(72.36~88.44)                         | 22.8<br>(20.52~25.08)                         | 22.2                    | 2019/3/14        |
|          | Body<br>(5.6GHz)  | 8.71                     | 2.40                     | 87.10                                    | 24.00                                    | 81.1<br>(72.99~89.21)                         | 22.9<br>(20.61~25.19)                         | 22.2                    | 2019/3/15        |
|          | Head<br>(5.75GHz) | 8.14                     | 2.32                     | 81.40                                    | 23.20                                    | 80<br>(72~88)                                 | 22.7<br>(20.43~24.97)                         | 22.2                    | 2019/3/14        |
|          | Body<br>(5.75GHz) | 7.15                     | 1.94                     | 71.50                                    | 19.40                                    | 74.8<br>(67.32~82.28)                         | 21<br>(18.9~23.1)                             | 22.2                    | 2019/3/15        |

Table 5: SAR System Check Result

## 6.2.3 Detailed System Check Results

Please see the Appendix A

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

t (886-2) 2299-3279

```
f (886-2) 2298-0488
```



#### **Test Configuration** 7

#### 7.1 **3G SAR Test Reduction Procedure**

According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is  $\leq \frac{1}{4}$  dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

#### 7.2 **Operation Configurations**

## 7.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



## 7.2.2 WCDMA Test Configuration

### 1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

#### 2). Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

#### 3). Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported bodyworn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

#### 4) . HSDPA / HSUPA / DC-HSDPA

According to KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

#### **HSDPA** a)

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors( $\beta_c$ ,  $\beta$ d), and HS-DPCCH power offset parameters ( $\Delta$ ACK,  $\Delta$ NACK,  $\Delta$ CQI) are set according to values indicated in the following table The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279 www.tw.sas.com

f (886-2) 2298-0488

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



| Sub-test | βc       | Bd       | βd(SF) | βc/βd    | βhs   | CM(dB) | MPR<br>(dB) |
|----------|----------|----------|--------|----------|-------|--------|-------------|
| 1        | 2/15     | 15/15    | 64     | 2/15     | 4/15  | 0.0    | 0           |
| 2        | 12/15(3) | 15/15(3) | 64     | 12/15(3) | 24/15 | 1.0    | 0           |
| 3        | 15/15    | 8/15     | 64     | 15/8     | 30/15 | 1.5    | 0.5         |
| 4        | 15/15    | 4/15     | 64     | 15/4     | 30/15 | 1.5    | 0.5         |

Note1:  $\triangle ACK$ ,  $\triangle NACK$  and  $\triangle CQI = 8$  Ahs =  $\beta hs/\beta c=30/15 \beta hs=30/15*\beta c$ 

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, △ACK and △NACK= 8 (Ahs=30/15) with βhs=30/15\*βc,and ∆CQI=

7 (Ahs=24/15) with βhs=24/15\*βc.

Note3: CM=1 for $\beta c/\beta d = 12/15$ ,  $\beta hs/\beta c = 24/15$ . For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

| Parameter                        | Value       |
|----------------------------------|-------------|
| Nominal average inf. bit rate    | 534 kbit/s  |
| Inter-TTI Distance               | 3 TTI"s     |
| Number of HARQ Processes         | 2 Processes |
| Information Bit Payload          | 3202 Bits   |
| MAC-d PDU size                   | 336 Bits    |
| Number Code Blocks               | 1 Block     |
| Binary Channel Bits Per TTI      | 4800 Bits   |
| Total Available SMLs in UE       | 19200 SMLs  |
| Number of SMLs per HARQ Process  | 9600 SMLs   |
| Coding Rate                      | 0.67        |
| Number of Physical Channel Codes | 5           |

Table 6: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's indication of this document is advised that information contained reflects the Company's information in the office of the intervention only and within the initial contained reflects and company's information of the intervention of the intervention of the initial contained reflects and company's information of the intervention of the initial contained reflects and company's information of the initial contained reflects and company's information of the initial contained reflects and company's initial contained refle prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. f (886-2) 2298-0488 www.tw.sas.com



| HS-DSCH<br>Category | Maximum HS-DSCH<br>Codes Received | Minimum Inter-<br>TTI Interval | MaximumH S-DSCH<br>Transport BlockBits/HS-<br>DSCH TTI | Total Soft<br>Channel Bits |
|---------------------|-----------------------------------|--------------------------------|--------------------------------------------------------|----------------------------|
| 1                   | 5                                 | 3                              | 7298                                                   | 19200                      |
| 2                   | 5                                 | 3                              | 7298                                                   | 28800                      |
| 3                   | 5                                 | 2                              | 7298                                                   | 28800                      |
| 4                   | 5                                 | 2                              | 7298                                                   | 38400                      |
| 5                   | 5                                 | 1                              | 7298                                                   | 57600                      |
| 6                   | 5                                 | 1                              | 7298                                                   | 67200                      |
| 7                   | 10                                | 1                              | 14411                                                  | 115200                     |
| 8                   | 10                                | 1                              | 14411                                                  | 134400                     |
| 9                   | 15                                | 1                              | 25251                                                  | 172800                     |
| 10                  | 15                                | 1                              | 27952                                                  | 172800                     |
| 11                  | 5                                 | 2                              | 3630                                                   | 14400                      |
| 12                  | 5                                 | 1                              | 3630                                                   | 28800                      |
| 13                  | 15                                | 1                              | 34800                                                  | 259200                     |
| 14                  | 15                                | 1                              | 42196                                                  | 259200                     |
| 15                  | 15                                | 1                              | 23370                                                  | 345600                     |
| 16                  | 15                                | 1                              | 27952                                                  | 345600                     |

Table 7: HSDPA UE category

#### b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the "WCDMA Handset" and "Release 5 HSUPA Data Device" sections of 3G device.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



| Sub<br>-test∉ | , β <sub>e+</sub> ⊃ | βa⇔       | βả<br>(SF<br>) <sub>v</sub> | β₀∕βd∞     | β <sub>hs</sub> (1<br>)+ <sup>3</sup> | β <sub>ec+</sub> ∂ | $\beta_{ed^{+2}}$                | β₀<br>₀↔┘<br>(SF<br>)+² | β <sub>ed+</sub> J<br>(code<br>)+J | CM(<br>2)+'<br>(dB<br>)+' | MP<br>Re<br>(dB)e  | AG <sup>(4</sup><br>)+ <sup>j</sup><br>Inde<br>x+ <sup>j</sup> | E-<br>TFC<br>I& | 4   |
|---------------|---------------------|-----------|-----------------------------|------------|---------------------------------------|--------------------|----------------------------------|-------------------------|------------------------------------|---------------------------|--------------------|----------------------------------------------------------------|-----------------|-----|
| 10            | 11/15(3)+2          | 15/15(3)0 | <b>6</b> 4₽                 | 11/15(3)+2 | 22/15÷                                | 209/22<br>5+3      | 1039/225+                        | <b>4</b> ø              | 10                                 | 1.04                      | <mark>0.0</mark> ₽ | 20                                                             | 75₽             |     |
| 20            | 6/15+2              | 15/15+2   | <b>6</b> 4₽                 | 6/154      | 12/15¢                                | 12/15+2            | 94/75₽                           | <b>4</b> ø              | 10                                 | <b>3.0</b> ∉              | 2.0                | 12 <sub>P</sub>                                                | 67₽             |     |
| 3₽            | 15/15¢              | 9/154     | <b>6</b> 4ø                 | 15/94      | 30/15₽                                | 30/15+2            | βd1:47/1<br>5<br>β.ed2:47/1<br>5 | 4.0                     | 20                                 | 2.0¢                      | 1.0₽               | 150                                                            | <b>9</b> 2₽     | 4   |
| 4₽            | 2/15                | 15/154    | <b>6</b> 4₽                 | 2/15+      | 4/15₽                                 | 2/150              | 56/75₽                           | <b>4</b> ₽              | <b>1</b> @                         | 3.0+ <sup>2</sup>         | 2.0                | <b>17</b> ₽                                                    | 71₽             | a   |
| 5₽            | 15/15(4)+3          | 15/15(4)0 | <b>6</b> 4₽                 | 15/15(4)+3 | 30/15₽                                | 24/150             | 134/15+                          | <b>4</b> @              | <b>1</b> @                         | 1.04                      | <mark>0.0</mark> ₽ | 21.0                                                           | <b>81</b> @     | 4   |
| 37.4          |                     | NTZ ANTA  | ~~~                         | 1 4 0 0 1  | 0                                     | 0 /0               | 00/1 5                           | 0                       | 00/10                              | a da la                   |                    |                                                                |                 | i . |

 $\triangle$  ACK,  $\triangle$  NACK and  $\triangle$  CQI = 8  $A_{\rm hs} = \beta_{\rm hs}/\beta_{\rm e} = 30/15$  $\beta_{\rm hs} = 30/15 * \beta_{\rm eff}$ Note 1

Note 2: CM = 1 for  $\beta_c/\beta_d = 12/15$ ,  $\beta_{hs}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3 : For subtest 1 the  $\beta_c/\beta_d$  ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 10/15$  and  $\beta_d = 15/15^{-1}$ 

Note 4: For subtest 5 the  $\beta_c/\beta_d$  ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 14/15$  and  $\beta_d = 15/15 \psi$ 

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g+

Note 6: Bed can not be set directly; it is set by Absolute Grant Value.

#### Table 8: Subtests for UMTS Release 6 HSUPA

| Category   | Maximum E-DCH<br>Codes Transmitted | Number of<br>HARQ<br>Processes | E-DCH<br>TTI(ms) | Minimum<br>Speading<br>Factor | Maximum<br>E-DCH<br>Transport<br>Block Bits | Max<br>Rate<br>(Mbps) |
|------------|------------------------------------|--------------------------------|------------------|-------------------------------|---------------------------------------------|-----------------------|
| 1          | 1                                  | 4                              | 10               | 4                             | 7110                                        | 0.7296                |
| 2          | 2                                  | 8                              | 2                | 4                             | 2798                                        | 4 4500                |
| 2          | 2                                  | 4                              | 10               | 4                             | 14484                                       | 1.4592                |
| 3          | 2                                  | 4                              | 10               | 4                             | 14484                                       | 1.4592                |
| 4          | 2                                  | 8                              | 2                | 2                             | 5772                                        | 2.9185                |
| 4          | 2                                  | 4                              | 10               | 2                             | 20000                                       | 2.00                  |
| 5          | 2                                  | 4                              | 10               | 2                             | 20000                                       | 2.00                  |
| 6          | 4                                  | 8                              | 10               | 2SF2&2SF                      | 11484                                       | 5.76                  |
| (No DPDCH) | 4                                  | 4                              | 2                | 4                             | 20000                                       | 2.00                  |
| 7          | 4                                  | 8                              | 2                | 2SF2&2SF                      | 22996                                       | ?                     |
| (No DPDCH) | 4                                  | 4                              | 10               | 4                             | 20000                                       | ?                     |

SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 9: HSUPA UE category

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

f (886-2) 2298-0488

Report No.: E5/2019/30014 Page : 45 of 131



#### c) DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a Second serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

#### Table E.5.0: Levels for HSDPA connection setup

| Parameter<br>During Connection setup | Unit | Value |  |
|--------------------------------------|------|-------|--|
| P-CPICH_Ec/lor                       | dB   | -10   |  |
| P-CCPCH and SCH_Ec/lor               | dB   | -12   |  |
| PICH_Ec/lor                          | dB   | -15   |  |
| HS-PDSCH                             | dB   | off   |  |
| HS-SCCH_1                            | dB   | off   |  |
| DPCH_Ec/lor                          | dB   | -5    |  |
| OCNS_Ec/lor                          | dB   | -3.1  |  |

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13.

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK.

| Parameter                        | Value       |
|----------------------------------|-------------|
| Nominal average inf. bit rate    | 60 kbit/s   |
| Inter-TTI Distance               | 1 TTI's     |
| Number of HARQ Processes         | 6 Processes |
| Information Bit Payload          | 120 Bits    |
| Number Code Blocks               | 1 Block     |
| Binary Channel Bits Per TTI      | 960 Bits    |
| Total Available SMLs in UE       | 19200 SMLs  |
| Number of SMLs per HARQ Process  | 3200 SMLs   |
| Coding Rate                      | 0.15        |
| Number of Physical Channel Codes | 1           |
|                                  |             |

Table 10: settings of required H-Set 12 QPSK acc. to 3GPP 34.121

#### Note:

1. The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.

2. Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



| Inf. Bit Payload           | 120        |              |
|----------------------------|------------|--------------|
| CRC Addition               | 120 24 CRC |              |
| Code Block<br>Segmentation | 144        |              |
| (H=1/3)                    | 432        | 12 Tail Bits |
| at Rate Matching           | 432        |              |
| RV Selection               | 960        |              |

hysical Channel Segmentation

#### Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

| Sub-test₽    | βe₽       | β <sub>d</sub> ₽   | β <sub>d</sub> (SF)₽    | βc⁺/βd⊷             | β <sub>hs</sub> (1)₽       | CM(dB)(2)+     | MPR (dB)   |
|--------------|-----------|--------------------|-------------------------|---------------------|----------------------------|----------------|------------|
| 10           | 2/150     | 15/15              | <mark>64</mark> ₽       | 2/15~               | 4/150                      | 0.0            | <b>0</b> ₽ |
| 20           | 12/15(3)  | 15/15(3)           | <mark>64</mark> ₽       | 12/15(3)¢           | 24/15@                     | 1.04           | <b>0</b> ₽ |
| 3₽           | 15/15@    | 8/15₽              | <mark>64</mark> ₽       | 15/8~               | 30/15@                     | 1.50           | 0.50       |
| 4.0          | 15/15@    | 4/15₽              | <mark>64</mark> ₽       | 15/4~               | 30/15@                     | 1.50           | 0.50       |
| Note·1: ∆ AC | K, ∆ NACK | and $\Delta CQI =$ | 8 $A_{hs} = \beta_{hs}$ | $\beta_{c} = 30/15$ | $\beta_{\rm hs} = 30/15 *$ | β <sub>c</sub> |            |

Note 2 : CM=1 for  $\beta_c/\beta_d=12/15$ ,  $\beta_{hs}/\beta_c=24/15$ . For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the  $\beta_{c}/\beta_{d}$  ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 11/15$  and  $\beta_d = 15/15$ 

Up commands are set continuously to set the UE to Max power.

Note:

- 1. The Dual Carriers transmission only applies to HSDPA physical channels
- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band.

960

- 5. The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for it just can operate in Release 8.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



÷

## 7.2.3 WiFi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR

| neasuremen                                            | it.                          | Ū      |                    |     |      |                    |                  |                                    |
|-------------------------------------------------------|------------------------------|--------|--------------------|-----|------|--------------------|------------------|------------------------------------|
| 7.2.3.1 Duty<br>1) 2.4GHz<br>duty cycle =<br>Spectrum | Wi-Fi 802.1                  |        |                    |     |      |                    |                  | (H)                                |
| Ref Level 20                                          | 00 dBm<br>∋0 dB <b>= SW1</b> |        | V 1 MHz<br>V 1 MHz |     |      |                    |                  | [V                                 |
| • 1Pk Max                                             | 1                            | 1      | -                  | D   | 7[1] |                    |                  | +0.77 m                            |
| 10 dBm                                                |                              |        |                    |     | 1[1] |                    |                  | 12,5200 m<br>39,42 dbn<br>2,7000 m |
| 0 dBm                                                 | _                            |        | -                  |     |      |                    |                  |                                    |
| -20 dBm                                               |                              |        |                    |     |      |                    |                  |                                    |
| -30 dBm                                               | 1                            | mannen | Manual             |     | -    | and and the second | an warmen in the |                                    |
| -40 dBm                                               |                              |        |                    | -   |      |                    |                  |                                    |
| -50 dBm-                                              |                              | -      |                    |     |      |                    |                  |                                    |
| -60 dBm                                               |                              | -      |                    |     |      | 6                  |                  |                                    |
| -70 dBm                                               |                              | -      |                    |     |      | -                  |                  |                                    |
| CF 2.412 GHz                                          |                              |        | 1001               | pts |      | 1                  | -                | 2.0 ms/                            |

Y-value Function **Function Result** Type Ref Tre X-value 33.42 dBm 2.78 ms M1 D1 12,4 ms -1.14 dB M1 -0.77 dB 12.52 ms MI Ready

Date 16 MAR 2019 19:42 49

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's indication of this document is advised that information contained reflects the Company's information in the office of the intervention only and within the initial contained reflects and company's information of the intervention of the intervention of the initial contained reflects and company's information of the intervention of the initial contained reflects and company's information of the initial contained reflects and company's information of the initial contained reflects and company's initial contained refle prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279

f (886-2) 2298-0488



#### 2) 5GHz Wi-Fi 802.11a:

| Spect   | rum    |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          |        |                |              |              |      |
|---------|--------|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|----------|--------|----------------|--------------|--------------|------|
|         | evel : | 20.00 d3       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBW 1 MHz            |             |          |        |                |              |              |      |
| Att     |        | 30 0           | ie 🕳 swt j                               | 0 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VBW 1 MHz            |             |          |        |                |              |              |      |
| SGL     |        |                | 1.00 Sec. 1.                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |          |        |                |              |              | -    |
| 1Pk M   | З×     |                |                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | _           |          |        |                |              | _            | _    |
|         |        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | D2[1]    |        |                |              |              | 1 dB |
| 10 dBm  | _      |                |                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | -           |          |        |                |              | 2.13000      |      |
|         |        |                | ALC: NO                                  | 12 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the second state |             | MILL     | 11     | 1 COLUMN       | 1.1.         | 0.32         | dBrn |
| tin-    | in the | Male Brittle 1 | diell the coll-read                      | Contraction and the state of th | - a minimum and      | <b>R</b> KA |          | WATER. | all the manual | Meridi Ariel | MAN SOLUTION | ante |
|         |        |                | 1.1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          |        |                |              |              |      |
| 10 dBn  | n      |                | 1                                        | í –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 11          |          |        |                | -            |              |      |
| 20 dBr  |        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          | _      |                |              | _            | _    |
| 20 450  |        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          |        |                |              |              |      |
| -30 dBr | n-     |                | -                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                    |             |          | _      |                | -            | _            | _    |
|         |        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          |        |                |              |              |      |
| 40 dBn  | n-++-  |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -           |          | -      |                | +            | _            |      |
|         |        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          |        |                |              |              |      |
| 50 dBr  |        | _              |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 1           |          | -      |                | -            | 1            | -    |
| -60 dBr | -      |                |                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | ·           |          | _      |                | -            |              | _    |
| 00.000  |        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          |        |                |              |              |      |
| -70 dBn | n      |                | -                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | -           |          | _      |                | -            | _            | _    |
|         |        |                | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00                | L           |          |        | 1.1            |              |              |      |
| CF 5.1  | 8 GHz  |                | 1                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1001                 | nte         | 5        | -      | -              | -            | 1.0 n        | ns/  |
| larker  | _      | _              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |          | -      |                | _            |              |      |
| Туре    |        | Tre            | X-valu                                   | e l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y-value              | 1           | Function | 1      | Fu             | nction Re    | sult         |      |
| Mi      |        | 1              |                                          | 3.01 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.32 dt             | lm          |          |        |                |              |              | - 1  |
| 01      | M1     | 1              |                                          | 2.03 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,42                 |             |          |        |                |              |              |      |
| 02      | MI     | 1              |                                          | 2.13 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                 | dB          |          |        |                | _            |              | _    |
| _       | -      | 71             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | Ready    |        | STATISTICS.    | -            | 10.03.2010   |      |

Date 16 MAR 2019 19 09 00

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



#### 7.2.3.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1). When the reported SAR of the initial test position is  $\leq 0.4$  W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2). When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3). For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is  $\leq$  1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

#### 7.2.3.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

#### 7.2.3.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

1). When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



- 2). When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is < 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3). The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
  - SAR should first be measured for the channel with highest measured output power in the a) subsequent test configuration.
  - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4). SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
  - replace "subsequent test configuration" with "next subsequent test configuration" (i.e., a) subsequent next highest specified maximum output power configuration)
  - b) replace "initial test configuration" with "all tested higher output power configurations"

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Report No.: E5/2019/30014 Page : 51 of 131



#### 7.2.3.5 2.4 GHz WiFi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

#### 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1). When the reported SAR of the highest measured maximum output power channel for the exposure configuration is  $\leq 0.8$  W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2). When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1). When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2). When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq$  1.2 W/kg.

#### SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



#### 7.2.3.6 5 GHz WiFi SAR Procedures

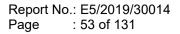
#### U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A 1) band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is  $\leq 1.2$ W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without 3) additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also gualifies for SAR test exclusion.

#### U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.


When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279 www.tw.sas.com

f (886-2) 2298-0488





#### OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- The largest channel bandwidth configuration is selected among the multiple configurations with the 1) same specified maximum output power.
- If multiple configurations have the same specified maximum output power and largest channel 2) bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
  - The channel closest to mid-band frequency is selected for SAR measurement. a)
  - For channels with equal separation from mid-band frequency; for example, high and low channels b) or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

#### SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



## 7.2.4 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The Anritsu MT8821C was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

#### **TDD LTE test consideration**

For Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

SAR was tested with the highest transmission duty factor (63.33%) using Uplink-downlink configuration 0 and Special subframe configuration 7.

LTE TDD Band support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplinkdownlink configurations and Table 4.2-1 for Special subframe configurations.

#### Frame structure type 2:

| alot.<br>5360 7. 307.<br>Ditrame ≢0. | Subframe #2 | Subframe #3 | Subframe #4 | Subhome #5 |       | Subframe #7 | Subframe #8 | Subtram |
|--------------------------------------|-------------|-------------|-------------|------------|-------|-------------|-------------|---------|
| thama,                               | GP UNPT     |             |             | Dwf        | TS OP | UpPT<br>s   |             |         |
|                                      |             |             |             |            |       |             |             |         |
|                                      |             |             |             |            |       |             |             |         |
|                                      |             |             |             |            |       |             |             |         |
|                                      |             |             |             |            |       |             |             |         |
|                                      |             |             |             |            |       |             |             |         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



| Special       | Norr     | mal cyclic prefix in              | downlink                            | Exten    | ded cyclic prefix i               | n downlink                          |
|---------------|----------|-----------------------------------|-------------------------------------|----------|-----------------------------------|-------------------------------------|
| subframe      | DwPTS    | Up                                | PTS                                 | DwPTS    | Up                                | PTS                                 |
| configuration |          | Normal cyclic<br>prefix in uplink | Extended cyclic<br>prefix in uplink |          | Normal cyclic<br>prefix in uplink | Extended cyclic<br>prefix in uplink |
| 0             | 6592.Ts  |                                   |                                     | 7680.Ts  |                                   |                                     |
| 1             | 19760.Ts |                                   | 2560.Ts<br>2560.Ts<br>25600.Ts      | 2192.Ts  | 2560 To                           |                                     |
| 2             | 21952.Ts | 2192.Ts                           |                                     | 23040.Ts | 2192.15                           | 2560.Ts                             |
| 3             | 24144.Ts |                                   |                                     | 25600.Ts |                                   |                                     |
| 4             | 26336.Ts |                                   |                                     | 7680.Ts  |                                   |                                     |
| 5             | 6592.Ts  |                                   |                                     | 20480.Ts | 4204 To                           | 5100 Ta                             |
| 6             | 19760.Ts |                                   |                                     | 23040.Ts | 4384.Ts                           | 5120.Ts                             |
| 7             | 21952.Ts | 4384.Ts                           | 5120.Ts                             | 25600.Ts | 1                                 |                                     |
| 8             | 24144.Ts |                                   |                                     | -        | -                                 | -                                   |
| 9             | 13168.Ts |                                   |                                     | -        | -                                 | -                                   |

#### Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

#### Uplink-downlink configurations.

| Uplink-downlink | Downlink-to-                        |   |   |   | St | ubfram | e numb | er |   |   |   |
|-----------------|-------------------------------------|---|---|---|----|--------|--------|----|---|---|---|
| configuration   | Uplink Switch-<br>point periodicity | 0 | 1 | 2 | 3  | 4      | 5      | 6  | 7 | 8 | 9 |
| 0               | 5 ms                                | D | S | U | U  | U      | D      | S  | U | U | U |
| 1               | 5 ms                                | D | S | U | U  | D      | D      | S  | U | U | D |
| 2               | 5 ms                                | D | S | U | D  | D      | D      | S  | U | D | D |
| 3               | 10 ms                               | D | S | U | U  | U      | D      | D  | D | D | D |
| 4               | 10 ms                               | D | S | U | U  | D      | D      | D  | D | D | D |
| 5               | 10 ms                               | D | S | U | D  | D      | D      | D  | D | D | D |
| 6               | 5 ms                                | D | S | U | U  | U      | D      | S  | U | U | D |

#### Calculated Duty Cycle=[Extended cyclic prefix in uplink x (Ts) x # of S + # of U]/10ms

| Uplink-<br>Downlink<br>Configurat | Downlink-to-<br>Uplink Switch-<br>point Periodicity |   | Subframe Number |   |   |   |   |   |   | Calculated<br>Duty<br>Cycle (%) |   |            |
|-----------------------------------|-----------------------------------------------------|---|-----------------|---|---|---|---|---|---|---------------------------------|---|------------|
| ion                               | point Fenodicity                                    | 0 | 1               | 2 | 3 | 4 | 5 | 6 | 7 | 8                               | 9 | Cycle (70) |
| 0                                 | 5 ms                                                | D | S               | U | U | U | D | S | U | U                               | U | 63.33      |
|                                   | 5 ms                                                | D | S               | U | U | D | D | s | U | U                               | D | 43.33      |
| 2                                 | 5 ms                                                | D | S               | U | D | D | D | S | U | D                               | D | 23.33      |
| 3                                 | 10 ms                                               | D | S               | U | U | U | D | D | D | D                               | D | 31.67      |
| 4                                 | 10 ms                                               | D | S               | U | U | D | D | D | D | D                               | D | 21.67      |
| 5                                 | 10 ms                                               | D | S               | U | D | D | D | D | D | D                               | D | 11.67      |
| 6                                 | 5 ms                                                | D | S               | Ú | U | U | D | S | U | U                               | D | 53.33      |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd.

台灣檢驗科技股份有限公司

t (886-2) 2299-3279

```
f (886-2) 2298-0488
```



#### A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

#### **B) MPR**

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

| Modulation | Cha | nnel bandw | idth / Tra | ansmission | bandwidth ( | (N <sub>RB</sub> ) | MPR (dB) |
|------------|-----|------------|------------|------------|-------------|--------------------|----------|
| [          | 1.4 | 3.0        | 5          | 10         | 15          | 20                 |          |
|            | MHz | MHz        | MHz        | MHz        | MHz         | MHz                |          |
| QPSK       | > 5 | > 4        | > 8        | > 12       | > 16        | > 18               | ≤ 1      |
| 16 QAM     | ≤ 5 | ≤ 4        | ≤ 8        | ≤ 12       | ≤ 16        | ≤ 18               | ≤ 1      |
| 16 QAM     | > 5 | > 4        | > 8        | > 12       | > 16        | > 18               | ≤ 2      |
| 64 QAM     | ≤ 5 | ≤ 4        | ≤ 8        | ≤ 12       | ≤ 16        | ≤ 18               | ≤ 2      |
| 64 QAM     | > 5 | > 4        | > 8        | > 12       | > 16        | > 18               | ≤ 3      |

#### C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator. D) Largest channel bandwidth standalone SAR test requirements

#### 1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is  $\leq 0.8$  W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

#### 2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

#### 3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

#### 4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

#### E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd.



#### **Test Result** 8

#### 8.1 Measurement of RF conducted Power

## 8.1.1 Conducted Power of Main Antenna

### 8.1.1.1 Conducted Power of GSM

|                 |             |          |       | G     | SM 850  |                     |       |                        |       |         |
|-----------------|-------------|----------|-------|-------|---------|---------------------|-------|------------------------|-------|---------|
| E               | Burst Outpu | t Power( | (dBm) |       | Tune up | Division<br>Factors |       | e-Average<br>Power(dBr | •     | Tune up |
| Chan            | nel         | 128      | 190   | 251   |         | Faciois             | 128   | 190                    | 251   |         |
| GSM(GMSK)       | GSM         | 32.38    | 32.34 | 32.33 | 33.60   | -9.19               | 23.19 | 23.15                  | 23.14 | 24.41   |
|                 | 1 TX Slot   | 32.38    | 32.39 | 32.29 | 33.60   | -9.19               | 23.19 | 23.20                  | 23.10 | 24.41   |
| GPRS/<br>EGPRS  | 2 TX Slots  | 29.47    | 29.43 | 29.36 | 30.60   | -6.18               | 23.29 | 23.25                  | 23.18 | 24.42   |
| (GMSK)          | 3 TX Slots  | 27.65    | 27.64 | 27.62 | 28.80   | -4.42               | 23.23 | 23.22                  | 23.20 | 24.38   |
|                 | 4 TX Slots  | 26.36    | 26.39 | 26.37 | 27.60   | -3.17               | 23.19 | 23.22                  | 23.20 | 24.43   |
|                 | 1 TX Slot   | 25.95    | 25.58 | 25.65 | 28.50   | -9.19               | 16.76 | 16.39                  | 16.46 | 19.31   |
| EGPRS           | 2 TX Slots  | 22.51    | 22.54 | 22.63 | 25.50   | -6.18               | 16.33 | 16.36                  | 16.45 | 19.32   |
| (8PSK)          | 3 TX Slots  | 20.57    | 20.67 | 20.72 | 23.70   | -4.42               | 16.15 | 16.25                  | 16.30 | 19.28   |
|                 | 4 TX Slots  | 19.17    | 19.21 | 19.19 | 22.50   | -3.17               | 16.00 | 16.04                  | 16.02 | 19.33   |
|                 |             |          |       | G     | SM 1900 |                     |       |                        |       |         |
| E               | Burst Outpu | t Power( | (dBm) |       | Tune up | Division            |       | e-Average<br>Power(dBr |       | Tune up |
| Chan            | nel         | 512      | 661   | 810   |         | Factors             | 512   | 661                    | 810   |         |
| GSM(GMSK)       | GSM         | 29.99    | 29.94 | 30.24 | 31.30   | -9.19               | 20.80 | 20.75                  | 21.05 | 22.11   |
|                 | 1 TX Slot   | 30.01    | 29.95 | 30.29 | 31.30   | -9.19               | 20.82 | 20.76                  | 21.10 | 22.11   |
| GPRS/           | 2 TX Slots  | 27.11    | 27.02 | 27.14 | 28.30   | -6.18               | 20.93 | 20.84                  | 20.96 | 22.12   |
| EGPRS<br>(GMSK) | 3 TX Slots  | 25.28    | 25.23 | 25.36 | 26.50   | -4.42               | 20.86 | 20.81                  | 20.94 | 22.08   |
| (GIVISK)        | 4 TX Slots  | 24.04    | 23.98 | 24.13 | 25.30   | -3.17               | 20.87 | 20.81                  | 20.96 | 22.13   |
|                 | 1 TX Slot   | 25.61    | 25.51 | 25.56 | 28.00   | -9.19               | 16.42 | 16.32                  | 16.37 | 18.81   |
| EGPRS           | 2 TX Slots  | 22.19    | 22.12 | 22.18 | 25.00   | -6.18               | 16.01 | 15.94                  | 16.00 | 18.82   |
| (8PSK)          | 3 TX Slots  | 20.21    | 20.11 | 20.17 | 23.20   | -4.42               | 15.79 | 15.69                  | 15.75 | 18.78   |
|                 | 4 TX Slots  |          | 18.72 | 18.79 | 22.00   | -3.17               | 15.59 | 15.55                  | 15.62 | 18.83   |

Table 11: Conducted Power of GSM

Note:

1) . CMU200 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

| No. of timeslots                                     | 1     | 2      | 3      | 4       |
|------------------------------------------------------|-------|--------|--------|---------|
| Duty Cycle                                           | 1:8.3 | 1:4.15 | 1:2.77 | 1:2.075 |
| Time based avg. power compared to slotted avg. power | -9.19 | -6.18  | -4.42  | -3.17   |

2). The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8

3). When the maximum output power variation across the required test channels is >  $\frac{1}{2}$  dB, instead of the middle channel, the highest output power channel must be used

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



|          | WCDMA Band II Fu | III Power/Rece  | eiver on(head | )     |         |
|----------|------------------|-----------------|---------------|-------|---------|
|          | Average Co       | nducted Power   | r(dBm)        |       |         |
| C        | hannel           | 9262            | 9400          | 9538  | Tune up |
| WCDMA    | 12.2kbps RMC     | 23.21           | 23.25         | 23.17 | 24.50   |
| VVCDIVIA | 12.2kbps AMR     | 23.20           | 23.24         | 23.14 | 24.50   |
|          | Subtest 1        | 22.65           | 22.72         | 22.56 | 24.00   |
| HSDPA    | Subtest 2        | 21.84           | 21.92         | 21.75 | 23.00   |
| HODEA    | Subtest 3        | 21.39           | 21.46         | 21.26 | 22.80   |
|          | Subtest 4        | 21.37           | 21.49         | 21.22 | 22.80   |
|          | Subtest 1        | 21.64           | 21.48         | 21.17 | 23.00   |
|          | Subtest 2        | 20.32           | 20.16         | 20.07 | 22.00   |
| HSUPA    | Subtest 3        | 21.23           | 21.02         | 20.85 | 23.00   |
|          | Subtest 4        | 20.01           | 20.99         | 20.09 | 22.50   |
|          | Subtest 5        | 23.00           | 23.10         | 22.90 | 24.50   |
|          | Subtest 1        | 22.57           | 22.66         | 22.51 | 24.00   |
|          | Subtest 2        | 21.77           | 21.86         | 21.68 | 23.00   |
| DC-HSDPA | Subtest 3        | 21.34           | 21.38         | 21.20 | 22.80   |
|          | Subtest 4        | 21.29           | 21.46         | 21.14 | 22.80   |
|          | WCDMA Ban        | d II Receiver o | ff (body)     |       |         |
|          | Average Co       | nducted Power   | (dBm)         |       |         |
| С        | hannel           | 9262            | 9400          | 9538  | Tune up |
| WCDMA    | 12.2kbps RMC     | 22.71           | 22.78         | 22.67 | 24.00   |
| VVCDIVIA | 12.2kbps AMR     | 22.72           | 22.74         | 22.66 | 24.00   |
|          | Subtest 1        | 22.18           | 22.23         | 22.13 | 23.50   |
| HSDPA    | Subtest 2        | 21.38           | 21.46         | 21.37 | 22.50   |
| HSDPA    | Subtest 3        | 20.90           | 20.97         | 20.80 | 22.30   |
|          | Subtest 4        | 20.82           | 20.97         | 20.83 | 22.30   |
|          | Subtest 1        | 20.89           | 20.86         | 20.61 | 22.50   |
|          | Subtest 2        | 19.78           | 19.84         | 19.50 | 21.50   |
| HSUPA    | Subtest 3        | 20.66           | 20.59         | 20.39 | 22.50   |
|          | Subtest 4        | 19.52           | 19.45         | 19.65 | 22.00   |
|          | Subtest 5        | 22.50           | 22.60         | 22.50 | 24.00   |
|          | Subtest 1        | 22.15           | 22.20         | 22.09 | 23.50   |
|          | Subtest 2        | 21.30           | 21.42         | 21.32 | 22.50   |
| DC-HSDPA | Subtest 3        | 20.82           | 20.92         | 20.72 | 22.30   |
|          | Subtest 4        | 20.74           | 20.89         | 20.79 | 22.30   |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

```
www.tw.sgs.com
```



|          |              | DMA Band IV   | / · <b>-</b> `` |       |         |
|----------|--------------|---------------|-----------------|-------|---------|
|          | ,<br>,       | nducted Power | <u> </u>        |       |         |
| C        | hannel       | 1312          | 1412            | 1513  | Tune up |
| WCDMA    | 12.2kbps RMC | 22.42         | 22.53           | 22.39 | 23.50   |
|          | 12.2kbps AMR | 22.30         | 22.34           | 22.26 | 23.50   |
|          | Subtest 1    | 21.56         | 21.62           | 21.57 | 23.00   |
| HSDPA    | Subtest 2    | 20.82         | 20.82           | 20.84 | 22.50   |
| HODI //  | Subtest 3    | 20.17         | 20.26           | 20.34 | 21.80   |
|          | Subtest 4    | 20.21         | 20.31           | 20.22 | 21.80   |
|          | Subtest 1    | 20.48         | 20.26           | 20.24 | 22.50   |
|          | Subtest 2    | 19.58         | 19.32           | 19.32 | 21.50   |
| HSUPA    | Subtest 3    | 20.22         | 20.54           | 20.08 | 22.50   |
|          | Subtest 4    | 19.24         | 19.60           | 19.23 | 21.50   |
|          | Subtest 5    | 21.90         | 21.90           | 21.90 | 23.50   |
|          | Subtest 1    | 21.52         | 21.57           | 21.51 | 23.00   |
|          | Subtest 2    | 20.75         | 20.74           | 20.80 | 22.50   |
| DC-HSDPA | Subtest 3    | 20.11         | 20.21           | 20.30 | 21.80   |
|          | Subtest 4    | 20.13         | 20.28           | 20.14 | 21.80   |
|          |              | DMA Band V    |                 |       |         |
|          | Average Co   | nducted Power | /               |       |         |
| C        | hannel       | 4132          | 4182            | 4233  | Tune up |
| WCDMA    | 12.2kbps RMC | 23.89         | 24.07           | 23.95 | 25.00   |
| WODINA   | 12.2kbps AMR | 23.87         | 24.05           | 23.95 | 25.00   |
|          | Subtest 1    | 23.35         | 23.40           | 23.31 | 24.50   |
| HSDPA    | Subtest 2    | 22.91         | 22.92           | 22.79 | 24.00   |
|          | Subtest 3    | 22.41         | 22.48           | 22.36 | 23.30   |
|          | Subtest 4    | 22.50         | 22.53           | 22.37 | 23.30   |
|          | Subtest 1    | 22.86         | 23.04           | 22.70 | 24.00   |
|          | Subtest 2    | 22.10         | 21.64           | 21.55 | 23.00   |
| HSUPA    | Subtest 3    | 22.95         | 23.08           | 23.12 | 24.00   |
|          | Subtest 4    | 21.81         | 21.36           | 21.26 | 23.00   |
|          | Subtest 5    | 23.70         | 23.80           | 23.70 | 25.00   |
|          | Subtest 1    | 23.32         | 23.37           | 23.22 | 24.50   |
|          | Subtest 2    | 22.87         | 22.89           | 22.70 | 24.00   |
| DC-HSDPA | Subtest 3    | 22.33         | 22.42           | 22.31 | 23.30   |
| 7        | Subtest 4    | 23.89         | 24.07           | 23.95 | 25.00   |

Table 12: Conducted Power of WCDMA Note:

when the maximum output power variation across the required test channels is > 1/2 dB, instead of the middle 1) channel, the highest output power channel must be used.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279

f (886-2) 2298-0488

```
www.tw.sas.com
```



# 8.1.1.3 Conducted Power of LTE

|            | LTE Bar    | nd 4    |            |         | Conducted | Power(dBm) |         |
|------------|------------|---------|------------|---------|-----------|------------|---------|
| Bandwidth  | Madulation | RB size | RB offset  | Channel | Channel   | Channel    | Tung un |
| Banuwium   | Modulation | RD SIZE | RD Oliset  | 19957   | 20175     | 20393      | Tune up |
|            |            | 1       | 0          | 22.55   | 22.69     | 22.57      | 23.50   |
|            |            | 1       | 2          | 22.73   | 22.82     | 22.32      | 23.50   |
|            |            | 1       | 5          | 22.57   | 22.58     | 22.53      | 23.50   |
|            | QPSK       | 3       | 0          | 22.50   | 22.34     | 22.38      | 23.50   |
|            |            | 3       | 2          | 22.30   | 22.54     | 22.36      | 23.50   |
|            |            | 3       | 3          | 22.51   | 22.42     | 22.45      | 23.50   |
|            |            | 6       | 0          | 21.43   | 21.37     | 21.22      | 22.50   |
|            |            | 1       | 0          | 21.82   | 21.82     | 22.00      | 22.50   |
|            |            | 1       | 2          | 21.44   | 21.56     | 21.83      | 22.50   |
|            |            | 1       | 5          | 21.71   | 21.77     | 21.62      | 22.50   |
| 1.4MHz     | 16QAM      | 3       | 0          | 21.55   | 21.75     | 21.71      | 22.50   |
|            |            | 3       | 2          | 21.21   | 21.18     | 21.44      | 22.50   |
|            |            | 3       | 3          | 21.55   | 21.63     | 21.41      | 22.50   |
|            |            | 6       | 0          | 20.44   | 20.35     | 20.58      | 21.50   |
|            |            | 1       | 0          | 20.71   | 20.55     | 20.72      | 21.50   |
|            |            | 1       | 2          | 20.70   | 20.34     | 20.32      | 21.50   |
|            |            | 1       | 5          | 20.69   | 21.01     | 20.26      | 21.50   |
|            | 64QAM      | 3       | 0          | 20.60   | 20.53     | 20.56      | 21.50   |
|            |            | 3       | 2          | 20.28   | 20.26     | 20.30      | 21.50   |
|            |            | 3       | 3          | 20.29   | 20.39     | 20.24      | 21.50   |
|            |            | 6       | 0          | 19.31   | 19.53     | 19.22      | 20.50   |
| Dendusidth | Madulation |         | DD offerst | Channel | Channel   | Channel    |         |
| Bandwidth  | Modulation | RB size | RB offset  | 19965   | 20175     | 20385      | Tune up |
|            |            | 1       | 0          | 22.67   | 22.57     | 22.56      | 23.50   |
|            |            | 1       | 7          | 21.69   | 22.08     | 22.16      | 23.50   |
|            |            | 1       | 14         | 22.68   | 22.46     | 22.61      | 23.50   |
|            | QPSK       | 8       | 0          | 21.52   | 21.50     | 21.58      | 22.50   |
|            |            | 8       | 4          | 21.57   | 21.45     | 21.59      | 22.50   |
|            |            | 8       | 7          | 21.63   | 21.34     | 21.50      | 22.50   |
|            |            | 15      | 0          | 21.59   | 21.59     | 21.47      | 22.50   |
|            |            | 1       | 0          | 22.04   | 21.75     | 21.91      | 22.50   |
|            |            | 1       | 7          | 20.99   | 21.69     | 20.93      | 22.50   |
|            |            | 1       | 14         | 22.11   | 21.44     | 22.06      | 22.50   |
| 3MHz       | 16QAM      | 8       | 0          | 20.42   | 20.63     | 20.56      | 21.50   |
|            |            | 8       | 4          | 20.62   | 20.32     | 20.45      | 21.50   |
|            |            | 8       | 7          | 20.53   | 20.36     | 20.55      | 21.50   |
|            |            | 15      | 0          | 20.57   | 20.27     | 20.51      | 21.50   |
|            |            | 1       | 0          | 20.71   | 20.82     | 20.56      | 21.50   |
|            |            | 1       | 7          | 21.28   | 20.12     | 20.08      | 21.50   |
|            |            | 1       | 14         | 20.34   | 20.48     | 20.34      | 21.50   |
|            | 64QAM      | 8       | 0          | 19.53   | 19.44     | 19.41      | 20.50   |
|            |            | 8       | 4          | 19.54   | 19.50     | 19.44      | 20.50   |
|            |            |         |            |         |           |            |         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



|                      | 1              | 15                                             | 0                                              | 19.43                                                                         | 19.48                                                                         | 19.35                                                                         | 20.50                                                                         |
|----------------------|----------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                      |                |                                                |                                                | Channel                                                                       | Channel                                                                       | Channel                                                                       |                                                                               |
| Bandwidth            | Modulation     | RB size                                        | RB offset                                      | 19975                                                                         | 20175                                                                         | 20375                                                                         | Tune up                                                                       |
|                      |                | 1                                              | 0                                              | 22.78                                                                         | 22.63                                                                         | 22.60                                                                         | 23.50                                                                         |
|                      |                | 1                                              | 13                                             | 22.82                                                                         | 22.77                                                                         | 22.97                                                                         | 23.50                                                                         |
|                      |                | 1                                              | 24                                             | 22.85                                                                         | 22.70                                                                         | 22.64                                                                         | 23.50                                                                         |
|                      | QPSK           | 12                                             | 0                                              | 21.63                                                                         | 21.70                                                                         | 21.73                                                                         | 22.50                                                                         |
|                      |                | 12                                             | 6                                              | 21.61                                                                         | 21.71                                                                         | 21.71                                                                         | 22.50                                                                         |
|                      |                | 12                                             | 13                                             | 21.76                                                                         | 21.63                                                                         | 21.69                                                                         | 22.50                                                                         |
|                      |                | 25                                             | 0                                              | 21.63                                                                         | 21.52                                                                         | 21.66                                                                         | 22.50                                                                         |
|                      |                | 1                                              | 0                                              | 21.75                                                                         | 21.87                                                                         | 22.10                                                                         | 22.50                                                                         |
|                      |                | 1                                              | 13                                             | 21.53                                                                         | 22.22                                                                         | 21.88                                                                         | 22.50                                                                         |
|                      |                | 1                                              | 24                                             | 22.31                                                                         | 21.40                                                                         | 21.80                                                                         | 22.50                                                                         |
| 5MHz                 | 16QAM          | 12                                             | 0                                              | 20.52                                                                         | 20.67                                                                         | 20.66                                                                         | 21.50                                                                         |
|                      |                | 12                                             | 6                                              | 20.65                                                                         | 20.67                                                                         | 20.62                                                                         | 21.50                                                                         |
|                      |                | 12                                             | 13                                             | 20.75                                                                         | 20.56                                                                         | 20.68                                                                         | 21.50                                                                         |
|                      |                | 25                                             | 0                                              | 20.54                                                                         | 20.66                                                                         | 20.63                                                                         | 21.50                                                                         |
|                      |                | 1                                              | 0                                              | 20.79                                                                         | 20.61                                                                         | 20.64                                                                         | 21.50                                                                         |
|                      |                | 1                                              | 13                                             | 21.06                                                                         | 20.40                                                                         | 20.81                                                                         | 21.50                                                                         |
|                      |                | 1                                              | 24                                             | 20.39                                                                         | 20.91                                                                         | 20.93                                                                         | 21.50                                                                         |
|                      | 64QAM          | 12                                             | 0                                              | 19.53                                                                         | 19.63                                                                         | 19.62                                                                         | 20.50                                                                         |
|                      |                | 12                                             | 6                                              | 19.59                                                                         | 19.67                                                                         | 19.59                                                                         | 20.50                                                                         |
| 5P-                  |                | 12                                             | 13                                             | 19.70                                                                         | 19.62                                                                         | 19.43                                                                         | 20.50                                                                         |
|                      | Modulation     | 25                                             | 0                                              | 19.61                                                                         | 19.55                                                                         | 19.60                                                                         | 20.50                                                                         |
| D e u els si el tels |                |                                                |                                                | Channel                                                                       | Channel                                                                       | Channel                                                                       | <b>T</b>                                                                      |
| Bandwidth            | Modulation     | RB size                                        | RB offset                                      | 20000                                                                         | 20175                                                                         | 20350                                                                         | Tune up                                                                       |
|                      |                | 1                                              | 0                                              | 22.59                                                                         | 22.56                                                                         | 22.49                                                                         | 23.50                                                                         |
|                      |                | 1                                              | 25                                             | 22.71                                                                         | 22.29                                                                         | 22.11                                                                         | 23.50                                                                         |
|                      |                | 1                                              | 49                                             | 22.60                                                                         | 22.46                                                                         | 22.52                                                                         | 23.50                                                                         |
|                      | QPSK           | 25                                             | 0                                              | 21.56                                                                         | 21.62                                                                         | 21.67                                                                         | 22.50                                                                         |
|                      |                | 25                                             | 13                                             | 21.75                                                                         | 21.62                                                                         | 21.73                                                                         | 22.50                                                                         |
|                      |                | 25                                             | 25                                             | 21.71                                                                         | 21.61                                                                         | 21.62                                                                         | 22.50                                                                         |
|                      |                | 50                                             | 0                                              | 21.72                                                                         | 21.45                                                                         | 21.64                                                                         | 22.50                                                                         |
|                      |                | 1                                              | 0                                              | 21.86                                                                         | 21.76                                                                         | 21.53                                                                         | 22.50                                                                         |
|                      |                |                                                |                                                |                                                                               | 04.44                                                                         | 21.98                                                                         | 22.50                                                                         |
|                      |                | 1                                              | 25                                             | 22.06                                                                         | 21.41                                                                         | 21.90                                                                         |                                                                               |
|                      |                | 1<br>1                                         | 25<br>49                                       | 22.06<br>22.12                                                                | 21.41                                                                         | 21.82                                                                         | 22.50                                                                         |
| 10MHz                | 16QAM          |                                                |                                                |                                                                               |                                                                               |                                                                               |                                                                               |
| 10MHz                | 16QAM          | 1                                              | 49                                             | 22.12                                                                         | 21.53                                                                         | 21.82                                                                         | 22.50<br>21.50<br>21.50                                                       |
| 10MHz                | 16QAM          | 1<br>25                                        | 49<br>0                                        | 22.12<br>20.60                                                                | 21.53<br>20.56                                                                | 21.82<br>20.67                                                                | 21.50                                                                         |
| 10MHz                | 16QAM          | 1<br>25<br>25                                  | 49<br>0<br>13                                  | 22.12<br>20.60<br>20.59                                                       | 21.53<br>20.56<br>20.44                                                       | 21.82<br>20.67<br>20.47                                                       | 21.50<br>21.50                                                                |
| 10MHz                | 16QAM          | 1<br>25<br>25<br>25                            | 49<br>0<br>13<br>25                            | 22.12<br>20.60<br>20.59<br>20.66                                              | 21.53<br>20.56<br>20.44<br>20.55                                              | 21.82<br>20.67<br>20.47<br>20.63                                              | 21.50<br>21.50<br>21.50                                                       |
| 10MHz                | 16QAM          | 1<br>25<br>25<br>25<br>25<br>50                | 49<br>0<br>13<br>25<br>0                       | 22.12<br>20.60<br>20.59<br>20.66<br>20.61                                     | 21.53<br>20.56<br>20.44<br>20.55<br>20.42                                     | 21.82<br>20.67<br>20.47<br>20.63<br>20.54                                     | 21.50<br>21.50<br>21.50<br>21.50                                              |
| 10MHz                | 16QAM          | 1<br>25<br>25<br>25<br>50<br>1                 | 49<br>0<br>13<br>25<br>0<br>0                  | 22.12<br>20.60<br>20.59<br>20.66<br>20.61<br>20.31                            | 21.53<br>20.56<br>20.44<br>20.55<br>20.42<br>20.40                            | 21.82<br>20.67<br>20.47<br>20.63<br>20.54<br>20.49                            | 21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50                            |
| 10MHz                | 16QAM<br>64QAM | 1<br>25<br>25<br>25<br>50<br>1<br>1            | 49<br>0<br>13<br>25<br>0<br>0<br>25            | 22.12<br>20.60<br>20.59<br>20.66<br>20.61<br>20.31<br>20.02                   | 21.53<br>20.56<br>20.44<br>20.55<br>20.42<br>20.40<br>20.03                   | 21.82<br>20.67<br>20.47<br>20.63<br>20.54<br>20.49<br>20.56                   | 21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50                   |
| 10MHz                |                | 1<br>25<br>25<br>25<br>50<br>1<br>1<br>1<br>25 | 49<br>0<br>13<br>25<br>0<br>0<br>25<br>49<br>0 | 22.12<br>20.60<br>20.59<br>20.66<br>20.61<br>20.31<br>20.02<br>20.41<br>19.63 | 21.53<br>20.56<br>20.44<br>20.55<br>20.42<br>20.40<br>20.03<br>20.60<br>19.59 | 21.82<br>20.67<br>20.47<br>20.63<br>20.54<br>20.49<br>20.56<br>20.36<br>19.52 | 21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>20.50 |
| 10MHz                |                | 1<br>25<br>25<br>25<br>50<br>1<br>1<br>1       | 49<br>0<br>13<br>25<br>0<br>0<br>25<br>49      | 22.12<br>20.60<br>20.59<br>20.66<br>20.61<br>20.31<br>20.02<br>20.41          | 21.53<br>20.56<br>20.44<br>20.55<br>20.42<br>20.40<br>20.03<br>20.60          | 21.82<br>20.67<br>20.47<br>20.63<br>20.54<br>20.49<br>20.56<br>20.36          | 21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50<br>21.50                   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



| Bandwidth | Modulation | RB size  | RB offset | Channel | Channel        | Channel        | Tupo up        |
|-----------|------------|----------|-----------|---------|----------------|----------------|----------------|
| Danuwiuun | wouldtion  | RD SIZE  | RD Oliset | 20025   | 20175          | 20325          | Tune up        |
|           |            | 1        | 0         | 22.45   | 22.60          | 22.58          | 23.50          |
|           |            | 1        | 38        | 22.88   | 22.59          | 22.72          | 23.50          |
|           |            | 1        | 74        | 22.59   | 22.61          | 22.69          | 23.50          |
|           | QPSK       | 36       | 0         | 21.75   | 21.71          | 21.68          | 22.50          |
|           |            | 36       | 18        | 21.69   | 21.66          | 21.66          | 22.50          |
|           |            | 36       | 39        | 21.72   | 21.68          | 21.66          | 22.50          |
|           |            | 75       | 0         | 21.73   | 21.67          | 21.63          | 22.50          |
|           |            | 1        | 0         | 21.98   | 21.57          | 21.86          | 22.50          |
|           |            | 1        | 38        | 21.95   | 22.04          | 21.75          | 22.50          |
|           |            | 1        | 74        | 21.92   | 21.23          | 21.80          | 22.50          |
| 15MHz     | 16QAM      | 36       | 0         | 20.48   | 20.62          | 20.52          | 21.50          |
|           |            | 36       | 18        | 20.66   | 20.59          | 20.45          | 21.50          |
|           |            | 36       | 39        | 20.65   | 20.64          | 20.66          | 21.50          |
|           |            | 75       | 0         | 20.66   | 20.55          | 20.66          | 21.50          |
|           |            | 1        | 0         | 20.63   | 20.68          | 20.63          | 21.50          |
|           |            | 1        | 38        | 20.80   | 20.51          | 20.59          | 21.50          |
|           |            | 1        | 74        | 20.94   | 20.42          | 20.59          | 21.50          |
|           | 64QAM      | 36       | 0         | 19.64   | 19.55          | 19.62          | 20.50          |
|           |            | 36       | 18        | 19.69   | 19.62          | 19.56          | 20.50          |
|           |            | 36       | 39        | 19.62   | 19.53          | 19.64          | 20.50          |
|           |            | 75       | 0         | 19.57   | 19.44          | 19.54          | 20.50          |
| Bandwidth | Modulation | RB size  | RB offset | Channel | Channel        | Channel        | Tune up        |
| Bandwidth | Wouldtion  |          | IND Onset | 20050   | 20175          | 20300          | i une up       |
|           |            | 1        | 0         | 22.64   | 22.70          | 22.52          | 23.50          |
|           |            | 1        | 50        | 22.26   | 22.52          | 22.43          | 23.50          |
|           |            | 1        | 99        | 22.68   | 22.67          | 22.71          | 23.50          |
|           | QPSK       | 50       | 0         | 21.71   | 21.72          | 21.62          | 22.50          |
|           |            | 50       | 25        | 21.60   | 21.65          | 21.64          | 22.50          |
|           |            | 50       | 50        | 21.68   | 21.64          | 21.73          | 22.50          |
|           |            | 100      | 0         | 21.73   | 21.65          | 21.55          | 22.50          |
|           |            | 1        | 0         | 21.91   | 21.90          | 21.52          | 22.50          |
|           |            | 1        | 50        | 21.23   | 21.28          | 21.51          | 22.50          |
|           |            | 1        | 99        | 21.59   | 22.07          | 22.06          | 22.50          |
| 20MHz     | 16QAM      | 50       | 0         | 20.67   | 20.64          | 20.63          | 21.50          |
|           |            | 50       | 25        | 20.60   | 20.54          | 20.57          | 21.50          |
|           |            | 50       | 50        | 20.62   | 20.52          | 20.67          | 21.50          |
|           |            | 100      | 0         | 20.64   | 20.50          | 20.59          | 21.50          |
|           |            | 1        | 0         | 20.35   | 20.54          | 20.42          | 21.50          |
|           |            | 1        | 50        | 20.47   | 20.61          | 20.41          | 21.50          |
|           |            | 1        | 99        | 20.60   | 20.80          | 20.93          | 21.50          |
|           | 64QAM      | 50       | 0         | 19.55   | 19.55          | 19.60          | 20.50          |
|           |            | 50       | 0         | 10.00   |                |                |                |
|           | 64QAM      | 50<br>50 | 25        | 19.53   | 19.53          | 19.56          | 20.50          |
|           | 64QAM      |          |           |         | 19.53<br>19.50 | 19.56<br>19.54 | 20.50<br>20.50 |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

f (886-2) 2298-0488



|           | LTE Bar    | nd 7     |           |         | Conducted | Power(dBm) |         |
|-----------|------------|----------|-----------|---------|-----------|------------|---------|
| Bondwidth | Modulation |          | DP offect | Channel | Channel   | Channel    | Tupo up |
| Bandwidth | Modulation | RB size  | RB offset | 20775   | 21100     | 21425      | Tune up |
|           |            | 1        | 0         | 23.21   | 23.38     | 23.00      | 24.20   |
|           |            | 1        | 13        | 23.14   | 23.11     | 23.52      | 24.20   |
|           |            | 1        | 24        | 23.24   | 23.10     | 23.28      | 24.20   |
|           | QPSK       | 12       | 0         | 21.70   | 21.59     | 21.61      | 22.70   |
|           |            | 12       | 6         | 21.50   | 21.36     | 21.59      | 22.70   |
|           |            | 12       | 13        | 21.63   | 21.56     | 21.64      | 22.70   |
|           |            | 25       | 0         | 21.65   | 21.58     | 21.64      | 22.70   |
|           |            | 1        | 0         | 21.86   | 21.99     | 21.83      | 23.20   |
|           |            | 1        | 13        | 21.79   | 21.81     | 21.67      | 23.20   |
|           |            | 1        | 24        | 22.05   | 21.69     | 21.59      | 23.20   |
| 5MHz      | 16QAM      | 12       | 0         | 20.67   | 20.51     | 20.50      | 22.20   |
|           |            | 12       | 6         | 20.81   | 20.65     | 20.68      | 22.20   |
|           |            | 12       | 13        | 20.83   | 20.57     | 20.65      | 22.20   |
|           |            | 25       | 0         | 20.77   | 20.79     | 20.95      | 22.20   |
|           |            | 1        | 0         | 21.46   | 21.36     | 21.02      | 22.20   |
|           |            | 1        | 13        | 21.45   | 21.01     | 20.99      | 22.20   |
| 64Q       |            | 1        | 24        | 21.18   | 21.01     | 21.11      | 22.20   |
|           | 64QAM      | 12       | 0         | 20.11   | 19.98     | 19.93      | 21.20   |
|           | 0100/101   | 12       | 6         | 19.90   | 20.17     | 20.09      | 21.20   |
|           |            | 12       | 13        | 20.04   | 20.04     | 20.02      | 21.20   |
|           |            | 25       | 0         | 19.88   | 20.00     | 20.02      | 21.20   |
|           |            |          |           | Channel | Channel   | Channel    |         |
| Bandwidth | Modulation | RB size  | RB offset | 20800   | 21100     | 21400      | Tune up |
|           |            | 1        | 0         | 23.34   | 23.27     | 23.52      | 24.20   |
|           |            | 1        | 25        | 23.16   | 23.26     | 22.93      | 24.20   |
|           |            | 1        | 49        | 23.18   | 22.80     | 23.26      | 24.20   |
|           | QPSK       | 25       | 0         | 21.49   | 21.39     | 21.40      | 24.20   |
|           | di on      | 25       | 13        | 21.41   | 21.39     | 21.27      | 22.70   |
|           |            | 25       | 25        | 21.43   | 21.32     | 21.35      | 22.70   |
|           |            | 50       | 0         | 21.43   | 21.32     | 21.69      | 22.70   |
|           |            | 1        | 0         | 21.90   | 21.91     | 21.54      | 23.20   |
|           |            | 1        | 25        | 21.07   | 21.31     | 21.34      | 23.20   |
|           | 4          | 1        | 49        | 21.07   | 21.71     | 21.14      |         |
| 10MHz     | 1604M      | 25       | 49        |         | 20.47     |            | 23.20   |
|           | 16QAM      | 25<br>25 | 13        | 20.59   |           | 20.49      | 22.20   |
|           |            |          |           | 20.79   | 20.52     | 20.49      | 22.20   |
|           |            | 25       | 25        | 20.69   | 20.36     | 20.56      | 22.20   |
|           |            | 50       | 0         | 20.76   | 20.55     | 20.76      | 22.20   |
|           |            | 1        | 0         | 21.49   | 21.04     | 21.14      | 22.20   |
|           |            | 1        | 25        | 20.76   | 20.74     | 20.66      | 22.20   |
|           | 64QAM      | 1        | 49        | 21.14   | 20.87     | 20.84      | 22.20   |
|           |            | 25       | 0         | 19.92   | 20.00     | 19.88      | 21.20   |
|           |            | 25       | 13        | 20.00   | 20.03     | 20.05      | 21.20   |
|           |            | 25       | 25        | 19.94   | 20.02     | 20.06      | 21.20   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|           |            | 50              | 0         | 19.94          | 20.00   | 20.20          | 21.20                   |
|-----------|------------|-----------------|-----------|----------------|---------|----------------|-------------------------|
| Bandwidth | Modulation | RB size         | DP offoot | Channel        | Channel | Channel        | Tuna un                 |
| Banuwiuth | Modulation | RD SIZE         | RB offset | 20825          | 21100   | 21375          | Tune up                 |
|           |            | 1               | 0         | 23.04          | 23.01   | 23.13          | 24.20                   |
|           |            | 1               | 38        | 23.30          | 23.27   | 23.00          | 24.20                   |
|           |            | 1               | 74        | 23.06          | 22.80   | 22.98          | 24.20                   |
|           | QPSK       | 36              | 0         | 21.48          | 21.47   | 21.50          | 22.70                   |
|           |            | 36              | 18        | 21.49          | 21.41   | 21.30          | 22.70                   |
|           |            | 36              | 39        | 21.43          | 21.39   | 21.37          | 22.70                   |
|           |            | 75              | 0         | 21.49          | 21.52   | 21.66          | 22.70                   |
|           |            | 1               | 0         | 21.93          | 21.94   | 21.10          | 23.20                   |
|           |            | 1               | 38        | 21.90          | 21.98   | 22.03          | 23.20                   |
|           |            | 1               | 74        | 22.04          | 21.79   | 21.64          | 23.20                   |
| 15MHz     | 16QAM      | 36              | 0         | 20.80          | 20.60   | 20.54          | 22.20                   |
|           |            | 36              | 18        | 20.74          | 20.50   | 20.44          | 22.20                   |
|           |            | 36              | 39        | 20.64          | 20.45   | 20.39          | 22.20                   |
|           |            | 75              | 0         | 20.81          | 20.57   | 20.97          | 22.20                   |
|           |            | 1               | 0         | 21.02          | 20.95   | 21.53          | 22.20                   |
|           |            | 1               | 38        | 21.07          | 21.20   | 21.34          | 22.20                   |
|           |            | 1               | 74        | 21.01          | 21.02   | 20.73          | 22.20                   |
|           | 64QAM      | 36              | 0         | 19.95          | 20.03   | 20.07          | 21.20                   |
| 69        |            | 36              | 18        | 19.93          | 20.11   | 19.88          | 21.20                   |
|           |            | 36              | 39        | 19.90          | 20.07   | 19.95          | 21.20                   |
|           |            | 75              | 0         | 20.01          | 20.16   | 20.23          | 21.20                   |
|           |            |                 |           | Channel        | Channel | Channel        |                         |
| Bandwidth | Modulation | RB size         | RB offset | 20850          | 21100   | 21350          | Tune up                 |
|           |            | 1               | 0         | 23.06          | 23.04   | 23.54          | 24.20                   |
|           |            | 1               | 50        | 22.82          | 22.91   | 23.07          | 24.20                   |
|           |            | 1               | 99        | 23.24          | 23.54   | 23.09          | 24.20                   |
|           | QPSK       | 50              | 0         | 21.64          | 21.63   | 21.63          | 22.70                   |
|           |            | 50              | 25        | 21.62          | 21.48   | 21.48          | 22.70                   |
|           |            | 50              | 50        | 21.57          | 21.48   | 21.52          | 22.70                   |
|           |            | 100             | 0         | 21.73          | 21.57   | 21.74          | 22.70                   |
|           |            | 1               | 0         | 21.90          | 21.73   | 21.61          | 23.20                   |
|           |            | 1               | 50        | 21.83          | 21.84   | 21.83          | 23.20                   |
|           |            | 1               | 99        | 22.05          | 22.12   | 22.02          | 23.20                   |
| 20MHz     | 16QAM      | 50              | 0         | 20.65          | 20.60   | 20.63          | 22.20                   |
|           |            | 50              | 25        | 20.61          | 20.50   | 20.51          | 22.20                   |
|           |            | 50              | 50        | 20.69          | 20.48   | 20.65          | 22.20                   |
|           |            | 100             | 0         | 20.03          | 20.40   | 20.03          | 22.20                   |
|           |            | 100             | 0         | 21.10          | 21.11   | 20.96          | 22.20                   |
|           |            | 1               | 50        | 21.10          | 20.98   | 20.69          | 22.20                   |
|           |            | 1               | 99        | 21.03          | 20.98   | 20.09          | 22.20                   |
| 64QAN     | 6400M      | 50              | 99        | 20.04          | 20.06   | 19.93          |                         |
|           |            |                 | 25        | 19.91          | 19.90   | 19.93          | 21.20<br>21.20          |
|           |            |                 |           |                | 19 90   | 1 1997         | - 21.20                 |
|           |            | 50              |           |                |         |                |                         |
|           |            | 50<br>50<br>100 | 50<br>0   | 19.82<br>20.09 | 20.02   | 19.84<br>20.13 | 21.20<br>21.20<br>21.20 |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488

www.tw.sgs.com

Member of SGS Group



|            | LTE Ban    | d 38    |           |         | Conducted | Power(dBm) |          |
|------------|------------|---------|-----------|---------|-----------|------------|----------|
| Bandwidth  | Modulation | RB size | RB offset | Channel | Channel   | Channel    | Tupo un  |
| Banuwiutii | Modulation | RD SIZE | RD Olisel | 37775   | 38000     | 38225      | Tune up  |
|            |            | 1       | 0         | 22.99   | 23.11     | 22.93      | 24.20    |
|            |            | 1       | 13        | 23.02   | 22.96     | 22.99      | 24.20    |
|            |            | 1       | 24        | 22.97   | 23.14     | 22.90      | 24.20    |
|            | QPSK       | 12      | 0         | 22.21   | 22.29     | 22.16      | 23.20    |
|            |            | 12      | 6         | 22.09   | 22.22     | 22.05      | 23.20    |
|            |            | 12      | 13        | 21.94   | 22.21     | 21.97      | 23.20    |
|            |            | 25      | 0         | 21.92   | 22.17     | 22.02      | 23.20    |
|            |            | 1       | 0         | 22.03   | 22.26     | 22.29      | 23.20    |
|            |            | 1       | 13        | 21.88   | 22.55     | 21.94      | 23.20    |
|            |            | 1       | 24        | 21.83   | 22.06     | 22.28      | 23.20    |
| 5MHz       | 16QAM      | 12      | 0         | 20.86   | 20.97     | 21.00      | 22.20    |
|            |            | 12      | 6         | 20.76   | 20.97     | 20.70      | 22.20    |
|            |            | 12      | 13        | 20.74   | 21.05     | 20.93      | 22.20    |
|            |            | 25      | 0         | 20.65   | 21.07     | 20.90      | 22.20    |
|            |            | 1       | 0         | 21.21   | 21.06     | 21.20      | 22.20    |
| 64QAN      |            | 1       | 13        | 21.05   | 21.18     | 21.28      | 22.20    |
|            |            | 1       | 24        | 20.91   | 20.81     | 20.90      | 22.20    |
|            | 64QAM      | 12      | 0         | 19.88   | 19.94     | 19.98      | 21.20    |
|            |            | 12      | 6         | 19.90   | 19.94     | 19.99      | 21.20    |
|            |            | 12      | 13        | 19.73   | 20.00     | 19.93      | 21.20    |
|            |            | 25      | 0         | 19.91   | 19.96     | 19.92      | 21.20    |
|            | Madulation |         |           | Channel | Channel   | Channel    | <b>T</b> |
| Bandwidth  | Modulation | RB size | RB offset | 37800   | 38000     | 38200      | Tune up  |
|            |            | 1       | 0         | 22.94   | 22.95     | 22.99      | 24.20    |
|            |            | 1       | 25        | 22.22   | 22.50     | 22.88      | 24.20    |
|            |            | 1       | 49        | 23.03   | 23.05     | 22.83      | 24.20    |
|            | QPSK       | 25      | 0         | 22.02   | 22.18     | 22.09      | 23.20    |
|            |            | 25      | 13        | 22.00   | 22.20     | 21.98      | 23.20    |
|            |            | 25      | 25        | 21.90   | 22.12     | 21.91      | 23.20    |
|            |            | 50      | 0         | 21.88   | 22.20     | 22.02      | 23.20    |
|            |            | 1       | 0         | 21.76   | 22.02     | 21.61      | 23.20    |
|            |            | 1       | 25        | 21.20   | 22.04     | 22.02      | 23.20    |
|            |            | 1       | 49        | 21.80   | 22.11     | 21.51      | 23.20    |
| 10MHz      | 16QAM      | 25      | 0         | 20.76   | 20.94     | 20.78      | 22.20    |
|            |            | 25      | 13        | 20.78   | 20.94     | 20.91      | 22.20    |
|            |            | 25      | 25        | 20.63   | 20.95     | 20.82      | 22.20    |
|            |            | 50      | 0         | 20.69   | 20.92     | 20.85      | 22.20    |
|            |            | 1       | 0         | 21.06   | 21.01     | 20.84      | 22.20    |
|            |            | 1       | 25        | 20.83   | 20.89     | 20.56      | 22.20    |
|            |            | 1       | 49        | 20.96   | 20.89     | 20.86      | 22.20    |
|            | 64QAM      | 25      | 0         | 19.79   | 20.01     | 20.01      | 21.20    |
|            |            | 25      | 13        | 19.86   | 20.03     | 19.85      | 21.20    |
|            |            | 25      | 25        | 19.73   | 20.07     | 19.86      | 21.20    |
|            |            | 50      | 0         | 19.75   | 20.07     | 19.92      | 21.20    |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279



| Bandwidth | Modulation |         | DP offeet | Channel | Channel | Channel | Tupo un |
|-----------|------------|---------|-----------|---------|---------|---------|---------|
| Bandwidth | Modulation | RB size | RB offset | 37825   | 38000   | 38175   | Tune up |
|           |            | 1       | 0         | 23.08   | 23.08   | 22.95   | 24.20   |
|           |            | 1       | 38        | 23.11   | 23.05   | 23.05   | 24.20   |
|           |            | 1       | 74        | 23.08   | 23.06   | 22.90   | 24.20   |
|           | QPSK       | 36      | 0         | 22.15   | 22.13   | 22.11   | 23.20   |
|           |            | 36      | 18        | 22.08   | 22.21   | 22.03   | 23.20   |
|           |            | 36      | 39        | 22.09   | 22.16   | 22.02   | 23.20   |
|           |            | 75      | 0         | 22.01   | 22.23   | 22.02   | 23.20   |
|           |            | 1       | 0         | 21.91   | 21.90   | 21.96   | 23.20   |
|           |            | 1       | 38        | 21.68   | 22.17   | 22.31   | 23.20   |
|           |            | 1       | 74        | 21.96   | 21.72   | 22.00   | 23.20   |
| 15MHz     | 16QAM      | 36      | 0         | 20.74   | 21.03   | 20.96   | 22.20   |
|           |            | 36      | 18        | 20.77   | 21.08   | 20.97   | 22.20   |
|           |            | 36      | 39        | 20.83   | 21.10   | 20.93   | 22.20   |
|           |            | 75      | 0         | 20.79   | 20.97   | 20.95   | 22.20   |
|           |            | 1       | 0         | 20.82   | 20.92   | 21.11   | 22.20   |
|           |            | 1       | 38        | 20.75   | 21.03   | 21.20   | 22.20   |
|           |            | 1       | 74        | 20.85   | 21.15   | 20.90   | 22.20   |
| 64Q.      | 64QAM      | 36      | 0         | 19.86   | 20.04   | 19.93   | 21.20   |
|           |            | 36      | 18        | 19.97   | 19.93   | 19.82   | 21.20   |
|           |            | 36      | 39        | 19.89   | 20.10   | 19.92   | 21.20   |
|           |            | 75      | 0         | 19.91   | 20.12   | 19.97   | 21.20   |
|           |            |         |           | Channel | Channel | Channel |         |
| Bandwidth | Modulation | RB size | RB offset | 37850   | 38000   | 38150   | Tune up |
|           | 3-<br>     | 1       | 0         | 22.68   | 22.92   | 22.90   | 24.20   |
|           |            | 1       | 50        | 22.77   | 22.89   | 22.85   | 24.20   |
|           |            | 1       | 99        | 22.53   | 22.54   | 22.53   | 24.20   |
|           | QPSK       | 50      | 0         | 21.89   | 21.85   | 21.76   | 23.20   |
|           |            | 50      | 25        | 21.73   | 21.83   | 21.64   | 23.20   |
|           |            | 50      | 50        | 21.83   | 21.74   | 21.78   | 23.20   |
|           |            | 100     | 0         | 21.84   | 21.81   | 21.68   | 23.20   |
|           |            | 1       | 0         | 21.86   | 21.92   | 21.76   | 23.20   |
|           |            | 1       | 50        | 21.75   | 21.34   | 21.51   | 23.20   |
|           |            | 1       | 99        | 21.69   | 21.68   | 21.60   | 23.20   |
| 20MHz     | 16QAM      | 50      | 0         | 20.72   | 20.81   | 20.72   | 22.20   |
|           |            | 50      | 25        | 20.73   | 20.66   | 20.55   | 22.20   |
|           |            | 50      | 50        | 20.64   | 20.58   | 20.54   | 22.20   |
|           |            | 100     | 0         | 20.74   | 20.66   | 20.65   | 22.20   |
|           | 4          | 1       | 0         | 21.17   | 21.09   | 21.08   | 22.20   |
|           |            | 1       | 50        | 20.54   | 20.80   | 20.61   | 22.20   |
|           |            | 1       | 99        | 20.61   | 21.02   | 20.87   | 22.20   |
|           | 64QAM      | 50      | 0         | 20.09   | 20.15   | 20.00   | 21.20   |
| 64QAM     |            | 50      | 25        | 20.00   | 20.06   | 19.99   | 21.20   |
|           |            | ~~      |           | _0.00   | _0.00   |         | 20      |
|           |            | 50      | 50        | 19.96   | 20.04   | 19.96   | 21.20   |

Table 13: Conducted Power of LTE

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



## 8.1.2 Conducted Power of Second Antenna 8.1.2.1 Conducted Power of GSM

|                 |             |          | G             | SM 850 R  | eceiver o | n(head)             |                                    |                        |       |         |
|-----------------|-------------|----------|---------------|-----------|-----------|---------------------|------------------------------------|------------------------|-------|---------|
|                 | Burst Outpu |          | dBm)          |           | Tune up   | Division<br>Factors | F                                  | e-Average<br>Power(dBi | m) .  | Tune up |
| Chan            | nel         | 128      | 190           | 251       |           | T actors            | 128                                | 190                    | 251   |         |
| GSM(GMSK)       | GSM         | 31.22    | 31.11         | 30.97     | 32.10     | -9.19               | 22.03                              | 21.92                  | 21.78 | 22.91   |
| CDDC/           | 1 TX Slot   | 31.19    | 31.11         | 30.90     | 32.10     | -9.19               | 22.00                              | 21.92                  | 21.71 | 22.91   |
| GPRS/<br>EGPRS  | 2 TX Slots  | 28.14    | 28.02         | 27.84     | 29.10     | -6.18               | 21.96                              | 21.84                  | 21.66 | 22.92   |
| (GMSK)          | 3 TX Slots  | 26.27    | 26.19         | 26.06     | 27.30     | -4.42               | 21.85                              | 21.77                  | 21.64 | 22.88   |
| (emert)         | 4 TX Slots  | 25.12    | 25.05         | 24.92     | 26.10     | -3.17               | 21.95                              | 21.88                  | 21.75 | 22.93   |
|                 | 1 TX Slot   | 23.82    | 23.79         | 23.72     | 27.00     | -9.19               | 14.63                              | 14.60                  | 14.53 | 17.81   |
| EGPRS           | 2 TX Slots  | 20.74    | 20.60         | 20.54     | 24.00     | -6.18               | 14.56                              | 14.42                  | 14.36 | 17.82   |
| (8PSK)          | 3 TX Slots  | 19.02    | 18.85         | 18.86     | 22.20     | -4.42               | 14.60                              | 14.43                  | 14.44 | 17.78   |
|                 | 4 TX Slots  | 17.89    | 17.80         | 17.71     | 21.00     | -3.17               | 14.72                              | 14.63                  | 14.54 | 17.83   |
|                 |             |          | <b>GSM 85</b> | 0 Full Po | wer /Rece | eiver off(b         | ody)                               |                        |       |         |
| E               | Burst Outpu | t Power( | dBm)          |           | Tune up   | Division            | Frame-Average Output<br>Power(dBm) |                        |       | Tune up |
| Chan            | nel         | 128      | 190           | 251       |           | Factors             | 128                                | 190                    | 251   |         |
| GSM(GMSK)       | GSM         | 33.16    | 33.09         | 32.99     | 34.10     | -9.19               | 23.97                              | 23.90                  | 23.80 | 24.91   |
| 0000            | 1 TX Slot   | 33.19    | 33.11         | 32.90     | 34.10     | -9.19               | 24.00                              | 23.92                  | 23.71 | 24.91   |
| GPRS/           | 2 TX Slots  | 30.21    | 30.11         | 29.88     | 31.10     | -6.18               | 24.03                              | 23.93                  | 23.70 | 24.92   |
| EGPRS<br>(GMSK) | 3 TX Slots  | 28.35    | 28.29         | 28.16     | 29.30     | -4.42               | 23.93                              | 23.87                  | 23.74 | 24.88   |
|                 | 4 TX Slots  | 27.09    | 26.99         | 26.89     | 28.10     | -3.17               | 23.92                              | 23.82                  | 23.72 | 24.93   |
|                 | 1 TX Slot   | 26.13    | 26.06         | 26.03     | 29.00     | -9.19               | 16.94                              | 16.87                  | 16.84 | 19.81   |
| EGPRS           | 2 TX Slots  | 22.65    | 22.52         | 22.53     | 26.00     | -6.18               | 16.47                              | 16.34                  | 16.35 | 19.82   |
| (8PSK)          | 3 TX Slots  | 20.98    | 20.89         | 20.92     | 24.20     | -4.42               | 16.56                              | 16.47                  | 16.50 | 19.78   |
|                 | 4 TX Slots  | 19.78    | 19.63         | 19.56     | 23.00     | -3.17               | 16.61                              | 16.46                  | 16.39 | 19.83   |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279

f (886-2) 2298-0488



|                 |             |          |       | G     | SM 1900     |          |                                    |       |       |         |
|-----------------|-------------|----------|-------|-------|-------------|----------|------------------------------------|-------|-------|---------|
| E               | Burst Outpu | t Power( | (dBm) |       | Tune up     | Division | Frame-Average Output<br>Power(dBm) |       |       | Tune up |
| Chanı           | nel         | 512      | 661   | 810   | Factors 512 |          | 661                                | 810   |       |         |
| GSM(GMSK)       | GSM         | 23.93    | 23.75 | 24.03 | 25.30       | -9.19    | 14.74                              | 14.56 | 14.84 | 16.11   |
| 0000            | 1 TX Slot   | 23.92    | 23.76 | 24.02 | 25.30       | -9.19    | 14.73                              | 14.57 | 14.83 | 16.11   |
| GPRS/           | 2 TX Slots  | 21.06    | 20.96 | 21.14 | 22.30       | -6.18    | 14.88                              | 14.78 | 14.96 | 16.12   |
| EGPRS<br>(GMSK) | 3 TX Slots  | 19.37    | 19.28 | 19.60 | 20.50       | -4.42    | 14.95                              | 14.86 | 15.18 | 16.08   |
|                 | 4 TX Slots  | 18.26    | 18.12 | 18.37 | 19.30       | -3.17    | 15.09                              | 14.95 | 15.20 | 16.13   |
|                 | 1 TX Slot   | 19.63    | 19.54 | 19.74 | 22.00       | -9.19    | 10.44                              | 10.35 | 10.55 | 12.81   |
| EGPRS           | 2 TX Slots  | 16.38    | 16.29 | 16.58 | 19.00       | -6.18    | 10.20                              | 10.11 | 10.40 | 12.82   |
| (8PSK)          | 3 TX Slots  | 14.73    | 14.82 | 14.86 | 17.20       | -4.42    | 10.31                              | 10.40 | 10.44 | 12.78   |
|                 | 4 TX Slots  | 13.57    | 13.52 | 13.85 | 16.00       | -3.17    | 10.40                              | 10.35 | 10.68 | 12.83   |
| Table 14. Co    | nducted De  | wor of C | NO.   |       |             |          |                                    |       |       |         |

Table 14: Conducted Power of GSM Note:

1) . CMU200 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

| No. of timeslots                                     | 1     | 2      | 3      | 4       |
|------------------------------------------------------|-------|--------|--------|---------|
| Duty Cycle                                           | 1:8.3 | 1:4.15 | 1:2.77 | 1:2.075 |
| Time based avg. power compared to slotted avg. power | -9.19 | -6.18  | -4.42  | -3.17   |

2). The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8

3). When the maximum output power variation across the required test channels is >  $\frac{1}{2}$  dB, instead of the middle channel, the highest output power channel must be used

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



|          | WCDMA B       | and II Receiver | on(head)        |       |         |
|----------|---------------|-----------------|-----------------|-------|---------|
|          | Average       | Conducted Powe  | er(dBm)         |       |         |
| CI       | nannel        | 9262            | 9400            | 9538  | Tune up |
| WCDMA    | 12.2kbps RMC  | 17.70           | 17.76           | 17.71 | 19.10   |
| VVCDIVIA | 12.2kbps AMR  | 17.66           | 17.72           | 17.59 | 19.10   |
|          | Subtest 1     | 17.26           | 17.35           | 17.21 | 18.60   |
| HSDPA    | Subtest 2     | 16.47           | 16.49           | 16.29 | 17.60   |
| IISDEA   | Subtest 3     | 16.07           | 16.08           | 15.95 | 17.40   |
|          | Subtest 4     | 16.05           | 16.05           | 15.86 | 17.40   |
|          | Subtest 1     | 16.33           | 16.11           | 15.71 | 17.60   |
|          | Subtest 2     | 14.97           | 14.81           | 14.65 | 16.60   |
| HSUPA    | Subtest 3     | 15.82           | 15.57           | 15.51 | 17.60   |
|          | Subtest 4     | 14.56           | 15.64           | 14.73 | 17.10   |
|          | Subtest 5     | 17.62           | 17.72           | 17.43 | 19.10   |
|          | Subtest 1     | 17.19           | 17.27           | 17.18 | 18.60   |
| DC-HSDPA | Subtest 2     | 16.40           | 16.43           | 16.22 | 17.60   |
| DC-HSDFA | Subtest 3     | 16.00           | 16.05           | 15.89 | 17.40   |
|          | Subtest 4     | 16.02           | 15.99           | 15.82 | 17.40   |
|          | WCDMA Band II | Full Power/Rec  | eiver off (body | )     |         |
|          | Average       | Conducted Powe  | er(dBm)         |       |         |
| CI       | nannel        | 9262            | 9400            | 9538  | Tune up |
| WCDMA    | 12.2kbps RMC  | 23.58           | 23.63           | 23.44 | 24.50   |
| VICDIVIA | 12.2kbps AMR  | 23.56           | 23.59           | 23.41 | 24.50   |
|          | Subtest 1     | 22.81           | 22.92           | 22.77 | 24.00   |
| HSDPA    | Subtest 2     | 22.02           | 22.08           | 21.88 | 23.00   |
| HODEA    | Subtest 3     | 21.63           | 21.66           | 21.50 | 22.80   |
|          | Subtest 4     | 21.58           | 21.62           | 21.45 | 22.80   |
|          | Subtest 1     | 21.88           | 21.66           | 21.29 | 23.00   |
|          | Subtest 2     | 20.50           | 20.37           | 20.18 | 22.00   |
| HSUPA    | Subtest 3     | 21.35           | 21.14           | 21.08 | 23.00   |
|          | Subtest 4     | 20.13           | 21.22           | 20.27 | 22.50   |
|          | Subtest 5     | 23.15           | 23.26           | 23.02 | 24.50   |
|          | Subtest 1     | 22.76           | 22.88           | 22.69 | 24.00   |
| DC-HSDPA | Subtest 2     | 21.97           | 22.01           | 21.82 | 23.00   |
| DC-HODPA | Subtest 3     | 21.56           | 21.58           | 21.43 | 22.80   |
|          | Subtest 4     | 21.51           | 21.56           | 21.37 | 22.80   |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279

f (886-2) 2298-0488



|                                                               | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conducted Pow                                                                                                                                                                  | er(dBm)                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                     |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                                                             | hannel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9262                                                                                                                                                                           | 9400                                                                                                                                                                     | 9538                                                                                                                                                          | Tune up                                                                                                                                                             |
|                                                               | 12.2kbps RMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.06                                                                                                                                                                          | 23.05                                                                                                                                                                    | 23.02                                                                                                                                                         | 24.00                                                                                                                                                               |
| WCDMA                                                         | 12.2kbps AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.03                                                                                                                                                                          | 23.01                                                                                                                                                                    | 22.98                                                                                                                                                         | 24.00                                                                                                                                                               |
|                                                               | Subtest 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.27                                                                                                                                                                          | 22.37                                                                                                                                                                    | 22.23                                                                                                                                                         | 23.50                                                                                                                                                               |
|                                                               | Subtest 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.47                                                                                                                                                                          | 21.50                                                                                                                                                                    | 21.30                                                                                                                                                         | 22.50                                                                                                                                                               |
| HSDPA                                                         | Subtest 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.10                                                                                                                                                                          | 21.12                                                                                                                                                                    | 20.97                                                                                                                                                         | 22.30                                                                                                                                                               |
|                                                               | Subtest 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.03                                                                                                                                                                          | 21.08                                                                                                                                                                    | 20.89                                                                                                                                                         | 22.30                                                                                                                                                               |
|                                                               | Subtest 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.34                                                                                                                                                                          | 21.12                                                                                                                                                                    | 20.70                                                                                                                                                         | 22.50                                                                                                                                                               |
|                                                               | Subtest 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.95                                                                                                                                                                          | 19.83                                                                                                                                                                    | 19.65                                                                                                                                                         | 21.50                                                                                                                                                               |
| HSUPA                                                         | Subtest 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.82                                                                                                                                                                          | 20.55                                                                                                                                                                    | 20.51                                                                                                                                                         | 22.50                                                                                                                                                               |
|                                                               | Subtest 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.55                                                                                                                                                                          | 20.63                                                                                                                                                                    | 19.72                                                                                                                                                         | 22.00                                                                                                                                                               |
|                                                               | Subtest 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.58                                                                                                                                                                          | 22.67                                                                                                                                                                    | 22.47                                                                                                                                                         | 24.00                                                                                                                                                               |
| DC-HSDPA -                                                    | Subtest 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.24                                                                                                                                                                          | 22.32                                                                                                                                                                    | 22.18                                                                                                                                                         | 23.50                                                                                                                                                               |
|                                                               | Subtest 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                | 21.47                                                                                                                                                                    | 21.23                                                                                                                                                         | 22.50                                                                                                                                                               |
|                                                               | 0.11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04.00                                                                                                                                                                          | 04.05                                                                                                                                                                    |                                                                                                                                                               | 00.00                                                                                                                                                               |
|                                                               | Subtest 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.03                                                                                                                                                                          | 21.05                                                                                                                                                                    | 20.89                                                                                                                                                         | 22.30                                                                                                                                                               |
| DMA Band II + W                                               | Subtest 4<br>iFi 2.4G(Connect/P2P/He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.00<br>otspot)、BT off                                                                                                                                                        | 21.02<br>or WiFi 5.0G                                                                                                                                                    | 20.82<br>Connect/P2P/H                                                                                                                                        | 22.30<br>Hotspot)、B <sup>-</sup>                                                                                                                                    |
| DMA Band II + W<br>or WiFi 2.                                 | Subtest 4<br>iFi 2.4G (Connect/P2P/Ho<br>4G + P2P 5.0G + BT off or<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.00<br>otspot)、BT off<br>WiFi 5.0G + P2<br>Conducted Pow                                                                                                                     | 21.02<br>or WiFi 5.0G(<br>P 2.4G + BT of<br>er(dBm)                                                                                                                      | 20.82<br>Connect/P2P/I<br>f Receiver on(I                                                                                                                     | 22.30<br>lotspot)、B <sup>-</sup><br>nead)                                                                                                                           |
| DMA Band II + W<br>or WiFi 2.                                 | Subtest 4<br><b>iFi 2.4G (Connect/P2P/He</b><br><b>4G + P2P 5.0G + BT off or</b><br>Average<br>hannel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.00<br>otspot)、BT off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262                                                                                                             | 21.02<br>or WiFi 5.0G<br>P 2.4G + BT of<br>er(dBm)<br>9400                                                                                                               | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538                                                                                                             | 22.30<br>Hotspot)、B<br>head)<br>Tune up                                                                                                                             |
| DMA Band II + W<br>or WiFi 2.<br>C                            | Subtest 4<br>iFi 2.4G (Connect/P2P/Ho<br>4G + P2P 5.0G + BT off or<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.00<br>otspot)、BT off<br>r WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19                                                                                                  | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24                                                                                                    | 20.82<br>Connect/P2P/H<br>f Receiver on(I<br>9538<br>18.16                                                                                                    | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90                                                                                                                    |
| DMA Band II + W<br>or WiFi 2.                                 | Subtest 4<br><b>iFi 2.4G (Connect/P2P/He</b><br><b>4G + P2P 5.0G + BT off or</b><br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16                                                                                           | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23                                                                                           | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12                                                                                           | 22.30<br>Hotspot) <b>B</b><br>head)<br>Tune up<br>19.90<br>19.90                                                                                                    |
| DMA Band II + W<br>or WiFi 2.<br>C                            | Subtest 4<br><b>iFi 2.4G (Connect/P2P/H4<br/>4G + P2P 5.0G + BT off or</b><br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82                                                                                  | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88                                                                                  | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78                                                                                  | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.90<br>19.40                                                                                                  |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA                   | Subtest 4<br><b>iFi 2.4G (Connect/P2P/He</b><br><b>4G + P2P 5.0G + BT off on</b><br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00<br>otspot)、BT off<br>viFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05                                                                         | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04                                                                         | 20.82<br>Connect/P2P/H<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85                                                                         | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.90<br>19.40<br>18.40                                                                                         |
| DMA Band II + W<br>or WiFi 2.<br>C                            | Subtest 4<br><b>iFi 2.4G (Connect/P2P/H4<br/>4G + P2P 5.0G + BT off or</b><br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61                                                                | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64                                                                | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78                                                                                  | 22.30<br>Hotspot) <b>B</b><br>head)<br>Tune up<br>19.90<br>19.90<br>19.40<br>18.40<br>18.20                                                                         |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA                   | Subtest 4<br>iFi 2.4G (Connect/P2P/H4<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60                                                       | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.88<br>17.04<br>16.64<br>16.60                                              | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41                                                       | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20                                                                                |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA                   | Subtest 4<br>iFi 2.4G (Connect/P2P/He<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.00<br>otspot)、BT off<br>viFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92                                              | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70                                              | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50                                                                | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.40<br>19.40<br>18.40<br>18.20<br>18.20<br>18.40                                                              |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA                   | Subtest 4<br>iFi 2.4G (Connect/P2P/H4<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60                                                       | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.88<br>17.04<br>16.64<br>16.60                                              | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41                                                       | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20                                                                                |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA                   | Subtest 4<br><b>iFi 2.4G (Connect/P2P/He</b><br><b>4G + P2P 5.0G + BT off on</b><br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4<br>Subtest 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.00<br>otspot)、BT off<br>viFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92                                              | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70                                              | 20.82<br>Connect/P2P/H<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41<br>16.28                                              | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.40<br>19.40<br>18.40<br>18.20<br>18.20<br>18.40                                                              |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA<br>HSDPA          | Subtest 4<br>iFi 2.4G (Connect/P2P/H4<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4<br>Subtest 1<br>Subtest 1<br>Subtest 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92<br>15.53                                     | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70<br>15.34                                     | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41<br>16.28<br>15.24                                     | 22.30<br>Hotspot) <b>B</b><br>head)<br>Tune up<br>19.90<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20<br>18.20<br>18.40<br>17.40                                     |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA<br>HSDPA          | Subtest 4<br>iFi 2.4G (Connect/P2P/Ho<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4<br>Subtest 1<br>Subtest 1<br>Subtest 2<br>Subtest 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00<br>otspot)、BT off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92<br>15.53<br>16.39                            | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70<br>15.34<br>16.12                            | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41<br>16.28<br>15.24<br>16.06                            | 22.30<br>Hotspot) <b>B</b><br>head)<br>Tune up<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20<br>18.40<br>17.40<br>18.40                                              |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA<br>HSDPA          | Subtest 4<br>iFi 2.4G (Connect/P2P/He<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4<br>Subtest 1<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 3<br>Subtest 3<br>Subtest 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.00<br>otspot)、BT off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92<br>15.53<br>16.39<br>15.09                   | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70<br>15.34<br>16.12<br>16.22                   | 20.82<br>Connect/P2P/H<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41<br>16.28<br>15.24<br>16.06<br>15.26                   | 22.30<br>Hotspot)、B<br>nead)<br>Tune up<br>19.90<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20<br>18.40<br>17.40<br>18.40<br>17.90                                   |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA<br>HSDPA<br>HSUPA | Subtest 4<br>iFi 2.4G (Connect/P2P/He<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4<br>Subtest 2<br>Subtest 3<br>Subtest 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.00<br>otspot) ST off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92<br>15.53<br>16.39<br>15.09<br>18.15          | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70<br>15.34<br>16.12<br>16.22<br>18.26          | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41<br>16.28<br>15.24<br>16.06<br>15.26<br>17.96          | 22.30<br>Hotspot) <b>B</b><br>head)<br>Tune up<br>19.90<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20<br>18.20<br>18.40<br>17.40<br>18.40<br>17.90<br>19.90          |
| DMA Band II + W<br>or WiFi 2.<br>C<br>WCDMA<br>HSDPA          | Subtest 4<br>iFi 2.4G (Connect/P2P/He<br>4G + P2P 5.0G + BT off or<br>Average<br>hannel<br>12.2kbps RMC<br>12.2kbps AMR<br>Subtest 1<br>Subtest 2<br>Subtest 3<br>Subtest 4<br>Subtest 4<br>Subtest 3<br>Subtest 3<br>Subtest 4<br>Subtest 3<br>Subtest 1 | 21.00<br>otspot)、BT off<br>WiFi 5.0G + P2<br>Conducted Pow<br>9262<br>18.19<br>18.16<br>17.82<br>17.05<br>16.61<br>16.60<br>16.92<br>15.53<br>16.39<br>15.09<br>18.15<br>17.79 | 21.02<br>or WiFi 5.0G (<br>P 2.4G + BT of<br>er(dBm)<br>9400<br>18.24<br>18.23<br>17.88<br>17.04<br>16.64<br>16.60<br>16.70<br>15.34<br>16.12<br>16.22<br>18.26<br>17.83 | 20.82<br>Connect/P2P/F<br>f Receiver on(I<br>9538<br>18.16<br>18.12<br>17.78<br>16.85<br>16.50<br>16.41<br>16.28<br>15.24<br>16.06<br>15.26<br>17.96<br>17.75 | 22.30<br>Hotspot) <b>B</b><br>head)<br>Tune up<br>19.90<br>19.40<br>18.40<br>18.20<br>18.20<br>18.40<br>17.40<br>18.40<br>17.40<br>18.40<br>17.90<br>19.90<br>19.40 |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279



|            |                  | d IV Receiver o | · · ·          |       |         |
|------------|------------------|-----------------|----------------|-------|---------|
|            | V                | nducted Power   | · /            | 1     |         |
| C          | hannel           | 1312            | 1412           | 1513  | Tune up |
| WCDMA      | 12.2kbps RMC     | 18.43           | 18.56          | 18.55 | 19.30   |
| W OBINI (  | 12.2kbps AMR     | 18.42           | 18.52          | 18.53 | 19.30   |
|            | Subtest 1        | 17.66           | 17.74          | 17.63 | 18.80   |
| HSDPA      | Subtest 2        | 16.94           | 16.94          | 16.91 | 18.30   |
| HODI //    | Subtest 3        | 16.29           | 16.35          | 16.44 | 17.60   |
|            | Subtest 4        | 16.33           | 16.41          | 16.34 | 17.60   |
|            | Subtest 1        | 16.56           | 16.36          | 16.33 | 18.30   |
|            | Subtest 2        | 15.70           | 15.44          | 15.44 | 17.30   |
| HSUPA      | Subtest 3        | 16.30           | 16.62          | 16.19 | 18.30   |
|            | Subtest 4        | 15.36           | 15.70          | 15.32 | 17.30   |
|            | Subtest 5        | 18.02           | 17.98          | 17.99 | 19.30   |
| DC-HSDPA - | Subtest 1        | 17.61           | 17.65          | 17.60 | 18.80   |
|            | Subtest 2        | 16.82           | 16.87          | 16.82 | 18.30   |
|            | Subtest 3        | 16.15           | 16.29          | 16.33 | 17.60   |
|            | Subtest 4        | 16.20           | 16.33          | 16.26 | 17.60   |
|            | WCDMA Band IV Fu | III Power/Recei | iver off (body | )     |         |
|            | Average Co       | nducted Power   | (dBm)          |       |         |
| С          | hannel           | 1312            | 1412           | 1513  | Tune up |
|            | 12.2kbps RMC     | 22.59           | 22.69          | 22.70 | 23.50   |
| WCDMA      | 12.2kbps AMR     | 22.57           | 22.65          | 22.67 | 23.50   |
|            | Subtest 1        | 21.73           | 21.79          | 21.69 | 23.00   |
|            | Subtest 2        | 20.99           | 20.96          | 20.97 | 22.50   |
| HSDPA      | Subtest 3        | 20.33           | 20.39          | 20.51 | 21.80   |
|            | Subtest 4        | 20.36           | 20.44          | 20.37 | 21.80   |
|            | Subtest 1        | 20.62           | 20.41          | 20.41 | 22.50   |
|            | Subtest 2        | 19.74           | 19.49          | 19.47 | 21.50   |
| HSUPA      | Subtest 3        | 20.34           | 20.70          | 20.21 | 22.50   |
|            | Subtest 4        | 19.40           | 19.75          | 19.40 | 21.50   |
|            | Subtest 5        | 22.06           | 22.03          | 22.04 | 23.50   |
|            | Subtest 1        | 21.66           | 21.69          | 21.62 | 23.00   |
|            | Subtest 2        | 20.90           | 20.91          | 20.91 | 22.50   |
| DC-HSDPA   | Subtest 3        | 20.24           | 20.35          | 20.42 | 21.80   |
|            | Subtest 4        | 20.28           | 20.36          | 20.28 | 21.80   |

Company's sole except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



|          | WCDMA Ban       | d V Receiver o | n(head)        |       |         |
|----------|-----------------|----------------|----------------|-------|---------|
|          | Average Co      | nducted Power( | dBm)           |       |         |
| С        | hannel          | 4132           | 4182           | 4233  | Tune up |
| WCDMA    | 12.2kbps RMC    | 21.49          | 21.63          | 21.41 | 22.50   |
| VVCDIVIA | 12.2kbps AMR    | 21.48          | 21.61          | 21.39 | 22.50   |
|          | Subtest 1       | 20.85          | 20.92          | 20.76 | 22.00   |
| HSDPA    | Subtest 2       | 20.37          | 20.46          | 20.26 | 21.50   |
| HODPA    | Subtest 3       | 19.84          | 20.00          | 19.84 | 20.80   |
|          | Subtest 4       | 20.00          | 19.98          | 19.83 | 20.80   |
|          | Subtest 1       | 20.33          | 20.50          | 20.18 | 21.50   |
|          | Subtest 2       | 19.56          | 19.11          | 19.02 | 20.50   |
| HSUPA    | Subtest 3       | 20.38          | 20.55          | 20.62 | 21.50   |
|          | Subtest 4       | 19.33          | 18.89          | 18.76 | 20.50   |
|          | Subtest 5       | 21.23          | 21.29          | 21.20 | 22.50   |
| DC-HSDPA | Subtest 1       | 20.80          | 20.88          | 20.69 | 22.00   |
|          | Subtest 2       |                | 20.41          | 20.24 | 21.50   |
|          | Subtest 3       | 19.78          | 19.90          | 19.80 | 20.80   |
|          | Subtest 4       | 19.97          | 20.00          | 19.82 | 20.80   |
|          | WCDMA Band V Fu | II Power/Recei | ver off (body) | )     |         |
|          | Average Co      | nducted Power( | (dBm)          |       |         |
| C        | hannel          | 4132           | 4182           | 4233  | Tune up |
| WCDMA    | 12.2kbps RMC    | 23.97          | 24.07          | 23.88 | 25.00   |
| VVCDIVIA | 12.2kbps AMR    | 23.94          | 24.03          | 23.87 | 25.00   |
|          | Subtest 1       | 23.36          | 23.44          | 23.34 | 24.50   |
|          | Subtest 2       | 22.92          | 22.97          | 22.81 | 24.00   |
| HSDPA    | Subtest 3       | 22.42          | 22.53          | 22.38 | 23.30   |
|          | Subtest 4       | 22.52          | 22.54          | 22.40 | 23.30   |
|          | Subtest 1       | 22.91          | 23.05          | 22.71 | 24.00   |
|          | Subtest 2       | 22.12          | 21.66          | 21.60 | 23.00   |
| HSUPA    | Subtest 3       | 22.96          | 23.12          | 23.14 | 24.00   |
|          | Subtest 4       | 21.86          | 21.40          | 21.29 | 23.00   |
|          | Subtest 5       | 23.74          | 23.83          | 23.73 | 25.00   |
|          | Subtest 1       | 23.37          | 23.39          | 23.27 | 24.50   |
|          | Subtest 2       | 22.90          | 22.93          | 22.75 | 24.00   |
| DC-HSDPA | Subtest 3       | 22.34          | 22.43          | 22.35 | 23.30   |
|          | Subtest 4       | 22.49          | 22.54          | 22.34 | 23.30   |

Table 15: Conducted Power of WCDMA Note:

when the maximum output power variation across the required test channels is >  $\frac{1}{2}$  dB, instead of the middle 1) channel, the highest output power channel must be used.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd.



| LT        | E Band 4 Rece | iver on(head | )         |         |                |         |                |
|-----------|---------------|--------------|-----------|---------|----------------|---------|----------------|
| Bandwidth | Modulation    | RB size      | RB offset | Channel | Channel        | Channel | Tune up        |
| Bandwidth | Wouldtion     | ND SIZE      | ND Oliset | 19957   | 20175          | 20393   | i une up       |
|           |               | 1            | 0         | 18.56   | 18.51          | 18.56   | 19.30          |
|           |               | 1            | 2         | 18.79   | 18.18          | 18.82   | 19.30          |
|           |               | 1            | 5         | 18.59   | 18.62          | 18.69   | 19.30          |
|           | QPSK          | 3            | 0         | 18.23   | 18.44          | 18.45   | 19.30          |
|           |               | 3            | 2         | 18.37   | 18.00          | 18.55   | 19.30          |
|           |               | 3            | 3         | 18.24   | 18.48          | 18.52   | 19.30          |
|           |               | 6            | 0         | 18.62   | 18.38          | 18.67   | 19.30          |
|           |               | 1            | 0         | 18.74   | 18.73          | 18.95   | 19.30          |
|           |               | 1            | 2         | 18.38   | 18.71          | 18.19   | 19.30          |
|           |               | 1            | 5         | 18.56   | 18.51          | 18.92   | 19.30          |
| 1.4MHz    | 16QAM         | 3            | 0         | 18.54   | 18.92          | 18.64   | 19.30          |
|           |               | 3            | 2         | 18.53   | 18.70          | 18.45   | 19.30          |
| _         |               | 3            | 3         | 18.49   | 18.55          | 18.65   | 19.30          |
|           |               | 6            | 0         | 18.67   | 18.59          | 18.62   | 19.30          |
|           |               | 1            | 0         | 18.30   | 18.70          | 18.70   | 19.30          |
|           |               | 1            | 2         | 18.73   | 18.26          | 18.51   | 19.30          |
|           |               | 1            | 5         | 18.63   | 18.97          | 18.49   | 19.30          |
|           | 64QAM         | 3            | 0         | 18.28   | 18.66          | 18.53   | 19.30          |
|           |               | 3            | 2         | 18.91   | 18.80          | 18.68   | 19.30          |
|           |               | 3            | 3         | 18.39   | 18.42          | 18.43   | 19.30          |
|           |               | 6            | 0         | 18.70   | 18.64          | 18.47   | 19.30          |
|           |               | -            | -         | Channel | Channel        | Channel |                |
| Bandwidth | Modulation    | RB size      | RB offset | 19965   | 20175          | 20385   | Tune u         |
|           |               | 1            | 0         | 18.71   | 18.53          | 18.67   | 19.30          |
|           |               | 1            | 7         | 18.48   | 18.58          | 18.33   | 19.30          |
|           |               | 1            | 14        | 18.60   | 18.55          | 18.63   | 19.30          |
|           | QPSK          | 8            | 0         | 18.57   | 18.51          | 18.69   | 19.30          |
|           | QION          | 8            | 4         | 18.64   | 18.55          | 18.46   | 19.30          |
|           |               | 8            | 7         | 18.56   | 18.78          | 18.67   | 19.30          |
|           |               | 15           | 0         | 18.54   | 18.58          | 18.59   | 19.30          |
|           |               | 10           | 0         | 19.10   | 18.98          | 18.73   | 19.30          |
|           |               | 1            | 7         | 18.50   | 18.37          | 17.46   | 19.30          |
|           | 4             | 1            | 14        | 18.70   | 18.77          | 18.85   | 19.30          |
| 3MHz      | 16QAM         | 8            | 0         | 18.46   | 18.42          | 18.66   |                |
|           |               | 8            | 4         | 18.61   | 18.63          | 18.61   | 19.30<br>19.30 |
|           |               | 8            | 4         | 18.61   |                |         |                |
|           |               | 8<br>15      | 0         | 18.54   | 18.50<br>18.73 | 18.40   | 19.30          |
|           |               |              |           |         |                | 18.64   | 19.30          |
|           |               | 1            | 0         | 18.76   | 18.51          | 18.85   | 19.30          |
|           |               | 1            | 7         | 18.71   | 17.62          | 19.01   | 19.30          |
|           | 64QAM         | 1            | 14        | 19.02   | 18.70          | 18.86   | 19.30          |
|           |               | 8            | 0         | 18.37   | 18.44          | 18.56   | 19.30          |
|           |               | 8            | 4         | 18.51   | 18.61          | 18.37   | 19.30          |
|           |               | 8            | 7         | 18.50   | 18.62          | 18.41   | 19.30          |

t (886-2) 2299-3279

Company's sole except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|           |            | 15                      | 0                        | 18.57                            | 18.35                            | 18.49                            | 19.30                   |         |
|-----------|------------|-------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|---------|
| Bandwidth | Madulation |                         | DD offeet                | Channel                          | Channel                          | Channel                          | T                       |         |
| Bandwidth | Modulation | RB size                 | RB offset                | 19975                            | 20175                            | 20375                            | Tune up                 |         |
|           |            | 1                       | 0                        | 18.46                            | 18.50                            | 18.58                            | 19.30                   |         |
|           |            | 1                       | 13                       | 18.64                            | 18.51                            | 18.58                            | 19.30                   |         |
|           |            | 1                       | 24                       | 18.51                            | 18.57                            | 18.68                            | 19.30                   |         |
|           | QPSK       | 12                      | 0                        | 18.69                            | 18.52                            | 18.64                            | 19.30                   |         |
|           |            | 12                      | 6                        | 18.67                            | 18.58                            | 18.64                            | 19.30                   |         |
|           |            | 12                      | 13                       | 18.60                            | 18.52                            | 18.58                            | 19.30                   |         |
|           |            | 25                      | 0                        | 18.60                            | 18.55                            | 18.58                            | 19.30                   |         |
|           |            | 1                       | 0                        | 18.45                            | 19.00                            | 18.76                            | 19.30                   |         |
|           |            | 1                       | 13                       | 18.07                            | 18.54                            | 18.86                            | 19.30                   |         |
|           |            | 1                       | 24                       | 18.57                            | 18.64                            | 18.87                            | 19.30                   |         |
| 5MHz      | 16QAM      | 12                      | 0                        | 18.48                            | 18.62                            | 18.45                            | 19.30                   |         |
|           |            | 12                      | 6                        | 18.55                            | 18.60                            | 18.65                            | 19.30                   |         |
|           |            | 12                      | 13                       | 18.66                            | 18.29                            | 18.50                            | 19.30                   |         |
|           |            | 25                      | 0                        | 18.51                            | 18.49                            | 18.59                            | 19.30                   |         |
|           |            | 1                       | 0                        | 18.83                            | 18.42                            | 18.93                            | 19.30                   |         |
|           |            | 1                       | 13                       | 18.84                            | 18.75                            | 18.81                            | 19.30                   |         |
|           |            | 1                       | 24                       | 18.56                            | 18.92                            | 18.51                            | 19.30                   |         |
|           | 64QAM      | 12                      | 0                        | 18.63                            | 18.51                            | 18.65                            | 19.30                   |         |
|           |            | 12                      | 6                        | 18.61                            | 18.54                            | 18.61                            | 19.30                   |         |
|           |            | 12                      | 13                       | 18.60                            | 18.59                            | 18.47                            | 19.30                   |         |
|           | 3          | 25                      | 0                        | 18.40                            | 18.40                            | 18.50                            | 19.30                   |         |
| Bandwidth | Modulation | width Modulation        | RB size                  | RB offset                        | Channel                          | Channel                          | Channel                 | Tune up |
|           |            |                         |                          | 20000                            | 20175                            | 20350                            | •                       |         |
|           |            | 1                       | 0                        | 18.51                            | 18.52                            | 18.58                            | 19.30                   |         |
|           |            | 1                       | 25                       | 18.55                            | 18.64                            | 18.28                            | 19.30                   |         |
|           |            | 1                       | 49                       | 18.77                            | 18.49                            | 18.68                            | 19.30                   |         |
|           | QPSK       | 25                      | 0                        | 18.55                            | 18.52                            | 18.65                            | 19.30                   |         |
|           |            | 25                      | 13                       | 18.62                            | 18.55                            | 18.61                            | 19.30                   |         |
|           |            | 25                      | 25                       | 18.63                            | 18.48                            | 18.59                            | 19.30                   |         |
|           |            | 50                      | 0                        | 18.60                            | 18.54                            | 18.55                            | 19.30                   |         |
|           |            | 1                       | 0                        | 19.19                            | 18.49                            | 18.48                            | 19.30                   |         |
|           |            | 1                       | 25                       | 19.04                            | 18.46                            | 18.49                            | 19.30                   |         |
|           | 1          | 1                       | 49                       | 18.55                            | 18.65                            | 18.95                            | 19.30                   |         |
| 10MHz     | 16QAM      | 25                      | 0                        | 18.48                            | 18.57                            | 18.48                            | 19.30                   |         |
|           |            | 25                      | 13                       | 18.66                            | 18.53                            | 18.73                            | 19.30                   |         |
|           | -          | 25                      | 25                       | 18.56                            | 18.56                            | 18.52                            | 19.30                   |         |
|           |            |                         | •                        | 18.61                            | 18.44                            | 18.45                            | 19.30                   |         |
|           |            | 50                      | 0                        |                                  |                                  |                                  | 40.00                   |         |
|           |            | 1                       | 0                        | 18.59                            | 18.63                            | 18.55                            | 19.30                   |         |
|           |            | 1<br>1                  | 0<br>25                  | 18.61                            | 18.32                            | 18.13                            | 19.30                   |         |
|           |            | 1<br>1<br>1             | 0<br>25<br>49            | 18.61<br>18.63                   | 18.32<br>18.72                   | 18.13<br>18.74                   |                         |         |
|           | 64QAM      | 1<br>1<br>1<br>25       | 0<br>25<br>49<br>0       | 18.61<br>18.63<br>18.62          | 18.32<br>18.72<br>18.50          | 18.13<br>18.74<br>18.53          | 19.30                   |         |
|           | 64QAM      | 1<br>1<br>1<br>25<br>25 | 0<br>25<br>49<br>0<br>13 | 18.61<br>18.63<br>18.62<br>18.54 | 18.32<br>18.72<br>18.50<br>18.42 | 18.13<br>18.74<br>18.53<br>18.65 | 19.30<br>19.30          |         |
|           | 64QAM      | 1<br>1<br>1<br>25       | 0<br>25<br>49<br>0       | 18.61<br>18.63<br>18.62          | 18.32<br>18.72<br>18.50          | 18.13<br>18.74<br>18.53          | 19.30<br>19.30<br>19.30 |         |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488

www.tw.sgs.com



| Bandwidth             | Modulation | RB size                             | RB offset                     | Channel                                                                     | Channel                                   | Channel                                   | Tuno un                                   |
|-----------------------|------------|-------------------------------------|-------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Banuwiuth             | wouldtion  | RD SIZE                             | RD Oliset                     | 20025                                                                       | 20175                                     | 20325                                     | Tune up                                   |
|                       |            | 1                                   | 0                             | 18.53                                                                       | 18.50                                     | 18.45                                     | 19.30                                     |
|                       |            | 1                                   | 38                            | 18.61                                                                       | 18.54                                     | 18.57                                     | 19.30                                     |
|                       |            | 1                                   | 74                            | 18.44                                                                       | 18.49                                     | 18.48                                     | 19.30                                     |
|                       | QPSK       | 36                                  | 0                             | 18.57                                                                       | 18.57                                     | 18.59                                     | 19.30                                     |
|                       |            | 36                                  | 18                            | 18.57                                                                       | 18.53                                     | 18.62                                     | 19.30                                     |
|                       |            | 36                                  | 39                            | 18.58                                                                       | 18.52                                     | 18.54                                     | 19.30                                     |
|                       |            | 75                                  | 0                             | 18.55                                                                       | 18.47                                     | 18.53                                     | 19.30                                     |
|                       |            | 1                                   | 0                             | 19.12                                                                       | 18.74                                     | 18.40                                     | 19.30                                     |
|                       |            | 1                                   | 38                            | 18.98                                                                       | 18.66                                     | 19.12                                     | 19.30                                     |
|                       |            | 1                                   | 74                            | 18.81                                                                       | 18.77                                     | 18.89                                     | 19.30                                     |
| 15MHz                 | 16QAM      | 36                                  | 0                             | 18.54                                                                       | 18.48                                     | 18.54                                     | 19.30                                     |
|                       |            | 36                                  | 18                            | 18.51                                                                       | 18.49                                     | 18.49                                     | 19.30                                     |
|                       |            | 36                                  | 39                            | 18.48                                                                       | 18.50                                     | 18.48                                     | 19.30                                     |
|                       |            | 75                                  | 0                             | 18.45                                                                       | 18.46                                     | 18.49                                     | 19.30                                     |
|                       |            | 1                                   | 0                             | 18.87                                                                       | 18.30                                     | 18.53                                     | 19.30                                     |
|                       |            | 1                                   | 38                            | 18.62                                                                       | 19.09                                     | 18.57                                     | 19.30                                     |
|                       |            | 1                                   | 74                            | 18.61                                                                       | 18.49                                     | 18.88                                     | 19.30                                     |
|                       | 64QAM      | 36                                  | 0                             | 18.57                                                                       | 18.56                                     | 18.49                                     | 19.30                                     |
|                       |            | 36                                  | 18                            | 18.69                                                                       | 18.58                                     | 18.51                                     | 19.30                                     |
|                       |            | 36                                  | 39                            | 18.45                                                                       | 18.59                                     | 18.52                                     | 19.30                                     |
|                       |            | 75                                  | 0                             | 18.47                                                                       | 18.56                                     | 18.63                                     | 19.30                                     |
| D a sa ah sai al tala | Madulatian |                                     |                               | Channel                                                                     | Channel                                   | Channel                                   |                                           |
| Bandwidth             | Modulation | RB size                             | RB offset                     | 20050                                                                       | 20175                                     | 20300                                     | Tune up                                   |
|                       |            | 1                                   | 0                             | 18.46                                                                       | 18.55                                     | 18.43                                     | 19.30                                     |
|                       |            | 1                                   | 50                            | 18.30                                                                       | 18.53                                     | 18.62                                     | 19.30                                     |
|                       |            | 1                                   | 99                            | 18.57                                                                       | 18.52                                     | 18.73                                     | 19.30                                     |
|                       | QPSK       | 50                                  | 0                             | 18.61                                                                       | 18.53                                     | 18.58                                     | 19.30                                     |
|                       |            | 50                                  | 25                            | 18.49                                                                       | 18.56                                     | 18.58                                     | 19.30                                     |
|                       |            | 50                                  | 50                            | 18.52                                                                       | 18.62                                     | 18.64                                     | 19.30                                     |
|                       |            | 100                                 | 0                             | 18.60                                                                       | 18.65                                     | 18.67                                     | 19.30                                     |
|                       |            | 1                                   | 0                             | 18.79                                                                       | 18.77                                     | 18.70                                     | 19.30                                     |
|                       |            | 1                                   | 50                            | 18.79                                                                       | 18.97                                     | 18.56                                     | 19.30                                     |
|                       |            | 1                                   | 99                            | 18.83                                                                       | 18.51                                     | 18.79                                     | 19.30                                     |
|                       | 16QAM      | 50                                  | 0                             | 18.68                                                                       | 18.48                                     | 18.60                                     | 19.30                                     |
| 20MHz                 | 16QAM      |                                     | 05                            | 18.46                                                                       | 18.49                                     | 18.53                                     | 19.30                                     |
| 20MHz                 |            | 50                                  | 25                            |                                                                             |                                           |                                           |                                           |
| 20MHz                 | 4          | 50<br>50                            | 25<br>50                      | 18.55                                                                       | 18.47                                     | 18.56                                     | 19.30                                     |
| 20MHz                 |            |                                     |                               |                                                                             | 18.47<br>18.54                            | 18.56<br>18.47                            | 19.30<br>19.30                            |
| 20MHz                 |            | 50                                  | 50                            | 18.55                                                                       |                                           |                                           | 19.30                                     |
| 20MHz                 |            | 50<br>100                           | 50<br>0<br>0                  | 18.55<br>18.52<br>18.56                                                     | 18.54                                     | 18.47<br>18.60                            | 19.30<br>19.30                            |
| 20MHz                 |            | 50<br>100<br>1                      | 50<br>0<br>0<br>50            | 18.55<br>18.52<br>18.56<br>18.59                                            | 18.54<br>18.64                            | 18.47<br>18.60<br>18.56                   | 19.30<br>19.30<br>19.30                   |
| 20MHz                 |            | 50<br>100<br>1<br>1<br>1<br>1       | 50<br>0<br>0                  | 18.55<br>18.52<br>18.56<br>18.59<br>18.63                                   | 18.54<br>18.64<br>18.92<br>18.75          | 18.47<br>18.60<br>18.56<br>18.80          | 19.30<br>19.30<br>19.30<br>19.30          |
| 20MHz                 | 64QAM      | 50<br>100<br>1<br>1<br>1<br>1<br>50 | 50<br>0<br>0<br>50<br>99<br>0 | 18.55         18.52         18.56         18.59         18.63         18.50 | 18.54<br>18.64<br>18.92<br>18.75<br>18.57 | 18.47<br>18.60<br>18.56<br>18.80<br>18.52 | 19.30<br>19.30<br>19.30<br>19.30<br>19.30 |
| 20MHz                 |            | 50<br>100<br>1<br>1<br>1<br>1       | 50<br>0<br>0<br>50<br>99      | 18.55<br>18.52<br>18.56<br>18.59<br>18.63                                   | 18.54<br>18.64<br>18.92<br>18.75          | 18.47<br>18.60<br>18.56<br>18.80          | 19.30<br>19.30<br>19.30<br>19.30          |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



| LTE Ban   | d 4 Full Power/ | Receiver off | (body)    |         | Conducted | Power(dBm) |          |
|-----------|-----------------|--------------|-----------|---------|-----------|------------|----------|
| Bandwidth | Modulation      | RB size      | RB offset | Channel | Channel   | Channel    | Tuno un  |
| banuwiuth | wooulation      | RD SIZE      | RD Oliset | 19957   | 20175     | 20393      | Tune up  |
|           |                 | 1            | 0         | 22.78   | 22.94     | 23.10      | 23.50    |
|           |                 | 1            | 2         | 22.89   | 22.63     | 22.96      | 23.50    |
|           |                 | 1            | 5         | 22.89   | 22.91     | 22.95      | 23.50    |
|           | QPSK            | 3            | 0         | 22.97   | 22.92     | 23.15      | 23.50    |
|           |                 | 3            | 2         | 22.89   | 22.98     | 22.85      | 23.50    |
|           |                 | 3            | 3         | 22.70   | 22.71     | 22.65      | 23.50    |
|           |                 | 6            | 0         | 21.62   | 21.79     | 21.97      | 22.50    |
|           |                 | 1            | 0         | 22.23   | 22.09     | 22.10      | 22.50    |
|           |                 | 1            | 2         | 22.43   | 22.06     | 22.15      | 22.50    |
|           |                 | 1            | 5         | 21.84   | 22.22     | 22.31      | 22.50    |
| 1.4MHz    | 16QAM           | 3            | 0         | 21.56   | 21.86     | 21.83      | 22.50    |
|           |                 | 3            | 2         | 21.65   | 21.93     | 21.51      | 22.50    |
|           |                 | 3            | 3         | 21.72   | 21.60     | 21.77      | 22.50    |
|           |                 | 6            | 0         | 20.49   | 20.85     | 20.78      | 21.50    |
|           |                 | 1            | 0         | 20.55   | 20.97     | 21.24      | 21.50    |
|           |                 | 1            | 2         | 21.01   | 21.19     | 21.09      | 21.50    |
|           |                 | 1            | 5         | 21.23   | 20.68     | 20.60      | 21.50    |
|           | 64QAM           | 3            | 0         | 20.86   | 20.92     | 20.95      | 21.50    |
|           |                 | 3            | 2         | 20.58   | 20.76     | 20.26      | 21.50    |
|           |                 | 3            | 3         | 20.53   | 20.71     | 20.88      | 21.50    |
|           | 1               | 6            | 0         | 19.56   | 19.63     | 19.74      | 20.50    |
| Bandwidth | Modulation      | RB size      | RB offset | Channel | Channel   | Channel    | Tune up  |
| Sandwidth | wouldtion       | ND SIZE      | KD Oliset | 19965   | 20175     | 20385      | i une up |
|           |                 | 1            | 0         | 22.97   | 22.99     | 23.05      | 23.50    |
|           |                 | 1            | 7         | 21.93   | 22.61     | 23.05      | 23.50    |
|           |                 | 1            | 14        | 22.93   | 22.88     | 22.96      | 23.50    |
|           | QPSK            | 8            | 0         | 21.69   | 21.92     | 21.95      | 22.50    |
|           |                 | 8            | 4         | 21.72   | 21.79     | 21.84      | 22.50    |
|           |                 | 8            | 7         | 21.84   | 21.83     | 21.77      | 22.50    |
|           |                 | 15           | 0         | 21.80   | 21.84     | 21.94      | 22.50    |
|           |                 | 1            | 0         | 21.36   | 21.42     | 22.27      | 22.50    |
|           |                 | 1            | 7         | 21.89   | 21.56     | 21.84      | 22.50    |
|           |                 | 1            | 14        | 22.19   | 22.43     | 22.45      | 22.50    |
| 3MHz      | 16QAM           | 8            | 0         | 21.00   | 20.82     | 20.99      | 21.50    |
|           |                 | 8            | 4         | 20.60   | 20.87     | 20.86      | 21.50    |
|           |                 | 8            | 7         | 20.67   | 20.80     | 21.01      | 21.50    |
|           |                 | 15           | 0         | 20.77   | 20.83     | 20.86      | 21.50    |
|           |                 | 1            | 0         | 20.82   | 20.59     | 21.24      | 21.50    |
|           |                 | 1            | 7         | 20.60   | 20.36     | 20.84      | 21.50    |
|           |                 | 1            | 14        | 21.00   | 20.96     | 21.44      | 21.50    |
|           | 64QAM           | 8            | 0         | 19.79   | 19.57     | 19.96      | 20.50    |
|           |                 | 8            | 4         | 19.74   | 19.66     | 19.87      | 20.50    |
|           |                 | 8            | 7         | 19.62   | 19.58     | 20.03      | 20.50    |
|           |                 | 0            | 1         | 13.02   | 10.00     | 20.00      | 20.00    |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

f (886-2) 2298-0488



| Bandwidth   | Modulation | RB size | RB offset | Channel | Channel | Channel | Tung un |
|-------------|------------|---------|-----------|---------|---------|---------|---------|
| Bandwidth   | wodulation | RB SIZE | RBOIISEL  | 19975   | 20175   | 20375   | Tune up |
|             |            | 1       | 0         | 22.82   | 22.81   | 22.83   | 23.50   |
|             |            | 1       | 13        | 22.95   | 22.89   | 23.09   | 23.50   |
|             |            | 1       | 24        | 22.84   | 22.96   | 22.99   | 23.50   |
|             | QPSK       | 12      | 0         | 21.98   | 21.92   | 22.02   | 22.50   |
|             |            | 12      | 6         | 22.01   | 21.78   | 21.95   | 22.50   |
|             |            | 12      | 13        | 21.94   | 21.93   | 21.93   | 22.50   |
|             |            | 25      | 0         | 21.97   | 21.91   | 21.93   | 22.50   |
|             |            | 1       | 0         | 22.15   | 22.32   | 22.23   | 22.50   |
|             |            | 1       | 13        | 22.00   | 22.21   | 22.23   | 22.50   |
|             |            | 1       | 24        | 22.34   | 22.42   | 21.95   | 22.50   |
| 5MHz        | 16QAM      | 12      | 0         | 20.82   | 20.87   | 21.02   | 21.50   |
|             |            | 12      | 6         | 20.82   | 20.88   | 20.80   | 21.50   |
|             |            | 12      | 13        | 20.82   | 20.88   | 20.89   | 21.50   |
|             |            | 25      | 0         | 20.89   | 20.82   | 20.90   | 21.50   |
|             |            | 1       | 0         | 20.96   | 20.96   | 20.93   | 21.50   |
|             |            | 1       | 13        | 21.40   | 20.85   | 21.17   | 21.50   |
|             |            | 1       | 24        | 21.19   | 20.66   | 21.12   | 21.50   |
|             | 64QAM      | 12      | 0         | 19.88   | 19.78   | 20.00   | 20.50   |
|             |            | 12      | 6         | 19.76   | 19.72   | 20.10   | 20.50   |
|             |            | 12      | 13        | 19.99   | 19.87   | 19.94   | 20.50   |
|             |            | 25      | 0         | 19.79   | 19.86   | 19.84   | 20.50   |
| Donalusiath | Madulation | RB size | RB offset | Channel | Channel | Channel | Tuna un |
| Bandwidth   | Modulation | RD SIZE | RD Oliset | 20000   | 20175   | 20350   | Tune up |
|             |            | 1       | 0         | 22.84   | 22.78   | 22.88   | 23.50   |
|             |            | 1       | 25        | 22.74   | 22.67   | 22.86   | 23.50   |
|             |            | 1       | 49        | 23.03   | 23.03   | 22.84   | 23.50   |
|             | QPSK       | 25      | 0         | 21.86   | 21.83   | 21.97   | 22.50   |
|             |            | 25      | 13        | 21.82   | 21.88   | 21.90   | 22.50   |
|             |            | 25      | 25        | 21.94   | 21.83   | 21.89   | 22.50   |
|             |            | 50      | 0         | 21.89   | 21.80   | 21.94   | 22.50   |
|             |            | 1       | 0         | 22.30   | 22.45   | 21.62   | 22.50   |
|             |            | 1       | 25        | 21.88   | 21.37   | 21.83   | 22.50   |
|             |            | 1       | 49        | 22.35   | 22.03   | 22.36   | 22.50   |
| 10MHz       | 16QAM      | 25      | 0         | 20.85   | 20.81   | 20.92   | 21.50   |
|             | 4          | 25      | 13        | 20.84   | 20.84   | 20.89   | 21.50   |
|             |            | 25      | 25        | 20.88   | 20.82   | 20.83   | 21.50   |
|             |            | 50      | 0         | 20.79   | 20.72   | 20.82   | 21.50   |
|             |            | 1       | 0         | 20.71   | 20.96   | 20.84   | 21.50   |
|             |            | 1       | 25        | 20.82   | 20.82   | 20.60   | 21.50   |
|             |            | 1       | 49        | 21.24   | 21.26   | 21.39   | 21.50   |
|             | 64QAM      | 25      | 0         | 19.84   | 19.83   | 19.75   | 20.50   |
|             |            | 25      | 13        | 19.82   | 19.72   | 19.86   | 20.50   |
|             |            |         |           |         |         |         |         |
|             |            | 25      | 25        | 19.83   | 19.74   | 19.87   | 20.50   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



| Dondwidth | Madulation |         | DD offerst | Channel | Channel | Channel | Tuna un |
|-----------|------------|---------|------------|---------|---------|---------|---------|
| Bandwidth | Modulation | RB size | RB offset  | 20025   | 20175   | 20325   | Tune up |
|           |            | 1       | 0          | 22.83   | 22.93   | 22.77   | 23.50   |
|           |            | 1       | 38         | 22.96   | 22.91   | 22.95   | 23.50   |
|           |            | 1       | 74         | 22.79   | 22.85   | 22.91   | 23.50   |
|           | QPSK       | 36      | 0          | 21.89   | 21.98   | 22.00   | 22.50   |
|           |            | 36      | 18         | 21.94   | 21.91   | 21.87   | 22.50   |
|           |            | 36      | 39         | 21.97   | 21.96   | 21.98   | 22.50   |
|           |            | 75      | 0          | 21.94   | 21.84   | 21.91   | 22.50   |
|           |            | 1       | 0          | 22.45   | 22.05   | 22.12   | 22.50   |
|           |            | 1       | 38         | 22.17   | 22.40   | 22.11   | 22.50   |
|           |            | 1       | 74         | 22.24   | 22.00   | 22.17   | 22.50   |
| 15MHz     | 16QAM      | 36      | 0          | 20.69   | 20.84   | 20.92   | 21.50   |
|           |            | 36      | 18         | 20.87   | 20.85   | 20.94   | 21.50   |
|           |            | 36      | 39         | 20.86   | 20.87   | 20.93   | 21.50   |
|           |            | 75      | 0          | 20.85   | 20.83   | 20.87   | 21.50   |
|           |            | 1       | 0          | 20.70   | 20.75   | 20.74   | 21.50   |
| 64QAM     | 1          | 38      | 21.00      | 20.88   | 20.70   | 21.50   |         |
|           | 1          | 74      | 20.66      | 21.22   | 20.86   | 21.50   |         |
|           | 36         | 0       | 19.88      | 19.86   | 19.88   | 20.50   |         |
|           |            | 36      | 18         | 19.84   | 19.77   | 19.80   | 20.50   |
|           |            | 36      | 39         | 19.86   | 19.85   | 19.94   | 20.50   |
|           |            | 75      | 0          | 19.85   | 19.82   | 19.95   | 20.50   |
| Bandwidth | Madulation |         | RB offset  | Channel | Channel | Channel | Tuno un |
| Banuwium  | Modulation | RB size | RD Oliset  | 20050   | 20175   | 20300   | Tune up |
|           |            | 1       | 0          | 22.94   | 23.03   | 22.76   | 23.50   |
|           |            | 1       | 50         | 22.69   | 22.16   | 22.41   | 23.50   |
|           |            | 1       | 99         | 22.99   | 22.78   | 23.14   | 23.50   |
|           | QPSK       | 50      | 0          | 21.87   | 21.93   | 21.91   | 22.50   |
|           |            | 50      | 25         | 21.92   | 21.93   | 21.81   | 22.50   |
|           |            | 50      | 50         | 21.92   | 21.93   | 21.96   | 22.50   |
|           |            | 100     | 0          | 21.99   | 21.88   | 21.96   | 22.50   |
|           |            | 1       | 0          | 22.20   | 22.28   | 22.16   | 22.50   |
|           |            | 1       | 50         | 21.80   | 22.06   | 21.84   | 22.50   |
| 20MHz     |            | 1       | 99         | 22.07   | 22.05   | 22.32   | 22.50   |
| 20101112  | 16QAM      | 50      | 0          | 20.92   | 20.79   | 20.86   | 21.50   |
|           |            | 50      | 25         | 20.82   | 20.80   | 20.81   | 21.50   |
|           |            | 50      | 50         | 20.83   | 20.83   | 20.91   | 21.50   |
|           |            | 100     | 0          | 20.87   | 20.87   | 20.81   | 21.50   |
|           |            | 1       | 0          | 20.75   | 20.91   | 21.07   | 21.50   |
|           |            | 1       | 50         | 20.86   | 20.45   | 21.11   | 21.50   |
|           | 640414     | 1       | 99         | 20.75   | 20.47   | 20.75   | 21.50   |
|           | 64QAM      | 50      | 0          | 19.79   | 19.83   | 19.88   | 20.50   |
|           | ŀ          | 50      | 25         | 19.91   | 19.81   | 19.78   | 20.50   |
|           |            | 50      | 23         | 19.91   | 13.01   | 10.70   | 20.00   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|  | 100 | 0 | 19.92 | 19.83 | 19.89 | 20.50 |
|--|-----|---|-------|-------|-------|-------|
|  |     |   |       |       |       |       |

| (1100                | LTE Bai        |              |           |         | Conducted | Power(dBm) |          |
|----------------------|----------------|--------------|-----------|---------|-----------|------------|----------|
|                      | of CE countrie | es, Receiver | UN)       |         | 1         |            |          |
| Bandwidth            | Modulation     | RB size      | RB offset | Channel | Channel   | Channel    | Tune up  |
|                      |                | 4            | 0         | 20775   | 21100     | 21425      | 40.00    |
|                      |                | 1            | 0         | 19.22   | 18.91     | 19.20      | 19.90    |
|                      |                | 1            | 13        | 19.01   | 19.01     | 19.06      | 19.90    |
|                      | 0.001/         | 1            | 24        | 18.83   | 18.95     | 18.91      | 19.90    |
|                      | QPSK           | 12           | 0         | 18.86   | 19.02     | 19.01      | 19.90    |
|                      |                | 12           | 6         | 18.94   | 18.97     | 18.87      | 19.90    |
|                      |                | 12           | 13        | 18.84   | 18.91     | 19.02      | 19.90    |
|                      |                | 25           | 0         | 18.89   | 18.95     | 18.92      | 19.90    |
|                      |                | 1            | 0         | 19.17   | 18.33     | 18.38      | 19.90    |
|                      |                | 1            | 13        | 18.82   | 19.26     | 19.03      | 19.90    |
| 5MHz 16QAM           |                | 1            | 24        | 19.15   | 18.81     | 18.35      | 19.90    |
|                      | 16QAM          | 12           | 0         | 18.74   | 18.71     | 18.42      | 19.90    |
|                      |                | 12           | 6         | 18.70   | 18.79     | 18.32      | 19.90    |
|                      |                | 12           | 13        | 18.85   | 18.81     | 18.61      | 19.90    |
|                      |                | 25           | 0         | 18.64   | 18.67     | 18.53      | 19.90    |
|                      |                | 1            | 0         | 19.19   | 18.38     | 18.42      | 19.90    |
|                      |                | 1            | 13        | 18.87   | 19.31     | 19.06      | 19.90    |
|                      |                | 1            | 24        | 19.19   | 18.84     | 18.40      | 19.90    |
|                      | 64QAM          | 12           | 0         | 18.76   | 18.76     | 18.46      | 19.90    |
|                      |                | 12           | 6         | 18.73   | 18.83     | 18.35      | 19.90    |
|                      |                | 12           | 13        | 18.89   | 18.83     | 18.63      | 19.90    |
|                      |                | 25           | 0         | 18.68   | 18.71     | 18.55      | 19.90    |
| D a sa alu si altila | Madulatian     |              |           | Channel | Channel   | Channel    | <b>T</b> |
| Bandwidth            | Modulation     | RB size      | RB offset | 20800   | 21100     | 21400      | Tune up  |
|                      |                | 1            | 0         | 18.87   | 18.97     | 18.51      | 19.90    |
|                      |                | 1            | 25        | 18.89   | 18.48     | 18.60      | 19.90    |
|                      |                | 1            | 49        | 19.00   | 18.89     | 18.86      | 19.90    |
|                      | QPSK           | 25           | 0         | 18.89   | 18.93     | 18.70      | 19.90    |
|                      |                | 25           | 13        | 18.99   | 18.93     | 18.94      | 19.90    |
|                      |                | 25           | 25        | 18.93   | 18.84     | 18.86      | 19.90    |
|                      | 4              | 50           | 0         | 19.04   | 19.01     | 19.06      | 19.90    |
|                      |                | 1            | 0         | 18.40   | 18.66     | 18.89      | 19.90    |
| 10MHz                |                | 1            | 25        | 18.93   | 18.95     | 18.63      | 19.90    |
|                      |                | 1            | 49        | 18.63   | 18.89     | 18.22      | 19.90    |
|                      | 16QAM          | 25           | 0         | 18.64   | 18.65     | 18.45      | 19.90    |
|                      | 1000           | 25           | 13        | 18.77   | 18.62     | 18.45      | 19.90    |
|                      |                | 25           | 25        | 18.74   | 18.69     | 18.47      | 19.90    |
|                      |                | 50           | 0         | 18.68   | 18.80     | 18.71      | 19.90    |
|                      |                | 1            | 0         | 18.44   | 18.70     | 18.92      | 19.90    |
|                      | 64QAM          | 1            | 25        | 18.95   | 18.99     | 18.68      |          |
|                      |                |              |           |         |           |            | 19.90    |
|                      |                | 1            | 49        | 18.68   | 18.91     | 18.27      | 19.90    |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

f (886-2) 2298-0488

www.tw.sgs.com



|           |            | <u> </u> |           | 40.05   | 40.0-   |         |         |
|-----------|------------|----------|-----------|---------|---------|---------|---------|
|           |            | 25       | 0         | 18.69   | 18.67   | 18.49   | 19.90   |
|           |            | 25       | 13        | 18.79   | 18.66   | 18.49   | 19.90   |
|           |            | 25       | 25        | 18.77   | 18.72   | 18.51   | 19.90   |
|           |            | 50       | 0         | 18.70   | 18.82   | 18.75   | 19.90   |
| Bandwidth | Modulation | RB size  | RB offset | Channel | Channel | Channel | Tune up |
|           |            |          |           | 20825   | 21100   | 21375   |         |
|           |            | 1        | 0         | 18.94   | 18.87   | 18.70   | 19.90   |
|           |            | 1        | 38        | 19.07   | 19.04   | 18.83   | 19.90   |
|           |            | 1        | 74        | 18.88   | 18.91   | 18.93   | 19.90   |
|           | QPSK       | 36       | 0         | 18.97   | 19.04   | 18.76   | 19.90   |
|           |            | 36       | 18        | 18.97   | 18.94   | 18.79   | 19.90   |
|           |            | 36       | 39        | 18.94   | 18.86   | 19.00   | 19.90   |
|           |            | 75       | 0         | 18.91   | 18.92   | 19.11   | 19.90   |
|           |            | 1        | 0         | 18.93   | 18.14   | 18.64   | 19.90   |
|           |            | 1        | 38        | 19.01   | 19.08   | 18.45   | 19.90   |
|           |            | 1        | 74        | 18.95   | 18.90   | 18.93   | 19.90   |
| 15MHz     | 16QAM      | 36       | 0         | 18.73   | 18.71   | 18.43   | 19.90   |
|           |            | 36       | 18        | 18.66   | 18.71   | 18.51   | 19.90   |
|           |            | 36       | 39        | 18.63   | 18.68   | 18.40   | 19.90   |
|           |            | 75       | 0         | 18.70   | 18.82   | 18.86   | 19.90   |
|           |            | 1        | 0         | 18.96   | 18.19   | 18.67   | 19.90   |
|           |            | 1        | 38        | 19.06   | 19.13   | 18.48   | 19.90   |
|           |            | 1        | 74        | 19.00   | 18.92   | 18.96   | 19.90   |
|           | 64QAM      | 36       | 0         | 18.76   | 18.74   | 18.47   | 19.90   |
|           |            | 36       | 18        | 18.68   | 18.75   | 18.56   | 19.90   |
|           |            | 36       | 39        | 18.68   | 18.72   | 18.44   | 19.90   |
|           |            | 75       | 0         | 18.73   | 18.84   | 18.91   | 19.90   |
|           |            |          | -         | Channel | Channel | Channel |         |
| Bandwidth | Modulation | RB size  | RB offset | 20850   | 21100   | 21350   | Tune up |
|           |            | 1        | 0         | 18.69   | 18.75   | 18.81   | 19.70   |
|           |            | 1        | 50        | 18.50   | 18.42   | 18.48   | 19.70   |
|           |            | 1        | 99        | 19.36   | 19.35   | 19.33   | 19.70   |
|           | QPSK       | 50       | 0         | 18.99   | 18.82   | 18.86   | 19.70   |
|           |            | 50       | 25        | 19.04   | 18.75   | 18.85   | 19.70   |
|           |            | 50       | 50        | 18.96   | 18.87   | 18.96   | 19.70   |
|           |            | 100      | 0         | 19.00   | 18.88   | 19.06   | 19.70   |
|           |            | 1        | 0         | 18.49   | 18.31   | 18.34   | 19.70   |
|           |            | 1        | 50        | 18.66   | 18.49   | 18.18   | 19.70   |
| 20MHz     |            | 1        | 99        | 18.87   | 18.63   | 19.07   | 19.70   |
|           | 16QAM      | 50       | 0         | 18.77   | 18.66   | 18.53   | 19.70   |
|           |            | 50       | 25        | 18.69   | 18.62   | 18.63   | 19.70   |
|           |            | 50       | 50        | 18.75   | 18.63   | 18.44   |         |
|           |            |          |           |         |         |         | 19.70   |
|           |            | 100      | 0         | 18.75   | 18.56   | 18.59   | 19.70   |
|           |            | 1        | 0         | 18.53   | 18.34   | 18.38   | 19.70   |
|           | 64QAM      | 1        | 50        | 18.69   | 18.54   | 18.22   | 19.70   |
|           |            | 1        | 99        | 18.89   | 18.67   | 19.10   | 19.70   |
|           |            | 50       | 0         | 18.82   | 18.70   | 18.55   | 19.70   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



| 50  | 25 | 18.71 | 18.67 | 18.65 | 19.70 |
|-----|----|-------|-------|-------|-------|
| 50  | 50 | 18.79 | 18.68 | 18.49 | 19.70 |
| 100 | 0  | 18.77 | 18.59 | 18.64 | 19.70 |

| (MCC         | LTE Bar<br>of FCC countri |         | ON)       | Conducted Power(dBm) |         |         |         |  |
|--------------|---------------------------|---------|-----------|----------------------|---------|---------|---------|--|
| Bandwidth    | Modulation                | RB size | RB offset | Channel              | Channel | Channel | Tuno un |  |
| Bandwidth    | Wouldton                  | ND SIZE | KD UIISEL | 20775                | 21100   | 21425   | Tune up |  |
|              | 1                         | 1       | 0         | 16.29                | 16.40   | 16.51   | 17.20   |  |
|              |                           | 1       | 13        | 16.28                | 16.40   | 16.34   | 17.20   |  |
|              |                           | 1       | 24        | 16.28                | 16.38   | 16.26   | 17.20   |  |
|              | QPSK                      | 12      | 0         | 16.30                | 16.34   | 16.38   | 17.20   |  |
|              |                           | 12      | 6         | 16.27                | 16.29   | 16.39   | 17.20   |  |
|              |                           | 12      | 13        | 16.25                | 16.41   | 16.38   | 17.20   |  |
|              |                           | 25      | 0         | 16.24                | 16.36   | 16.37   | 17.20   |  |
|              |                           | 1       | 0         | 16.38                | 16.53   | 16.83   | 17.20   |  |
|              |                           | 1       | 13        | 16.23                | 16.13   | 16.67   | 17.20   |  |
|              |                           | 1       | 24        | 16.34                | 16.47   | 16.66   | 17.20   |  |
| 5MHz         | 16QAM                     | 12      | 0         | 16.26                | 16.33   | 16.36   | 17.20   |  |
|              |                           | 12      | 6         | 16.31                | 16.34   | 16.37   | 17.20   |  |
|              |                           | 12      | 13        | 16.23                | 16.37   | 16.49   | 17.20   |  |
|              |                           | 25      | 0         | 16.20                | 16.35   | 16.33   | 17.20   |  |
|              |                           | 1       | 0         | 16.20                | 16.46   | 16.10   | 17.20   |  |
|              |                           | 1       | 13        | 16.52                | 16.39   | 16.52   | 17.20   |  |
|              |                           | 1       | 24        | 16.26                | 16.43   | 16.57   | 17.20   |  |
|              | 64QAM                     | 12      | 0         | 16.09                | 16.47   | 16.28   | 17.20   |  |
|              |                           | 12      | 6         | 16.19                | 16.45   | 16.37   | 17.20   |  |
|              |                           | 12      | 13        | 16.22                | 16.38   | 16.44   | 17.20   |  |
|              |                           | 25      | 0         | 16.12                | 16.31   | 16.22   | 17.20   |  |
| Developidate | Madulation                |         | DD offeet | Channel              | Channel | Channel | Tuna un |  |
| Bandwidth    | Modulation                | RB size | RB offset | 20800                | 21100   | 21400   | Tune up |  |
|              |                           | 1       | 0         | 16.36                | 16.47   | 16.49   | 17.20   |  |
|              |                           | 1       | 25        | 16.11                | 15.95   | 16.03   | 17.20   |  |
|              |                           | 1       | 49        | 16.28                | 16.30   | 16.30   | 17.20   |  |
|              | QPSK                      | 25      | 0         | 16.37                | 16.52   | 16.40   | 17.20   |  |
|              |                           | 25      | 13        | 16.35                | 16.52   | 16.36   | 17.20   |  |
|              | A                         | 25      | 25        | 16.29                | 16.38   | 16.44   | 17.20   |  |
|              |                           | 50      | 0         | 16.33                | 16.33   | 16.32   | 17.20   |  |
|              |                           | 1       | 0         | 16.49                | 16.13   | 16.25   | 17.20   |  |
| 10MHz        |                           | 1       | 25        | 15.99                | 16.68   | 16.60   | 17.20   |  |
|              |                           | 1       | 49        | 16.57                | 16.23   | 16.49   | 17.20   |  |
|              | 16QAM                     | 25      | 0         | 16.17                | 16.47   | 16.48   | 17.20   |  |
|              |                           | 25      | 13        | 16.14                | 16.35   | 16.29   | 17.20   |  |
|              |                           | 25      | 25        | 16.17                | 16.33   | 16.26   | 17.20   |  |
|              |                           | 50      | 0         | 16.12                | 16.24   | 16.26   | 17.20   |  |
|              | C404N4                    | 1       | 0         | 16.31                | 16.45   | 16.09   | 17.20   |  |
|              | 64QAM                     | 1       | 25        | 16.07                | 16.12   | 15.74   | 17.20   |  |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488

www.tw.sgs.com



|           |            | 1        | 49        | 16.41   | 16.63   | 16.39   | 17.20   |
|-----------|------------|----------|-----------|---------|---------|---------|---------|
|           |            | 25       | 0         | 16.10   | 16.37   | 16.32   | 17.20   |
|           |            | 25       | 13        | 16.27   | 16.40   | 16.33   | 17.20   |
|           |            | 25       | 25        | 16.19   | 16.24   | 16.26   | 17.20   |
|           |            | 50       | 0         | 16.19   | 16.29   | 16.23   | 17.20   |
| Bandwidth | Modulation | RB size  | RB offset | Channel | Channel | Channel | Tune up |
| Banamath  | Modulation | 110 5120 |           | 20825   | 21100   | 21375   |         |
|           |            | 1        | 0         | 16.25   | 16.38   | 16.46   | 17.20   |
|           |            | 1        | 38        | 16.35   | 16.51   | 16.43   | 17.20   |
|           |            | 1        | 74        | 16.17   | 16.32   | 16.31   | 17.20   |
|           | QPSK       | 36       | 0         | 16.29   | 16.53   | 16.51   | 17.20   |
|           |            | 36       | 18        | 16.22   | 16.30   | 16.40   | 17.20   |
|           |            | 36       | 39        | 16.37   | 16.36   | 16.32   | 17.20   |
|           |            | 75       | 0         | 16.25   | 16.29   | 16.41   | 17.20   |
|           |            | 1        | 0         | 16.25   | 16.20   | 16.38   | 17.20   |
|           |            | 1        | 38        | 16.70   | 16.83   | 16.63   | 17.20   |
|           |            | 1        | 74        | 16.43   | 16.64   | 16.74   | 17.20   |
| 15MHz     | 16QAM      | 36       | 0         | 16.18   | 16.38   | 16.39   | 17.20   |
|           |            | 36       | 18        | 16.22   | 16.35   | 16.31   | 17.20   |
|           |            | 36       | 39        | 16.24   | 16.30   | 16.32   | 17.20   |
|           |            | 75       | 0         | 16.21   | 16.29   | 16.26   | 17.20   |
|           |            | 1        | 0         | 16.07   | 16.39   | 16.54   | 17.20   |
|           |            | 1        | 38        | 16.52   | 16.50   | 16.54   | 17.20   |
|           |            | 1        | 74        | 16.24   | 16.21   | 16.58   | 17.20   |
|           | 64QAM      | 36       | 0         | 16.22   | 16.47   | 16.38   | 17.20   |
|           |            | 36       | 18        | 16.27   | 16.22   | 16.39   | 17.20   |
|           |            | 36       | 39        | 16.27   | 16.31   | 16.32   | 17.20   |
|           |            | 75       | 0         | 16.20   | 16.26   | 16.38   | 17.20   |
| Dondwidth | Madulation |          | DR offeet | Channel | Channel | Channel | Tung un |
| Bandwidth | Modulation | RB size  | RB offset | 20850   | 21100   | 21350   | Tune up |
|           |            | 1        | 0         | 16.28   | 16.35   | 16.34   | 17.20   |
|           |            | 1        | 50        | 16.05   | 15.94   | 16.11   | 17.20   |
|           |            | 1        | 99        | 16.59   | 16.69   | 16.63   | 17.20   |
|           | QPSK       | 50       | 0         | 16.22   | 16.44   | 16.41   | 17.20   |
|           |            | 50       | 25        | 16.15   | 16.21   | 16.28   | 17.20   |
|           |            | 50       | 50        | 16.12   | 16.25   | 16.19   | 17.20   |
|           |            | 100      | 0         | 16.21   | 16.25   | 16.34   | 17.20   |
|           |            | 1        | 0         | 16.10   | 16.83   | 16.87   | 17.20   |
| 20MHz     |            | 1        | 50        | 16.09   | 16.45   | 15.97   | 17.20   |
|           |            | 1        | 99        | 16.89   | 16.88   | 16.57   | 17.20   |
|           | 16QAM      | 50       | 0         | 16.15   | 16.29   | 16.35   | 17.20   |
|           |            | 50       | 25        | 16.11   | 16.12   | 16.17   | 17.20   |
|           |            | 50       | 50        | 16.05   | 16.16   | 16.08   | 17.20   |
|           |            | 100      | 0         | 16.11   | 16.19   | 16.24   | 17.20   |
|           |            | 1        | 0         | 16.14   | 16.11   | 16.65   | 17.20   |
|           |            | 1        |           |         |         |         |         |
|           | 64QAM      | 1        | 50        | 15.73   | 16.22   | 15.88   | 17.20   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



| 50  | 0  | 16.05 | 16.22 | 16.33 | 17.20 |
|-----|----|-------|-------|-------|-------|
| 50  | 25 | 16.01 | 16.17 | 16.15 | 17.20 |
| 50  | 50 | 16.11 | 16.13 | 16.13 | 17.20 |
| 100 | 0  | 16.07 | 16.18 | 16.20 | 17.20 |

| LTE Ban   | d 7 Full power | Receiver of | f(body)    | Conducted Power(dBm) |         |         |         |  |
|-----------|----------------|-------------|------------|----------------------|---------|---------|---------|--|
| Bandwidth | Madulation     |             | DD offerst | Channel              | Channel | Channel | Tuna un |  |
| Danawiath | Modulation     | RB size     | RB offset  | 20775                | 21100   | 21425   | Tune up |  |
|           | /              | 1           | 0          | 22.03                | 22.10   | 22.11   | 22.70   |  |
|           |                | 1           | 13         | 22.15                | 22.27   | 22.14   | 22.70   |  |
|           |                | 1           | 24         | 22.07                | 22.10   | 22.13   | 22.70   |  |
|           | QPSK           | 12          | 0          | 22.00                | 21.98   | 22.00   | 22.70   |  |
|           |                | 12          | 6          | 22.04                | 22.04   | 21.98   | 22.70   |  |
|           |                | 12          | 13         | 22.03                | 21.98   | 21.97   | 22.70   |  |
|           |                | 25          | 0          | 21.97                | 21.88   | 21.90   | 22.70   |  |
|           |                | 1           | 0          | 21.76                | 21.75   | 22.01   | 22.70   |  |
|           |                | 1           | 13         | 21.74                | 22.21   | 21.60   | 22.70   |  |
|           |                | 1           | 24         | 21.83                | 21.66   | 21.57   | 22.70   |  |
| 5MHz      | 16QAM          | 12          | 0          | 21.18                | 21.12   | 21.01   | 22.20   |  |
|           |                | 12          | 6          | 21.08                | 21.16   | 20.83   | 22.20   |  |
|           |                | 12          | 13         | 21.11                | 21.13   | 20.96   | 22.20   |  |
|           |                | 25          | 0          | 21.12                | 21.15   | 21.04   | 22.20   |  |
|           |                | 1           | 0          | 21.13                | 21.21   | 20.84   | 22.20   |  |
|           |                | 1           | 13         | 21.22                | 20.95   | 21.40   | 22.20   |  |
|           |                | 1           | 24         | 21.09                | 20.90   | 20.88   | 22.20   |  |
|           | 64QAM          | 12          | 0          | 20.33                | 20.52   | 20.40   | 21.20   |  |
|           |                | 12          | 6          | 20.32                | 20.35   | 20.18   | 21.20   |  |
|           | Modulation     | 12          | 13         | 20.51                | 20.53   | 20.46   | 21.20   |  |
|           |                | 25          | 0          | 20.33                | 20.46   | 20.31   | 21.20   |  |
| Bandwidth |                |             | DR offeet  | Channel              | Channel | Channel | Tuna un |  |
| banuwiuun | wooulation     | RB size RE  | RB offset  | 20800                | 21100   | 21400   | Tune up |  |
|           |                | 1           | 0          | 21.86                | 22.09   | 21.65   | 22.70   |  |
|           |                | 1           | 25         | 21.49                | 21.90   | 22.02   | 22.70   |  |
|           |                | 1           | 49         | 22.05                | 21.90   | 21.86   | 22.70   |  |
|           | QPSK           | 25          | 0          | 21.80                | 21.84   | 21.84   | 22.70   |  |
|           |                | 25          | 13         | 21.97                | 21.85   | 21.72   | 22.70   |  |
|           |                | 25          | 25         | 21.98                | 21.98   | 21.87   | 22.70   |  |
|           |                | 50          | 0          | 22.01                | 22.05   | 22.06   | 22.70   |  |
| 101411-   |                | 1           | 0          | 21.77                | 21.62   | 21.04   | 22.70   |  |
| 10MHz     |                | 1           | 25         | 21.55                | 21.29   | 21.52   | 22.70   |  |
|           |                | 1           | 49         | 21.77                | 22.03   | 21.27   | 22.70   |  |
|           | 16QAM          | 25          | 0          | 21.01                | 21.18   | 20.93   | 22.20   |  |
|           |                | 25          | 13         | 21.12                | 21.14   | 20.93   | 22.20   |  |
|           |                | 25          | 25         | 21.07                | 21.05   | 20.92   | 22.20   |  |
|           |                | 50          | 0          | 21.09                | 21.16   | 21.36   | 22.20   |  |
|           | 640414         | 1           | 0          | 20.88                | 20.76   | 20.68   | 22.20   |  |
|           | 64QAM          | 1           | 25         | 20.42                | 20.35   | 20.67   | 22.20   |  |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|                      |            | 1       | 49        | 20.83   | 20.95   | 21.00   | 22.20    |
|----------------------|------------|---------|-----------|---------|---------|---------|----------|
|                      |            | 25      | 0         | 20.41   | 20.46   | 20.24   | 21.20    |
|                      |            | 25      | 13        | 20.34   | 20.34   | 20.35   | 21.20    |
|                      |            | 25      | 25        | 20.45   | 20.35   | 20.27   | 21.20    |
|                      |            | 50      | 0         | 20.40   | 20.49   | 20.49   | 21.20    |
| Bandwidth            | Modulation | RB size | RB offset | Channel | Channel | Channel | Tune up  |
|                      |            |         |           | 20825   | 21100   | 21375   | -        |
|                      |            | 1       | 0         | 22.00   | 21.81   | 21.82   | 22.70    |
|                      |            | 1       | 38        | 22.03   | 21.90   | 21.90   | 22.70    |
|                      |            | 1       | 74        | 21.95   | 21.90   | 21.68   | 22.70    |
|                      | QPSK       | 36      | 0         | 21.84   | 21.86   | 21.86   | 22.70    |
|                      |            | 36      | 18        | 21.99   | 21.89   | 21.93   | 22.70    |
|                      |            | 36      | 39        | 22.01   | 21.96   | 21.93   | 22.70    |
|                      |            | 75      | 0         | 21.95   | 22.08   | 22.21   | 22.70    |
|                      |            | 1       | 0         | 21.71   | 22.11   | 21.10   | 22.70    |
|                      |            | 1       | 38        | 21.94   | 22.13   | 22.19   | 22.70    |
|                      |            | 1       | 74        | 21.81   | 21.99   | 21.66   | 22.70    |
| 15MHz                | 16QAM      | 36      | 0         | 21.02   | 21.30   | 21.11   | 22.20    |
|                      |            | 36      | 18        | 21.18   | 21.13   | 21.04   | 22.20    |
|                      |            | 36      | 39        | 21.20   | 21.08   | 21.00   | 22.20    |
|                      |            | 75      | 0         | 21.01   | 21.24   | 21.39   | 22.20    |
|                      |            | 1       | 0         | 20.98   | 20.85   | 21.09   | 22.20    |
|                      |            | 1       | 38        | 21.13   | 20.82   | 20.84   | 22.20    |
|                      |            | 1       | 74        | 21.20   | 21.41   | 20.73   | 22.20    |
|                      | 64QAM      | 36      | 0         | 20.34   | 20.46   | 20.31   | 21.20    |
|                      |            | 36      | 18        | 20.40   | 20.58   | 20.34   | 21.20    |
|                      |            | 36      | 39        | 20.50   | 20.42   | 20.42   | 21.20    |
|                      |            | 75      | 0         | 20.43   | 20.50   | 20.50   | 21.20    |
| D ava alvusi al tala | Madulatian |         |           | Channel | Channel | Channel | <b>T</b> |
| Bandwidth            | Modulation | RB size | RB offset | 20850   | 21100   | 21350   | Tune up  |
|                      |            | 1       | 0         | 21.78   | 21.72   | 21.91   | 22.70    |
|                      |            | 1       | 50        | 21.72   | 21.72   | 21.52   | 22.70    |
|                      |            | 1       | 99        | 22.48   | 22.48   | 21.93   | 22.70    |
|                      | QPSK       | 50      | 0         | 22.01   | 21.94   | 21.97   | 22.70    |
|                      |            | 50      | 25        | 22.00   | 21.94   | 21.92   | 22.70    |
|                      |            | 50      | 50        | 21.94   | 21.94   | 21.86   | 22.70    |
|                      |            | 100     | 0         | 21.99   | 22.14   | 21.98   | 22.70    |
|                      |            | 1       | 0         | 21.44   | 21.61   | 21.55   | 22.70    |
| 20MHz                |            | 1       | 50        | 21.58   | 21.37   | 21.40   | 22.70    |
|                      |            | 1       | 99        | 22.04   | 22.03   | 22.02   | 22.70    |
|                      | 16QAM      | 50      | 0         | 21.18   | 21.10   | 21.09   | 22.20    |
|                      |            | 50      | 25        | 21.20   | 21.01   | 20.95   | 22.20    |
|                      |            | 50      | 50        | 21.20   | 21.16   | 20.95   | 22.20    |
|                      |            | 100     | 0         | 21.20   | 21.27   | 21.15   | 22.20    |
|                      |            | 1       | 0         | 20.75   | 20.64   | 20.88   | 22.20    |
|                      | 64QAM      | 1       | 50        | 20.70   | 20.04   | 20.00   | 22.20    |
|                      |            | 1       | 99        | 21.10   | 21.23   | 21.36   | 22.20    |
|                      |            | I       | 33        | 21.10   | 21.20   | 21.00   | 22.20    |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



| 50  | 0  | 20.42 | 20.51 | 20.45 | 21.20 |
|-----|----|-------|-------|-------|-------|
| 50  | 25 | 20.27 | 20.38 | 20.31 | 21.20 |
| 50  | 50 | 20.34 | 20.38 | 20.18 | 21.20 |
| 100 | 0  | 20.44 | 20.51 | 20.51 | 21.20 |

| (MCC      | LTE Ban<br>of CE countrie |         | ON)       |                  | Conducted        | Power(dBm)       |         |
|-----------|---------------------------|---------|-----------|------------------|------------------|------------------|---------|
| Bandwidth | Modulation                | RB size | RB offset | Channel<br>37775 | Channel<br>38000 | Channel<br>38225 | Tune up |
|           |                           | 1       | 0         | 21.13            | 21.07            | 21.19            | 22.00   |
|           |                           | 1       | 13        | 21.28            | 21.31            | 21.24            | 22.00   |
|           |                           | 1       | 24        | 21.22            | 21.16            | 21.09            | 22.00   |
|           | QPSK                      | 12      | 0         | 21.04            | 21.22            | 21.25            | 22.00   |
|           |                           | 12      | 6         | 20.90            | 21.24            | 21.25            | 22.00   |
|           |                           | 12      | 13        | 21.00            | 21.19            | 21.24            | 22.00   |
|           |                           | 25      | 0         | 20.97            | 21.13            | 21.17            | 22.00   |
|           |                           | 1       | 0         | 20.70            | 21.12            | 21.14            | 22.00   |
|           |                           | 1       | 13        | 20.75            | 21.20            | 21.16            | 22.00   |
|           |                           | 1       | 24        | 20.91            | 21.10            | 21.28            | 22.00   |
| 5MHz      | 16QAM                     | 12      | 0         | 20.78            | 20.97            | 21.02            | 22.00   |
|           |                           | 12      | 6         | 20.61            | 20.98            | 21.01            | 22.00   |
|           |                           | 12      | 13        | 20.70            | 21.03            | 21.08            | 22.00   |
|           |                           | 25      | 0         | 20.73            | 21.04            | 21.06            | 22.00   |
|           | Y                         | 1       | 0         | 20.60            | 20.80            | 21.07            | 22.00   |
|           |                           | 1       | 13        | 21.03            | 20.71            | 20.96            | 22.00   |
|           |                           | 1       | 24        | 20.77            | 20.65            | 20.88            | 22.00   |
|           | 64QAM                     | 12      | 0         | 19.94            | 20.12            | 20.12            | 21.20   |
|           |                           | 12      | 6         | 19.95            | 20.08            | 19.96            | 21.20   |
|           |                           | 12      | 13        | 19.97            | 20.13            | 20.19            | 21.20   |
|           |                           | 25      | 0         | 19.90            | 20.16            | 20.06            | 21.20   |
|           | <b>M</b> 1 1 <i>C</i>     |         |           | Channel          | Channel          | Channel          |         |
| Bandwidth | Modulation                | RB size | RB offset | 37800            | 38000            | 38200            | Tune up |
|           |                           | 1       | 0         | 21.12            | 21.01            | 21.25            | 22.00   |
|           |                           | 1       | 25        | 20.91            | 20.92            | 20.54            | 22.00   |
|           |                           | 1       | 49        | 20.99            | 21.24            | 21.06            | 22.00   |
|           | QPSK                      | 25      | 0         | 20.98            | 21.09            | 21.05            | 22.00   |
|           | 4                         | 25      | 13        | 20.82            | 21.16            | 21.06            | 22.00   |
|           |                           | 25      | 25        | 20.82            | 21.08            | 21.00            | 22.00   |
|           |                           | 50      | 0         | 20.82            | 21.02            | 21.06            | 22.00   |
| 10MHz     |                           | 1       | 0         | 20.82            | 21.13            | 21.24            | 22.00   |
|           |                           | 1       | 25        | 20.44            | 20.89            | 20.72            | 22.00   |
|           |                           | 1       | 49        | 20.94            | 21.06            | 21.13            | 22.00   |
|           | 16QAM                     | 25      | 0         | 20.61            | 20.93            | 20.94            | 22.00   |
|           |                           | 25      | 13        | 20.60            | 20.90            | 21.07            | 22.00   |
|           |                           | 25      | 25        | 20.80            | 20.94            | 20.95            | 22.00   |
|           |                           | 50      | 0         | 20.69            | 20.81            | 20.94            | 22.00   |
|           | 64QAM                     | 1       | 0         | 21.08            | 20.92            | 20.79            | 22.00   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488

www.tw.sgs.com



|           |            | 1       | 25        | 20.60   | 20.79   | 20.47   | 22.00   |
|-----------|------------|---------|-----------|---------|---------|---------|---------|
|           |            | 1       | 49        | 20.60   | 20.80   | 20.86   | 22.00   |
|           |            | 25      | 0         | 19.93   | 20.17   | 20.13   | 21.20   |
|           |            | 25      | 13        | 19.94   | 20.21   | 20.21   | 21.20   |
|           |            | 25      | 25        | 19.82   | 20.11   | 20.04   | 21.20   |
| 1         |            | 50      | 0         | 19.90   | 20.06   | 20.05   | 21.20   |
| Bandwidth | Modulation | RB size | RB offset | Channel | Channel | Channel | Tune up |
|           |            |         |           | 37825   | 38000   | 38175   |         |
|           |            | 1       | 0         | 21.04   | 21.03   | 21.20   | 22.00   |
|           |            | 1       | 38        | 21.24   | 21.26   | 21.16   | 22.00   |
|           |            | 1       | 74        | 20.98   | 21.18   | 21.05   | 22.00   |
|           | QPSK       | 36      | 0         | 20.88   | 21.05   | 21.06   | 22.00   |
|           |            | 36      | 18        | 20.92   | 21.03   | 21.00   | 22.00   |
|           |            | 36      | 39        | 20.92   | 21.00   | 21.08   | 22.00   |
|           |            | 75      | 0         | 20.88   | 21.01   | 21.07   | 22.00   |
|           |            | 1       | 0         | 20.81   | 21.11   | 21.47   | 22.00   |
|           |            | 1       | 38        | 20.92   | 21.03   | 21.25   | 22.00   |
|           |            | 1       | 74        | 20.71   | 21.04   | 21.07   | 22.00   |
| 15MHz     | 16QAM      | 36      | 0         | 20.77   | 20.91   | 20.95   | 22.00   |
|           |            | 36      | 18        | 20.72   | 21.01   | 20.91   | 22.00   |
|           |            | 36      | 39        | 20.73   | 21.00   | 20.94   | 22.00   |
|           |            | 75      | 0         | 20.73   | 20.81   | 20.91   | 22.00   |
|           |            | 1       | 0         | 20.63   | 21.06   | 20.84   | 22.00   |
|           |            | 1       | 38        | 21.08   | 21.05   | 21.03   | 22.00   |
|           |            | 1       | 74        | 20.72   | 21.13   | 20.82   | 22.00   |
|           | 64QAM      | 36      | 0         | 20.00   | 20.15   | 20.19   | 21.20   |
|           |            | 36      | 18        | 20.06   | 20.22   | 20.05   | 21.20   |
|           |            | 36      | 39        | 19.96   | 20.21   | 20.12   | 21.20   |
|           |            | 75      | 0         | 19.88   | 20.18   | 20.05   | 21.20   |
|           |            |         |           | Channel | Channel | Channel | 21.20   |
| Bandwidth | Modulation | RB size | RB offset | 37850   | 38000   | 38150   | Tune up |
|           |            | 1       | 0         | 20.78   | 20.89   | 20.91   | 22.00   |
|           |            | 1       | 50        | 20.11   | 20.46   | 20.19   | 22.00   |
|           |            | 1       | 99        | 20.81   | 20.72   | 20.79   | 22.00   |
|           | QPSK       | 50      | 0         | 20.80   | 20.85   | 20.88   | 22.00   |
|           |            | 50      | 25        | 20.81   | 20.76   | 20.78   | 22.00   |
|           | 4          | 50      | 50        | 20.75   | 20.81   | 20.85   | 22.00   |
|           |            | 100     | 0         | 20.70   | 20.82   | 20.83   | 22.00   |
|           |            | 100     | 0         | 20.75   | 20.62   | 21.02   | 22.00   |
| 20MHz     |            | 1       | 50        | 20.42   | 20.05   | 20.78   | 22.00   |
|           |            | 1       | 99        | 20.42   | 20.10   | 20.78   | 22.00   |
|           | 16QAM      | 50      | 0         | 20.79   | 20.79   | 20.48   | 22.00   |
|           |            | 50      |           |         | 20.00   |         |         |
|           |            |         | 25        | 20.80   |         | 20.71   | 22.00   |
|           |            | 50      | 50        | 20.72   | 20.80   | 20.68   | 22.00   |
|           |            | 100     | 0         | 20.72   | 20.84   | 20.70   | 22.00   |
|           | 64QAM      | 1       | 0         | 20.60   | 20.76   | 21.08   | 22.00   |
|           |            | 1       | 50        | 20.32   | 20.03   | 20.81   | 22.00   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



| 1   | 99 | 20.39 | 20.47 | 20.66 | 22.00 |
|-----|----|-------|-------|-------|-------|
| 50  | 0  | 19.70 | 20.10 | 20.27 | 21.20 |
| 50  | 25 | 19.75 | 20.11 | 20.17 | 21.20 |
| 50  | 50 | 19.92 | 20.13 | 20.06 | 21.20 |
| 100 | 0  | 19.85 | 20.16 | 20.14 | 21.20 |

| (MCC            | LTE Ban<br>of FCC countri |         |           |         | Conducted | Power(dBm) |         |
|-----------------|---------------------------|---------|-----------|---------|-----------|------------|---------|
|                 |                           | •       |           | Channel | Channel   | Channel    |         |
| Bandwidth       | Modulation                | RB size | RB offset | 37775   | 38000     | 38225      | Tune up |
|                 |                           | 1       | 0         | 18.51   | 18.49     | 18.47      | 19.20   |
|                 |                           | 1       | 13        | 18.35   | 18.56     | 18.54      | 19.20   |
|                 |                           | 1       | 24        | 18.39   | 18.43     | 18.42      | 19.20   |
|                 | QPSK                      | 12      | 0         | 18.46   | 18.56     | 18.53      | 19.20   |
|                 |                           | 12      | 6         | 18.40   | 18.47     | 18.52      | 19.20   |
|                 |                           | 12      | 13        | 18.33   | 18.46     | 18.48      | 19.20   |
|                 |                           | 25      | 0         | 18.35   | 18.46     | 18.48      | 19.20   |
|                 |                           | 1       | 0         | 18.31   | 18.59     | 18.73      | 19.20   |
|                 |                           | 1       | 13        | 18.59   | 18.73     | 18.54      | 19.20   |
| <b>5MHz</b> 16Q |                           | 1       | 24        | 18.48   | 18.38     | 18.40      | 19.20   |
|                 | 16QAM                     | 12      | 0         | 18.48   | 18.71     | 18.41      | 19.20   |
|                 |                           | 12      | 6         | 18.32   | 18.47     | 18.35      | 19.20   |
|                 |                           | 12      | 13        | 18.39   | 18.44     | 18.26      | 19.20   |
|                 |                           | 25      | 0         | 18.26   | 18.38     | 18.43      | 19.20   |
|                 |                           | 1       | 0         | 18.46   | 18.51     | 18.31      | 19.20   |
|                 |                           | 1       | 13        | 18.43   | 18.51     | 18.63      | 19.20   |
|                 |                           | 1       | 24        | 18.15   | 18.31     | 18.28      | 19.20   |
|                 | 64QAM                     | 12      | 0         | 18.38   | 18.58     | 18.35      | 19.20   |
|                 |                           | 12      | 6         | 18.09   | 18.50     | 18.20      | 19.20   |
|                 |                           | 12      | 13        | 18.50   | 18.53     | 18.30      | 19.20   |
|                 |                           | 25      | 0         | 18.27   | 18.41     | 18.24      | 19.20   |
| Develoption     | Markalation               |         |           | Channel | Channel   | Channel    |         |
| Bandwidth       | Modulation                | RB size | RB offset | 37800   | 38000     | 38200      | Tune up |
|                 |                           | 1       | 0         | 18.50   | 18.49     | 18.51      | 19.20   |
|                 |                           | 1       | 25        | 18.15   | 18.23     | 18.01      | 19.20   |
|                 | 4                         | 1       | 49        | 18.40   | 18.44     | 18.44      | 19.20   |
|                 | QPSK                      | 25      | 0         | 18.38   | 18.39     | 18.52      | 19.20   |
|                 |                           | 25      | 13        | 18.42   | 18.56     | 18.45      | 19.20   |
|                 |                           | 25      | 25        | 18.36   | 18.49     | 18.52      | 19.20   |
| 10MHz           |                           | 50      | 0         | 18.31   | 18.38     | 18.51      | 19.20   |
| -               |                           | 1       | 0         | 18.49   | 18.41     | 18.23      | 19.20   |
|                 |                           | 1       | 25        | 18.37   | 18.60     | 18.02      | 19.20   |
|                 | 160414                    | 1       | 49        | 18.33   | 18.60     | 18.14      | 19.20   |
|                 | 16QAM                     | 25      | 0         | 18.19   | 18.49     | 18.38      | 19.20   |
|                 |                           | 25      | 13        | 18.35   | 18.54     | 18.23      | 19.20   |
|                 |                           | 25      | 25        | 18.19   | 18.49     | 18.40      | 19.20   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488

www.tw.sgs.com



|            |            | 50      | 0         | 18.18   | 18.41   | 18.34   | 19.20    |
|------------|------------|---------|-----------|---------|---------|---------|----------|
|            |            | 1       | 0         | 18.15   | 18.39   | 18.33   | 19.20    |
|            |            | 1       | 25        | 18.11   | 17.86   | 18.35   | 19.20    |
|            |            | 1       | 49        | 18.22   | 18.44   | 18.35   | 19.20    |
|            | 64QAM      | 25      | 0         | 18.25   | 18.48   | 18.26   | 19.20    |
|            |            | 25      | 13        | 18.29   | 18.42   | 18.31   | 19.20    |
|            |            | 25      | 25        | 18.38   | 18.36   | 18.27   | 19.20    |
|            |            | 50      | 0         | 18.27   | 18.44   | 18.28   | 19.20    |
| Bandwidth  | Modulation | RB size | RB offset | Channel | Channel | Channel | Tune up  |
|            |            | 4       | 0         | 37825   | 38000   | 38175   | 40.00    |
|            |            | 1       | 0         | 18.33   | 18.39   | 18.67   | 19.20    |
|            |            | 1       | 38        | 18.44   | 18.57   | 18.60   | 19.20    |
|            | 0.001/     | 1       | 74        | 18.28   | 18.33   | 18.39   | 19.20    |
|            | QPSK       | 36      | 0         | 18.32   | 18.48   | 18.55   | 19.20    |
|            |            | 36      | 18        | 18.26   | 18.54   | 18.48   | 19.20    |
|            |            | 36      | 39        | 18.25   | 18.48   | 18.54   | 19.20    |
|            |            | 75      | 0         | 18.15   | 18.53   | 18.46   | 19.20    |
|            |            | 1       | 0         | 18.22   | 18.54   | 18.64   | 19.20    |
|            |            | 1       | 38        | 18.17   | 18.38   | 18.32   | 19.20    |
|            |            | 1       | 74        | 18.25   | 18.70   | 18.52   | 19.20    |
| 15MHz      | 16QAM      | 36      | 0         | 18.12   | 18.40   | 18.45   | 19.20    |
|            |            | 36      | 18        | 18.11   | 18.44   | 18.41   | 19.20    |
|            |            | 36      | 39        | 18.20   | 18.55   | 18.33   | 19.20    |
|            |            | 75      | 0         | 18.03   | 18.56   | 18.26   | 19.20    |
|            |            | 1       | 0         | 18.25   | 18.20   | 18.28   | 19.20    |
|            |            | 1       | 38        | 18.33   | 18.55   | 18.44   | 19.20    |
|            |            | 1       | 74        | 18.36   | 18.25   | 18.32   | 19.20    |
|            | 64QAM      | 36      | 0         | 18.23   | 18.35   | 18.28   | 19.20    |
|            |            | 36      | 18        | 18.28   | 18.40   | 18.32   | 19.20    |
|            |            | 36      | 39        | 18.43   | 18.47   | 18.34   | 19.20    |
|            |            | 75      | 0         | 18.45   | 18.35   | 18.29   | 19.20    |
| Bandwidth  | Modulation | RB size | RB offset | Channel | Channel | Channel | Tune up  |
| Banuwiutii | wouldtion  | ND SIZE | KB Oliset | 37850   | 38000   | 38150   | i une up |
|            |            | 1       | 0         | 17.99   | 18.26   | 18.62   | 19.20    |
|            |            | 1       | 50        | 17.84   | 18.21   | 17.89   | 19.20    |
|            |            | 1       | 99        | 17.84   | 18.32   | 18.30   | 19.20    |
|            | QPSK       | 50      | 0         | 18.09   | 18.33   | 18.49   | 19.20    |
|            |            | 50      | 25        | 18.07   | 18.30   | 18.46   | 19.20    |
|            |            | 50      | 50        | 18.10   | 18.31   | 18.43   | 19.20    |
| 201411-    |            | 100     | 0         | 17.94   | 18.35   | 18.48   | 19.20    |
| 20MHz      |            | 1       | 0         | 18.11   | 18.37   | 18.47   | 19.20    |
|            |            | 1       | 50        | 17.84   | 18.08   | 18.34   | 19.20    |
|            |            | 1       | 99        | 17.96   | 18.12   | 18.42   | 19.20    |
|            | 16QAM      | 50      | 0         | 17.94   | 18.28   | 18.26   | 19.20    |
|            |            | 50      | 25        | 17.96   | 18.21   | 18.23   | 19.20    |
|            |            | 50      | 50        | 18.05   | 18.23   | 18.32   | 19.20    |
|            |            | 100     | 0         | 18.01   | 18.27   | 18.38   | 19.20    |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488

www.tw.sgs.com



|  |       | 1   | 0  | 18.26 | 18.13 | 18.33 | 19.20 |
|--|-------|-----|----|-------|-------|-------|-------|
|  |       | 1   | 50 | 18.32 | 18.62 | 18.31 | 19.20 |
|  |       | 1   | 99 | 18.28 | 18.12 | 18.07 | 19.20 |
|  | 64QAM | 50  | 0  | 18.29 | 18.49 | 18.41 | 19.20 |
|  |       | 50  | 25 | 18.34 | 18.40 | 18.28 | 19.20 |
|  |       | 50  | 50 | 18.42 | 18.53 | 18.27 | 19.20 |
|  |       | 100 | 0  | 18.26 | 18.39 | 18.37 | 19.20 |

| LTE Ban   | d 38 Full power | /Receiver of | f(body)    |         | Conducted | Power(dBm) |         |
|-----------|-----------------|--------------|------------|---------|-----------|------------|---------|
|           |                 |              |            | Channel | Channel   | Channel    | -       |
| Bandwidth | Modulation      | RB size      | RB offset  | 37775   | 38000     | 38225      | Tune up |
|           |                 | 1            | 0          | 23.10   | 23.30     | 23.29      | 24.20   |
|           |                 | 1            | 13         | 23.14   | 23.40     | 23.33      | 24.20   |
|           |                 | 1            | 24         | 22.92   | 23.19     | 23.13      | 24.20   |
|           | QPSK            | 12           | 0          | 22.12   | 22.30     | 22.18      | 23.20   |
|           |                 | 12           | 6          | 21.99   | 22.13     | 21.88      | 23.20   |
|           |                 | 12           | 13         | 22.08   | 22.20     | 22.03      | 23.20   |
|           |                 | 25           | 0          | 21.98   | 22.09     | 22.14      | 23.20   |
|           |                 | 1            | 0          | 22.03   | 22.12     | 22.26      | 23.20   |
| 1         |                 | 1            | 13         | 21.89   | 22.36     | 22.44      | 23.20   |
|           |                 | 1            | 24         | 21.98   | 22.16     | 22.37      | 23.20   |
| 5MHz      | 16QAM           | 12           | 0          | 21.05   | 21.21     | 21.11      | 22.20   |
|           |                 | 12           | 6          | 20.86   | 21.11     | 21.08      | 22.20   |
|           |                 | 12           | 13         | 20.96   | 21.18     | 20.98      | 22.20   |
|           |                 | 25           | 0          | 20.98   | 21.00     | 21.19      | 22.20   |
|           |                 | 1            | 0          | 20.83   | 21.05     | 21.31      | 22.20   |
|           |                 | 1            | 13         | 21.30   | 20.96     | 21.23      | 22.20   |
|           |                 | 1            | 24         | 21.00   | 20.90     | 21.15      | 22.20   |
|           | 64QAM           | 12           | 0          | 19.99   | 20.17     | 20.17      | 21.20   |
|           |                 | 12           | 6          | 19.98   | 20.17     | 20.00      | 21.20   |
|           |                 | 12           | 13         | 20.03   | 20.18     | 20.27      | 21.20   |
|           |                 | 25           | 0          | 19.94   | 20.20     | 20.13      | 21.20   |
| Dendwidth | Madulation      |              | DD offerst | Channel | Channel   | Channel    | Tuna un |
| Bandwidth | Modulation      | RB size      | RB offset  | 37800   | 38000     | 38200      | Tune up |
|           |                 | 1            | 0          | 23.34   | 23.33     | 23.41      | 24.20   |
|           |                 | 1            | 25         | 22.32   | 22.58     | 22.27      | 24.20   |
|           |                 | 1            | 49         | 23.11   | 23.16     | 23.10      | 24.20   |
|           | QPSK            | 25           | 0          | 22.06   | 22.24     | 22.12      | 23.20   |
|           |                 | 25           | 13         | 21.95   | 22.24     | 21.98      | 23.20   |
|           |                 | 25           | 25         | 21.95   | 22.12     | 22.09      | 23.20   |
| 10MHz     |                 | 50           | 0          | 21.95   | 22.11     | 22.10      | 23.20   |
|           |                 | 1            | 0          | 22.07   | 22.30     | 22.37      | 23.20   |
|           |                 | 1            | 25         | 22.07   | 21.90     | 21.88      | 23.20   |
|           | 160 4 14        | 1            | 49         | 22.07   | 21.67     | 21.98      | 23.20   |
|           | 16QAM           | 25           | 0          | 20.96   | 21.07     | 21.10      | 22.20   |
|           |                 | 25           | 13         | 20.88   | 21.08     | 20.97      | 22.20   |
|           |                 | 25           | 25         | 20.96   | 21.13     | 21.02      | 22.20   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|           |            | 50      | 0         | 21.03   | 21.07   | 21.05   | 22.20   |
|-----------|------------|---------|-----------|---------|---------|---------|---------|
|           |            | 1       | 0         | 21.35   | 21.16   | 21.06   | 22.20   |
|           |            | 1       | 25        | 20.86   | 21.03   | 20.71   | 22.20   |
|           |            | 1       | 49        | 20.83   | 21.03   | 21.12   | 22.20   |
|           | 64QAM      | 25      | 0         | 19.98   | 20.21   | 20.22   | 21.20   |
|           |            | 25      | 13        | 19.98   | 20.29   | 20.29   | 21.20   |
|           |            | 25      | 25        | 19.91   | 20.20   | 20.13   | 21.20   |
|           |            | 50      | 0         | 19.98   | 20.13   | 20.13   | 21.20   |
| Bandwidth | Modulation | RB size | RB offset | Channel | Channel | Channel | Tune up |
|           |            |         |           | 37825   | 38000   | 38175   |         |
|           |            | 1       | 0         | 23.08   | 23.17   | 23.02   | 24.20   |
|           |            | 1       | 38        | 23.15   | 23.46   | 23.13   | 24.20   |
|           |            | 1       | 74        | 23.10   | 22.94   | 22.98   | 24.20   |
|           | QPSK       | 36      | 0         | 22.12   | 22.26   | 22.09   | 23.20   |
|           |            | 36      | 18        | 22.08   | 22.20   | 22.02   | 23.20   |
|           |            | 36      | 39        | 22.05   | 22.20   | 22.04   | 23.20   |
|           |            | 75      | 0         | 22.08   | 22.23   | 22.05   | 23.20   |
|           |            | 1       | 0         | 22.01   | 22.09   | 22.20   | 23.20   |
|           |            | 1       | 38        | 22.34   | 22.37   | 22.27   | 23.20   |
|           |            | 1       | 74        | 22.09   | 22.24   | 22.07   | 23.20   |
| 15MHz     | 16QAM      | 36      | 0         | 21.01   | 21.18   | 20.99   | 22.20   |
|           |            | 36      | 18        | 20.91   | 21.13   | 20.96   | 22.20   |
|           |            | 36      | 39        | 20.98   | 21.07   | 20.99   | 22.20   |
|           |            | 75      | 0         | 21.02   | 21.05   | 20.96   | 22.20   |
|           |            | 1       | 0         | 20.87   | 21.29   | 21.07   | 22.20   |
|           |            | 1       | 38        | 21.32   | 21.31   | 21.26   | 22.20   |
|           |            | 1       | 74        | 20.99   | 21.37   | 21.09   | 22.20   |
|           | 64QAM      | 36      | 0         | 20.05   | 20.22   | 20.23   | 21.20   |
|           |            | 36      | 18        | 20.09   | 20.28   | 20.14   | 21.20   |
|           |            | 36      | 39        | 20.00   | 20.26   | 20.19   | 21.20   |
|           |            | 75      | 0         | 19.94   | 20.25   | 20.08   | 21.20   |
|           |            |         |           | Channel | Channel | Channel |         |
| Bandwidth | Modulation | RB size | RB offset | 37850   | 38000   | 38150   | Tune up |
|           |            | 1       | 0         | 23.15   | 23.22   | 23.13   | 24.20   |
|           |            | 1       | 50        | 22.79   | 22.55   | 22.22   | 24.20   |
|           |            | 1       | 99        | 23.04   | 23.13   | 23.09   | 24.20   |
|           | QPSK       | 50      | 0         | 22.26   | 22.27   | 22.18   | 23.20   |
|           |            | 50      | 25        | 22.20   | 22.12   | 21.96   | 23.20   |
|           |            | 50      | 50        | 22.13   | 22.16   | 22.02   | 23.20   |
|           |            | 100     | 0         | 22.18   | 22.23   | 21.98   | 23.20   |
| 20MHz     |            | 1       | 0         | 22.56   | 22.43   | 22.16   | 23.20   |
|           |            | 1       | 50        | 21.93   | 21.43   | 22.04   | 23.20   |
|           |            | 1       | 99        | 21.70   | 22.13   | 21.93   | 23.20   |
|           | 16QAM      | 50      | 0         | 21.70   | 21.23   | 21.00   | 23.20   |
|           |            | 50      | 25        | 21.21   | 21.23   | 20.90   | 22.20   |
|           |            | 50      | 50        | 21.07   | 21.13   | 20.90   |         |
|           |            | 100     |           |         |         |         | 22.20   |
|           |            | 100     | 0         | 21.07   | 21.16   | 20.94   | 22.20   |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



Report No.: E5/2019/30014 Page : 91 of 131

|       | 1   | 0  | 20.86 | 21.01 | 21.33 | 22.20 |
|-------|-----|----|-------|-------|-------|-------|
|       | 1   | 50 | 20.58 | 20.28 | 21.04 | 22.20 |
|       | 1   | 99 | 20.66 | 20.70 | 20.90 | 22.20 |
| 64QAM | 50  | 0  | 19.78 | 20.15 | 20.35 | 21.20 |
|       | 50  | 25 | 19.78 | 20.20 | 20.21 | 21.20 |
|       | 50  | 50 | 19.95 | 20.21 | 20.11 | 21.20 |
|       | 100 | 0  | 19.91 | 20.25 | 20.20 | 21.20 |

Table 16: Conducted Power of LTE

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告報單個測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be preserved to the fullest extent of the law. prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. t (886-2) 2299-3279



## 8.1.3 Conducted Power of Downlink LTE CA

In this section, the following conducted power measurement results of downlink LTE carrier aggregation are provided to quantify downlink only carrier aggregation SAR test exclusion per KDB 941225 D05A. Uplink maximum output power is measured with downlink carrier aggregation active, using the channel with highest measured maximum output power when downlink carrier aggregation is inactive, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output power measured when downlink carrier aggregation inactive, therefore SAR evaluation with downlink carrier aggregation can be excluded.

Power test equipment: Anritsu Radio Communication Analyzer MT8821C

The possible downlink LTE CA combinations supported by this device are as below tables per 3GPP TS 36.101 V12.5.0. The detailed conducted power measurement results of downlink LTE CA are provided in the SAR report per 3GPP TS 36.521-1 V12.3.0. According to KDB 941225 D05A, the downlink only carrier aggregation conditions for this device can be excluded from SAR testing and PAG requirements can be excluded.

The conducted power measurement results of downlink LTE CA Conducted Power are as below, so the downlink only carrier aggregation conditions for this device can be excluded from SAR testing

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

t (886-2) 2299-3279 台灣檢驗科技股份有限公司

SGS Taiwan Ltd.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



### Conducted Power of Downlink LTE CA: 8.1.3.1

| Main Antenna Full power/Receiver on(head) |          |       |            |          |         |        |         |               |       |          |         |             |            |         |  |
|-------------------------------------------|----------|-------|------------|----------|---------|--------|---------|---------------|-------|----------|---------|-------------|------------|---------|--|
| DL LTE CA                                 |          |       | P          | 200      |         |        |         |               | SC    | C1       |         | F           | Power(dBm) |         |  |
|                                           | LTE Band | BW    | Modulation | UL Freq. | UL      | UL#    | UL RB   | LTE Band      | BW    | DL Freq. | DL      | DL LTE      | LTE Rel 8  | Tune-up |  |
| Cidos                                     |          | (MHz) | wouldtion  | (MHz)    | Channel | RB     | Offset  |               | (MHz) | (MHz)    | Channel | CA Tx.Power | Tx.Power   | Tune-up |  |
| CA_7C                                     | Band 7   | 20M   | QPSK       | 2560     | 21350   | 1      | 0       | Band 7        | 20M   | 2660.2   | 3152    | 23.47       | 23.54      | 24.20   |  |
| Second Antenna Receiver on(head)          |          |       |            |          |         |        |         |               |       |          |         |             |            |         |  |
| DL LTE CA                                 |          |       | P          | 200      |         |        |         |               | SC    | C1       |         | F           | ower(dBm)  |         |  |
|                                           | LTE Band | BW    | Modulation | UL Freq. | UL      | UL#    | UL RB   | LTE Band      | BW    | DL Freq. | DL      | DL LTE      | LTE Rel 8  | Tune-up |  |
| Cidos                                     |          | (MHz) | wouldtion  | (MHz)    | Channel | RB     | Offset  |               | (MHz) | (MHz)    | Channel | CA Tx.Power | Tx.Power   | Tune-up |  |
| CA_7C                                     | Band 7   | 20M   | 16QAM      | 2510     | 20850   | 1      | 99      | Band 7        | 20M   | 2649.8   | 3048    | 16.84       | 16.89      | 17.20   |  |
|                                           |          |       |            |          | Second  | l Ante | nna Reo | ceiver off(bo | dy)   |          |         |             |            |         |  |
| DL LTE CA                                 |          |       | P          | 200      |         |        |         |               | SC    | C1       |         | F           | ower(dBm)  |         |  |
|                                           | LTE Band | BW    | Modulation | UL Freq. | UL      | UL#    | UL RB   | LTE Band      | BW    | DL Freq. | DL      | DL LTE      | LTE Rel 8  | Tune-up |  |
| CidSS                                     | LIL Danu | (MHz) | wouldtion  | (MHz)    | Channel | RB     | Offset  | LIL Danu      | (MHz) | (MHz)    | Channel | CA Tx.Power | Tx.Power   | rune-up |  |
| CA_7C                                     | Band 7   | 20M   | QPSK       | 2510     | 20850   | 1      | 99      | Band 7        | 20M   | 2649.8   | 3048    | 22.41       | 22.48      | 22.70   |  |

Table 17: Conducted Power of Downlink LTE CA

Note: The downlink LTE CA SAR test is not required since the maximum output power for downlink LTE CA was not more than 0.25dB higher than the maximum output power for without downlink LTE CA.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format the contract is back to be a the contraction is decreased in the contraction of the contraction is decreased in the contraction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be contracted by the full the form. prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 t (886-2) 2299-3279

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488

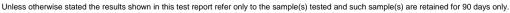


| WiFi 2.4G (MCC of CE countries, Receiver ON) |         |                |                    |         |                        |          |  |  |  |  |  |  |
|----------------------------------------------|---------|----------------|--------------------|---------|------------------------|----------|--|--|--|--|--|--|
| Mode                                         | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Average Power<br>(dBm) | SAR Test |  |  |  |  |  |  |
|                                              | 1       | 2412           |                    | 12.00   | 11.94                  | No       |  |  |  |  |  |  |
|                                              | 4       | 2427           |                    | 12.00   | 11.90                  | No       |  |  |  |  |  |  |
| 802.11b                                      | 5       | 2432           | 1                  | 11.00   | 10.97                  | No       |  |  |  |  |  |  |
|                                              | 7       | 2442           |                    | 11.00   | 10.53                  | No       |  |  |  |  |  |  |
| E POACO                                      | 13      | 2472           |                    | 11.00   | 10.94                  | No       |  |  |  |  |  |  |
|                                              | 1       | 2412           |                    | 12.10   | 11.30                  | No       |  |  |  |  |  |  |
| 802.11g                                      | 4       | 2427           |                    | 12.10   | 11.01                  | No       |  |  |  |  |  |  |
|                                              | 5       | 2432           | 6                  | 11.10   | 10.65                  | No       |  |  |  |  |  |  |
|                                              | 7       | 2442           |                    | 11.10   | 10.30                  | No       |  |  |  |  |  |  |
|                                              | 13      | 2472           |                    | 11.10   | 11.06                  | No       |  |  |  |  |  |  |
|                                              | 1       | 2412           |                    | 12.00   | 10.56                  | No       |  |  |  |  |  |  |
|                                              | 4       | 2427           |                    | 12.00   | 10.76                  | No       |  |  |  |  |  |  |
| 802.11n HT20                                 | 5       | 2432           | 6.5                | 11.00   | 10.41                  | No       |  |  |  |  |  |  |
|                                              | 7       | 2442           |                    | 11.00   | 10.06                  | No       |  |  |  |  |  |  |
|                                              | 13      | 2472           |                    | 11.00   | 10.32                  | No       |  |  |  |  |  |  |
|                                              | 3       | 2422           |                    | 12.00   | 10.50                  | No       |  |  |  |  |  |  |
|                                              | 4       | 2427           |                    | 12.00   | 10.96                  | No       |  |  |  |  |  |  |
| 802.11n HT40                                 | 5       | 2432           | 13.5               | 10.70   | 10.66                  | No       |  |  |  |  |  |  |
|                                              | 7       | 2442           | ] [                | 10.70   | 10.68                  | No       |  |  |  |  |  |  |
|                                              | 11      | 2462           |                    | 10.70   | 9.65                   | No       |  |  |  |  |  |  |

### Conducted Power of WIFI and BT 8.1.4

|              |         | WiFi 2.4G (MCC of | <u>CE countries, R</u> | eceiver OFF) |                        | -        |
|--------------|---------|-------------------|------------------------|--------------|------------------------|----------|
| Mode         | Channel | Frequency(MHz)    | Data<br>Rate(Mbps)     | Tune up      | Average Power<br>(dBm) | SAR Test |
|              | 1       | 2412              |                        | 19.00        | 18.37                  | No       |
|              | 4       | 2427              |                        | 19.00        | 17.52                  | No       |
| 802.11b      | 5       | 2432              | 1                      | 18.00        | 17.15                  | No       |
|              | 7       | 2442              |                        | 18.00        | 16.61                  | No       |
|              | 13      | 2472              |                        | 18.00        | 16.99                  | No       |
|              | 1       | 2412              |                        | 20.00        | 19.16                  | No       |
|              | 4       | 2427              |                        | 20.00        | 18.19                  | No       |
| 802.11g      | 5       | 2432              | 6                      | 19.00        | 18.15                  | No       |
|              | 7       | 2442              |                        | 19.00        | 17.85                  | No       |
|              | 13      | 2472              |                        | 19.00        | 18.05                  | No       |
|              | 1       | 2412              |                        | 18.50        | 17.86                  | No       |
|              | 4       | 2427              |                        | 18.50        | 16.94                  | No       |
| 802.11n HT20 | 5       | 2432              | 6.5                    | 17.50        | 17.09                  | No       |
|              | 7       | 2442              |                        | 17.50        | 16.65                  | No       |
|              | 13      | 2472              |                        | 17.50        | 16.88                  | No       |
|              | 3       | 2422              |                        | 18.50        | 16.98                  | No       |
|              | 4       | 2427              |                        | 18.50        | 17.25                  | No       |
| 802.11n HT40 | 5       | 2432              | 13.5                   | 17.50        | 17.14                  | No       |
|              | 7       | 2442              | 1 [                    | 17.50        | 16.90                  | No       |
|              | 11      | 2462              | 1 [                    | 17.50        | 16.47                  | No       |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.


t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



|              | N       | ViFi 2.4G (MCC of FC | C countries, Receive | er ON)  |                        |          |
|--------------|---------|----------------------|----------------------|---------|------------------------|----------|
| Mode         | Channel | Frequency(MHz)       | Data Rate(Mbps)      | Tune up | Average<br>Power (dBm) | SAR Test |
|              | 1       | 2412                 |                      | 12.10   | 11.42                  | Yes      |
|              | 2       | 2417                 |                      | 11.60   | 11.41                  | No       |
|              | 4       | 2427                 |                      | 11.60   | 11.38                  | No       |
| 802.11b      | 5       | 2432                 | 1                    | 11.10   | 10.93                  | No       |
|              | 6       | 2437                 |                      | 11.10   | 10.77                  | No       |
|              | 10      | 2457                 |                      | 11.10   | 11.07                  | No       |
|              | 11      | 2462                 |                      | 11.10   | 11.03                  | No       |
|              | 1       | 2412                 |                      | 12.00   | 11.58                  | No       |
|              | 2       | 2417                 |                      | 11.50   | 10.81                  | No       |
|              | 4       | 2427                 |                      | 11.50   | 10.80                  | No       |
| 802.11g      | 5       | 2432                 | 6                    | 11.00   | 10.33                  | No       |
|              | 6       | 2437                 |                      | 11.00   | 10.18                  | No       |
|              | 10      | 2457                 |                      | 11.00   | 10.25                  | No       |
|              | 11      | 2462                 |                      | 11.00   | 10.22                  | No       |
|              | 1       | 2412                 |                      | 12.00   | 11.60                  | No       |
|              | 2       | 2417                 |                      | 11.50   | 10.63                  | No       |
|              | 4       | 2427                 |                      | 11.50   | 10.93                  | No       |
| 802.11n HT20 | 5       | 2432                 | 6.5                  | 11.00   | 10.48                  | No       |
|              | 6       | 2437                 |                      | 11.00   | 10.31                  | No       |
|              | 10      | 2457                 |                      | 11.00   | 10.47                  | No       |
|              | 11      | 2462                 |                      | 11.00   | 10.43                  | No       |
|              | 3       | 2422                 |                      | 12.00   | 10.70                  | No       |
|              | 4       | 2427                 |                      | 11.50   | 10.85                  | No       |
| 802.11n HT40 | 6       | 2437                 | 13.5                 | 11.50   | 10.56                  | No       |
|              | 8       | 2447                 |                      | 11.50   | 11.00                  | No       |
|              | 9       | 2452                 |                      | 11.00   | 10.55                  | No       |



WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

```
www.tw.sgs.com
```



|              | V       | ViFi 2.4G (MCC of FCC | C countries, Receive | r OFF)  |                        |          |
|--------------|---------|-----------------------|----------------------|---------|------------------------|----------|
| Mode         | Channel | Frequency(MHz)        | Data Rate(Mbps)      | Tune up | Average<br>Power (dBm) | SAR Test |
|              | 1       | 2412                  |                      | 19.00   | 17.09                  | Yes      |
|              | 2       | 2417                  |                      | 18.50   | 17.05                  | No       |
|              | 4       | 2427                  |                      | 18.50   | 17.03                  | No       |
| 802.11b      | 5       | 2432                  | 1                    | 18.00   | 16.70                  | No       |
|              | 6       | 2437                  |                      | 18.00   | 16.50                  | No       |
|              | 10      | 2457                  |                      | 18.00   | 16.65                  | No       |
|              | 11      | 2462                  |                      | 18.10   | 16.58                  | No       |
|              | 1       | 2412                  |                      | 15.00   | 14.40                  | No       |
|              | 2       | 2417                  |                      | 15.50   | 14.45                  | No       |
|              | 4       | 2427                  |                      | 15.50   | 14.88                  | No       |
| 802.11g      | 5       | 2432                  | 6                    | 15.00   | 14.44                  | No       |
|              | 6       | 2437                  |                      | 15.00   | 14.23                  | No       |
|              | 10      | 2457                  |                      | 15.00   | 14.06                  | No       |
|              | 11      | 2462                  |                      | 14.00   | 1398                   | No       |
|              | 1       | 2412                  |                      | 14.00   | 13.61                  | No       |
|              | 2       | 2417                  |                      | 14.50   | 13.55                  | No       |
|              | 4       | 2427                  |                      | 14.50   | 13.82                  | No       |
| 802.11n HT20 | 5       | 2432                  | 6.5                  | 14.00   | 13.50                  | No       |
|              | 6       | 2437                  |                      | 14.00   | 13.18                  | No       |
|              | 10      | 2457                  | <                    | 14.00   | 13.05                  | No       |
|              | 11      | 2462                  |                      | 13.00   | 12.96                  | No       |
|              | 3       | 2422                  |                      | 12.00   | 10.74                  | No       |
|              | 4       | 2427                  |                      | 14.50   | 13.82                  | No       |
| 802.11n HT40 | 6       | 2437                  | 13.5                 | 14.50   | 13.66                  | No       |
|              | 8       | 2447                  |                      | 14.50   | 13.83                  | No       |
|              | 9       | 2452                  |                      | 12.00   | 10.30                  | No       |



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告報單個測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be preserved to the fullest extent of the law. prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 f (886-2) 2298-0488 www.tw.sgs.com



|               | WiFi    | 5G (MCC of CE count | tries, Receiver C  | PFF)    |                           |          |
|---------------|---------|---------------------|--------------------|---------|---------------------------|----------|
| 5GHz          | Channel | Frequency(MHz)      | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Test |
|               | 36      | 5180                |                    | 18.50   | 18.00                     | No       |
|               | 52      | 5260                |                    | 18.50   | 17.80                     | No       |
|               | 64      | 5320                |                    | 18.50   | 18.01                     | No       |
|               | 100     | 5500                |                    | 18.50   | 18.06                     | No       |
| 802.11a       | 120     | 5600                | 6                  | 18.50   | 18.10                     | No       |
|               | 140     | 5700                |                    | 18.50   | 17.66                     | No       |
|               | 149     | 5745                |                    | 10.60   | 8.53                      | No       |
|               | 157     | 5785                |                    | 10.60   | 8.60                      | No       |
|               | 165     | 5825                |                    | 10.60   | 8.90                      | No       |
| 5GHz          | Channel | Frequency(MHz)      | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Tes  |
|               | 36      | 5180                |                    | 18.00   | 17.02                     | No       |
|               | 52      | 5260                |                    | 18.00   | 17.01                     | No       |
|               | 64      | 5320                | MCS0               | 18.00   | 17.46                     | No       |
|               | 100     | 5500                |                    | 18.00   | 17.20                     | No       |
| 802.11n-HT20  | 120     | 5600                |                    | 18.00   | 17.10                     | No       |
|               | 140     | 5700                |                    | 18.00   | 17.18                     | No       |
|               | 149     | 5745                |                    | 10.50   | 9.12                      | No       |
|               | 157     | 5785                |                    | 10.50   | 9.21                      | No       |
|               | 165     | 5825                |                    | 10.50   | 8.93                      | No       |
| 5GHz          | Channel | Frequency(MHz)      | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Tes  |
|               | 38      | 5190                |                    | 18.00   | 16.90                     | No       |
|               | 54      | 5270                |                    | 18.00   | 16.93                     | No       |
|               | 62      | 5310                |                    | 18.00   | 17.15                     | No       |
| 802.11n-HT40  | 102     | 5510                | MCS0               | 18.00   | 17.28                     | No       |
| 002.111-111-0 | 118     | 5590                | MOOD               | 18.00   | 17.20                     | No       |
|               | 134     | 5670                |                    | 18.00   | 17.14                     | No       |
|               | 151     | 5755                |                    | 10.50   | 8.13                      | No       |
|               | 159     | 5795                |                    | 10.50   | 8.33                      | No       |
| 5GHz          | Channel | Frequency(MHz)      | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Tes  |
|               | 36      | 5180                |                    | 18.00   | 17.40                     | No       |
|               | 52      | 5260                |                    | 18.00   | 17.36                     | No       |
| 000 11 0014   | 64      | 5320                | MOSO               | 18.00   | 17.50                     | No       |
| 802.11ac 20M  | 100     | 5500                | MCS0               | 18.00   | 17.68                     | No       |
|               | 120     | 5600                | 1                  | 18.00   | 17.33                     | No       |
|               | 140     | 5700                | 1                  | 18.00   | 17.14                     | No       |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|                | 140     | EZAE           |                    | 10.50   | 0.50                      | Na      |
|----------------|---------|----------------|--------------------|---------|---------------------------|---------|
|                | 149     | 5745           | -                  | 10.50   | 8.53                      | No      |
|                | 157     | 5785           |                    | 10.50   | 8.71                      | No      |
|                | 165     | 5825           |                    | 10.50   | 8.75                      | No      |
| 5GHz           | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Tes |
|                | 38      | 5190           |                    | 18.00   | 17.00                     | No      |
|                | 54      | 5270           |                    | 18.00   | 17.02                     | No      |
|                | 62      | 5310           |                    | 18.00   | 17.11                     | No      |
| 802.11ac 40M   | 102     | 5510           | MCS0               | 18.00   | 17.27                     | No      |
| 002.1140 40101 | 118     | 5590           | INIC30             | 18.00   | 17.02                     | No      |
|                | 134     | 5670           |                    | 18.00   | 17.05                     | No      |
|                | 151     | 5755           |                    | 10.50   | 8.32                      | No      |
|                | 159     | 5795           |                    | 10.50   | 8.76                      | No      |
| 5GHz           | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Te  |
|                | 42      | 5210           |                    | 18.00   | 17.05                     | No      |
|                | 58      | 5290           |                    | 18.00   | 17.03                     | No      |
| 802.11ac 80M   | 106     | 5530           | MCS0               | 18.00   | 17.00                     | No      |
|                | 122     | 5610           |                    | 18.00   | 17.18                     | No      |
|                | 138     | 5690           | ]                  | 18.00   | 16.97                     | No      |
|                | 155     | 5775           | ]                  | 10.50   | 8.52                      | No      |

| WiFi 5G Receiver ON |          |         |                |                    |         |                           |          |  |  |  |  |  |
|---------------------|----------|---------|----------------|--------------------|---------|---------------------------|----------|--|--|--|--|--|
| 5GHz                | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Test |  |  |  |  |  |
|                     |          | 36      | 5180           |                    | 9.10    | 7.45                      | No       |  |  |  |  |  |
|                     | U-NII-1  | 40      | 5200           |                    | 9.10    | 7.41                      | No       |  |  |  |  |  |
|                     | U-INII-1 | 44      | 5220           |                    | 9.10    | 7.36                      | No       |  |  |  |  |  |
|                     |          | 48      | 5240           |                    | 9.10    | 7.66                      | No       |  |  |  |  |  |
|                     |          | 52      | 5260           |                    | 9.10    | 7.21                      | No       |  |  |  |  |  |
|                     | U-NII-2A | 56      | 5280           |                    | 9.10    | 7.22                      | No       |  |  |  |  |  |
|                     |          | 60      | 5300           |                    | 9.10    | 7.33                      | No       |  |  |  |  |  |
|                     |          | 64      | 5320           |                    | 9.10    | 7.42                      | Yes      |  |  |  |  |  |
| 802.11a             |          | 100     | 5500           | MCS0               | 9.10    | 7.29                      | No       |  |  |  |  |  |
| 002.114             |          | 104     | 5520           | MCOU               | 9.10    | 7.32                      | No       |  |  |  |  |  |
|                     |          | 108     | 5540           |                    | 9.10    | 7.51                      | No       |  |  |  |  |  |
|                     |          | 112     | 5560           |                    | 9.10    | 7.76                      | Yes      |  |  |  |  |  |
|                     |          | 116     | 5580           | -                  | 9.10    | 7.12                      | No       |  |  |  |  |  |
|                     | U-NII-2C | 120     | 5600           |                    | 9.10    | 7.58                      | No       |  |  |  |  |  |
|                     |          | 124     | 5620           | 1                  | 9.10    | 7.36                      | No       |  |  |  |  |  |
|                     |          | 128     | 5640           |                    | 9.10    | 7.11                      | No       |  |  |  |  |  |
|                     |          | 132     | 5660           |                    | 9.10    | 7.19                      | No       |  |  |  |  |  |
|                     |          | 136     | 5680           | 1                  | 9.10    | 7.22                      | No       |  |  |  |  |  |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司

SGS Taiwan Ltd.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



|                  |          | 140     | 5700           |                    | 9.10    | 7.26                      | No       |
|------------------|----------|---------|----------------|--------------------|---------|---------------------------|----------|
|                  |          | 140     | 5720           |                    | 9.10    | 7.20                      | No       |
|                  |          | 144     | 5745           |                    | 9.10    | 7.21                      | No       |
|                  |          | 149     | 5765           | -                  | 9.10    | 7.17                      | No       |
|                  | U-NII-3  | 153     | 5785           | 4                  | 9.10    | 7.17                      | NO       |
|                  | 0-111-5  | 161     | 5805           | -                  | 9.10    | 7.43                      | No       |
|                  |          | 165     | 5825           | -                  | 9.10    | 7.42                      | Yes      |
| 5GHz             | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Average<br>Power          | SAR Test |
|                  |          |         |                |                    |         | (dBm)                     |          |
|                  |          | 36      | 5180           | -                  | 9.00    | 6.96                      | No       |
|                  | U-NII-1  | 40      | 5200           | -                  | 9.00    | 7.17                      | No       |
|                  | •••••    | 44      | 5220           | -                  | 9.00    | 7.49                      | No       |
|                  |          | 48      | 5240           | -                  | 9.00    | 7.24                      | No       |
|                  |          | 52      | 5260           | 2                  | 9.00    | 6.81                      | No       |
|                  | U-NII-2A | 56      | 5280           |                    | 9.00    | 6.57                      | No       |
|                  | <u> </u> | 60      | 5300           | 4                  | 9.00    | 7.47                      | No       |
|                  |          | 64      | 5320           | 4                  | 9.00    | 7.15                      | No       |
|                  |          | 100     | 5500           |                    | 9.00    | 7.15                      | No       |
|                  |          | 104     | 5520           | 4                  | 9.00    | 7.34                      | No       |
|                  |          | 108     | 5540           | 4                  | 9.00    | 7.48                      | No       |
| 802.11n-         |          | 112     | 5560           | -                  | 9.00    | 7.61                      | No       |
| HT20             |          | 116     | 5580           | MCS0               | 9.00    | 6.53                      | No       |
|                  | U-NII-2C | 120     | 5600           |                    | 9.00    | 6.72                      | No       |
|                  |          | 124     | 5620           |                    | 9.00    | 6.89                      | No       |
|                  |          | 128     | 5640           |                    | 9.00    | 6.98                      | No       |
|                  |          | 132     | 5660           |                    | 9.00    | 6.49                      | No       |
|                  |          | 136     | 5680           |                    | 9.00    | 6.62                      | No       |
|                  |          | 140     | 5700           |                    | 9.00    | 6.89                      | No       |
|                  |          | 144     | 5720           |                    | 9.00    | 7.31                      | No       |
|                  |          | 149     | 5745           |                    | 9.00    | 7.27                      | No       |
|                  |          | 153     | 5765           |                    | 9.00    | 7.23                      | No       |
|                  | U-NII-3  | 157     | 5785           | 4                  | 9.00    | 7.11                      | No       |
|                  |          | 161     | 5805           | 4                  | 9.00    | 7.21                      | No       |
|                  |          | 165     | 5825           |                    | 9.00    | 7.11                      | No       |
| 5GHz             | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Average<br>Power<br>(dBm) | SAR Test |
|                  | U-NII-1  | 38      | 5190           |                    | 9.00    | 7.01                      | No       |
|                  |          | 46      | 5230           |                    | 9.00    | 7.61                      | No       |
|                  | U-NII-2A | 54      | 5270           |                    | 9.00    | 7.01                      | No       |
| 200 11n          | 0-111-27 | 62      | 5310           |                    | 9.00    | 7.16                      | No       |
| 802.11n-<br>HT40 |          | 102     | 5510           | MCS0               | 9.00    | 7.11                      | No       |
| 11140            |          | 110     | 5550           |                    | 9.00    | 7.74                      | No       |
|                  | U-NII-2C | 118     | 5590           |                    | 9.00    | 7.44                      | No       |
|                  |          | 126     | 5630           | ]                  | 9.00    | 7.29                      | No       |
|                  |          | 134     | 5670           |                    | 9.00    | 7.38                      | No       |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd.

f (886-2) 2298-0488

www.tw.sgs.com



|          |          | 140            | 5740                   |                    | 0.00            | 7.04                              | NI-            |
|----------|----------|----------------|------------------------|--------------------|-----------------|-----------------------------------|----------------|
|          |          | 142            | 5710                   | -                  | 9.00            | 7.21                              | No             |
|          | U-NII-3  | 151            | 5755                   |                    | 9.00            | 7.38                              | No             |
| 5GHz     | mode     | 159<br>Channel | 5795<br>Frequency(MHz) | Data<br>Rate(Mbps) | 9.00<br>Tune up | 7.75<br>Average<br>Power<br>(dBm) | No<br>SAR Test |
|          |          | 36             | 5180                   |                    | 9.00            | 6.71                              | No             |
|          |          | 40             | 5200                   | -                  | 9.00            | 7.22                              | No             |
|          | U-NII-1  | 44             | 5220                   | -                  | 9.00            | 7.37                              | No             |
|          | 1        | 48             | 5240                   | -                  | 9.00            | 7.65                              | No             |
|          |          | 52             | 5260                   | -                  | 9.00            | 6.71                              | No             |
|          |          | 56             | 5280                   | -                  | 9.00            | 7.05                              | No             |
|          | U-NII-2A | 60             | 5300                   | -                  | 9.00            | 7.07                              | No             |
|          |          | 64             | 5320                   |                    | 9.00            | 7.19                              | No             |
|          |          | 100            | 5500                   |                    | 9.00            | 7.03                              | No             |
|          |          | 104            | 5520                   |                    | 9.00            | 7.21                              | No             |
|          |          | 108            | 5540                   |                    | 9.00            | 7.39                              | No             |
|          |          | 112            | 5560                   | -                  | 9.00            | 7.51                              | No             |
| 802.11ac |          | 116            | 5580                   | MCS0               | 9.00            | 6.95                              | No             |
| 20M      |          | 120            | 5600                   | -                  | 9.00            | 7.24                              | No             |
|          | U-NII-2C | 124            | 5620                   |                    | 9.00            | 7.26                              | No             |
|          |          | 128            | 5640                   | -                  | 9.00            | 7.39                              | No             |
|          | 1        | 132            | 5660                   |                    | 9.00            | 7.04                              | No             |
|          |          | 136            | 5680                   | -                  | 9.00            | 7.23                              | No             |
|          |          | 140            | 5700                   |                    | 9.00            | 7.36                              | No             |
|          |          | 144            | 5720                   |                    | 9.00            | 7.51                              | No             |
|          |          | 149            | 5745                   | -                  | 9.00            | 6.97                              | No             |
|          |          | 153            | 5765                   | -                  | 9.00            | 7.27                              | No             |
|          | U-NII-3  | 157            | 5785                   | 2                  | 9.00            | 7.35                              | No             |
|          |          | 161            | 5805                   |                    | 9.00            | 7.43                              | No             |
|          |          | 165            | 5825                   |                    | 9.00            | 7.31                              | No             |
| 5GHz     | mode     | Channel        | Frequency(MHz)         | Data<br>Rate(Mbps) | Tune up         | Average<br>Power<br>(dBm)         | SAR Test       |
|          | U-NII-1  | 38             | 5190                   |                    | 9.00            | 7.01                              | No             |
|          | 0-INII-1 | 46             | 5230                   |                    | 9.00            | 7.44                              | No             |
|          |          | 54             | 5270                   |                    | 9.00            | 6.91                              | No             |
|          | U-NII-2A | 62             | 5310                   |                    | 9.00            | 7.47                              | No             |
|          |          | 102            | 5510                   |                    | 9.00            | 7.77                              | No             |
| 802.11ac |          | 110            | 5550                   | MOSO               | 9.00            | 7.96                              | No             |
| 40M      |          | 118            | 5590                   | MCS0               | 9.00            | 7.21                              | No             |
|          | U-NII-2C | 126            | 5630                   |                    | 9.00            | 7.45                              | No             |
|          |          | 134            | 5670                   | A                  | 9.00            | 7.34                              | No             |
|          |          | 142            | 5710                   | 1                  | 9.00            | 7.53                              | No             |
|          |          | 151            | 5755                   | 1                  | 9.00            | 7.53                              | No             |
|          | U-NII-3  | 159            | 5795                   | 1                  | 9.00            | 7.45                              | No             |

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd.



|          |          |         |                |                    |         | Average        |          |
|----------|----------|---------|----------------|--------------------|---------|----------------|----------|
| 5GHz     | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Power<br>(dBm) | SAR Test |
|          | U-NII-1  | 42      | 5210           |                    | 9.00    | 7.41           | No       |
|          | U-NII-2A | 58      | 5290           |                    | 9.00    | 7.55           | No       |
| 802.11ac |          | 106     | 5530           | MCS0               | 9.00    | 7.93           | No       |
| 80M      | U-NII-2C | 122     | 5610           | IVIC30             | 9.00    | 7.26           | No       |
|          |          | 138     | 5690           |                    | 9.00    | 7.36           | No       |
| 1200     | U-NII-3  | 155     | 5775           |                    | 9.00    | 7.53           | No       |

|                  |           | WiFi    | 5G(MCC of FCC coun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tries, Receiver C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OFF)    |                           |          |
|------------------|-----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|----------|
| 5GHz             | mode      | Channel | Frequency(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data<br>Rate(Mbps)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tune up | Average<br>Power<br>(dBm) | SAR Test |
|                  |           | 36      | 5180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 16.91                     | No       |
|                  | U-NII-1   | 40      | 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 16.90                     | No       |
|                  | 0-111-1   | 44      | 5220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 16.94                     | No       |
|                  |           | 48      | 5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.32                     | Yes      |
|                  |           | 52      | 5260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.11                     | No       |
| X                | U-NII-2A  | 56      | 5280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.32                     | No       |
|                  | U-MII-ZA  | 60      | 5300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.46                     | Yes      |
|                  |           | 64      | 5320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.13                     | No       |
|                  | A         | 100     | 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.47                     | Yes      |
|                  |           | 104     | 5520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.42                     | No       |
|                  |           | 108     | 5540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.45                     | No       |
|                  |           | 112     | 5560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.37                     | No       |
| 802.11a          |           | 116     | 5200         17.50         16.90           5220         17.50         16.94           5240         17.50         17.32           5260         17.50         17.32           5280         17.50         17.32           5300         17.50         17.32           5300         17.50         17.32           5320         17.50         17.46           5320         17.50         17.46           5520         17.50         17.47           5520         17.50         17.42           5540         17.50         17.42           17.50         17.42         17.50           5560         17.50         17.42           5560         17.50         17.23           5560         17.50         17.23           5620         17.50         17.23           5660         17.50         17.20           5700         17.50         17.20           57720         17.50         17.31           5765         17.50         17.31           5785         17.50         17.44           5805         17.50         17.44           5805 <t< td=""><td>No</td></t<> | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                           |          |
|                  |           | 120     | 5600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.23                     | No       |
|                  | U-NII-2C  | 124     | 5620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.16                     | No       |
|                  |           | 128     | 5640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.04                     | No       |
|                  |           | 132     | 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.23                     | No       |
|                  |           | 136     | 5680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.20                     | No       |
|                  |           | 140     | 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.06                     | No       |
|                  |           | 144     | 5720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 16.79                     | No       |
|                  |           | 149     | 5745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 17.31                     | Yes      |
|                  |           | 153     | 5765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.19                     | No       |
|                  | U-NII-3   | 157     | 5785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 17.04                     | No       |
|                  |           | 161     | 5805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tune up         Tune up           5180         17.50           5200         17.50           5220         17.50           5220         17.50           5240         17.50           5260         17.50           5280         17.50           5280         17.50           5320         17.50           5280         17.50           5320         17.50           5320         17.50           5520         17.50           5550         17.50           5550         17.50           5560         17.50           5560         17.50           5560         17.50           5560         17.50           5560         17.50           5660         17.50           5660         17.50           5660         17.50           5660         17.50           5700         17.50           57720         17.50           5785         17.50           5785         17.50           5805         17.50           5825         17.50 | 16.83   | No                        |          |
|                  |           | 165     | 5825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.50   | 16.49                     | No       |
| 5GHz             | mode      | Channel | Frequency(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tune up |                           | SAR Test |
|                  |           | 36      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.00   | 16.21                     | No       |
| 900 11-          | U-NII-1   | 40      | 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.00   | 16.51                     | No       |
| 802.11n-<br>HT20 | U-INII- I | 44      | 5220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MCS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.00   | 16.34                     | No       |
| 11120            |           | 48      | 5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.00   | 16.43                     | No       |
|                  | U-NII-2A  | 52      | 5260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.00   | 16.21                     | No       |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488



|                 |           | 56      | 5280           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.42 | No      |
|-----------------|-----------|---------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
|                 |           | 60      | 5300           |                    | Tune up         Power<br>(dBm)           15.00         14.20           15.00         14.15           15.00         13.99           15.00         14.03           15.00         14.36           15.00         14.29           15.00         14.29           15.00         14.19           15.00         14.19           15.00         14.19           15.00         14.11           15.00         14.11           15.00         13.96           15.00         13.61 |       | No      |
|                 |           | 64      | 5320           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 100     | 5500           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 104     | 5520           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 108     | 5540           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 112     | 5560           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 116     | 5580           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 120     | 5600           | -                  | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.38 | No      |
|                 | U-NII-2C  | 124     | 5620           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 128     | 5640           | -                  | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | No      |
|                 |           | 132     | 5660           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 136     | 5680           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 140     | 5700           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 144     | 5720           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 149     | 5745           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 153     | 5765           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 | U-NII-3   | 157     | 5785           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 161     | 5805           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 165     | 5825           | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
| 5GHz            | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | SAR Tes |
|                 | U-NII-1   | 38      | 5190           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.20 | No      |
|                 | 0-111-1   | 46      | 5230           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.15 | No      |
|                 | U-NII-2A  | 54      | 5270           | _                  | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.99 | No      |
|                 | 0-1111-27 | 62      | 5310           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
|                 |           | 102     | 5510           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | No      |
| 802.11n-        |           | 110     | 5550           | MCS0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | No      |
| HT40            | U-NII-2C  | 118     | 5590           | MCOU               | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.19 | No      |
|                 | 0-111-20  | 126     | 5630           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.17 | No      |
|                 |           | 134     | 5670           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.19 | No      |
|                 |           | 142     | 5710           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.11 | No      |
|                 | U-NII-3   | 151     | 5755           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.96 | No      |
|                 | 0-111-5   | 159     | 5795           |                    | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.61 | No      |
| 5GHz            | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | SAR Tes |
|                 |           | 36      | 5180           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.75 | No      |
|                 | U-NII-1   | 40      | 5200           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.93 | No      |
|                 | U-INII- I | 44      | 5220           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.02 | No      |
| 000 44          |           | 48      | 5240           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.89 | No      |
| 802.11ac<br>20M |           | 52      | 5260           | MCS0               | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.58 | No      |
| ZUIVI           |           | 56      | 5280           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.76 | No      |
|                 | U-NII-2A  | 60      | 5300           |                    | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.84 | No      |
|                 |           | 64      | 5320           | 1                  | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.78 | No      |
|                 | U-NII-2C  | 100     | 5500           | 1                  | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.74 | No      |

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488



|          |                     | 104     | 5520           |                    | 17.00   | 16.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|----------|---------------------|---------|----------------|--------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          |                     | 108     | 5540           |                    | 17.00   | 00         15.83           00         15.52           00         15.79           00         15.71           00         15.71           00         15.74           00         15.62           00         15.40           00         15.40           00         15.42           00         15.45           00         15.45           00         15.62           00         15.62           00         15.62           00         15.07           00         15.07           00         14.96           Average         Power           VP         Power           (dBm)         00           00         13.81           00         13.83           00         13.84           00         13.77           00         13.67           00         13.71           00         13.67           00         13.71           00         13.67           00         13.67           00         13.67           00         13.91 | No       |
|          |                     | 112     | 5560           |                    | 17.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No       |
|          |                     | 116     | 5580           |                    | 17.00   | 17.0015.8317.0015.5217.0015.7917.0015.7117.0015.7117.0015.8817.0015.4017.0015.4717.0015.4517.0015.4517.0015.6217.0015.6217.0015.6217.0015.6217.0015.6217.0015.6217.0015.6217.0015.0717.0015.0717.0014.96Merage<br>Power<br>(dBm)15.0013.8915.0013.8115.0013.8315.0013.8315.0013.8415.0013.7715.0013.7715.0013.7115.0013.7115.0013.7115.0013.7115.0013.9115.0013.9115.0013.9115.0013.9115.0013.6915.0013.6915.0013.6915.0013.6915.0013.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No       |
|          |                     | 120     | 5600           |                    | 17.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No       |
|          |                     | 124     | 5620           |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No       |
|          |                     | 128     | 5640           |                    | 17.00   | 15.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 132     | 5660           |                    | 17.00   | 15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 136     | 5680           |                    | 17.00   | 15.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | 1                   | 140     | 5700           |                    | 17.00   | 15.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 144     | 5720           |                    | 17.00   | 15.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 149     | 5745           |                    | 17.00   | 15.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 153     | 5765           |                    | 17.00   | 15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | U-NII-3             | 157     | 5785           |                    | 17.00   | 15.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 161     | 5805           |                    | 17.00   | 15.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 165     | 5825           |                    | 17.00   | 14.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
| 5GHz     | mode                | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR Test |
|          |                     | 38      | 5190           |                    | 15.00   | 13.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | 0-111-1             | 46      | 5230           |                    | 15.00   | 13.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | U-NII-1<br>U-NII-2A | 54      | 5270           |                    | 15.00   | 13.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | 0-NII-ZA            | 62      | 5310           |                    | 15.00   | 13.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 102     | 5510           |                    | 15.00   | 13.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
| 802.11ac |                     | 110     | 5550           | MCS0               | 15.00   | 13.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
| 40M      | U-NII-2C            | 118     | 5590           | WIC50              | 15.00   | 13.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | 0-111-20            | 126     | 5630           |                    | 15.00   | 13.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 134     | 5670           |                    | 15.00   | 14.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 142     | 5710           | -                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No       |
|          | U-NII-3             | 151     | 5755           |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No       |
|          |                     | 159     | 5795           |                    | 15.00   | 13.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
| 5GHz     | mode                | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Tune up | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR Test |
|          | U-NII-1             | 42      | 5210           |                    | 15.00   | 14.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | U-NII-2A            | 58      | 5290           | ]                  | 15.00   | 13.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
| 802.11ac |                     | 106     | 5530           | MCCO               | 15.00   | 13.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
| 80M      | U-NII-2C            | 122     | 5610           | MCS0               | 15.00   | 13.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          |                     | 138     | 5690           | ]                  | 15.00   | 13.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |
|          | U-NII-3             | 155     | 5775           |                    | 15.00   | 13.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No       |

Table 18: Conducted Power of WiFi

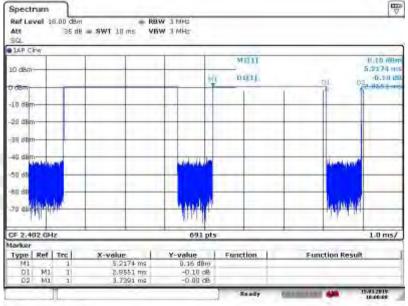
Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms\_ad\_conditions.htm</u> and for electronic format documents, subject to tiss document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to is Client and this document does not exonerate parties to a transaction from exercising all their lights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.




1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured. 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power. c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

|            | BT      |                | Tune up | Average Conducted |
|------------|---------|----------------|---------|-------------------|
| Modulation | Channel | Frequency(MHz) | (dBm)   | Power(dBm)        |
|            | 0       | 2402           | 12.40   | 10.41             |
| GFSK       | 39      | 2441           | 12.40   | 10.48             |
|            | 78      | 2480           | 12.40   | 10.46             |
|            | 0       | 2402           | 10.40   | 8.75              |
| π/4DQPSK   | 39      | 2441           | 10.40   | 9.38              |
|            | 78      | 2480           | 10.40   | 9.48              |
|            | 0       | 2402           | 10.40   | 8.68              |
| 8DPSK      | 39      | 2441           | 10.40   | 9.36              |
|            | 78      | 2480           | 10.40   | 9.43              |
|            | BLE     |                | Tune up | Average Conducted |
| Modulation | Channel | Frequency(MHz) | (dBm)   | Power(dBm)        |
|            | 0       | 2402           | 9.40    | 4.89              |
| GFSK       | 19      | 2440           | 9.40    | 4.72              |
|            | 39      | 2480           | 9.40    | 4.18              |

Table 19: Conducted Power of BT

### duty cycle = 2.8551/3.7391 = 76.36%



Cate: 15 MAR 2019 18:00 09

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

> No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 SGS Taiwan Ltd.

t (886-2) 2299-3279 台灣檢驗科技股份有限公司

f (886-2) 2298-0488



## 8.2 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

| Freq. Band | Frequency<br>(GHz) | Position  | Average | Power | Test<br>Separation<br>(mm) | Calculate<br>Value | Exclusion<br>Threshold | Exclusion<br>(Y/N) |
|------------|--------------------|-----------|---------|-------|----------------------------|--------------------|------------------------|--------------------|
|            |                    |           | dBm     | mW    | (1111)                     |                    |                        |                    |
|            |                    | Head      | 12.10   | 16.22 | 0                          | 5.1                | 3                      | N                  |
| Wi-Fi      | 2.462              | Body-worn | 19.00   | 79.43 | 15                         | 8.3                | 3                      | N                  |
|            |                    | Hotspot   | 19.00   | 79.43 | 10                         | 12.5               | 3                      | N                  |
|            |                    | Head      | 9.10    | 8.13  | 0                          | 3.9                | 3                      | Ν                  |
| Wi-Fi      | 5.825              | Body-worn | 17.50   | 56.23 | 15                         | 9.0                | 3                      | N                  |
|            |                    | Hotspot   | 17.50   | 56.23 | 10                         | 13.6               | 3                      | N                  |
|            |                    | Head      | 12.40   | 17.38 | 0                          | 5.5                | 3                      | N                  |
| Bluetooth  | 2.48               | Body-worn | 12.40   | 17.38 | 15                         | 1.8                | 3                      | Y                  |
|            |                    | Hotspot   | 12.40   | 17.38 | 10                         | 2.7                | 3                      | Y                  |

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and  $\leq$  7.5 for 10-g extremity SAR, where

• f(GHz) is the RF channel transmit frequency in GHz

• Power and distance are rounded to the nearest mW and mm before calculation

• The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is  $\leq$  50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



# 8.3 Measurement of SAR Data

## 8.3.1 SAR Result of GSM850

| Ant 1 Test Record |           |                   |               |                  |              |                         |                       |               |                     |                |  |
|-------------------|-----------|-------------------|---------------|------------------|--------------|-------------------------|-----------------------|---------------|---------------------|----------------|--|
| Test position     | Test mode | Test<br>Ch./Freq. | Duty<br>Cycle | SAR<br>(W/kg)1-g |              | Conducted<br>Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |  |
|                   |           | /                 |               | 1                | Test data    | 1                       | T                     | 1             |                     | 1              |  |
| Left cheek        | GSM       | 190/836.6         | 1:8.3         | 0.041            | 0.14         | 32.34                   | 33.60                 | 1.337         | 0.055               | 22.1           |  |
| Left tilted       | GSM       | 190/836.6         | 1:8.3         | 0.032            | 0.01         | 32.34                   | 33.60                 | 1.337         | 0.042               | 22.1           |  |
| Right cheek       | GSM       | 190/836.6         | 1:8.3         | 0.063            | 0.06         | 32.34                   | 33.60                 | 1.337         | 0.084               | 22.1           |  |
| Right tilted      | GSM       | 190/836.6         | 1:8.3         | 0.025            | 0.06         | 32.34                   | 33.60                 | 1.337         | 0.034               | 22.1           |  |
|                   | •         |                   | Head T        | est Data at      | the worst ca | ase with SIM 2          |                       |               |                     |                |  |
| Right cheek       | GSM       | 190/836.6         | 1:8.3         | 0.054            | 0.08         | 32.34                   | 33.60                 | 1.337         | 0.072               | 22.1           |  |
|                   | •         |                   |               |                  |              | ase with Battery        |                       |               | •                   |                |  |
| Right cheek       | GSM       | 190/836.6         | 1:8.3         | 0.061            | 0.06         | 32.34                   | 33.60                 | 1.337         | 0.082               | 22.1           |  |
|                   | •         |                   |               |                  |              | ase with Battery        |                       |               | •                   |                |  |
| Right cheek       | GSM       | 190/836.6         | 1:8.3         | 0.058            | 0.00         | 32.34                   | 33.60                 | 1.337         | 0.077               | 22.1           |  |
|                   |           |                   | Body          | worn Test d      | ata(Separat  | e 15mm)                 |                       |               |                     |                |  |
| Front side        | GSM       | 190/836.6         | 1:8.3         | 0.184            | -0.06        | 32.34                   | 33.60                 | 1.337         | 0.246               | 22.1           |  |
| Back side         | GSM       | 190/836.6         | 1:8.3         | 0.258            | -0.07        | 32.34                   | 33.60                 | 1.337         | 0.345               | 22.1           |  |
| Front side        | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.172            | 0.02         | 26.39                   | 27.60                 | 1.321         | 0.227               | 22.1           |  |
| Back side         | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.243            | -0.02        | 26.39                   | 27.60                 | 1.321         | 0.321               | 22.1           |  |
|                   | <u> </u>  |                   | Body Tes      | st Data at th    | e worst case | e with SIM 2            |                       |               |                     |                |  |
| Back side         | GSM       | 190/836.6         | 1:8.3         | 0.256            | 0.08         | 32.34                   | 33.60                 | 1.337         | 0.342               | 22.1           |  |
|                   |           |                   | Body T        | est Data at      | the worst ca | se with Battery         | 2#(15mm)              |               |                     |                |  |
| Back side         | GSM       | 190/836.6         | 1:8.3         | 0.246            | -0.11        | 32.34                   | 33.60                 | 1.337         | 0.329               | 22.1           |  |
|                   |           |                   | Body T        | est Data at      | the worst ca | se with Battery         | 3#(15mm)              |               |                     | L              |  |
| Back side         | GSM       | 190/836.6         | 1:8.3         | 0.254            | -0.09        | 32.34                   | 33.60                 | 1.337         | 0.339               | 22.1           |  |
|                   |           |                   |               | spot Test da     | ta(Separate  | 10mm)                   |                       |               | •                   | J              |  |
| Front side        | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.260            | -0.02        | 26.39                   | 27.60                 | 1.321         | 0.344               | 22.1           |  |
| Back side         | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.465            | -0.03        | 26.39                   | 27.60                 | 1.321         | 0.614               | 22.1           |  |
| Left side         | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.225            | 0.12         | 26.39                   | 27.60                 | 1.321         | 0.297               | 22.1           |  |
| Right side        | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.060            | 0.00         | 26.39                   | 27.60                 | 1.321         | 0.079               | 22.1           |  |
| Bottom side       | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.170            | -0.04        | 26.39                   | 27.60                 | 1.321         | 0.225               | 22.1           |  |
|                   |           |                   | Body Tes      | st Data at th    | e worst case | e with SIM 2            |                       |               |                     | 4              |  |
| Back side         | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.458            | 0.00         | 26.39                   | 27.60                 | 1.321         | 0.605               | 22.1           |  |
|                   |           |                   |               |                  |              | se with Battery         |                       |               |                     |                |  |
| Back side         | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.454            | 0.01         | 26.39                   | 27.60                 | 1.321         | 0.600               | 22.1           |  |
| Ducht Char        |           | 100,000,0         |               |                  |              | ase with Battery        |                       |               | 0.000               |                |  |
| Back side         | GPRS 4TS  | 190/836.6         | 1:2.075       | 0.445            | -0.17        | 26.39                   | 27.60                 | 1.321         | 0.588               | 22.1           |  |
| Buok oldo         | or no no  | 100/000.0         | 1.2.010       |                  | est Record   | 20.00                   | 21.00                 | 1.021         | 0.000               |                |  |
| Test position     | Test mode | Test<br>Ch./Freq. | Duty<br>Cycle | SAR<br>(W/kg)1-g | Power        | Conducted<br>Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |  |
| 1                 |           |                   |               | lead Test da     |              | . ,                     |                       |               |                     |                |  |
| Left cheek        | GSM       | 190/836.6         | 1:8.3         | 0.405            | -0.01        | 31.11                   | 32.10                 | 1.256         | 0.509               | 22.1           |  |
| Left tilted       | GSM       | 190/836.6         | 1:8.3         | 0.293            | 0.00         | 31.11                   | 32.10                 | 1.256         | 0.368               | 22.1           |  |
| Right cheek       | GSM       | 190/836.6         | 1:8.3         | 0.374            | -0.05        | 31.11                   | 32.10                 | 1.256         | 0.470               | 22.1           |  |
| Right tilted      | GSM       | 190/836.6         | 1:8.3         | 0.328            | 0.00         | 31.11                   | 32.10                 | 1.256         | 0.412               | 22.1           |  |
|                   |           |                   |               |                  |              | ase with SIM 2          | •                     |               |                     |                |  |
| Left cheek        | GSM       | 190/836.6         | 1:8.3         | 0.399            | 0.03         | 31.11                   | 32.10                 | 1.256         | 0.501               | 22.1           |  |
| Lon onoon         | 000       | .00,000.0         |               |                  |              | ase with Battery        |                       |               | 0.001               |                |  |
| Left cheek        | GSM       | 190/836.6         | 1:8.3         | 0.396            | 0.01         | 31.11                   | 32.10                 | 1.256         | 0.497               | 22.1           |  |
| Leit Glieck       | USIVI     | 130/030.0         | 1.0.5         | 0.590            | 0.01         | 51.11                   | 52.10                 | 1.200         | 0.431               | 22.1           |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

f (886-2) 2298-0488



|            |          |           | Head T   | est Data at  | the worst ca | ase with Battery | 3#       |       |       |     |
|------------|----------|-----------|----------|--------------|--------------|------------------|----------|-------|-------|-----|
| Left cheek | GSM      | 190/836.6 | 1:8.3    | 0.392        | 0.03         | 31.11            | 32.10    | 1.256 | 0.492 | 22  |
|            | •        |           | Body v   | vorn Test d  | ata(Separat  | e 15mm)          |          |       |       |     |
| Front side | GSM      | 190/836.6 | 1:8.3    | 0.122        | 0.06         | 33.09            | 34.10    | 1.262 | 0.154 | 22. |
| Back side  | GSM      | 190/836.6 | 1:8.3    | 0.159        | 0.00         | 33.09            | 34.10    | 1.262 | 0.201 | 22. |
| Front side | GPRS 4TS | 190/836.6 | 1:2.075  | 0.177        | 0.02         | 26.99            | 28.10    | 1.291 | 0.229 | 22. |
| Back side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.222        | -0.02        | 26.99            | 28.10    | 1.291 | 0.287 | 22. |
|            |          |           | Body Tes | t Data at th | e worst case | e with SIM 2     |          |       |       |     |
| Back side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.220        | -0.07        | 26.99            | 28.10    | 1.291 | 0.284 | 22. |
|            | /        |           | Body Te  | est Data at  | the worst ca | se with Battery  | 2#(15mm) |       |       |     |
| Back side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.215        | -0.13        | 26.99            | 28.10    | 1.291 | 0.278 | 22. |
|            |          |           | Body Te  | est Data at  | the worst ca | se with Battery  | 3#(15mm) |       |       |     |
| Back side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.211        | 0.08         | 26.99            | 28.10    | 1.291 | 0.272 | 22. |
|            |          |           | Hots     | pot Test dat | ta(Separate  | 10mm)            |          |       |       |     |
| Front side | GPRS 4TS | 190/836.6 | 1:2.075  | 0.163        | -0.01        | 26.99            | 28.10    | 1.291 | 0.210 | 22. |
| Back side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.241        | -0.01        | 26.99            | 28.10    | 1.291 | 0.311 | 22. |
| Left side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.315        | 0.04         | 26.99            | 28.10    | 1.291 | 0.407 | 22. |
| Right side | GPRS 4TS | 190/836.6 | 1:2.075  | 0.151        | -0.05        | 26.99            | 28.10    | 1.291 | 0.195 | 22. |
| Top side   | GPRS 4TS | 190/836.6 | 1:2.075  | 0.139        | 0.00         | 26.99            | 28.10    | 1.291 | 0.179 | 22. |
|            |          |           | Body Tes | t Data at th | e worst case | e with SIM 2     |          |       |       |     |
| Left side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.307        | -0.05        | 26.99            | 28.10    | 1.291 | 0.396 | 22. |
|            |          |           | Body Te  | est Data at  | the worst ca | se with Battery  | 2#(10mm) |       |       |     |
| Left side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.302        | -0.09        | 26.99            | 28.10    | 1.291 | 0.390 | 22. |
|            |          |           | Body Te  | est Data at  | the worst ca | se with Battery  | 3#(10mm) |       |       |     |
| Left side  | GPRS 4TS | 190/836.6 | 1:2.075  | 0.296        | -0.01        | 26.99            | 28.10    | 1.291 | 0.382 | 22. |

Table 20: SAR of GSM850 for Head and Body Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

f (886-2) 2298-0488

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant any the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



### SAR Result of GSM1900 8.3.2

|                 |           |                   |                | Anti             | Test Reco          | ra                      |                       |               |                     |                |
|-----------------|-----------|-------------------|----------------|------------------|--------------------|-------------------------|-----------------------|---------------|---------------------|----------------|
| Test position   | Test mode | Test<br>Ch./Freq. | Duty<br>Cycle  | SAR<br>(W/kg)1-g | Power<br>Drift(dB) | Conducted<br>Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|                 |           |                   | 1              |                  | ad Test data       |                         |                       |               | - ( 3/              |                |
| Left cheek      | GSM       | 661/1880          | 1:8.3          | 0.111            | 0.15               | 29.94                   | 31.30                 | 1.368         | 0.152               | 22.3           |
| Left tilted     | GSM       | 661/1880          | 1:8.3          | 0.058            | -0.03              | 29.94                   | 31.30                 | 1.368         | 0.079               | 22.3           |
| Right cheek     | GSM       | 661/1880          | 1:8.3          | 0.086            | 0.03               | 29.94                   | 31.30                 | 1.368         | 0.117               | 22.3           |
| Right tilted    | GSM       | 661/1880          | 1:8.3          | 0.057            | 0.03               | 29.94                   | 31.30                 | 1.368         | 0.078               | 22.3           |
|                 |           |                   |                | d Test Data      | at the worst       | case with SIM 2         |                       |               |                     |                |
| Left cheek      | GSM       | 661/1880          | 1:8.3          | 0.109            | -0.07              | 29.94                   | 31.30                 | 1.368         | 0.149               | 22.3           |
|                 | 1         |                   |                | d Test Data      | at the worst       | case with Batter        | rv 2#                 |               |                     |                |
| Left cheek      | GSM       | 661/1880          | 1:8.3          | 0.105            | 0.05               | 29.94                   | 31.30                 | 1.368         | 0.144               | 22.3           |
|                 | _         |                   |                |                  |                    | case with Batter        |                       |               |                     |                |
| Left cheek      | GSM       | 661/1880          | 1:8.3          | 0.104            | 0.01               | 29.94                   | 31.30                 | 1.368         | 0.142               | 22.3           |
|                 | 00        |                   |                |                  | t data(Sepa        |                         | 000                   |               | 0                   |                |
| Front side      | GSM       | 661/1880          | 1:8.3          | 0.152            | -0.04              | 29.94                   | 31.30                 | 1.368         | 0.208               | 22.3           |
| Back side       | GSM       | 661/1880          | 1:8.3          | 0.162            | 0.05               | 29.94                   | 31.30                 | 1.368         | 0.222               | 22.3           |
| Front side      | GPRS 4TS  | 661/1880          | 1:2.075        | 0.124            | 0.03               | 23.98                   | 25.30                 | 1.355         | 0.168               | 22.3           |
| Back side       | GPRS 4TS  | 661/1880          | 1:2.075        | 0.121            | 0.03               | 23.98                   | 25.30                 | 1.355         | 0.187               | 22.3           |
| Duck side       |           | 001/1000          |                |                  |                    | ase with SIM 2          | 20.00                 | 1.000         | 0.107               | 22.0           |
| Back side       | GSM       | 661/1880          | 1:8.3          | 0.157            | 0.07               | 29.94                   | 31.30                 | 1.368         | 0.215               | 22.3           |
| Back side       | COM       | 001/1000          |                |                  |                    | case with Batter        |                       | 1.000         | 0.210               | 22.0           |
| Back side       | GSM       | 661/1880          | 1:8.3          | 0.153            | -0.02              | 29.94                   | 31.30                 | 1.368         | 0.209               | 22.3           |
| Dack Side       | COM       | 001/1000          |                |                  |                    | case with Batter        |                       | 1.000         | 0.200               | 22.0           |
| Back side       | GSM       | 661/1880          | 1:8.3          | 0.150            | 0.09               | 29.94                   | 31.30                 | 1.368         | 0.205               | 22.3           |
| Dack Side       | 0310      | 001/1000          |                | 1                | data(Separa        |                         | 31.50                 | 1.500         | 0.205               | 22.5           |
| Front side      | GPRS 4TS  | 661/1880          | 1:2.075        | 0.241            | -0.01              | 23.98                   | 25.30                 | 1.355         | 0.327               | 22.3           |
| Back side       | GPRS 4TS  | 661/1880          | 1:2.075        | 0.241            | 0.07               | 23.98                   | 25.30                 | 1.355         | 0.365               | 22.3           |
| Left side       | GPRS 4TS  | 661/1880          | 1:2.075        | 0.209            | -0.02              | 23.98                   | 25.30                 | 1.355         | 0.303               | 22.3           |
| Right side      | GPRS 4TS  | 661/1880          | 1:2.075        | 0.068            | -0.02              | 23.98                   | 25.30                 | 1.355         | 0.092               | 22.3           |
| Bottom side     | GPRS 4TS  | 661/1880          | 1:2.075        | 0.008            | 0.04               | 23.98                   | 25.30                 | 1.355         | 0.092               | 22.3           |
| Bollom side     | GFR3413   | 001/1000          |                |                  |                    | ase with SIM 2          | 25.50                 | 1.555         | 0.561               | 22.5           |
| Dattam aida     |           | 661/1000          | 1:2.075        | 0.390            |                    | 23.98                   | 25.30                 | 1 255         | 0.520               | 22.2           |
| Bottom side     | GPRS 4TS  | 661/1880          |                |                  | 0.01               |                         |                       | 1.355         | 0.529               | 22.3           |
| Dettere side    |           | 004/4000          | воц<br>1:2.075 |                  |                    | case with Batter        |                       | 4.055         | 0.500               | 00.0           |
| Bottom side     | GPRS 4TS  | 661/1880          |                | 0.420            | -0.06              | 23.98                   | 25.30                 | 1.355         | 0.569               | 22.3           |
| Detter state    |           | 661/1880          |                | 5                |                    | case with Batter        | ,                     | 4.055         | 0.550               | 00.0           |
| Bottom side     | GPRS 4TS  | 001/1880          | 1:2.075        | 0.412            | -0.01              | 23.98                   | 25.30                 | 1.355         | 0.558               | 22.3           |
|                 |           | Test              | Duty           | SAR              | Test Reco<br>Power | Conducted               | Tune up               | Scaled        | Scaled              | Liquid         |
| Test position   | Test mode | Ch./Freq.         | Cycle          | (W/kg)1-g        |                    | Power(dBm)              | Limit(dBm)            | factor        | SAR(W/kg)           | Temp           |
|                 |           | •                 | e jele         |                  | ad Test data       |                         |                       |               | e,(                 |                |
| Left cheek      | GSM       | 661/1880          | 1:8.3          | 0.169            | 0.15               | 23.75                   | 25.30                 | 1.429         | 0.241               | 22.3           |
| Left tilted     | GSM       | 661/1880          | 1:8.3          | 0.146            | -0.03              | 23.75                   | 25.30                 | 1.429         | 0.209               | 22.3           |
| Right cheek     | GSM       | 661/1880          | 1:8.3          | 0.263            | 0.03               | 23.75                   | 25.30                 | 1.429         | 0.376               | 22.3           |
| Right tilted    | GSM       | 661/1880          | 1:8.3          | 0.171            | 0.07               | 23.75                   | 25.30                 | 1.429         | 0.244               | 22.3           |
| <u> </u>        |           |                   |                |                  |                    | case with SIM 2         |                       |               |                     |                |
| Right cheek     | GSM       | 661/1880          | 1:8.3          | 0.257            | -0.04              | 23.75                   | 25.30                 | 1.429         | 0.367               | 22.3           |
|                 | 20.0      |                   |                |                  |                    | case with Batter        |                       | 0             | ,                   |                |
| Right cheek     | GSM       | 661/1880          | 1:8.3          | 0.249            | -0.12              | 23.75                   | 25.30                 | 1.429         | 0.356               | 22.3           |
| - agric on conc | 0.01      | 301/1000          |                |                  |                    | case with Batter        |                       | 1.420         | 0.000               | 22.0           |
|                 |           |                   |                |                  |                    |                         |                       |               |                     |                |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號

```
www.tw.sgs.com
```

|            |          |          | Boo               | dy worn Tes | t data(Sepa   | rate 15mm)      |             |       |       |      |
|------------|----------|----------|-------------------|-------------|---------------|-----------------|-------------|-------|-------|------|
| Front side | GSM      | 661/1880 | 1:8.3             | 0.018       | 0.00          | 23.75           | 25.30       | 1.429 | 0.025 | 22.3 |
| Back side  | GSM      | 661/1880 | 1:8.3             | 0.018       | 0.01          | 23.75           | 25.30       | 1.429 | 0.025 | 22.3 |
| Front side | GPRS 4TS | 661/1880 | 1:2.075           | 0.019       | 0.02          | 18.12           | 19.30       | 1.312 | 0.025 | 22.3 |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.019       | -0.17         | 18.12           | 19.30       | 1.312 | 0.025 | 22.3 |
|            |          |          | Body              | Test Data a | t the worst c | ase with SIM 2  |             |       |       |      |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.016       | 0.02          | 18.12           | 19.30       | 1.312 | 0.021 | 22.3 |
|            |          |          | Bod               | y Test Data | at the worst  | case with Batte | ry 2#(15mm) |       |       |      |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.015       | -0.01         | 18.12           | 19.30       | 1.312 | 0.020 | 22.3 |
| 12         |          |          | Bod               | y Test Data | at the worst  | case with Batte | ry 3#(15mm) |       | NX    |      |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.015       | -0.11         | 18.12           | 19.30       | 1.312 | 0.020 | 22.3 |
|            |          |          | H                 | otspot Test | data(Separa   | ite 10mm)       |             |       |       |      |
| Front side | GPRS 4TS | 661/1880 | 1:2.075           | 0.027       | -0.07         | 18.12           | 19.30       | 1.312 | 0.036 | 22.3 |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.039       | 0.05          | 18.12           | 19.30       | 1.312 | 0.051 | 22.3 |
| Left side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.031       | 0.06          | 18.12           | 19.30       | 1.312 | 0.040 | 22.3 |
| Right side | GPRS 4TS | 661/1880 | 1:2.075           | 0.007       | 0.10          | 18.12           | 19.30       | 1.312 | 0.009 | 22.3 |
| Top side   | GPRS 4TS | 661/1880 | 1:2.075           | 0.028       | -0.06         | 18.12           | 19.30       | 1.312 | 0.036 | 22.3 |
|            | <u> </u> |          | Body <sup>-</sup> | Test Data a | t the worst c | ase with SIM 2  |             |       |       |      |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.039       | 0.00          | 18.12           | 19.30       | 1.312 | 0.051 | 22.3 |
|            |          |          | Body              | y Test Data | at the worst  | case with Batte | ry 2#(10mm) |       |       |      |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.038       | 0.05          | 18.12           | 19.30       | 1.312 | 0.050 | 22.3 |
| X          |          |          | Body              | y Test Data | at the worst  | case with Batte | ry 3#(10mm) |       |       |      |
| Back side  | GPRS 4TS | 661/1880 | 1:2.075           | 0.037       | 0.04          | 18.12           | 19.30       | 1.312 | 0.049 | 22.3 |

Table 21: SAR of GSM1900 for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



# 8.3.3 SAR Result of WCDMA Band II

|               | 1         |                   |            | -           | est Record         | 0                       | T          | 0      |                     |                |
|---------------|-----------|-------------------|------------|-------------|--------------------|-------------------------|------------|--------|---------------------|----------------|
| Test position | Test mode | Test<br>Ch./Freq. | Duty Cycle | SAR         | Power<br>Drift(dB) | Conducted<br>Power(dBm) | Tune up    | Scaled | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|               |           | on./Freq.         |            |             | Test data          | Fower(ubili)            |            | Ideloi | SAR(W/Rg)           | Temp           |
| Left cheek    | RMC       | 9400/1880         | 1:1        | 0.196       | -0.04              | 23.25                   | 24.50      | 1.334  | 0.261               | 22.3           |
| Left tilted   | RMC       | 9400/1880         | 1:1        | 0.100       | -0.08              | 23.25                   | 24.50      | 1.334  | 0.148               | 22.3           |
| Right cheek   | RMC       | 9400/1880         | 1:1        | 0.151       | 0.00               | 23.25                   | 24.50      | 1.334  | 0.201               | 22.3           |
| Right tilted  | RMC       | 9400/1880         | 1:1        | 0.101       | 0.05               | 23.25                   | 24.50      | 1.334  | 0.147               | 22.3           |
| Tright tilted | TUNO      | 5400/1000         |            |             |                    | ase with SIM 2          | 24.00      | 1.004  | 0.147               | 22.0           |
| Left cheek    | RMC       | 9400/1880         | 1:1        | 0.189       | -0.03              | 23.25                   | 24.50      | 1.334  | 0.252               | 22.3           |
| Lon oneok     | Tano      | 0400/1000         |            |             |                    | ase with Battery        |            | 1.004  | 0.202               | 22.0           |
| Left cheek    | RMC       | 9400/1880         | 1:1        | 0.185       | 0.02               | 23.25                   | 24.50      | 1.334  | 0.247               | 22.3           |
| Longon        | T uno     | 0100,1000         |            |             |                    | ase with Battery        |            | 1.001  | 0.211               |                |
| Left cheek    | RMC       | 9400/1880         | 1:1        | 0.181       | 0.14               | 23.25                   | 24.50      | 1.334  | 0.241               | 22.3           |
| Lonconcon     | T uno     | 0100,1000         |            |             | ata(Separat        |                         | 21.00      | 1.001  | 0.211               |                |
| Front side    | RMC       | 9400/1880         | 1:1        | 0.238       | -0.09              | 22.78                   | 24.00      | 1.324  | 0.315               | 22.3           |
| Back side     | RMC       | 9400/1880         | 1:1        | 0.261       | -0.17              | 22.78                   | 24.00      | 1.324  | 0.346               | 22.3           |
| 200110100     |           | 0.000,0000        |            |             |                    | e with SIM 2            | 2          |        |                     |                |
| Back side     | RMC       | 9400/1880         | 1:1        | 0.251       | -0.16              | 22.78                   | 24.00      | 1.324  | 0.332               | 22.3           |
| 200110100     |           | 0.000,0000        |            |             |                    | ise with Battery        |            |        | 0.002               |                |
| Back side     | RMC       | 9400/1880         | 1:1        | 0.246       | 0.01               | 22.78                   | 24.00      | 1.324  | 0.326               | 22.3           |
|               |           | 0.000,1000        |            |             |                    | se with Battery         |            |        | 0.010               |                |
| Back side     | RMC       | 9400/1880         | 1:1        | 0.241       | 0.09               | 22.78                   | 24.00      | 1.324  | 0.319               | 22.3           |
|               |           |                   |            |             | ta(Separate        |                         |            |        |                     |                |
| Front side    | RMC       | 9400/1880         | 1:1        | 0.448       | 0.01               | 22.78                   | 24.00      | 1.324  | 0.593               | 22.3           |
| Back side     | RMC       | 9400/1880         | 1:1        | 0.514       | -0.04              | 22.78                   | 24.00      | 1.324  | 0.681               | 22.3           |
| Left side     | RMC       | 9400/1880         | 1:1        | 0.209       | 0.04               | 22.78                   | 24.00      | 1.324  | 0.277               | 22.3           |
| Right side    | RMC       | 9400/1880         | 1:1        | 0.138       | -0.02              | 22.78                   | 24.00      | 1.324  | 0.183               | 22.3           |
| Bottom side   | RMC       | 9400/1880         | 1:1        | 0.688       | 0.04               | 22.78                   | 24.00      | 1.324  | 0.911               | 22.3           |
| Bottom side   | RMC       | 9262/1852.4       | 1:1        | 0.674       | 0.07               | 22.71                   | 24.00      | 1.346  | 0.907               | 22.3           |
| Bottom side   | RMC       | 9538/1907.6       |            | 0.697       | 0.05               | 22.67                   | 24.00      | 1.358  | 0.947               | 22.3           |
|               |           |                   |            |             |                    | e with SIM 2            |            |        |                     |                |
| Bottom side   | RMC       | 9538/1907.6       |            | 0.669       | -0.15              | 22.67                   | 24.00      | 1.358  | 0.909               | 22.3           |
|               | _         |                   |            |             |                    | se with Battery         |            |        |                     |                |
| Bottom side   | RMC       | 9538/1907.6       |            | 0.641       | -0.09              | 22.67                   | 24.00      | 1.358  | 0.871               | 22.3           |
|               |           |                   |            |             |                    | se with Battery         |            |        |                     |                |
| Bottom side   | RMC       | 9538/1907.6       |            | 0.650       | 0.03               | 22.67                   | 24.00      | 1.358  | 0.883               | 22.3           |
|               | _         |                   |            |             | est Record         | -                       |            |        |                     | -              |
| Test position | Test mode | Test              | Duty Cycle | SAR         | Power              | Conducted               | Tune up    | Scaled | Scaled              | Liquid         |
| rest position | Test mode | Ch./Freq.         | Duly Cycle | (ww/kg)1-g  | Drift(dB)          | Power(dBm)              | Limit(dBm) | factor | SAR(W/kg)           | Temp           |
|               |           |                   | 1          | 1           | Test data          | ſ                       |            |        |                     |                |
| Left cheek    | RMC       | 9400/1880         | 1:1        | 0.341       | -0.05              | 17.76                   | 19.10      | 1.361  | 0.464               | 22.3           |
| Left tilted   | RMC       | 9400/1880         | 1:1        | 0.238       | -0.03              | 17.76                   | 19.10      | 1.361  | 0.324               | 22.3           |
| Right cheek   | RMC       | 9400/1880         | 1:1        | 0.595       | 0.06               | 17.76                   | 19.10      | 1.361  | 0.810               | 22.3           |
| Right tilted  | RMC       | 9400/1880         | 1:1        | 0.347       | 0.14               | 17.76                   | 19.10      | 1.361  | 0.472               | 22.3           |
| Right cheek   | RMC       | 9262/1852.4       | 1:1        | 0.583       | -0.06              | 17.70                   | 19.10      | 1.380  | 0.805               | 22.3           |
| Right cheek   | RMC       | 9538/1907.6       | 1:1        | 0.586       | 0.04               | 17.71                   | 19.10      | 1.377  | 0.807               | 22.3           |
|               |           |                   | Head T     | est Data at | the worst ca       | ase with SIM 2          |            |        |                     |                |
| Right cheek   | RMC       | 9400/1880         | 1:1        | 0.566       | 0.17               | 17.76                   | 19.10      | 1.361  | 0.771               | 22.3           |
|               |           |                   | Head T     | est Data at | the worst ca       | ase with Battery        | 2#         |        |                     |                |
| Right cheek   | RMC       | 9400/1880         | 1:1        | 0.553       | -0.07              | 17.76                   | 19.10      | 1.361  | 0.753               | 22.3           |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd.

f (886-2) 2298-0488

Member of SGS Group

www.tw.sgs.com



|             |     |           | Head    | Test Data at   | the worst ca | ase with Battery | 3#       |       |       |      |
|-------------|-----|-----------|---------|----------------|--------------|------------------|----------|-------|-------|------|
| Right cheek | RMC | 9400/1880 | 1:1     | 0.573          | 0.16         | 17.76            | 19.10    | 1.361 | 0.780 | 22.3 |
|             |     |           | Body    | worn Test d    | ata(Separat  | e 15mm)          | •        |       |       |      |
| Front side  | RMC | 9400/1880 | 1:1     | 0.164          | -0.04        | 23.63            | 24.50    | 1.222 | 0.200 | 22.3 |
| Back side   | RMC | 9400/1880 | 1:1     | 0.163          | -0.01        | 23.63            | 24.50    | 1.222 | 0.199 | 22.3 |
|             |     |           | Body Te | est Data at th | e worst case | e with SIM 2     |          |       |       |      |
| Front side  | RMC | 9400/1880 | 1:1     | 0.160          | -0.05        | 23.63            | 24.50    | 1.222 | 0.195 | 22.3 |
|             |     |           | Body    | Test Data at   | the worst ca | se with Battery  | 2#(15mm) |       |       |      |
| Front side  | RMC | 9400/1880 | 1:1     | 0.156          | -0.07        | 23.63            | 24.50    | 1.222 | 0.191 | 22.3 |
|             | /   |           | Body    | Test Data at   | the worst ca | se with Battery  | 3#(15mm) |       |       |      |
| Front side  | RMC | 9400/1880 | 1:1     | 0.158          | 0.14         | 23.63            | 24.50    | 1.222 | 0.193 | 22.3 |
|             |     |           | Hot     | spot Test dat  | ta(Separate  | 10mm)            |          |       |       |      |
| Front side  | RMC | 9400/1880 | 1:1     | 0.238          | 0.01         | 23.63            | 24.50    | 1.222 | 0.291 | 22.3 |
| Back side   | RMC | 9400/1880 | 1:1     | 0.346          | 0.01         | 23.63            | 24.50    | 1.222 | 0.423 | 22.3 |
| Left side   | RMC | 9400/1880 | 1:1     | 0.291          | 0.05         | 23.63            | 24.50    | 1.222 | 0.356 | 22.3 |
| Right side  | RMC | 9400/1880 | 1:1     | 0.053          | -0.01        | 23.63            | 24.50    | 1.222 | 0.065 | 22.3 |
| Top side    | RMC | 9400/1880 | 1:1     | 0.238          | 0.04         | 23.63            | 24.50    | 1.222 | 0.291 | 22.3 |
|             |     |           | Body Te | est Data at th | e worst case | e with SIM 2     |          |       |       |      |
| Back side   | RMC | 9400/1880 | 1:1     | 0.327          | 0.06         | 23.63            | 24.50    | 1.222 | 0.400 | 22.3 |
|             |     |           | Body    | Test Data at   | the worst ca | se with Battery  | 2#(10mm) |       |       |      |
| Back side   | RMC | 9400/1880 | 1:1     | 0.323          | -0.01        | 23.63            | 24.50    | 1.222 | 0.395 | 22.3 |
|             |     |           | Body    | Test Data at   | the worst ca | se with Battery  | 3#(10mm) |       |       |      |
| Back side   | RMC | 9400/1880 | 1:1     | 0.314          | -0.05        | 23.63            | 24.50    | 1.222 | 0.384 | 22.3 |

Table 22: SAR of WCDMA Band II for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



# 8.3.4 SAR Result of WCDMA Band IV

|                            |              |                   |              |                  | est Record         |                         |                       |               |                     |                |
|----------------------------|--------------|-------------------|--------------|------------------|--------------------|-------------------------|-----------------------|---------------|---------------------|----------------|
| Test position              | Test mode    | Test<br>Ch./Freq. | Duty Cycle   | SAR<br>(W/kg)1-g | Power<br>Drift(dB) | Conducted<br>Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|                            |              |                   |              |                  | Test data          |                         | (                     |               | o,(                 |                |
| Left cheek                 | RMC          | 1412/1732.4       | 1:1          | 0.195            | 0.12               | 22.53                   | 23.50                 | 1.250         | 0.244               | 22.2           |
| Left tilted                | RMC          | 1412/1732.4       | 1:1          | 0.097            | 0.19               | 22.53                   | 23.50                 | 1.250         | 0.122               | 22.2           |
| Right cheek                | RMC          | 1412/1732.4       | 1:1          | 0.173            | 0.11               | 22.53                   | 23.50                 | 1.250         | 0.216               | 22.2           |
| Right tilted               | RMC          | 1412/1732.4       | 1:1          | 0.074            | 0.03               | 22.53                   | 23.50                 | 1.250         | 0.093               | 22.2           |
| i ugint unto d             |              |                   |              |                  |                    | ase with SIM 2          | 20.00                 |               | 0.000               |                |
| Left cheek                 | RMC          | 1412/1732.4       | 1:1          | 0.193            | -0.01              | 22.53                   | 23.50                 | 1.250         | 0.241               | 22.2           |
| Lont on ook                | 1 uno        | 1112/1102.1       |              |                  |                    | ase with Battery        |                       | 1.200         | 0.211               |                |
| Left cheek                 | RMC          | 1412/1732.4       | 1:1          | 0.190            | 0.07               | 22.53                   | 23.50                 | 1.250         | 0.238               | 22.2           |
| 2011 0110 011              |              |                   |              |                  |                    | se with Battery         |                       |               | 0.200               |                |
| Left cheek                 | RMC          | 1412/1732.4       | 1:1          | 0.188            | -0.08              | 22.53                   | 23.50                 | 1.250         | 0.235               | 22.2           |
| Left briegk                | Tavio        | 1412/1102.4       |              |                  | ata(Separate       |                         | 20.00                 | 1.200         | 0.200               | <i>LL.L</i>    |
| Front side                 | RMC          | 1412/1732.4       | 1:1          | 0.258            | -0.02              | 22.53                   | 23.50                 | 1.250         | 0.323               | 22.2           |
| Back side                  | RMC          | 1412/1732.4       | 1:1          | 0.260            | -0.01              | 22.53                   | 23.50                 | 1.250         | 0.328               | 22.2           |
| Dack side                  | TWO          | 1412/1102.4       |              |                  |                    | e with SIM 2            | 20.00                 | 1.200         | 0.020               | 22.2           |
| Back side                  | RMC          | 1412/1732.4       | 1:1          | 0.247            | -0.01              | 22.53                   | 23.50                 | 1.250         | 0.309               | 22.2           |
| Dack side                  | TWIC         | 1412/1102.4       |              |                  |                    | se with Battery         |                       | 1.200         | 0.000               | 22.2           |
| Back side                  | RMC          | 1412/1732.4       | 1:1          | 0.242            | 0.07               | 22.53                   | 23.50                 | 1.250         | 0.303               | 22.2           |
| Dack Side                  | TIME         | 1412/1752.4       |              |                  |                    | se with Battery         |                       | 1.230         | 0.505               | 22.2           |
| Back side                  | RMC          | 1412/1732.4       | 1:1          | 0.244            | -0.19              | 22.53                   | 23.50                 | 1.250         | 0.305               | 22.2           |
| Dack Side                  | RIVIC        | 1412/1732.4       |              |                  | a(Separate         |                         | 23.30                 | 1.250         | 0.305               | 22.2           |
| Encut side                 | DMC          | 4440/4700 4       |              |                  |                    |                         | 00.50                 | 4.050         | 0.400               | 00.0           |
| Front side                 | RMC          | 1412/1732.4       | 1:1          | 0.398            | 0.03               | 22.53                   | 23.50                 | 1.250         | 0.498               | 22.2           |
| Back side                  | RMC          | 1412/1732.4       | 1:1          | 0.446            | -0.02              | 22.53                   | 23.50                 | 1.250         | 0.558               | 22.2           |
| Left side                  | RMC          | 1412/1732.4       | 1:1          | 0.257            | 0.12               | 22.53                   | 23.50                 | 1.250         | 0.321               | 22.2           |
| Right side                 | RMC          | 1412/1732.4       | 1:1          | 0.127            | -0.02              | 22.53                   | 23.50                 | 1.250         | 0.159               | 22.2           |
| Bottom side                | RMC          | 1412/1732.4       | 1:1          | 0.638            | 0.06               | 22.53                   | 23.50                 | 1.250         | 0.798               | 22.2           |
| <b>D</b> <i>H</i>          | <b>D</b> 140 | 4440/4700 4       |              | -                | 1                  | e with SIM 2            | 00.50                 | 1.050         | 0.700               | 00.0           |
| Bottom side                | RMC          | 1412/1732.4       | 1:1          | 0.634            | -0.15              | 22.53                   | 23.50                 | 1.250         | 0.793               | 22.2           |
| <b>B</b> <i>H</i> <b>H</b> | 5.46         |                   | -            |                  |                    | se with Battery         | 1                     | 1 0 7 0       |                     |                |
| Bottom side                | RMC          | 1412/1732.4       | 1:1          | 0.628            | -0.07              | 22.53                   | 23.50                 | 1.250         | 0.785               | 22.2           |
|                            |              |                   |              |                  |                    | se with Battery         | , ,                   |               |                     |                |
| Bottom side                | RMC          | 1412/1732.4       | 1:1          | 0.620            | 0.09               | 22.53                   | 23.50                 | 1.250         | 0.775               | 22.2           |
|                            |              | <b>T</b> = = 4    |              |                  | est Record         | O a se al se a fa al    | <b>T</b>              |               | Quality             | Linuta         |
| Test position              | Test mode    | Test<br>Ch./Freq. | Duty Cycle   | SAR<br>(W/kg)1-g | Power<br>Drift(dB) | Conducted<br>Power(dBm) | Tune up               | Scaled factor | Scaled              | Liquid<br>Temp |
|                            |              | on., req.         |              | Head             | Test data          | r ower(abili)           | Emit(aBiii)           | luotoi        | OAR(IIIRg)          | Temp           |
| Left cheek                 | RMC          | 1412/1732.4       | 1:1          | 0.314            | 0.01               | 18.56                   | 19.30                 | 1.186         | 0.372               | 22.2           |
| Left tilted                | RMC          | 1412/1732.4       | 1:1          | 0.291            | 0.00               | 18.56                   | 19.30                 | 1.186         | 0.345               | 22.2           |
| Right cheek                | RMC          | 1412/1732.4       | 1:1          | 0.581            | 0.08               | 18.56                   | 19.30                 | 1.186         | 0.689               | 22.2           |
| Right tilted               | RMC          | 1412/1732.4       | 1:1          | 0.401            | -0.03              | 18.56                   | 19.30                 | 1.186         | 0.475               | 22.2           |
| Tught theo                 | TWO          | 1412/1102.4       |              |                  |                    | ase with SIM 2          | 10.00                 | 1.100         | 0.475               | 22.2           |
| Right cheek                | RMC          | 1412/1732.4       | 1:1          | 0.575            | -0.04              | 18.56                   | 19.30                 | 1.186         | 0.682               | 22.2           |
| NIGHT CHEEK                | NIVIC        | 1412/1132.4       |              |                  |                    | ise with Battery        |                       | 1.100         | 0.002               | 22.2           |
| Right cheek                | RMC          | 1412/1732.4       | 1:1          | 0.570            | -0.01              | 18.56                   | 19.30                 | 1.186         | 0.676               | 22.2           |
| Right cheek                | RIVIC        | 1412/1/32.4       |              |                  |                    |                         |                       | 1.100         | 0.070               | 22.2           |
| Dight chools               | DMC          | 1/10/1700 4       |              | 1                |                    | 19 56                   | 3#<br>19.30           | 1 100         | 0.669               | 22.0           |
| Right cheek                | RMC          | 1412/1732.4       | 1:1<br>Reduc | 0.563            | -0.17              | 18.56                   | 19.30                 | 1.186         | 0.668               | 22.2           |
| Enclote state              |              | 4440/4700 4       | -            |                  | ata(Separate       | r                       | 00.50                 | 4 005         | 0.004               | 00.0           |
| Front side                 | RMC          | 1412/1732.4       | 1:1          | 0.167            | 0.01               | 22.69                   | 23.50                 | 1.205         | 0.201               | 22.2           |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd.

f (886-2) 2298-0488

Member of SGS Group

www.tw.sgs.com



| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                             | Body Te                                                                                                                                                                                                                                                                                                                                                                                                                     | st Data at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e worst case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with SIM 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                             | Body 1                                                                                                                                                                                                                                                                                                                                                                                                                      | est Data at t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the worst ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se with Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2#(15mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                             | Body 1                                                                                                                                                                                                                                                                                                                                                                                                                      | est Data at t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the worst ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se with Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3#(15mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                             | Hots                                                                                                                                                                                                                                                                                                                                                                                                                        | pot Test dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a(Separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                             | Body Te                                                                                                                                                                                                                                                                                                                                                                                                                     | st Data at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e worst case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with SIM 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                             | Body 1                                                                                                                                                                                                                                                                                                                                                                                                                      | est Data at t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the worst ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se with Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                             | Body 1                                                                                                                                                                                                                                                                                                                                                                                                                      | est Data at t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the worst ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se with Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RMC | 1412/1732.4                                                 | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | RMC<br>RMC<br>RMC<br>RMC<br>RMC<br>RMC<br>RMC<br>RMC<br>RMC | RMC       1412/1732.4         RMC       1412/1732.4 | Body Te:           RMC         1412/1732.4         1:1           Body T         Body T           RMC         1412/1732.4         1:1           Body T         Body T           RMC         1412/1732.4         1:1           Body Te:         Body Te:         Body Te:           RMC         1412/1732.4         1:1           Body Te:         Body Te:         Body Te: | Body Test Data at the           RMC         1412/1732.4         1:1         0.164           Body Test Data at the         Body Test Data at the         Body Test Data at the           RMC         1412/1732.4         1:1         0.165           Body Test Data at the         Body Test Data at the         Body Test Data at the           RMC         1412/1732.4         1:1         0.164           RMC         1412/1732.4         1:1         0.164           RMC         1412/1732.4         1:1         0.164           RMC         1412/1732.4         1:1         0.163           RMC         1412/1732.4         1:1         0.183           RMC         1412/1732.4         1:1         0.123           RMC         1412/1732.4         1:1         0.184           Body Test Data at the         Body Test Data at the         Body Test Data at the           RMC         1412/1732.4         1:1         0.205           Body Test Data at the         Body Test Data at the         Body Test Data at the | Body Test Data at the worst case           RMC         1412/1732.4         1:1         0.164         -0.03           Body Test Data at the worst case         Body Test Data at the worst case           RMC         1412/1732.4         1:1         0.165         -0.03           Body Test Data at the worst case         Body Test Data at the worst case         Body Test Data at the worst case           RMC         1412/1732.4         1:1         0.164         0.08           Hotspot Test data(Separate         Hotspot Test data(Separate         0.02         RMC         1412/1732.4         1:1         0.183         -0.13           RMC         1412/1732.4         1:1         0.123         -0.05         RMC         1412/1732.4         1:1         0.123         -0.05           RMC         1412/1732.4         1:1         0.184         -0.07         Body Test Data at the worst case           RMC         1412/1732.4         1:1         0.205         -0.06         Body Test Data at the worst case           RMC         1412/1732.4         1:1         0.214         -0.07         Body Test Data at the worst case | Body Test Data at the worst case with SIM 2           RMC         1412/1732.4         1:1         0.164         -0.03         22.69           Body Test Data at the worst case with Battery 2           RMC         1412/1732.4         1:1         0.165         -0.03         22.69           RMC         1412/1732.4         1:1         0.165         -0.03         22.69           Body Test Data at the worst case with Battery 2         Body Test Data at the worst case with Battery 2         Body Test Data at the worst case with Battery 2           RMC         1412/1732.4         1:1         0.164         0.08         22.69           RMC         1412/1732.4         1:1         0.164         0.02         22.69           RMC         1412/1732.4         1:1         0.183         -0.13         22.69           RMC         1412/1732.4         1:1         0.183         -0.13         22.69           RMC         1412/1732.4         1:1         0.123         -0.05         22.69           RMC         1412/1732.4         1:1         0.184         -0.07         22.69           RMC         1412/1732.4         1:1         0.184         -0.07         22.69           Body Test Data at the worst case | Body Test Data at the worst case with SIM 2           RMC         1412/1732.4         1:1         0.164         -0.03         22.69         23.50           Body Test Data at the worst case with Battery 2#(15mm)           RMC         1412/1732.4         1:1         0.165         -0.03         22.69         23.50           Body Test Data at the worst case with Battery 2#(15mm)           RMC         1412/1732.4         1:1         0.165         -0.03         22.69         23.50           Body Test Data at the worst case with Battery 3#(15mm)           RMC         1412/1732.4         1:1         0.164         0.08         22.69         23.50           Hotspot Test data (Separate 10mm)           RMC         1412/1732.4         1:1         0.183         -0.13         22.69         23.50           RMC         1412/1732.4         1:1         0.183         -0.05         22.69         23.50           RMC         1412/1732.4         1:1         0.123         -0.05         22.69         23.50           RMC         1412/1732.4         1:1         0.184         -0.07         22.69         23.50           RMC         1412/1732.4         1:1         0.184 | Body Test Data at the worst case with SIM 2           RMC         1412/1732.4         1:1         0.164         -0.03         22.69         23.50         1.205           Body Test Data at the worst case with Battery 2#(15mm)           RMC         1412/1732.4         1:1         0.165         -0.03         22.69         23.50         1.205           Body Test Data at the worst case with Battery 2#(15mm)           RMC         1412/1732.4         1:1         0.164         0.08         22.69         23.50         1.205           Body Test Data at the worst case with Battery 3#(15mm)           RMC         1412/1732.4         1:1         0.164         0.08         22.69         23.50         1.205           Hotspot Test data(Separate 10mm)           RMC         1412/1732.4         1:1         0.183         -0.13         22.69         23.50         1.205           RMC         1412/1732.4         1:1         0.183         -0.13         22.69         23.50         1.205           RMC         1412/1732.4         1:1         0.123         -0.05         22.69         23.50         1.205           RMC         141 | Body Test Data at the worst case with SIM 2           RMC         1412/1732.4         1:1         0.164         -0.03         22.69         23.50         1.205         0.198           Body Test Data at the worst case with Battery 2#(15mm)           RMC         1412/1732.4         1:1         0.165         -0.03         22.69         23.50         1.205         0.199           Body Test Data at the worst case with Battery 2#(15mm)           RMC         1412/1732.4         1:1         0.164         0.08         22.69         23.50         1.205         0.199           Body Test Data at the worst case with Battery 3#(15mm)           RMC         1412/1732.4         1:1         0.164         0.08         22.69         23.50         1.205         0.198           Hotspot Test data(Separate 10mm)           RMC         1412/1732.4         1:1         0.183         -0.13         22.69         23.50         1.205         0.221           RMC         1412/1732.4         1:1         0.183         -0.02         22.69         23.50         1.205         0.221           RMC         1412/1732.4         1:1         0.123         -0.05         22.69         23.50 |

Table 23: SAR of WCDMA Band IV for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd.



## 8.3.5 SAR Result of WCDMA Band V

|               |           | Teet                     |               | SAR         | est Record<br>Power      | Conducted        | Tung un               | Sociad        | Seeled              | Liquid         |
|---------------|-----------|--------------------------|---------------|-------------|--------------------------|------------------|-----------------------|---------------|---------------------|----------------|
| Test position | Test mode | Test<br>Ch./Freq.        | Duty Cycle    | (W/kg)1-g   |                          | Power(dBm)       | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|               |           | •••••••                  |               |             | Test data                |                  |                       |               | e (                 |                |
| Left cheek    | RMC       | 4182/836.4               | 1:1           | 0.055       | 0.01                     | 24.07            | 25.00                 | 1.239         | 0.068               | 22.1           |
| Left tilted   | RMC       | 4182/836.4               | 1:1           | 0.050       | 0.02                     | 24.07            | 25.00                 | 1.239         | 0.062               | 22.1           |
| Right cheek   | RMC       | 4182/836.4               | 1:1           | 0.083       | 0.09                     | 24.07            | 25.00                 | 1.239         | 0.103               | 22.1           |
| Right tilted  | RMC       | 4182/836.4               | 1:1           | 0.045       | 0.02                     | 24.07            | 25.00                 | 1.239         | 0.055               | 22.1           |
|               |           |                          |               |             |                          | ase with SIM 2   |                       |               |                     |                |
| Right cheek   | RMC       | 4182/836.4               | 1:1           | 0.082       | 0.02                     | 24.07            | 25.00                 | 1.239         | 0.102               | 22.1           |
| g             |           |                          |               |             |                          | ase with Battery |                       |               |                     |                |
| Right cheek   | RMC       | 4182/836.4               | 1:1           | 0.081       | 0.01                     | 24.07            | 25.00                 | 1.239         | 0.101               | 22.1           |
|               |           |                          |               |             |                          | ase with Battery |                       |               |                     |                |
| Right cheek   | RMC       | 4182/836.4               | 1:1           | 0.080       | 0.03                     | 24.07            | 25.00                 | 1.239         | 0.099               | 22.1           |
| raght bhook   | Tano      | 4102/000.4               |               |             | ata(Separat              | -                | 20.00                 | 1.200         | 0.000               | 22.1           |
| Front side    | RMC       | 4182/836.4               | 1:1           | 0.223       | 0.01                     | 24.07            | 25.00                 | 1.239         | 0.276               | 22.1           |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.220       | -0.01                    | 24.07            | 25.00                 | 1.239         | 0.394               | 22.1           |
| Dack side     | TUNO      | 4102/000.4               |               |             |                          | e with SIM 2     | 20.00                 | 1.200         | 0.004               | 22.1           |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.317       | 0.08                     | 24.07            | 25.00                 | 1.239         | 0.393               | 22.1           |
| Dack Side     | TIMO      | 4102/030.4               |               |             |                          | ase with Battery |                       | 1.200         | 0.595               | 22.1           |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.311       | -0.12                    | 24.07            | 25.00                 | 1.239         | 0.385               | 22.1           |
| Dack Side     | RIVIC     | 4102/030.4               |               |             |                          | ase with Battery |                       | 1.239         | 0.365               | 22.1           |
| Dook oido     | DMC       | 4400/006 4               | Боцу I<br>1:1 | 0.305       | -                        | ,                | , ,                   | 1.239         | 0.378               | 22.1           |
| Back side     | RMC       | 4182/836.4               |               |             | 0.17                     | 24.07            | 25.00                 | 1.239         | 0.376               | ZZ. I          |
| English State | DMO       | 4400/000 4               |               |             | ta(Separate              | ,                | 05.00                 | 4 000         | 0.404               | 00.4           |
| Front side    | RMC       | 4182/836.4               | 1:1           | 0.350       | -0.02                    | 24.07            | 25.00                 | 1.239         | 0.434               | 22.1           |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.594       | -0.01                    | 24.07            | 25.00                 | 1.239         | 0.736               | 22.1           |
| Left side     | RMC       | 4182/836.4               | 1:1           | 0.270       | 0.04                     | 24.07            | 25.00                 | 1.239         | 0.334               | 22.1           |
| Right side    | RMC       | 4182/836.4               | 1:1           | 0.079       | 0.14                     | 24.07            | 25.00                 | 1.239         | 0.098               | 22.1           |
| Bottom side   | RMC       | 4182/836.4               | 1:1           | 0.239       | -0.04                    | 24.07            | 25.00                 | 1.239         | 0.296               | 22.1           |
|               |           |                          |               |             | 1                        | e with SIM 2     |                       |               |                     |                |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.575       | -0.03                    | 24.07            | 25.00                 | 1.239         | 0.712               | 22.1           |
|               |           |                          |               |             |                          | se with Battery  | , ,                   |               | I                   |                |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.561       | -0.01                    | 24.07            | 25.00                 | 1.239         | 0.695               | 22.1           |
|               | 1         |                          |               |             |                          | se with Battery  | . ,                   |               |                     |                |
| Back side     | RMC       | 4182/836.4               | 1:1           | 0.554       | 0.09                     | 24.07            | 25.00                 | 1.239         | 0.686               | 22.1           |
|               | -         |                          | 1             |             | est Record               |                  | •                     |               |                     |                |
| Test position | Test mode | Test<br>Ch./Freq.        | Duty Cycle    | SAR         | Power                    | Conducted        | Tune up<br>Limit(dBm) | Scaled        | Scaled              | Liquio<br>Temp |
|               |           | CII./Fleq.               |               | lead Test d | Drift(dB)<br>ata Receive |                  | [ сппцавтт)           | Tactor        | SAR(W/Kg)           | Temp           |
| Left cheek    | RMC       | 4182/836.4               | 1:1           | 0.419       | -0.13                    | 21.63            | 22.50                 | 1.222         | 0.512               | 22.1           |
|               |           |                          |               | 0.295       |                          |                  | 22.50                 |               |                     |                |
| Left tilted   | RMC       | 4182/836.4<br>4182/836.4 | 1:1           |             | -0.04                    | 21.63<br>21.63   |                       | 1.222         | 0.360               | 22.1           |
| Right cheek   | RMC       |                          | 1:1           | 0.397       | 0.13                     |                  | 22.50                 | 1.222         | 0.485               | 22.1           |
| Right tilted  | RMC       | 4182/836.4               | 1:1           | 0.304       | 0.00                     | 21.63            | 22.50                 | 1.222         | 0.371               | 22.1           |
| 1 aft als ls  |           | 4400/000 4               |               |             |                          | ase with SIM 2   | 00.50                 | 4 000         | 0.500               | 00.4           |
| Left cheek    | RMC       | 4182/836.4               | 1:1           | 0.411       | -0.06                    | 21.63            | 22.50                 | 1.222         | 0.502               | 22.1           |
|               |           | 4400/000                 |               |             |                          | ase with Battery | 1                     | 1 6 5 5       | 0.500               |                |
| Left cheek    | RMC       | 4182/836.4               | 1:1           | 0.416       | -0.03                    | 21.63            | 22.50                 | 1.222         | 0.508               | 22.1           |
|               |           |                          |               |             | -                        | ase with Battery |                       |               |                     |                |
| Left cheek    | RMC       | 4182/836.4               | 1:1           | 0.411       | -0.01                    | 21.63            | 22.50                 | 1.222         | 0.502               | 22.1           |
|               | 1         |                          | Body          | worn Test d | ata(Separat              | e 15mm)          | 1                     |               |                     |                |
| Front side    | RMC       | 4182/836.4               | 1:1           | 0.196       | 0.02                     | 24.07            | 25.00                 | 1.239         | 0.243               | 22.1           |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd.

www.tw.sgs.com



| Back side  | RMC | 4182/836.4 | 1:1     | 0.254         | -0.01        | 24.07           | 25.00    | 1.239 | 0.315 | 22.1 |
|------------|-----|------------|---------|---------------|--------------|-----------------|----------|-------|-------|------|
|            |     |            | Body Te | st Data at th | e worst case | e with SIM 2    |          | •     |       | •    |
| Back side  | RMC | 4182/836.4 | 1:1     | 0.251         | 0.01         | 24.07           | 25.00    | 1.239 | 0.311 | 22.1 |
|            |     |            | Body 7  | Fest Data at  | the worst ca | se with Battery | 2#(15mm) |       |       |      |
| Back side  | RMC | 4182/836.4 | 1:1     | 0.251         | 0.09         | 24.07           | 25.00    | 1.239 | 0.311 | 22.1 |
|            |     |            | Body 7  | Fest Data at  | the worst ca | se with Battery | 3#(15mm) |       |       |      |
| Back side  | RMC | 4182/836.4 | 1:1     | 0.248         | -0.11        | 24.07           | 25.00    | 1.239 | 0.307 | 22.1 |
|            |     |            | Hote    | spot Test da  | ta(Separate  | 10mm)           |          |       |       |      |
| Front side | RMC | 4182/836.4 | 1:1     | 0.211         | -0.14        | 24.07           | 25.00    | 1.239 | 0.261 | 22.1 |
| Back side  | RMC | 4182/836.4 | 1:1     | 0.295         | -0.05        | 24.07           | 25.00    | 1.239 | 0.365 | 22.1 |
| Left side  | RMC | 4182/836.4 | 1:1     | 0.371         | 0.03         | 24.07           | 25.00    | 1.239 | 0.460 | 22.1 |
| Right side | RMC | 4182/836.4 | 1:1     | 0.183         | 0.02         | 24.07           | 25.00    | 1.239 | 0.227 | 22.1 |
| Top side   | RMC | 4182/836.4 | 1:1     | 0.157         | 0.01         | 24.07           | 25.00    | 1.239 | 0.194 | 22.1 |
|            |     |            | Body Te | st Data at th | e worst case | e with SIM 2    |          |       |       |      |
| Left side  | RMC | 4182/836.4 | 1:1     | 0.368         | -0.02        | 24.07           | 25.00    | 1.239 | 0.456 | 22.1 |
|            |     |            | Body 7  | Fest Data at  | the worst ca | se with Battery | 2#(10mm) |       |       |      |
| Left side  | RMC | 4182/836.4 | 1:1     | 0.364         | 0.02         | 24.07           | 25.00    | 1.239 | 0.451 | 22.1 |
|            |     |            | Body T  | Fest Data at  | the worst ca | se with Battery | 3#(10mm) |       |       |      |
| Left side  | RMC | 4182/836.4 | 1:1     | 0.359         | 0.15         | 24.07           | 25.00    | 1.239 | 0.445 | 22.1 |

Table 24: SAR of WCDMA Band V for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd.



### 8.3.1 SAR Result of LTE Band 4

|               |     |              | Test              |            | nt 1 Test R                     |              | Conductor               | <b>T</b>              | Oncla I       | O a c la d          | Linut           |
|---------------|-----|--------------|-------------------|------------|---------------------------------|--------------|-------------------------|-----------------------|---------------|---------------------|-----------------|
| Test position | BW. | Test mode    | Test              | Duty       | SAR                             | Power        | Conducted               |                       | Scaled        | Scaled              | Liquid          |
| -             |     |              | Ch./Freq.         |            | <b>(W/kg)1-g</b><br>ad Test dat |              | power(dBm)              | стипи(авти)           | Tactor        | SAR(W/kg)           | Temp.           |
| Left cheek    | 20  | QPSK 1RB 99  | 20300/1745        | 1:1        | 0.202                           | 0.08         | 22.71                   | 23.50                 | 1.199         | 0.242               | 22.2            |
| Left tilted   | 20  | _            | 20300/1745        | 1:1        | 0.100                           | 0.08         | 22.71                   | 23.50                 | 1.199         | 0.119               | 22.2            |
| Right cheek   | 20  | QPSK 1RB 99  |                   | 1:1        | 0.100                           | 0.06         | 22.71                   | 23.50                 | 1.199         | 0.215               | 22.2            |
| Right tilted  | 20  |              | 20300/1745        | 1:1        | 0.082                           | 0.00         | 22.71                   | 23.50                 | 1.199         | 0.098               | 22.2            |
| T tight throu | 20  |              | 20000/1140        |            |                                 | t data(50%l  |                         | 20.00                 | 1.100         | 0.000               | 22.2            |
| Left cheek    | 20  | QPSK 50RB 50 | 20300/1745        | 1:1        | 0.158                           | 0.13         | 21.73                   | 22.50                 | 1.194         | 0.189               | 22.2            |
| Left tilted   | 20  | QPSK 50RB 50 |                   | 1:1        | 0.079                           | 0.10         | 21.73                   | 22.50                 | 1.194         | 0.094               | 22.2            |
| Right cheek   | 20  | QPSK 50RB 50 |                   | 1:1        | 0.149                           | 0.01         | 21.73                   | 22.50                 | 1.194         | 0.178               | 22.2            |
| Right tilted  | 20  | QPSK 50RB 50 |                   | 1:1        | 0.060                           | 0.09         | 21.73                   | 22.50                 | 1.194         | 0.072               | 22.2            |
|               |     | <u>-</u>     |                   |            |                                 |              | case with SIM           |                       |               |                     |                 |
| Left cheek    | 20  | QPSK 1RB 99  | 20300/1745        | 1:1        | 0.199                           | 0.04         | 22.71                   | 23.50                 | 1.199         | 0.239               | 22.2            |
|               |     |              |                   | ead Test D |                                 |              | with Battery 2          |                       |               |                     |                 |
| Left cheek    | 20  | QPSK 1RB 99  |                   | 1:1        | 0.196                           | -0.18        | 22.71                   | 23.50                 | 1.199         | 0.235               | 22.2            |
|               |     | _            |                   | ead Test   |                                 |              | with Battery 3          | #                     | 1             |                     |                 |
| Left cheek    | 20  | QPSK 1RB 99  |                   | 1:1        | 0.190                           | 0.11         | 22.71                   | 23.50                 | 1.199         | 0.228               | 22.2            |
|               |     | _            |                   | y worn Te  | st data(Se                      | parate 15mr  | n 1RB)                  |                       | 1             |                     |                 |
| Front side    | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.208                           | 0.10         | 22.71                   | 23.50                 | 1.199         | 0.249               | 22.2            |
| Back side     | 20  | QPSK 1RB 99  | 20300/1745        | 1:1        | 0.212                           | 0.04         | 22.71                   | 23.50                 | 1.199         | 0.254               | 22.2            |
|               |     |              |                   | Body wo    | orn Test da                     | ta (Separate | e 15mm 50%F             | RB)                   | 20            |                     |                 |
| Front side    | 20  | QPSK 50RB 50 | 20300/1745        | 1:1        | 0.168                           | 0.05         | 21.73                   | 22.50                 | 1.194         | 0.201               | 22.2            |
| Back side     | 20  | QPSK 50RB 50 | 20300/1745        | 1:1        | 0.171                           | 0.05         | 21.73                   | 22.50                 | 1.194         | 0.204               | 22.2            |
|               |     |              |                   | Body T     | est Data at                     | the worst c  | ase with SIM            | 2                     |               |                     |                 |
| Back side     | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.205                           | -0.01        | 22.71                   | 23.50                 | 1.199         | 0.246               | 22.2            |
|               |     |              | Во                | dy Test D  | ata at the v                    | vorst case w | ith Battery 2#          | (15mm)                |               |                     |                 |
| Back side     | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.201                           | 0.09         | 22.71                   | 23.50                 | 1.199         | 0.241               | 22.2            |
|               |     |              | Во                | dy Test D  | ata at the v                    | vorst case w | ith Battery 3#          | (15mm)                |               |                     |                 |
| Back side     | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.196                           | 0.12         | 22.71                   | 23.50                 | 1.199         | 0.235               | 22.2            |
|               |     |              | Но                | tspot Test | data(Sepa                       | arate 10mm   | 1RB)                    |                       |               |                     |                 |
| Front side    | 20  | QPSK 1RB_99  |                   | 1:1        | 0.366                           | 0.03         | 22.71                   | 23.50                 | 1.199         | 0.439               | 22.2            |
| Back side     | 20  | QPSK 1RB_99  |                   | 1:1        | 0.417                           | 0.02         | 22.71                   | 23.50                 | 1.199         | 0.500               | 22.2            |
| Left side     | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.286                           | 0.09         | 22.71                   | 23.50                 | 1.199         | 0.343               | 22.2            |
| Right side    | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.125                           | 0.08         | 22.71                   | 23.50                 | 1.199         | 0.150               | 22.2            |
| Bottom side   | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.581                           | -0.03        | 22.71                   | 23.50                 | 1.199         | 0.697               | 22.2            |
|               |     |              |                   | Hotspo     | t Test data                     | (Separate    | 10mm 50%RE              | 3)                    |               |                     |                 |
| Front side    | 20  | QPSK 50RB_50 |                   | 1:1        | 0.295                           | 0.04         | 21.73                   | 22.50                 | 1.194         | 0.352               | 22.2            |
| Back side     | 20  | QPSK 50RB_50 |                   | 1:1        | 0.330                           | 0.15         | 21.73                   | 22.50                 | 1.194         | 0.394               | 22.2            |
| Left side     | 20  | QPSK 50RB_50 | 20300/1745        | 1:1        | 0.226                           | 0.09         | 21.73                   | 22.50                 | 1.194         | 0.270               | 22.2            |
| Right side    | 20  | QPSK 50RB_50 |                   | 1:1        | 0.100                           | -0.02        | 21.73                   | 22.50                 | 1.194         | 0.119               | 22.2            |
| Bottom side   | 20  | QPSK 50RB_50 | 20300/1745        | 1:1        | 0.456                           | -0.06        | 21.73                   | 22.50                 | 1.194         | 0.544               | 22.2            |
|               |     |              |                   | Body T     | est Data at                     | the worst c  | ase with SIM            | 2                     |               |                     | -               |
| Bottom side   | 20  | QPSK 1RB_99  |                   | 1:1        | 0.544                           | -0.05        | 22.71                   | 23.50                 | 1.199         | 0.653               | 22.2            |
|               | 0   |              |                   | dy Test D  |                                 |              | /ith Battery 2#         | (10mm)                |               |                     |                 |
| Bottom side   | 20  | QPSK 1RB_99  |                   | 1:1        | 0.533                           | -0.19        | 22.71                   | 23.50                 | 1.199         | 0.639               | 22.2            |
|               | 0   |              |                   | dy Test D  |                                 |              | /ith Battery 3#         | ,                     |               |                     |                 |
| Bottom side   | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.522                           | 0.11         | 22.71                   | 23.50                 | 1.199         | 0.626               | 22.2            |
|               |     |              |                   |            | nt 2 Test R                     | r            |                         |                       |               |                     |                 |
| Test position | BW. | Test mode    | Test<br>Ch./Freq. |            | SAR<br>(W/kg)1-g                |              | Conducted<br>power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp. |
| 1 aft -1-     | 00  |              | 00000/4745        |            | ad Test dat                     | ( )          | 40.70                   | 40.00                 | 4 4 4 9       | 0 547               | 00.0            |
| Left cheek    | 20  | QPSK 1RB_99  | 20300/1745        | 1:1        | 0.453                           | 0.02         | 18.73                   | 19.30                 | 1.140         | 0.517               | 22.2            |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號



| Left tilted  | 20           | QPSK 1RB_99 2                         | 0300/1745  | 1:1        | 0.281        | -0.04        | 18.73          | 19.30  | 1.140 | 0.320 | 22.2 |
|--------------|--------------|---------------------------------------|------------|------------|--------------|--------------|----------------|--------|-------|-------|------|
| Right cheek  | 20           | QPSK 1RB_99 2                         | 0300/1745  | 1:1        | 0.562        | -0.14        | 18.73          | 19.30  | 1.140 | 0.641 | 22.2 |
| Right tilted | 20           | QPSK 1RB_99 2                         | 0300/1745  | 1:1        | 0.393        | 0.00         | 18.73          | 19.30  | 1.140 | 0.448 | 22.2 |
|              |              |                                       |            |            | Head Tes     | t data(50%F  | ,              |        |       |       |      |
| Left cheek   | 20           | QPSK 50RB_50 2                        | 0300/1745  | 1:1        | 0.460        | 0.15         | 18.64          | 19.30  | 1.164 | 0.535 | 22.2 |
| Left tilted  | 20           | QPSK 50RB_50 2                        | 0300/1745  | 1:1        | 0.286        | 0.06         | 18.64          | 19.30  | 1.164 | 0.333 | 22.2 |
| Right cheek  | 20           | QPSK 50RB_50 2                        | 20300/1745 | 1:1        | 0.586        | 0.06         | 18.64          | 19.30  | 1.164 | 0.682 | 22.2 |
| Right tilted | 20           | QPSK 50RB_50 2                        | 0300/1745  | 1:1        | 0.400        | -0.01        | 18.64          | 19.30  | 1.164 | 0.466 | 22.2 |
|              |              |                                       |            | Head       | Test Data a  | at the worst | case with SIM  | 2      |       |       |      |
| Right cheek  | 20           | QPSK 50RB_50 2                        |            | 1:1        | 0.573        | -0.04        | 18.64          | 19.30  | 1.164 | 0.667 | 22.2 |
|              | X            |                                       | He         | ead Test D | Data at the  | worst case \ | with Battery 2 | #      |       |       |      |
| Right cheek  | 20           | QPSK 50RB_50 2                        | 0300/1745  | 1:1        | 0.572        | -0.12        | 18.64          | 19.30  | 1.164 | 0.666 | 22.2 |
|              |              |                                       | H          | ead Test I | Data at the  | worst case   | with Battery 3 | #      |       |       |      |
| Right cheek  | 20           | QPSK 50RB_50 2                        | 20300/1745 | 1:1        | 0.564        | 0.09         | 18.64          | 19.30  | 1.164 | 0.657 | 22.2 |
|              |              |                                       | Bod        | y worn Te  | st data(Se   | parate 15mn  | n 1RB)         |        |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.177        | 0.01         | 23.14          | 23.50  | 1.086 | 0.192 | 22.2 |
| Back side    | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.102        | -0.03        | 23.14          | 23.50  | 1.086 | 0.111 | 22.2 |
|              |              |                                       |            | Body wo    | orn Test da  | ta (Separate | e 15mm 50%F    | RB)    |       |       |      |
| Front side   | 20           | QPSK 50RB_50 2                        | 0300/1745  | 1:1        | 0.131        | 0.04         | 21.96          | 22.50  | 1.132 | 0.148 | 22.2 |
| Back side    | 20           | QPSK 50RB_50 2                        | 0300/1745  | 1:1        | 0.092        | -0.07        | 21.96          | 22.50  | 1.132 | 0.104 | 22.2 |
|              |              |                                       |            | Body T     | est Data at  | the worst c  | ase with SIM   | 2      |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 0300/1745  | 1:1        | 0.162        | -0.07        | 23.14          | 23.50  | 1.086 | 0.176 | 22.2 |
|              |              |                                       | Bo         | dy Test Da | ata at the v | vorst case w | ith Battery 2# | (15mm) |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 0300/1745  | 1:1        | 0.160        | -0.11        | 23.14          | 23.50  | 1.086 | 0.174 | 22.2 |
|              |              |                                       | Bo         | dy Test Da | ata at the v | vorst case w | ith Battery 3# | (15mm) |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.157        | 0.06         | 23.14          | 23.50  | 1.086 | 0.171 | 22.2 |
| <b>F P0</b>  | X            |                                       | Hot        | tspot Test | data(Sepa    | arate 10mm   | 1RB)           |        |       |       |      |
| Front side   | 20           | · · · · · · · · · · · · · · · · · · · | 20300/1745 | 1:1        | 0.280        | 0.03         | 23.14          | 23.50  | 1.086 | 0.304 | 22.2 |
| Back side    | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.209        | -0.02        | 23.14          | 23.50  | 1.086 | 0.227 | 22.2 |
| Left side    | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.224        | 0.04         | 23.14          | 23.50  | 1.086 | 0.243 | 22.2 |
| Right side   | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.067        | 0.11         | 23.14          | 23.50  | 1.086 | 0.073 | 22.2 |
| Top side     | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.219        | -0.15        | 23.14          | 23.50  | 1.086 | 0.238 | 22.2 |
|              |              |                                       |            | Hotspo     | t Test data  | (Separate 1  | 10mm 50%RE     | 3)     |       |       |      |
| Front side   | 20           | QPSK 50RB_50 2                        |            | 1:1        | 0.204        | -0.01        | 21.96          | 22.50  | 1.132 | 0.231 | 22.2 |
| Back side    | 20           | QPSK 50RB_50 2                        | 20300/1745 | 1:1        | 0.165        | 0.14         | 21.96          | 22.50  | 1.132 | 0.187 | 22.2 |
| Left side    | 20           | QPSK 50RB_50 2                        |            | 1:1        | 0.179        | -0.01        | 21.96          | 22.50  | 1.132 | 0.203 | 22.2 |
| Right side   | 20           | QPSK 50RB_50 2                        | 20300/1745 | 1:1        | 0.054        | 0.03         | 21.96          | 22.50  | 1.132 | 0.061 | 22.2 |
| Top side     | 20           | QPSK 50RB_50 2                        | 20300/1745 | 1:1        | 0.178        | -0.14        | 21.96          | 22.50  | 1.132 | 0.202 | 22.2 |
|              |              |                                       | //         | Body T     | est Data at  | the worst c  | ase with SIM   | 2      |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.252        | 0.02         | 23.14          | 23.50  | 1.086 | 0.274 | 22.2 |
|              | -            |                                       | Bo         | dy Test D  | ata at the v | vorst case w | ith Battery 2# | (10mm) |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.249        | 0.12         | 23.14          | 23.50  | 1.086 | 0.271 | 22.2 |
|              | $\mathbf{O}$ |                                       |            | dy Test D  |              |              | ith Battery 3# | , ,    |       |       |      |
| Front side   | 20           | QPSK 1RB_99 2                         | 20300/1745 | 1:1        | 0.250        | -0.05        | 23.14          | 23.50  | 1.086 | 0.272 | 22.2 |

Table 25: SAR of LTE Band 4 for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2)

highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. www.tw.sas.com



# 8.3.2 SAR Result of LTE Band 7

|                           | -    | 1                          |                |            | Ant 1 Test R    |           |            | -          | <b>.</b>       |             |        |
|---------------------------|------|----------------------------|----------------|------------|-----------------|-----------|------------|------------|----------------|-------------|--------|
| Test position             | BW.  | Test mode                  | Test Ch./Freq. | Duty       | SAR             | Power     | Conducted  |            | Scaled         |             | Liquid |
| •                         |      |                            |                | Cycle      | (W/kg)1-g       |           | power(dBm) | Limit(aBm) | factor         | SAR(W/Kg)   | Temp.  |
| l off ob ool              | 20   |                            | 01100/0505 5   |            | Head Test dat   | , ,       | 00.54      | 04.00      | 4 4 6 4        | 0.000       | 00.4   |
| Left cheek                | 20   | QPSK 1RB_99                |                | 1:1        | 0.249           | 0.09      | 23.54      | 24.20      | 1.164          | 0.290       | 22.1   |
| Left tilted               | 20   | QPSK 1RB_99                |                | 1:1        | 0.096           | 0.10      | 23.54      | 24.20      | 1.164          | 0.112       | 22.1   |
| Right cheek               | 20   | QPSK 1RB_99                |                | 1:1        | 0.213           | 0.07      | 23.54      | 24.20      | 1.164          | 0.248       | 22.1   |
| Right tilted              | 20   | QPSK 1RB_99                | 21100/2535.5   | 1:1        | 0.097           | 0.13      | 23.54      | 24.20      | 1.164          | 0.112       | 22.1   |
| L oft abook               | 20   |                            | 20850/2510     | 1.1        | 0.167           | data(50%R | 21.64      | 22.70      | 1.276          | 0.213       | 22.1   |
| Left cheek<br>Left tilted | 20   | QPSK 50RB_0                |                | 1:1        |                 | 0.06      | 21.64      | 22.70      |                |             | 22.1   |
| Right cheek               | 20   | QPSK 50RB_0<br>QPSK 50RB 0 |                | 1:1<br>1:1 | 0.078<br>0.185  | 0.17      | 21.64      | 22.70      | 1.276<br>1.276 | 0.099 0.236 | 22.1   |
| Right tilted              | 20   | QPSK 50RB 0                |                | 1:1        | 0.185           | 0.02      | 21.64      | 22.70      | 1.276          | 0.230       | 22.1   |
| Right lilled              | 20   | QPSK SUKB_U                | 20650/2510     |            | ad Test Data a  |           |            |            | 1.270          | 0.095       | 22.1   |
| Left cheek                | 20   | QPSK 1RB 99                | 21100/2535.5   | 1:1        | 0.245           | -0.07     | 23.54      | 24.20      | 1.164          | 0.285       | 22.1   |
| Leit Cheek                | 20   |                            |                |            | Data at the w   |           |            | 24.20      | 1.104          | 0.205       | 22.1   |
| Left cheek                | 20   | QPSK 1RB 99                |                | 1:1        | 0.246           | -0.13     | 23.54      | 24.20      | 1.164          | 0.286       | 22.1   |
| Len cheek                 | 20   |                            |                |            | t Data at the v |           |            |            | 1.104          | 0.200       | 22.1   |
| Left cheek                | 20   | QPSK 1RB_99                |                | 1:1        | 0.242           | 0.01      | 23.54      | 24.20      | 1.164          | 0.282       | 22.1   |
| Len cheek                 | 20   | QFSK IKD_99                |                |            | Test data(Sep   |           |            | 24.20      | 1.104          | 0.202       | 22.1   |
| Front side                | 20   | QPSK 1RB 99                |                | 1:1        | 0.185           | -0.09     | 23.54      | 24.20      | 1.164          | 0.215       | 22.1   |
| Back side                 | 20   | QPSK 1RB 99                |                | 1:1        | 0.105           | 0.09      | 23.54      | 24.20      | 1.164          | 0.213       | 22.1   |
| Dack Side                 | 20   |                            | 21100/2333.3   |            | vorn Test data  |           |            |            | 1.104          | 0.274       | 22.1   |
| Front side                | 20   | QPSK 50RB 0                | 20850/2510     | 1:1        | 0.144           | 0.14      | 21.64      | 22.70      | 1.276          | 0.184       | 22.1   |
| Back side                 | 20   | QPSK 50RB 0                |                | 1:1        | 0.144           | 0.14      | 21.64      | 22.70      | 1.276          | 0.184       | 22.1   |
| Dack Side                 | 20   | QF3K JUKD_U                | 20030/2310     |            | y Test Data at  |           |            |            | 1.270          | 0.189       | 22.1   |
| Back side                 | 20   | QPSK 1RB 99                | 21100/2535 5   | 1:1        | 0.232           | 0.07      | 23.54      | 24.20      | 1.164          | 0.270       | 22.1   |
| Dack Side                 | 20   |                            |                |            | Data at the wo  |           |            |            | 1.104          | 0.270       | 22.1   |
| Back side                 | 20   | QPSK 1RB 99                |                | 1:1        | 0.229           | 0.09      | 23.54      | 24.20      | 1.164          | 0.267       | 22.1   |
| Dack Side                 | 20   |                            |                |            | Data at the wo  |           |            |            | 1.104          | 0.207       | 22.1   |
| Back side                 | 20   | QPSK 1RB 99                |                | 1:1        | 0.226           | -0.13     | 23.54      | 24.20      | 1.164          | 0.263       | 22.1   |
| Dack side                 | 20   |                            |                |            | est data(Sepa   |           |            | 24.20      | 1.104          | 0.200       | 22.1   |
| Front side                | 20   | QPSK 1RB 99                |                | 1:1        | 0.414           | -0.13     | 23.54      | 24.20      | 1.164          | 0.482       | 22.1   |
| Back side                 | 20   | QPSK 1RB 99                |                | 1:1        | 0.350           | -0.02     | 23.54      | 24.20      | 1.164          | 0.407       | 22.1   |
| Left side                 | 20   | QPSK 1RB 99                |                | 1:1        | 0.239           | 0.02      | 23.54      | 24.20      | 1.164          | 0.278       | 22.1   |
| Right side                | 20   | QPSK 1RB 99                |                | 1:1        | 0.089           | -0.19     | 23.54      | 24.20      | 1.164          | 0.104       | 22.1   |
| Bottom side               | 20   | QPSK 1RB 99                |                | 1:1        | 0.543           | -0.02     | 23.54      | 24.20      | 1.164          | 0.632       | 22.1   |
| Dottolin blac             | 20   |                            | 21100/2000.0   |            | oot Test data ( |           |            | 27.20      | 1.104          | 0.002       | 22.1   |
| Front side                | 20   | QPSK 50RB 0                | 20850/2510     | 1:1        | 0.283           | -0.05     | 21.64      | 22.70      | 1.276          | 0.361       | 22.1   |
| Back side                 | 20   | QPSK 50RB 0                |                | 1:1        | 0.248           | 0.00      | 21.64      | 22.70      | 1.276          | 0.317       | 22.1   |
| Left side                 | 20   | QPSK 50RB 0                |                | 1:1        | 0.174           | 0.02      | 21.64      | 22.70      | 1.276          | 0.222       | 22.1   |
| Right side                |      | QPSK 50RB 0                |                | 1:1        | 0.069           | 0.02      | 21.64      | 22.70      | 1.276          | 0.088       | 22.1   |
| Bottom side               | 20   | QPSK 50RB 0                |                | 1:1        | 0.376           | 0.00      | 21.64      | 22.70      | 1.276          | 0.480       | 22.1   |
| 20110111 Oldo             |      | U                          | 20000,2010     |            | y Test Data at  |           |            |            |                | 000         |        |
| Bottom side               | 20   | QPSK 1RB 99                | 21100/2535.5   | 1:1        | 0.536           | 0.02      | 23.54      | 24.20      | 1.164          | 0.624       | 22.1   |
| Dottomoldo                | 0    |                            |                |            | Data at the wo  |           |            | -          |                | 0.027       |        |
| Bottom side               | 20   | QPSK 1RB 99                |                | 1:1        | 0.528           | -0.17     | 23.54      | 24.20      | 1.164          | 0.615       | 22.1   |
| 20110100                  |      |                            |                |            | Data at the wo  |           |            |            |                | 0.010       |        |
| Bottom side               | 20   | QPSK 1RB 99                |                | 1:1        | 0.520           | 0.14      | 23.54      | 24.20      | 1.164          | 0.605       | 22.1   |
| Dottom bido               | 1 20 |                            |                |            | Ant 2 Test R    | 1         | 20.04      | 21.20      |                | 0.000       |        |
|                           |      |                            |                | Duty       | SAR             | Power     | Conducted  | Tune up    | Scaled         | Scaled      | Liquid |
| Test position             | BW.  | Test mode                  | Test Ch./Freq. | Cycle      | (W/kg)1-g       |           | power(dBm) |            |                |             | Temp.  |
|                           |      |                            |                |            | Head Test dat   |           |            |            |                |             |        |
| Left cheek                | 20   | QPSK 1RB_99                | 21100/2535.5   | 1:1        | 0.144           | 0.03      | 16.69      | 17.20      | 1.125          | 0.162       | 22.1   |
| Left tilted               | 20   | QPSK 1RB 99                |                | 1:1        | 0.162           | 0.06      | 16.69      | 17.20      | 1.125          | 0.182       | 22.1   |
| ,                         |      |                            | •              |            |                 |           |            |            |                |             |        |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號

SGS Taiwan Ltd.



| Right cheek  | 20 | QPSK 1RB_99 |              | 1:1       | 0.484           | 0.01          | 16.69           | 17.20 | 1.125 | 0.544 | 22.1 |
|--------------|----|-------------|--------------|-----------|-----------------|---------------|-----------------|-------|-------|-------|------|
| Right tilted | 20 | QPSK 1RB_99 | 21100/2535.5 | 1:1       | 0.370           | 0.08          | 16.69           | 17.20 | 1.125 | 0.416 | 22.1 |
|              |    |             |              |           | Head Test       | data(50%R     | B)              |       |       |       |      |
| Left cheek   | 20 | QPSK 50RB_0 | 21100/2535.5 | 1:1       | 0.132           | 0.05          | 16.44           | 17.20 | 1.191 | 0.157 | 22.1 |
| Left tilted  | 20 | QPSK 50RB_0 | 21100/2535.5 | 1:1       | 0.167           | 0.05          | 16.44           | 17.20 | 1.191 | 0.199 | 22.1 |
| Right cheek  | 20 | QPSK 50RB_0 | 21100/2535.5 | 1:1       | 0.468           | -0.05         | 16.44           | 17.20 | 1.191 | 0.558 | 22.1 |
| Right tilted | 20 | QPSK 50RB_0 | 21100/2535.5 | 1:1       | 0.345           | 0.18          | 16.44           | 17.20 | 1.191 | 0.411 | 22.1 |
|              |    |             |              | Hea       | ad Test Data a  | t the worst o | case with SIM   |       |       |       |      |
| Right cheek  | 20 | QPSK 50RB_0 |              | 1:1       | 0.462           | -0.15         | 16.44           | 17.20 | 1.191 | 0.551 | 22.1 |
|              |    |             |              | lead Test | Data at the w   |               | ith Battery 2#  |       |       |       |      |
| Right cheek  | 20 | QPSK 50RB_0 | 21100/2535.5 | 1:1       | 0.455           | 0.08          | 16.44           | 17.20 | 1.191 | 0.542 | 22.1 |
|              |    |             |              | Head Tes  | t Data at the v |               | /ith Battery 3# |       |       |       |      |
| Right cheek  | 20 | QPSK 50RB_0 |              | 1:1       | 0.448           | -0.07         | 16.44           | 17.20 | 1.191 | 0.534 | 22.1 |
|              |    |             |              | ody worn  | Test data(Sep   |               |                 |       |       |       |      |
| Front side   |    | QPSK 1RB_99 |              | 1:1       | 0.136           | 0.19          | 22.48           | 22.70 | 1.052 | 0.143 | 22.1 |
| Back side    | 20 | QPSK 1RB_99 | 21100/2535.5 | 1:1       | 0.149           | 0.16          | 22.48           | 22.70 | 1.052 | 0.157 | 22.1 |
|              |    |             |              | Body v    | vorn Test data  |               |                 |       |       |       |      |
| Front side   |    | QPSK 50RB_0 |              | 1:1       | 0.144           | -0.06         | 22.01           | 22.70 | 1.172 | 0.169 | 22.1 |
| Back side    | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.142           | -0.19         | 22.01           | 22.70 | 1.172 | 0.166 | 22.1 |
|              |    |             |              | Body      | / Test Data at  | the worst ca  | ase with SIM 2  | 2     |       |       |      |
| Front side   | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.143           | 0.08          | 22.01           | 22.70 | 1.172 | 0.168 | 22.1 |
|              |    |             | В            | ody Test  | Data at the wo  | orst case wit | h Battery 2#(   | l5mm) |       |       |      |
| Front side   | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.141           | -0.03         | 22.01           | 22.70 | 1.172 | 0.165 | 22.1 |
|              |    |             |              | ody Test  | Data at the wo  | orst case wit | h Battery 3#(   |       |       |       |      |
| Front side   | 20 | QPSK 50RB_0 |              | 1:1       | 0.142           | 0.04          | 22.01           | 22.70 | 1.172 | 0.166 | 22.1 |
|              |    |             | H            | Hotspot T | est data(Sepa   | rate 10mm     | 1RB)            |       |       |       |      |
| Front side   | 20 | QPSK 1RB_99 | 21100/2535.5 | 1:1       | 0.236           | 0.09          | 22.48           | 22.70 | 1.052 | 0.248 | 22.1 |
| Back side    | 20 | QPSK 1RB_99 | 21100/2535.5 | 1:1       | 0.301           | 0.04          | 22.48           | 22.70 | 1.052 | 0.317 | 22.1 |
| Left side    | 20 | QPSK 1RB_99 | 21100/2535.5 | 1:1       | 0.376           | 0.00          | 22.48           | 22.70 | 1.052 | 0.396 | 22.1 |
| Right side   | 20 | QPSK 1RB_99 |              | 1:1       | 0.041           | 0.08          | 22.48           | 22.70 | 1.052 | 0.043 | 22.1 |
| Top side     | 20 | QPSK 1RB_99 | 21100/2535.5 | 1:1       | 0.177           | -0.03         | 22.48           | 22.70 | 1.052 | 0.186 | 22.1 |
|              |    |             |              | Hotsp     | oot Test data ( | Separate 10   | 0mm 50%RB)      |       |       |       |      |
| Front side   | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.235           | 0.02          | 22.01           | 22.70 | 1.172 | 0.275 | 22.1 |
| Back side    | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.306           | 0.01          | 22.01           | 22.70 | 1.172 | 0.359 | 22.1 |
| Left side    | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.354           | -0.09         | 22.01           | 22.70 | 1.172 | 0.415 | 22.1 |
| Right side   | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.033           | 0.07          | 22.01           | 22.70 | 1.172 | 0.039 | 22.1 |
| Top side     | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.175           | -0.02         | 22.01           | 22.70 | 1.172 | 0.205 | 22.1 |
|              |    |             |              | Body      | / Test Data at  | the worst ca  | ase with SIM 2  | 2     |       |       |      |
| Left side    | 20 | QPSK 50RB_0 | 20850/2510   | 1:1       | 0.349           | -0.10         | 22.01           | 22.70 | 1.172 | 0.409 | 22.1 |
|              |    |             | В            | ody Test  | Data at the wo  | orst case wit | h Battery 2#(   | l0mm) |       |       |      |
| Left side    | 20 | QPSK 50RB_0 |              | 1:1       | 0.345           | 0.04          | 22.01           | 22.70 | 1.172 | 0.404 | 22.1 |
|              |    |             |              | ody Test  | Data at the wo  | orst case wit | h Battery 3#(   | l0mm) |       |       |      |
|              |    |             | 20850/2510   |           | 0.340           | 0.02          | 22.01           | 22.70 | 1.172 | 0.399 | 22.1 |

Table 26: SAR of LTE Band 7 for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2)

highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



### 8.3.3 SAR Result of LTE Band 38

|               |     |             |                | Duty              | SAR                   | Power      | Conducted                | Tune up | Scaled  | Scaled      | Liquid        |
|---------------|-----|-------------|----------------|-------------------|-----------------------|------------|--------------------------|---------|---------|-------------|---------------|
| Test position | BW. | Test mode   | Test Ch./Freq. |                   |                       |            | power(dBm)               |         |         | SAR(W/kg)   |               |
|               |     |             |                |                   | ad Test data          |            | ponor(abiii)             |         | 140101  | o, a (ming) | 1011101       |
| Left cheek    | 20  | QPSK 1RB 0  | 38000/2595     | 1:1               | 0.166                 | 0.05       | 22.92                    | 24.20   | 1.343   | 0.223       | 22.1          |
| Left tilted   | 20  | QPSK 1RB 0  | 38000/2595     | 1:1               | 0.047                 | 0.01       | 22.92                    | 24.20   | 1.343   | 0.064       | 22.1          |
| Right cheek   | 20  | QPSK 1RB 0  | 38000/2595     | 1:1               | 0.128                 | 0.02       | 22.92                    | 24.20   | 1.343   | 0.172       | 22.1          |
| Right tilted  | 20  | QPSK 1RB 0  | 38000/2595     | 1:1               | 0.062                 | 0.04       | 22.92                    | 24.20   | 1.343   | 0.084       | 22.1          |
| 6.70          |     |             | •              |                   | Head Test             | data(50%   | RB)                      |         |         | X           |               |
| Left cheek    | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.106                 | 0.05       | 21.89                    | 23.20   | 1.352   | 0.143       | 22.1          |
| Left tilted   | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.032                 | 0.08       | 21.89                    | 23.20   | 1.352   | 0.043       | 22.1          |
| Right cheek   | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.094                 | 0.08       | 21.89                    | 23.20   | 1.352   | 0.126       | 22.1          |
| Right tilted  | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.047                 | 0.04       | 21.89                    | 23.20   | 1.352   | 0.064       | 22.1          |
|               |     |             |                | Head <sup>-</sup> | Test Data at          | the worst  | case with SIM            | 12      |         |             |               |
| Left cheek    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.164                 | -0.08      | 22.92                    | 24.20   | 1.343   | 0.220       | 22.1          |
|               |     |             | Head           | d Test D          | ata at the w          | orst case  | with Battery 2           | #       |         |             |               |
| Left cheek    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.161                 | -0.17      | 22.92                    | 24.20   | 1.343   | 0.216       | 22.1          |
|               |     |             | Hea            | d Test D          | Data at the v         | vorst case | with Battery 3           | #       |         |             |               |
| Left cheek    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.158                 | 0.03       | 22.92                    | 24.20   | 1.343   | 0.212       | 22.1          |
|               |     |             | Body           | worn Te           | st data(Sep           | arate 15m  | ım 1RB)                  |         |         |             |               |
| Front side    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.117                 | 0.11       | 22.92                    | 24.20   | 1.343   | 0.157       | 22.1          |
| Back side     | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.111                 | -0.02      | 22.92                    | 24.20   | 1.343   | 0.149       | 22.1          |
|               |     |             | E              | Body wo           | rn Test data          | (Separat   | e 15mm 50%F              | RB)     |         |             |               |
| Front side    | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.094                 | 0.04       | 21.89                    | 23.20   | 1.352   | 0.127       | 22.1          |
| Back side     | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.087                 | 0.01       | 21.89                    | 23.20   | 1.352   | 0.117       | 22.1          |
|               |     |             |                | Body T            | est Data at f         | the worst  | case with SIM            | 2       |         |             |               |
| Front side    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.115                 | 0.02       | 22.92                    | 24.20   | 1.343   | 0.154       | 22.1          |
|               |     |             | -              | Test Da           | 1                     | 1          | with Battery 2#          | ,       |         |             |               |
| Front side    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.112                 | -0.07      | 22.92                    | 24.20   | 1.343   | 0.150       | 22.1          |
|               |     |             |                |                   |                       |            | with Battery 3#          |         |         | , ,         |               |
| Front side    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.113                 | -0.09      | 22.92                    | 24.20   | 1.343   | 0.152       | 22.1          |
|               |     |             |                |                   | data(Separ            |            |                          |         |         |             |               |
| Front side    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.225                 | 0.06       | 22.92                    | 24.20   | 1.343   | 0.302       | 22.1          |
| Back side     | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.199                 | 0.05       | 22.92                    | 24.20   | 1.343   | 0.267       | 22.1          |
| Left side     | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.106                 | -0.03      | 22.92                    | 24.20   | 1.343   | 0.142       | 22.1          |
| Right side    | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.046                 | -0.01      | 22.92                    | 24.20   | 1.343   | 0.061       | 22.1          |
| Bottom side   | 20  | QPSK 1RB_0  | 38000/2595     | 1:1               | 0.251                 | -0.08      | 22.92                    | 24.20   | 1.343   | 0.337       | 22.1          |
|               | 00  |             | 07050/0500     |                   |                       |            | 10mm 50%RE               |         | 1.050   |             |               |
| Front side    | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.160                 | 0.07       | 21.89                    | 23.20   | 1.352   | 0.216       | 22.1          |
| Back side     | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.157                 | 0.09       | 21.89                    | 23.20   | 1.352   | 0.212       | 22.1          |
| Left side     | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.081                 | 0.04       | 21.89                    | 23.20   | 1.352   | 0.109       | 22.1          |
| Right side    | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.039                 | 0.04       | 21.89                    | 23.20   | 1.352   | 0.052       | 22.1          |
| Bottom side   | 20  | QPSK 50RB_0 | 37850/2580     | 1:1               | 0.206                 | -0.05      | 21.89                    | 23.20   | 1.352   | 0.279       | 22.1          |
| Bottom side   | 20  |             | 38000/2595     | воцу т<br>1:1     | 0.245                 | -0.02      | case with SIM            |         | 1 2 4 2 | 0.220       | 22.4          |
| Bollom side   | 20  | QPSK 1RB_0  |                |                   |                       |            | 22.92                    | 24.20   | 1.343   | 0.329       | 22.1          |
| Bottom side   | 20  | QPSK 1RB 0  | 38000/2595     | 1:1               | 0.241                 | 0.06       | with Battery 2#<br>22.92 | 24.20   | 1 2/2   | 0.324       | 22.1          |
| Dottom Side   | 20  | VEON IND_U  |                |                   |                       |            | vith Battery 3#          |         | 1.343   | 0.324       | 22.1          |
| Bottom side   | 20  | QPSK 1RB 0  | 38000/2595     | 1:1               | 0.243                 | 0.12       | 22.92                    | 24.20   | 1.343   | 0.326       | 22.1          |
| Dottom side   | 20  |             | 30000/2393     |                   | 0.243<br>nt 2 Test Re |            | 22.32                    | 24.20   | 1.543   | 0.320       | 22.1          |
|               |     |             |                | Duty              | SAR                   | Power      | Conducted                | Tune up | Scaled  | Scaled      | Liquid        |
| Test position | BW. | Test mode   | Test Ch./Freq. |                   |                       |            | power(dBm)               |         |         | SAR(W/kg)   |               |
|               |     |             |                |                   |                       |            |                          |         |         |             | · · · · · · · |
|               |     |             |                | Hea               | ad Test data          | (IKB)      |                          |         |         |             |               |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號

SGS Taiwan Ltd.



| Left tilted         20         OPSK 1RB_0         38150/2610         11         0.131         0.19         18.62         19.20         1.143         0.679         22.1           Right tilted         20         OPSK 1RB_0         38150/2610         1.11         0.477         0.04         18.62         19.20         1.143         0.579         22.1           Left check         20         OPSK 50RB_0         38150/2610         1.1         0.019         18.49         19.20         1.178         0.101         22.1           Left check         20         OPSK 50RB_0         38150/2610         1.1         0.169         18.49         19.20         1.178         0.603         22.1           Right check         20         OPSK 50RB_0         38150/2610         1.1         0.549         0.05         18.49         19.20         1.178         0.562         22.1           Hight check         20         OPSK 50RB_0         38150/2610         1.1         0.501         0.04         18.49         19.20         1.178         0.590         2.21           Head         Test         38150/2610         1.1         0.501         1.061         18.49         19.20         1.178         0.599         2.21 <th></th>                                                                                                                |                                                                                                                                                            |           |             |            |           |               |             |                 |        |        |       |       |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------|-----------|---------------|-------------|-----------------|--------|--------|-------|-------|------|
| Right tilled         20         QPSK 1RB_0         38150/2610         1:1         0.477         0.04         18.62         19.20         1.143         0.545         22.1           Left cheek         20         QPSK 50RB_0         38150/2610         1:1         0.019         18.49         19.20         1.178         0.133         22.1           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.113         0.09         18.49         19.20         1.178         0.603         22.1           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.469         0.05         18.49         19.20         1.178         0.552         22.1           Head Test Data         the worst case with Battery         #         11.78         0.590         22.1           Hight cheek         20         QPSK 50RB_0         38150/2610         1:1         0.506         18.49         19.20         1.178         0.590         22.1           Hight cheek         20         QPSK 50RB_0         38150/2595         1:1         0.133         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 50RB_0         3                                                                                                                                                                                                                                  | Left tilted                                                                                                                                                | 20        | QPSK 1RB_0  | 38150/2610 | 1:1       | 0.113         | 0.19        | 18.62           | 19.20  | 1.143  | 0.129 | 22.1  |      |
| Head Test data(50%RB)           Left tilted         20         QPSK 50RB 0         38150/2610         1:1         0.099         1.178         0.1178         0.1178         0.1178         0.1178         0.1178         0.033         18.49         19.20         1.178         0.033         18.49         19.20         1.178         0.055         1.178         0.055         1.178         0.055         1.178         0.055         2.1           Head Test Data at the worst case with SIM 2           Right cheek         20         OPSK 50RB_0         38150/2610         1:1         0.178         0.178         0.599         2:1           Head Test Data at the worst case with Battery 3#           Right cheek         20         OPSK 1RB_0         38150/2610         1:1         0.178         0.178         0.599         2:1            Mead Test Data at the wors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Right cheek                                                                                                                                                | 20        | QPSK 1RB_0  | 38150/2610 | 1:1       | 0.507         | 0.19        | 18.62           | 19.20  | 1.143  | 0.579 | 22.1  |      |
| Left cheek         20         OPSK 50RB_0         38150/2610         1:1         0.099         0.19         18.49         19.20         1.178         0.117         22.1           Left liked         20         OPSK 50RB_0         38150/2610         1:1         0.113         0.09         18.49         19.20         1.178         0.033         22.1           Right cheek         20         OPSK 50RB_0         38150/2610         1:1         0.469         0.05         18.49         19.20         1.178         0.552         22.1           Head         Test Data at the worst case with SIM2         1.178         0.594         22.1           Head         Test Data at the worst case with Battery 2#         1.178         0.590         22.1           Head         Test Data at the worst case with Battery 3#         1.178         0.590         22.1           Head         Test Data at the worst case with Battery 3#         1.178         0.590         22.1           Body worn Test data (Separate 15mm TRB)         1.178         0.599         22.1           Body worn Test data (Separate 15mm 50%RB)         1.253         0.129         22.1           Back side         20         OPSK 50RB_0         38000/2595         1:1         0.103 <t< td=""><td>Right tilted</td><td>20</td><td>QPSK 1RB_0</td><td>38150/2610</td><td>1:1</td><td>0.477</td><td>0.04</td><td>18.62</td><td>19.20</td><td>1.143</td><td>0.545</td><td>22.1</td></t<> | Right tilted                                                                                                                                               | 20        | QPSK 1RB_0  | 38150/2610 | 1:1       | 0.477         | 0.04        | 18.62           | 19.20  | 1.143  | 0.545 | 22.1  |      |
| Left tilled         20         OPSK 50RB_0         38150/2610         1:1         0.113         0.09         18.49         19.20         1.178         0.133         22.1           Right tilled         20         OPSK 50RB_0         38150/2610         1:1         0.469         0.05         18.49         19.20         1.178         0.603         22.1           Head Test Data at the worst case with SIM 2           Right cheek         20         OPSK 50RB_0         38150/2610         1:1         0.504         -0.13         18.49         19.20         1.178         0.594         22.1           Head Test Data at the worst case with Battery 2#           Right cheek         20         OPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Head Test Data at the worst case with Battery 2#           Right cheek         20         OPSK 1RB_0         3800/2595         1:1         0.103         -0.12         23.22         24.20         1.253         0.129         22.1           Back side         20         OPSK 50RB_0         3800/2595         1:1         0.103         20.1         22.3                                                                                                                                                                                                                                                    |                                                                                                                                                            |           |             |            |           | Head Test     | data(50%    | RB)             |        |        |       |       |      |
| Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.651         18.49         19.20         1.178         0.603         22.1           Right tilted         20         QPSK 50RB_0         38150/2610         1:1         0.469         0.05         18.49         19.20         1.178         0.594         22.1           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.501         0.04         18.49         19.20         1.178         0.594         22.1           Head Test Data at the worst case with Battery 2#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Head Test Data at the worst case with Battery 3#           Right cheek         20         QPSK 1RB_0         38000/2595         1:1         0.103         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.103         20.13         22.27         23.20         1.233         0.108         22.1           Back side         20                                                                                                                                                                                                                                            | Left cheek                                                                                                                                                 | 20        | QPSK 50RB_0 | 38150/2610 | 1:1       | 0.099         | 0.19        | 18.49           | 19.20  | 1.178  | 0.117 | 22.1  |      |
| Right tilted         20         QPSK 50RB_0         38150/2610         1:1         0.469         0.05         18.49         19.20         1.178         0.552         22.1           Head Test Data at the worst case with SIM 2           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.504         -0.13         18.49         19.20         1.178         0.590         22.1           Head Test Data at the worst case with Battery 2#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Head Test Data at the worst case with Battery 3#           Right cheek         20         QPSK 178_0         38000/2595         1:1         0.103         -0.12         23.22         24.20         1.253         0.129         22.1           Body worn Test data (Separate 15mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.038         0.13         22.27         23.20         1.233         0.103         22.1           Body Test Data at the worst case with SiM 2         1.253                                                                                                                                                                                                                                                     | Left tilted                                                                                                                                                | 20        | QPSK 50RB_0 | 38150/2610 | 1:1       | 0.113         | 0.09        | 18.49           | 19.20  | 1.178  | 0.133 | 22.1  |      |
| Head Test Data at the worst case with SIM 2           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.504         -0.13         18.49         19.20         1.178         0.594         22.1           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.501         0.04         18.49         19.20         1.178         0.590         22.1           Head Test Data at the worst case with Battery 3#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Body worn Test data (Separate 15mm 7RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.103         23.22         24.20         1.253         0.129         22.1           Body worn Test data (Separate 15mm 7RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.103         0.01         22.27         23.20         1.239         0.103         22.1           Body worn Test data (Separate 15mm 7RB)           Front side         20 </td <td>Right cheek</td> <td>20</td> <td>QPSK 50RB_0</td> <td>38150/2610</td> <td>1:1</td> <td>0.512</td> <td>0.03</td> <td>18.49</td> <td>19.20</td> <td>1.178</td> <td>0.603</td> <td>22.1</td>                                                               | Right cheek                                                                                                                                                | 20        | QPSK 50RB_0 | 38150/2610 | 1:1       | 0.512         | 0.03        | 18.49           | 19.20  | 1.178  | 0.603 | 22.1  |      |
| Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.504         -0.13         18.49         19.20         1.178         0.594         22.1           Head Test Data at the worst case with Battery 2#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Head Test Data at the worst case with Battery 3#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.103         -0.13         23.22         24.20         1.253         0.129         22.1           Body worn Test data(Separate 15mm 70%/RE)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01<                                                                                                                                                                                                                                                                   | Right tilted                                                                                                                                               | 20        | QPSK 50RB_0 | 38150/2610 | 1:1       | 0.469         | 0.05        | 18.49           | 19.20  | 1.178  | 0.552 | 22.1  |      |
| Head Test Data at the worst case with Battery 2#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.501         0.04         18.49         19.20         1.178         0.590         22.1           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Body wom Test data(Separate 15mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.103         -0.13         23.22         24.20         1.253         0.159         22.1           Body wom Test data(Separate 15mm 178)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.103         0.01         2.277         23.20         1.239         0.103         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Body Test Data at the worst case with Battery 2#(15mm)           Body Test Data at the worst case with Battery 2#(15mm)           Body Test Data at the worst case with Battery 3#(15mm)           Back side         20         QPSK 1RB_0         38000/2595                                                                                                                                                                                                                                            |                                                                                                                                                            |           |             |            | Head 1    | Fest Data at  | the worst   | case with SIM   | 12     |        | -     |       |      |
| Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.501         0.04         18.49         19.20         1.178         0.590         22.1           Head Test Data at the worst case with Battery 3#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.103         -0.13         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.103         2.227         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.103         -0.01         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0                                                                                                                                                                                                                                     | Right cheek                                                                                                                                                | 20        | QPSK 50RB_0 |            |           |               |             |                 |        | 1.178  | 0.594 | 22.1  |      |
| Head Test Data at the worst case with Battery 3#           Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Body worn Test data(Separate 15mm 1RB)         0.103         20.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.103         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.103         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106                                                                                                                                                                                                                          |                                                                                                                                                            | $\lambda$ |             | Hea        | d Test D  | ata at the w  | orst case   | with Battery 2  |        |        | X     |       |      |
| Right cheek         20         QPSK 50RB_0         38150/2610         1:1         0.509         -0.06         18.49         19.20         1.178         0.599         22.1           Body wom Test data (Separate 15mm TRB)         20         QPSK 1RB_0         38000/2595         1:1         0.103         -0.13         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.1027         -0.06         23.22         24.20         1.253         0.159         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23                                                                                                                                                                                                                          | Right cheek                                                                                                                                                | 20        | QPSK 50RB_0 |            |           |               |             |                 |        | 1.178  | 0.590 | 22.1  |      |
| Body worn Test data(Separate 15mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.103         -0.13         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.103         -0.31         22.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.01         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.106         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085<                                                                                                                                                                                                                                  |                                                                                                                                                            |           | -           | Hea        | ad Test D | Data at the v | vorst case  | with Battery 3  | 8#     | $\sim$ |       |       |      |
| Front side         20         QPSK 1RB_0         38000/2595         1:1         0.103         -0.13         23.22         24.20         1.253         0.129         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.127         -0.06         23.22         24.20         1.253         0.159         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.087         0.012         22.27         23.20         1.239         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.385         0.11         23.22         24.20                                                                                                                                                                                                                                          | Right cheek                                                                                                                                                | 20        | QPSK 50RB_0 |            |           |               |             |                 | 19.20  | 1.178  | 0.599 | 22.1  |      |
| Back side         20         QPSK 1RB_0         38000/2595         1:1         0.127         -0.06         23.22         24.20         1.253         0.159         22.1           Body worn Test data (Separate 15mm 50%/RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.003         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.003         0.05         23.22         24.20         1.253         0.109         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.106         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.301         22.1           Left side <td></td> <td></td> <td></td> <td>Body</td> <td>worn Te</td> <td>st data(Sep</td> <td>arate 15m</td> <td>,</td> <td></td> <td></td> <td></td> <td></td>                                                                                  |                                                                                                                                                            |           |             | Body       | worn Te   | st data(Sep   | arate 15m   | ,               |        |        |       |       |      |
| Body wom Test data (Separate 15mm 50%/RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.01         22.27         23.20         1.239         0.128         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.11         23.22         24.20         1.253         0.106         22.1           Hotspot Test data (Separate 10mm 1RB)         10.163         0.05         23.22         24.20         1.253         0.387         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.2                                                                                                                                                                                                                         | Front side                                                                                                                                                 | 20        |             | 38000/2595 |           |               |             |                 |        | 1.253  | 0.129 | 22.1  |      |
| Front side         20         QPSK 50RB_0         38000/2595         1:1         0.083         0.13         22.27         23.20         1.239         0.103         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.103         -0.01         22.27         23.20         1.239         0.128         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.301         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.104         23.22         24.20         1.253                                                                                                                                                                                                                                          | Back side                                                                                                                                                  | 20        | QPSK 1RB_0  |            |           | -             |             | -               | -      | 1.253  | 0.159 | 22.1  |      |
| Back side         20         QPSK 50RB_0         38000/2595         1:1         0.103         -0.01         22.27         23.20         1.239         0.128         22.1           Body Test Data at the worst case with SIM 2           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.106         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.229         22.1           Hotspot Test data (Separate 10mm TRB)           Fornt side         20         QPSK 1RB_0         38000/2595         1:1         0.16         23.22 <t< td=""><td></td><td></td><td>-</td><td></td><td>Body wo</td><td>rn Test data</td><td>(Separat</td><td></td><td>RB)</td><td></td><td></td><td></td></t<>                                                                                                                       |                                                                                                                                                            |           | -           |            | Body wo   | rn Test data  | (Separat    |                 | RB)    |        |       |       |      |
| Body Test Data at the worst case with SIM 2           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106         22.1           Hotspot Test Data at the worst case with Battery 3#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.387         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1                                                                                                                                                                                                                            | Front side                                                                                                                                                 | 20        |             | 38000/2595 |           |               | 0.13        |                 |        |        | 0.103 |       |      |
| Back side         20         QPSK 1RB_0         38000/2595         1:1         0.087         0.05         23.22         24.20         1.253         0.109         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106         22.1           Body Test Data at the worst case with Battery 3#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.05         23.22         24.20         1.253         0.029         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.381         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20                                                                                                                                                                                                                             | Back side                                                                                                                                                  | 20        | QPSK 50RB_0 |            |           |               |             |                 | 23.20  | 1.239  | 0.128 | 22.1  |      |
| Body Test Data at the worst case with Battery 2#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Body Test Data at the worst case with Battery 3#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106         22.1           Hotspot Test data(Separate 10mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.301         0.16         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14                                                                                                                                                                                                                                                                         |                                                                                                                                                            |           |             |            | y Test Da | ata at the w  | orst case   | with SIM 2      |        |        |       |       |      |
| Back side         20         QPSK 1RB_0         38000/2595         1:1         0.086         -0.01         23.22         24.20         1.253         0.108         22.1           Body Test Data at the worst case with Battery 3#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106         22.1           Hotspot Test data(Separate 10mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.229         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.387         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.031         0.16         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.380         22.1 <td colspict<="" td=""><td>Back side</td><td>20</td><td>QPSK 1RB_0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.253</td><td>0.109</td><td>22.1</td></td>                                                                                          | <td>Back side</td> <td>20</td> <td>QPSK 1RB_0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.253</td> <td>0.109</td> <td>22.1</td> | Back side | 20          | QPSK 1RB_0 |           |               |             |                 |        |        | 1.253 | 0.109 | 22.1 |
| Body Test Data at the worst case with Battery 3#(15mm)           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106         22.1           Hotspot Test data(Separate 10mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.301         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.161         23.22         24.20         1.253         0.209         22.1           Tops ide         20         QPSK 1RB_0         38000/2595         1:1         0.142         23.22         24.20         1.253         0.209         22.1           Back side         20         QPSK 50RB_0                                                                                                                                                                                                                                               |                                                                                                                                                            |           |             | Body       | / Test Da | ta at the wo  | orst case v | vith Battery 2# | (15mm) |        |       |       |      |
| Back side         20         QPSK 1RB_0         38000/2595         1:1         0.085         0.11         23.22         24.20         1.253         0.106         22.1           Hotspot Test data(Separate 10mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.229         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.016         23.22         24.20         1.253         0.038         22.1           Top side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.209         22.1           Hotspot Test data (Separate 10mm 50%RB)         Trop side         20         QPSK 50RB_0         38000/2595 <td>Back side</td> <td>20</td> <td>QPSK 1RB_0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.253</td> <td>0.108</td> <td>22.1</td>                                                                    | Back side                                                                                                                                                  | 20        | QPSK 1RB_0  |            |           |               |             |                 |        | 1.253  | 0.108 | 22.1  |      |
| Hotspot Test data(Separate 10mm 1RB)           Front side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.229         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.031         0.16         23.22         24.20         1.253         0.387         22.1           Top side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.038         22.1           Hotspot Test data (Separate 10mm 50%RB)         Hotspot Test data (Separate 10mm 50%RB)         Hotspot Test data (Separate 10mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239                                                                                                                                                                                                               |                                                                                                                                                            |           |             | Body       | / Test Da | ta at the wo  | orst case v |                 | (15mm) |        |       |       |      |
| Front side         20         QPSK 1RB_0         38000/2595         1:1         0.183         0.05         23.22         24.20         1.253         0.229         22.1           Back side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.031         0.16         23.22         24.20         1.253         0.038         22.1           Top side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.038         22.1           Top side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20                                                                                                                                                                                                                                               | Back side                                                                                                                                                  | 20        | QPSK 1RB_0  |            |           |               |             |                 | 24.20  | 1.253  | 0.106 | 22.1  |      |
| Back side         20         QPSK 1RB_0         38000/2595         1:1         0.240         -0.04         23.22         24.20         1.253         0.301         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.031         0.16         23.22         24.20         1.253         0.038         22.1           Top side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.038         22.1           Hotspot Test data (Separate 10mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         3800/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.310         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1                                                                                                                                                                                                                                                  |                                                                                                                                                            | $\sim$    |             |            | pot Test  |               |             |                 |        |        |       |       |      |
| Left side         20         QPSK 1RB_0         38000/2595         1:1         0.309         0.04         23.22         24.20         1.253         0.387         22.1           Right side         20         QPSK 1RB_0         38000/2595         1:1         0.031         0.16         23.22         24.20         1.253         0.038         22.1           Top side         20         QPSK 1RB_0         38000/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.038         22.1           Hotspot Test data (Separate 10mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1                                                                                                                                                                                                                                               | Front side                                                                                                                                                 |           |             |            |           |               |             |                 |        |        |       |       |      |
| Right side         20         QPSK 1RB_0         38000/2595         1:1         0.031         0.16         23.22         24.20         1.253         0.038         22.1           Top side         20         QPSK 1RB_0         3800/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.038         22.1           Hotspot Test data (Separate 10mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1         0.26         -0.01         22.27         23.20         1.239         0.32         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1                                                                                                                                                                                                                                                 |                                                                                                                                                            |           | _           |            |           |               |             | -               |        |        |       |       |      |
| Top side         20         QPSK 1RB_0         3800/2595         1:1         0.167         0.14         23.22         24.20         1.253         0.209         22.1           Hotspot Test data (Separate 10mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.322         22.1           Body Test Data at the worst case with SIM 2           Left side </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                       |                                                                                                                                                            |           | _           |            |           |               |             |                 |        |        |       |       |      |
| Hotspot Test data (Separate 10mm 50%RB)           Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1         0.026         -0.01         22.27         23.20         1.239         0.32         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.32         22.1           Body Test Data at the worst case with SIM 2           Left side<                                                                                                                                                                                                                                                   |                                                                                                                                                            |           |             |            |           |               |             |                 |        |        |       |       |      |
| Front side         20         QPSK 50RB_0         38000/2595         1:1         0.148         0.06         22.27         23.20         1.239         0.183         22.1           Back side         20         QPSK 50RB_0         38000/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.183         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1         0.260         -0.01         22.27         23.20         1.239         0.310         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.322         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.126         22.1           Body Test Data at the worst case with SIM 2           Left side         20         QPSK 1RB_0         38000/2595                                                                                                                                                                                                                                                    | Top side                                                                                                                                                   | 20        | QPSK 1RB_0  | 38000/2595 |           |               |             |                 |        | 1.253  | 0.209 | 22.1  |      |
| Back side         20         QPSK 50RB_0         38000/2595         1:1         0.191         0.00         22.27         23.20         1.239         0.237         22.1           Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1         0.026         -0.01         22.27         23.20         1.239         0.310         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.032         22.1           Body Test Data at the worst case with SIM 2           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.271         0.02         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1                                                                                                                                                                                                                                                          |                                                                                                                                                            |           |             |            |           |               |             |                 |        | -      |       |       |      |
| Left side         20         QPSK 50RB_0         38000/2595         1:1         0.250         -0.01         22.27         23.20         1.239         0.310         22.1           Right side         20         QPSK 50RB_0         38000/2595         1:1         0.026         -0.01         22.27         23.20         1.239         0.032         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.032         22.1           Body Test Data at the worst case with SIM 2           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.271         0.02         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23                                                                                                                                                                                                                                                   | Front side                                                                                                                                                 | 20        |             |            |           |               |             |                 |        |        |       | -     |      |
| Right side         20         QPSK 50RB_0         38000/2595         1:1         0.026         -0.01         22.27         23.20         1.239         0.032         22.1           Top side         20         QPSK 50RB_0         38000/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.032         22.1           Body Test Data at the worst case with SIM 2           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.271         0.02         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.340         22.1           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1           Body Test Data at the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |           |             |            |           |               |             |                 |        |        |       |       |      |
| Top side         20         QPSK 50RB_0         3800/2595         1:1         0.102         -0.15         22.27         23.20         1.239         0.126         22.1           Body Test Data at the worst case with SIM 2           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.271         0.02         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1           Body Test Data at the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |           |             |            |           |               |             |                 |        |        |       |       |      |
| Body Test Data at the worst case with SIM 2           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.271         0.02         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Description of the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                          |           |             |            |           |               |             |                 |        |        |       |       |      |
| Left side         20         QPSK 1RB_0         38000/2595         1:1         0.271         0.02         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.340         22.1           Body Test Data at the worst case with Battery 2#(10mm)           Body Test Data at the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Top side                                                                                                                                                   | 20        | QPSK 50RB_0 |            |           |               |             |                 |        | 1.239  | 0.126 | 22.1  |      |
| Body Test Data at the worst case with Battery 2#(10mm)           Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1           Body Test Data at the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            |           |             |            |           |               |             |                 |        |        |       |       |      |
| Left side         20         QPSK 1RB_0         38000/2595         1:1         0.269         -0.17         23.22         24.20         1.253         0.337         22.1           Body Test Data at the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Left side                                                                                                                                                  | 20        | QPSK 1RB_0  |            |           |               |             |                 |        | 1.253  | 0.340 | 22.1  |      |
| Body Test Data at the worst case with Battery 3#(10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |           |             |            | 1         |               | 1           |                 |        |        |       |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left side                                                                                                                                                  | 20        | QPSK 1RB_0  |            |           |               |             |                 |        | 1.253  | 0.337 | 22.1  |      |
| Left side 20 QPSK 1RB_0 38000/2595 1:1 0.253 0.04 23.22 24.20 1.253 0.317 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |           | /           |            |           |               |             |                 |        |        |       |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left side                                                                                                                                                  | 20        | QPSK 1RB_0  | 38000/2595 | 1:1       | 0.253         | 0.04        | 23.22           | 24.20  | 1.253  | 0.317 | 22.1  |      |

Table 27: SAR of LTE Band 38 for Head and Body. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is  $\leq 0.8$  W/kg then testing at the other channels is not required for such test configuration(s).

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



| Test<br>position                                       | Test<br>mode                                    | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled factor | SAR<br>(W/kg)1-g | Power<br>drift(dB) | Conducted power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp. |
|--------------------------------------------------------|-------------------------------------------------|-------------------|---------------|-----------------------------|------------------|--------------------|----------------------|-----------------------|---------------|---------------------|-----------------|
|                                                        |                                                 |                   |               |                             | Head Test        | t data             |                      |                       |               |                     |                 |
| Left cheek                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.195            | 0.12               | 11.42                | 12.10                 | 1.169         | 0.230               | 22.0            |
| Left tilted                                            | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.078            | 0.19               | 11.42                | 12.10                 | 1.169         | 0.092               | 22.0            |
| Right cheek                                            | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.049            | 0.06               | 11.42                | 12.10                 | 1.169         | 0.058               | 22.0            |
| Right tilted                                           | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.039            | 0.07               | 11.42                | 12.10                 | 1.169         | 0.046               | 22.0            |
|                                                        | Head Test Data at the worst case with Battery 2 |                   |               |                             |                  |                    |                      |                       |               |                     |                 |
| Left cheek                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.190            | 0.11               | 11.42                | 12.10                 | 1.169         | 0.222               | 22.0            |
| Head Test Data at the worst case with Battery 3#       |                                                 |                   |               |                             |                  |                    |                      |                       |               |                     |                 |
| Left cheek                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.187            | -0.17              | 11.42                | 12.10                 | 1.169         | 0.219               | 22.0            |
|                                                        |                                                 |                   |               | Body wor                    | n Test data(     | Separate 1         | 5mm)                 |                       |               |                     |                 |
| Front side                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.043            | -0.18              | 17.09                | 19.00                 | 1.552         | 0.068               | 22.0            |
| Back side                                              | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.075            | 0.19               | 17.09                | 19.00                 | 1.552         | 0.118               | 22.0            |
|                                                        |                                                 |                   |               | Body Test                   | Data at the      | worst case         | with Battery 2       | #(15mm)               |               | •                   |                 |
| Back side                                              | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.074            | -0.08              | 17.09                | 19.00                 | 1.552         | 0.116               | 22.0            |
|                                                        |                                                 |                   |               | Body Test                   | Data at the      | worst case         | with Battery 3       | #(15mm)               |               |                     |                 |
| Back side                                              | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.072            | -0.13              | 17.09                | 19.00                 | 1.552         | 0.113               | 22.0            |
|                                                        |                                                 |                   |               | Hotspot                     | Test data (S     | eparate 10         | mm)                  |                       |               |                     |                 |
| Front side                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.092            | 0.11               | 17.09                | 19.00                 | 1.552         | 0.143               | 22.0            |
| Back side                                              | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.134            | 0.01               | 17.09                | 19.00                 | 1.552         | 0.210               | 22.0            |
| Right side                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.182            | -0.07              | 17.09                | 19.00                 | 1.552         | 0.285               | 22.0            |
| Top side                                               | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.055            | 0.04               | 17.09                | 19.00                 | 1.552         | 0.086               | 22.0            |
| Body Test Data at the worst case with Battery 2#(10mm) |                                                 |                   |               |                             |                  |                    |                      |                       |               |                     |                 |
| Right side                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.177            | 0.07               | 17.09                | 19.00                 | 1.552         | 0.278               | 22.0            |
|                                                        |                                                 |                   |               | Body Test                   | Data at the      | worst case         | with Battery 3       | #(10mm)               |               |                     |                 |
| Right side                                             | 802.11b                                         | 1/2412            | 99.04%        | 1.010                       | 0.173            | -0.03              | 17.09                | 19.00                 | 1.552         | 0.271               | 22.0            |

#### 8.3.4 SAR Result of WIFI 2.4G

Table 28: SAR of WIFI 2.4G for Head and Body.

Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is  $\leq 0.8$  W/kg then testing at the other channels is not required for such test configuration(s).

Each channel was tested at the lowest data rate.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



| Mode        | Tune-up<br>(dBm) | Tune-up<br>(mw) | Max Reported<br>SAR(W/kg) | Adjusted<br>SAR(W/kg) | SAR test |
|-------------|------------------|-----------------|---------------------------|-----------------------|----------|
|             |                  | ŀ               | lead                      |                       |          |
| 802.11b     | 12.10            | 16.22           | 0.230                     | 1                     | Yes      |
| 802.11g     | 12.00            | 15.85           | /                         | 0.22                  | No       |
| 802.1n 20M  | 12.00            | 15.85           | /                         | 0.22                  | No       |
| 802.11n 40M | 12.00            | 15.85           | /                         | 0.22                  | No       |
|             |                  | Boo             | ly worn                   |                       |          |
| 802.11b     | 19.00            | 79.43           | 0.118                     | 1                     | Yes      |
| 802.11g     | 15.50            | 35.48           | /                         | 0.05                  | No       |
| 802.1n 20M  | 14.50            | 28.18           | /                         | 0.04                  | No       |
| 802.11n 40M | 14.50            | 28.18           | /                         | 0.04                  | No       |
|             |                  | H               | otspot                    |                       | ·        |
| 802.11b     | 19.00            | 79.43           | 0.285                     | /                     | Yes      |
| 802.11g     | 15.50            | 35.48           | 1                         | 0.13                  | No       |
| 802.1n 20M  | 14.50            | 28.18           | 1                         | 0.10                  | No       |
| 802.11n 40M | 14.50            | 28.18           | /                         | 0.10                  | No       |

Note: Per KDB248227D01, for SAR test of WiFi 2.4G,

1) SAR is measured for 2.4 GHz 802.11b DSSS using the initial test position procedure.

2) As the highest reported SAR for DSSS is adjusted by the ratio of OFDM 802.11g/n to DSSS specified

maximum output power and the adjusted SAR is < 1.2 W/kg, so SAR for 802.11g/n is not required.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時比樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's indication of this document is advised that information contained reflects the Company's information in the office of the intervention only and within the initial contained reflects and company's information of the intervention of the intervention of the initial contained reflects and company's information of the intervention of the initial contained reflects and company's information of the initial contained reflects and company's information of the initial contained reflects and company's initial contained refle prosecuted to the fullest extent of the law.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. t (886-2) 2299-3279 www.tw.sas.com



# 8.3.5 SAR Result of WIFI 5G

| Test position | Test<br>mode | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled factor | SAR<br>(W/kg)1-g | Power<br>drift(dB) | Conducted<br>power(dBm) |       |        |       | Liquid<br>Temp |
|---------------|--------------|-------------------|---------------|-----------------------------|------------------|--------------------|-------------------------|-------|--------|-------|----------------|
|               | mouo         | on a roq.         | Cyclo         |                             | d Test data of   |                    |                         | (a.b) | 140101 | o/(,  |                |
| Left cheek    | 802.11a      | 64/5320           | 95.31%        | 1.049                       | 0.026            | 0.00               | 7.42                    | 9.10  | 1.472  | 0.040 | 22.2           |
| Left tilted   | 802.11a      | 64/5320           | 95.31%        | 1.049                       | 0.023            | 0.00               | 7.42                    | 9.10  | 1.472  | 0.036 | 22.2           |
| Right cheek   | 802.11a      | 64/5320           | 95.31%        | 1.049                       | 0.003            | -0.10              | 7.42                    | 9.10  | 1.472  | 0.005 | 22.2           |
| Right tilted  | 802.11a      | 64/5320           | 95.31%        | 1.049                       | 0.008            | 0.00               | 7.42                    | 9.10  | 1.472  | 0.013 | 22.2           |
| 2000          |              |                   |               | Head                        | d Test data of   | U-NII-2C           |                         |       | ~      |       | <u> </u>       |
| Left cheek    | 802.11a      | 112/5560          | 95.31%        | 1.049                       | 0.064            | 0.04               | 7.76                    | 9.10  | 1.361  | 0.091 | 22.2           |
| Left tilted   | 802.11a      | 112/5560          | 95.31%        | 1.049                       | 0.048            | 0.00               | 7.76                    | 9.10  | 1.361  | 0.068 | 22.2           |
| Right cheek   | 802.11a      | 112/5560          | 95.31%        | 1.049                       | 0.003            | 0.00               | 7.76                    | 9.10  | 1.361  | 0.005 | 22.2           |
| Right tilted  | 802.11a      | 112/5560          | 95.31%        | 1.049                       | 0.003            | 0.00               | 7.76                    | 9.10  | 1.361  | 0.004 | 22.2           |
|               |              |                   |               | Hea                         | d Test data of   | U-NII-3            |                         |       |        |       |                |
| Left cheek    | 802.11a      | 165/5825          | 95.31%        | 1.049                       | 0.044            | 0.00               | 7.61                    | 9.10  | 1.409  | 0.065 | 22.2           |
| Left tilted   | 802.11a      | 165/5825          | 95.31%        | 1.049                       | 0.013            | 0.00               | 7.61                    | 9.10  | 1.409  | 0.019 | 22.2           |
| Right cheek   | 802.11a      | 165/5825          | 95.31%        | 1.049                       | 0.002            | 0.00               | 7.61                    | 9.10  | 1.409  | 0.003 | 22.2           |
| Right tilted  | 802.11a      | 165/5825          | 95.31%        | 1.049                       | 0.000            | 0.00               | 7.61                    | 9.10  | 1.409  | 0.000 | 22.2           |
|               |              |                   |               | Head Test                   | Data at the wo   | orst case wi       | th Battery 2#           |       |        |       |                |
| Left cheek    | 802.11a      | 112/5560          | 95.31%        | 1.049                       | 0.062            | 0.04               | 7.76                    | 9.10  | 1.361  | 0.085 | 22.2           |
|               |              |                   | /             | Head Test Da                | ta at the wors   | t case with        | Battery 3#              |       |        |       |                |
| Left cheek    | 802.11a      | 112/5560          | 95.31%        | 1.049                       | 0.061            | 0.04               | 7.76                    | 9.10  | 1.361  | 0.083 | 22.2           |
|               |              |                   | E             | ody worn Test               | data of U-NII-2  | 2A (Separat        | e 15mm)                 |       |        |       |                |
| Front side    | 802.11a      | 60/5300           | 95.31%        | 1.049                       | 0.050            | 0.00               | 17.46                   | 17.50 | 1.009  | 0.053 | 22.2           |
| Back side     | 802.11a      | 60/5300           | 95.31%        | 1.049                       | 0.059            | 0.00               | 17.46                   | 17.50 | 1.009  | 0.062 | 22.2           |
|               |              |                   | E             | Body worn Test              | data of U-NII-   | 2C(Separat         | e 15mm)                 |       |        |       |                |
| Front side    | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 0.080            | 0.00               | 17.47                   | 17.50 | 1.007  | 0.084 | 22.2           |
| Back side     | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 0.098            | 0.00               | 17.47                   | 17.50 | 1.007  | 0.103 | 22.2           |
|               |              |                   |               | Body worn Test              | t data of U-NII  | -3(Separate        | e 15mm)                 |       |        |       |                |
| Front side    | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.065            | 0.00               | 17.31                   | 17.50 | 1.045  | 0.071 | 22.2           |
| Back side     | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.116            | 0.03               | 17.31                   | 17.50 | 1.045  | 0.127 | 22.2           |
|               |              |                   |               | Body Test I                 | Data at the wo   | rst case wit       | h Battery 2#(           | 15mm) |        |       |                |
| Back side     | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.114            | 0.02               | 17.31                   | 17.50 | 1.045  | 0.125 | 22.2           |
|               |              |                   |               | Body Test I                 | Data at the wo   | rst case wit       | h Battery 3#(           | 15mm) |        |       |                |
| Back side     | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.112            | 0.03               | 17.31                   | 17.50 | 1.045  | 0.123 | 22.2           |
|               |              |                   |               | Hotspot Test                | data of U-NII-1  | (Separate          | 10mm)                   |       |        |       |                |
| Front side    | 802.11a      | 48/5240           | 95.31%        | 1.049                       | 0.124            | 0.00               | 17.32                   | 17.50 | 1.042  | 0.136 | 22.2           |
| Back side     | 802.11a      | 48/5240           | 95.31%        | 1.049                       | 0.183            | 0.01               | 17.32                   | 17.50 | 1.042  | 0.200 | 22.2           |
| Right side    | 802.11a      | 48/5240           | 95.31%        | 1.049                       | 0.224            | 0.04               | 17.32                   | 17.50 | 1.042  | 0.245 | 22.2           |
| Top side      | 802.11a      | 48/5240           | 95.31%        | 1.049                       | 0.077            | 0.07               | 17.32                   | 17.50 | 1.042  | 0.085 | 22.2           |
|               |              |                   |               | Hotspot Test of             | lata of U-NII-3  | (Separate          | 10mm)                   |       |        |       |                |
| Front side    | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.101            | 0.00               | 17.31                   | 17.50 | 1.045  | 0.111 | 22.2           |
| Back side     | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.151            | -0.02              | 17.31                   | 17.50 | 1.045  | 0.165 | 22.2           |
| Right side    | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.360            | 0.12               | 17.31                   | 17.50 | 1.045  | 0.395 | 22.2           |
| Top side      | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.132            | 0.09               | 17.31                   | 17.50 | 1.045  | 0.145 | 22.2           |
|               |              |                   |               | Body Test I                 | Data at the wo   | rst case wit       | h Battery 2#(           | 10mm) |        |       |                |
| Right side    | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.309            | 0.07               | 17.31                   | 17.50 | 1.045  | 0.339 | 22.2           |
|               |              |                   |               | Body Test I                 | Data at the wo   | rst case wit       | h Battery 3#(           | 10mm) |        |       |                |
| Right side    | 802.11a      | 149/5745          | 95.31%        | 1.049                       | 0.329            | 0.03               | 17.31                   | 17.50 | 1.045  | 0.361 | 22.2           |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 f (886-2) 2298-0488

www.tw.sgs.com

Member of SGS Group



| Test position | Test<br>mode | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled factor | SAR<br>(W/kg)10-g | Power<br>drift(dB) | Conducted<br>power(dBm) |       | Scaled factor |       | Liquid<br>Temp. |
|---------------|--------------|-------------------|---------------|-----------------------------|-------------------|--------------------|-------------------------|-------|---------------|-------|-----------------|
|               |              |                   | Product       | specific 10g SA             | AR Test data o    | of U-NII-2A(       | Separate 0mr            | n)    |               |       |                 |
| Front side    | 802.11a      | 60/5300           | 95.31%        | 1.049                       | 0.399             | 0.00               | 17.46                   | 17.50 | 1.009         | 0.422 | 22.2            |
| Back side     | 802.11a      | 60/5300           | 95.31%        | 1.049                       | 0.284             | 0.09               | 17.46                   | 17.50 | 1.009         | 0.301 | 22.2            |
| Right side    | 802.11a      | 60/5300           | 95.31%        | 1.049                       | 0.786             | -0.07              | 17.46                   | 17.50 | 1.009         | 0.832 | 22.2            |
| Top side      | 802.11a      | 60/5300           | 95.31%        | 1.049                       | 0.246             | -0.07              | 17.46                   | 17.50 | 1.009         | 0.260 | 22.2            |
|               |              |                   | Product       | specific 10g S              | AR Test data o    | of U-NII-2C(       | Separate 0mr            | n)    |               |       |                 |
| Front side    | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 0.551             | 0.00               | 17.47                   | 17.50 | 1.007         | 0.582 | 22.2            |
| Back side     | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 0.515             | 0.09               | 17.47                   | 17.50 | 1.007         | 0.544 | 22.2            |
| Right side    | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 1.170             | -0.07              | 17.47                   | 17.50 | 1.007         | 1.236 | 22.2            |
| Top side      | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 0.344             | -0.03              | 17.47                   | 17.50 | 1.007         | 0.363 | 22.2            |
|               |              |                   |               | Body Test                   | Data at the wo    | rst case wit       | h Battery 2#(0          | )mm)  |               |       |                 |
| Right side    | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 0.944             | -0.02              | 17.47                   | 17.50 | 1.007         | 0.997 | 22.2            |
|               |              |                   |               | Body Test                   | Data at the wo    | rst case wit       | h Battery 3#(0          | )mm)  |               |       |                 |
| Right side    | 802.11a      | 100/5500          | 95.31%        | 1.049                       | 1.150             | -0.07              | 17.47                   | 17.50 | 1.007         | 1.215 | 22.2            |

Table 29: SAR of WIFI 5G for Head, Body and Product specific 10g SAR. Note:

The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to 1) Appendix B.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or 2) highest output power channel for each test configuration is  $\leq 0.8$  W/kg then testing at the other channels is not required for such test configuration(s).

Each channel was tested at the lowest data rate. 3)

When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A 4) band by applying the OFDM SAR requirements. As the highest reported SAR for a test configuration is  $\leq 1.2$ W/kg, SAR is not required for U-NII-1 band for that configuration.

For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) bands does not support hotspot 5) function.

When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test 6) configuration to initial test configuration specified maximum output power and the adjusted SAR is  $\leq$  1.2 W/kg, SAR test for the other 802.11 modes are not required.

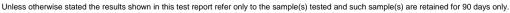
Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd.

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488




## 8.3.1 SAR Result of BT

| Test position                                    | Test<br>mode | Test<br>ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR (W/kg)<br>1-g | Power<br>drift<br>(dB) | Conducted<br>Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR 1-g<br>(W/kg) | Liquid<br>Temp.(°C) |
|--------------------------------------------------|--------------|-------------------|---------------|--------------------------------|-------------------|------------------------|-------------------------|-----------------------|---------------|-----------------------------|---------------------|
|                                                  |              |                   |               |                                | Head Test Da      | ta                     |                         |                       |               |                             |                     |
| Left cheek                                       | GFSK         | 39/2480           | 76.36%        | 1.310                          | 0.146             | 0.02                   | 10.48                   | 12.40                 | 1.556         | 0.298                       | 22.0                |
| Left tilted                                      | GFSK         | 39/2480           | 76.36%        | 1.310                          | 0.044             | -0.02                  | 10.48                   | 12.40                 | 1.556         | 0.090                       | 22.0                |
| Right cheek                                      | GFSK         | 39/2480           | 76.36%        | 1.310                          | 0.019             | 0.08                   | 10.48                   | 12.40                 | 1.556         | 0.040                       | 22.0                |
| Right tilted                                     | GFSK         | 39/2480           | 76.36%        | 1.310                          | 0.004             | 0.07                   | 10.48                   | 12.40                 | 1.556         | 0.008                       | 22.0                |
|                                                  | 4            |                   | He            | ad Test Data                   | at the worst c    | ase with B             | attery 2#               |                       | P I           |                             |                     |
| Left cheek                                       | GFSK         | 39/2480           | 76.36%        | 1.310                          | 0.108             | 0.05                   | 10.48                   | 12.40                 | 1.556         | 0.220                       | 22.0                |
| Head Test Data at the worst case with Battery 3# |              |                   |               |                                |                   |                        |                         |                       |               |                             |                     |
| Left cheek                                       | GFSK         | 39/2480           | 76.36%        | 1.310                          | 0.102             | 0.06                   | 10.48                   | 12.40                 | 1.556         | 0.208                       | 22.0                |
| Table 30: S                                      | AR of B      | Ts for Hea        | d.            |                                |                   |                        | •                       |                       | •             |                             | -                   |

Note:

1) The maximum measured SAR value and Scaled SAR value is marked in bold. Graph results refer to Appendix B.

2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).



除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's individual of this document is advised that information contained reliefed release the company's individual of the rights and obligations under the transaction document. This document coant and the reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

t (886-2) 2299-3279 台灣檢驗科技股份有限公司

SGS Taiwan Ltd.

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 www.tw.sas.com



# 8.4 Multiple Transmitter Evaluation

#### 8.4.1 Simultaneous SAR SAR test evaluation

#### 1) Simultaneous Transmission

| NO. | Simultaneous Tx Combination  | Head | Body-worn | hotspot | Product Specific<br>10-g SAR |
|-----|------------------------------|------|-----------|---------|------------------------------|
| 1   | GSM Voice(Ant 1) + BT        | Yes  | Yes       | N/A     | Yes                          |
| 2   | GSM DATA(Ant 1) + BT         | N/A  | Yes       | N/A     | Yes                          |
| 3   | GSM Voice(Ant 2) + BT        | Yes  | Yes       | N/A     | Yes                          |
| 4   | GSM DATA (Ant 2)+ BT         | N/A  | Yes       | N/A     | Yes                          |
| 5   | GSM Voice(Ant 1) + WiFi 2.4G | Yes  | Yes       | N/A     | Yes                          |
| 6   | GSM DATA(Ant 1) + WiFi 2.4G  | N/A  | Yes       | Yes     | Yes                          |
| 7   | GSM Voice(Ant 2) + WiFi 2.4G | Yes  | Yes       | N/A     | Yes                          |
| 8   | GSM DATA(Ant 2) + WiFi 2.4G  | N/A  | Yes       | Yes     | Yes                          |
| 9   | WCDMA (Ant 1) + BT           | Yes  | Yes       | N/A     | Yes                          |
| 10  | WCDMA (Ant 2) + BT           | Yes  | Yes       | N/A     | Yes                          |
| 11  | WCDMA (Ant 1) + WiFi 2.4G    | Yes  | Yes       | Yes     | Yes                          |
| 12  | WCDMA (Ant 2) + WiFi 2.4G    | Yes  | Yes       | Yes     | Yes                          |
| 13  | LTE (Ant 1) + WiFi 2.4G      | Yes  | Yes       | Yes     | Yes                          |
| 14  | LTE(Ant 1) + BT              | Yes  | Yes       | N/A     | Yes                          |
| 15  | LTE (Ant 2) + WiFi 2.4G      | Yes  | Yes       | Yes     | Yes                          |
| 16  | LTE (Ant 2) + BT             | Yes  | Yes       | N/A     | Yes                          |
| 17  | GSM Voice(Ant 1) + WiFi 5G   | Yes  | Yes       | N/A     | Yes                          |
| 18  | GSM DATA(Ant 1) + WiFi 5G    | N/A  | Yes       | Yes     | Yes                          |
| 19  | GSM Voice(Ant 2) + WiFi 5G   | Yes  | Yes       | N/A     | Yes                          |
| 20  | GSM DATA(Ant 2) + WiFi 5G    | N/A  | Yes       | Yes     | Yes                          |
| 21  | WCDMA (Ant 1) + WiFi 5G      | Yes  | Yes       | Yes     | Yes                          |
| 22  | WCDMA (Ant 2) + WiFi 5G      | Yes  | Yes       | Yes     | Yes                          |
| 23  | LTE (Ant 1) + WiFi 5G        | Yes  | Yes       | Yes     | Yes                          |
| 24  | LTE (Ant 2) + WiFi 5G        | Yes  | Yes       | Yes     | Yes                          |

Note:

1) WiFi 2.4G and Bluetooth can't transmit simultaneously.

2) WiFi 5G and Bluetooth can't transmit simultaneously.

3) WiFi 2.4G and 5G can't transmit simultaneously.

4) 2G&3G&4G main antenna(Ant1) and second antenna(Ant 2) can't transmit simultaneously

5) For Wi-Fi 5G, U-NII-2A(5250-5350 MHz) and U-NII-2C(5470-5725 MHz) bands does not support hotspot

function.

6) The device supports WiFi VOIP function.

7) The device supports VOLTE function.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



#### 8.4.2 Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances  $\leq$  50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

#### **Estimated SAR Result**

|            | Frequency          |                             | mov                                      | Test | Estimated     |
|------------|--------------------|-----------------------------|------------------------------------------|------|---------------|
| Freq. Band | Frequency<br>(GHz) | Test Position               | on max.<br>power(dBm) Separation<br>(mm) |      | 1g SAR (W/kg) |
|            | 2.48               | Body-worn                   | 12.40                                    | 15   | 0.243         |
| Bluetooth  |                    | Hotspot                     | 12.40                                    | 10   | 0.365         |
| Bluetooth  |                    | Product specific<br>10g SAR | 12.40                                    | 0    | 0.292         |



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's indication of this document is advised that information contained reflects the Company's information in the office of the intervention only and within the initial contained reflects and company's information of the intervention of the intervention of the initial contained reflects and company's information of the intervention of the initial contained reflects and company's information of the initial contained reflects and company's information of the initial contained reflects and company's initial contained refle prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. t (886-2) 2299-3279 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 f (886-2) 2298-0488

www.tw.sas.com

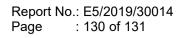
Member of SGS Group



#### 8.4.3 Simultaneous Transmission SAR Summation Scenario

|                       |                                                                                      |                                                               |                                                                | Main A                                                            | ntenna S                                                                                    | ARmax (V                                                                                  | V/kg)                                                                                   | -                                                                             |                                                                | WiFi Ante                                                                | nna SARm                                                                                                 | nax (W/kg                                                                                                 | Summe                                                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Test                  | position                                                                             | GSM850                                                        | GSM1900                                                        |                                                                   | WCDMA<br>Band IV                                                                            | WCDMA<br>Band V                                                                           | LTE<br>Band 4                                                                           | LTE<br>Band 7                                                                 | LTE<br>Band 38                                                 | WLAN<br>2.4G                                                             | WLAN<br>5G                                                                                               | BT                                                                                                        | 1g<br>SARma<br>(W/kg)                                                                                                  |
|                       | Left Touch                                                                           | 0.055                                                         | 0.152                                                          | 0.261                                                             | 0.244                                                                                       | 0.068                                                                                     | 0.242                                                                                   | 0.290                                                                         | 0.223                                                          | 0.230                                                                    | 0.091                                                                                                    | 0.298                                                                                                     | 0.588                                                                                                                  |
|                       | Left Tilt                                                                            | 0.042                                                         | 0.079                                                          | 0.148                                                             | 0.122                                                                                       | 0.062                                                                                     | 0.119                                                                                   | 0.112                                                                         | 0.064                                                          | 0.092                                                                    | 0.068                                                                                                    | 0.090                                                                                                     | 0.240                                                                                                                  |
| Head                  | Right Touch                                                                          | 0.084                                                         | 0.117                                                          | 0.201                                                             | 0.216                                                                                       | 0.103                                                                                     | 0.215                                                                                   | 0.248                                                                         | 0.172                                                          | 0.058                                                                    | 0.005                                                                                                    | 0.040                                                                                                     | 0.306                                                                                                                  |
|                       | Right Tilt                                                                           | 0.034                                                         | 0.078                                                          | 0.147                                                             | 0.093                                                                                       | 0.055                                                                                     | 0.098                                                                                   | 0.112                                                                         | 0.084                                                          | 0.046                                                                    | 0.013                                                                                                    | 0.008                                                                                                     | 0.193                                                                                                                  |
|                       | Front                                                                                | 0.246                                                         | 0.208                                                          | 0.315                                                             | 0.323                                                                                       | 0.276                                                                                     | 0.249                                                                                   | 0.215                                                                         | 0.157                                                          | 0.068                                                                    | 0.084                                                                                                    | 0.243                                                                                                     | 0.566                                                                                                                  |
| Body-worn             | Back                                                                                 | 0.345                                                         | 0.222                                                          | 0.346                                                             | 0.328                                                                                       | 0.394                                                                                     | 0.254                                                                                   | 0.274                                                                         | 0.149                                                          | 0.118                                                                    | 0.127                                                                                                    | 0.243                                                                                                     | 0.637                                                                                                                  |
|                       | Front                                                                                | 0.344                                                         | 0.327                                                          | 0.593                                                             | 0.498                                                                                       | 0.434                                                                                     | 0.439                                                                                   | 0.482                                                                         | 0.302                                                          | 0.143                                                                    | 0.136                                                                                                    | 0.365                                                                                                     | 0.958                                                                                                                  |
|                       | Back                                                                                 | 0.614                                                         | 0.365                                                          | 0.681                                                             | 0.558                                                                                       | 0.736                                                                                     | 0.500                                                                                   | 0.407                                                                         | 0.267                                                          | 0.210                                                                    | 0.200                                                                                                    | 0.365                                                                                                     | 1.101                                                                                                                  |
|                       | Left                                                                                 | 0.297                                                         | 0.153                                                          | 0.277                                                             | 0.321                                                                                       | 0.334                                                                                     | 0.343                                                                                   | 0.278                                                                         | 0.142                                                          | 1                                                                        | /                                                                                                        | 0.365                                                                                                     | 0.708                                                                                                                  |
| Hotspot               | Right                                                                                | 0.079                                                         | 0.092                                                          | 0.183                                                             | 0.159                                                                                       | 0.098                                                                                     | 0.150                                                                                   | 0.104                                                                         | 0.061                                                          | 0.285                                                                    | 0.395                                                                                                    | 0.365                                                                                                     | 0.578                                                                                                                  |
|                       | Тор                                                                                  | /                                                             | 1                                                              | /                                                                 |                                                                                             | 1                                                                                         | /                                                                                       | /                                                                             | 1                                                              | 0.086                                                                    | 0.145                                                                                                    | 0.365                                                                                                     | 0.365                                                                                                                  |
|                       | Bottom                                                                               | 0.225                                                         | 0.581                                                          | 0.947                                                             | 0.798                                                                                       | 0.296                                                                                     | 0.697                                                                                   | 0.632                                                                         | 0.337                                                          | 1                                                                        | 1                                                                                                        | 0.365                                                                                                     | 1.312                                                                                                                  |
|                       |                                                                                      |                                                               |                                                                |                                                                   |                                                                                             | ARmax (V                                                                                  |                                                                                         |                                                                               |                                                                | WiFi Ante                                                                | nna SARm                                                                                                 |                                                                                                           | _                                                                                                                      |
| Test                  | position                                                                             | 0014050                                                       | 00111000                                                       |                                                                   |                                                                                             | WCDMA                                                                                     | LTE                                                                                     | LTE                                                                           | LTE                                                            | WLAN                                                                     | WLAN                                                                                                     |                                                                                                           | 10g                                                                                                                    |
|                       |                                                                                      | GSM850                                                        | GSM1900                                                        | Band II                                                           | Band IV                                                                                     | Band V                                                                                    |                                                                                         |                                                                               | Band 38                                                        |                                                                          | 5G                                                                                                       | BT                                                                                                        | SARma                                                                                                                  |
|                       | Front                                                                                | /                                                             | /                                                              |                                                                   | 1                                                                                           | /                                                                                         | /                                                                                       | /                                                                             | /                                                              | /                                                                        | 0.582                                                                                                    | 0.292                                                                                                     | 0.582                                                                                                                  |
|                       | Back                                                                                 | /                                                             | 1                                                              | 1                                                                 | /                                                                                           | /                                                                                         | /                                                                                       | /                                                                             | /                                                              | /                                                                        | 0.544                                                                                                    | 0.292                                                                                                     | 0.544                                                                                                                  |
| Lineb                 | Left                                                                                 | /                                                             | 1                                                              | 1                                                                 | /                                                                                           | /                                                                                         | /                                                                                       | /                                                                             | /                                                              | /                                                                        | 0.157                                                                                                    | 0.292                                                                                                     | 0.292                                                                                                                  |
| Limb                  | Right                                                                                | /                                                             | /                                                              | /                                                                 | /                                                                                           | /                                                                                         | /                                                                                       | /                                                                             | /                                                              | 1                                                                        | 1.236                                                                                                    | 0.292                                                                                                     | 1.236                                                                                                                  |
|                       | Тор                                                                                  | /                                                             | /                                                              | /                                                                 | /                                                                                           | /                                                                                         | /                                                                                       | /                                                                             | 1                                                              |                                                                          | 0.363                                                                                                    | 0.292                                                                                                     | 0.363                                                                                                                  |
|                       | Bottom                                                                               | /                                                             | /                                                              | /                                                                 | /                                                                                           | /                                                                                         | /                                                                                       | /                                                                             | 1                                                              | 1                                                                        | 1                                                                                                        | 1                                                                                                         | /                                                                                                                      |
|                       |                                                                                      |                                                               |                                                                | Second                                                            | Antenna                                                                                     | SARmax                                                                                    | (W/kg)                                                                                  | <u> </u>                                                                      |                                                                | WiFi Ante                                                                | nna SARm                                                                                                 | nax (W/kg                                                                                                 | )Summe                                                                                                                 |
| Test                  | position                                                                             | GSM850                                                        | GSM1900                                                        |                                                                   | WCDMA<br>Band IV                                                                            | WCDMA<br>Band V                                                                           | LTE<br>Band 4                                                                           | LTE<br>Band 7                                                                 | LTE<br>Band 38                                                 | WLAN<br>2.4G                                                             | WLAN<br>5G                                                                                               | BT                                                                                                        | 1g<br>SARma<br>(W/kg                                                                                                   |
|                       | Left Touch                                                                           | 0.509                                                         | 0.241                                                          | 0.464                                                             | 0.372                                                                                       | 0.512                                                                                     | 0.535                                                                                   | 0.162                                                                         | 0.117                                                          | 0.230                                                                    | 0.091                                                                                                    | 0.298                                                                                                     | 0.833                                                                                                                  |
|                       | Left Tilt                                                                            | 0.368                                                         | 0.209                                                          | 0.324                                                             | 0.345                                                                                       | 0.360                                                                                     | 0.333                                                                                   | 0.199                                                                         | 0.133                                                          | 0.092                                                                    | 0.068                                                                                                    | 0.090                                                                                                     | 0.460                                                                                                                  |
| Head                  | Right Touch                                                                          | 0.470                                                         | 0.376                                                          | 0.810                                                             | 0.689                                                                                       | 0.485                                                                                     | 0.682                                                                                   | 0.558                                                                         | 0.603                                                          | 0.058                                                                    | 0.005                                                                                                    | 0.040                                                                                                     | 0.868                                                                                                                  |
|                       | Right Tilt                                                                           | 0.412                                                         | 0.244                                                          | 0.472                                                             | 0.475                                                                                       | 0.371                                                                                     | 0.466                                                                                   | 0.416                                                                         | 0.552                                                          | 0.046                                                                    | 0.013                                                                                                    | 0.008                                                                                                     | 0.598                                                                                                                  |
|                       | Front                                                                                | 0.229                                                         | 0.025                                                          | 0.200                                                             | 0.201                                                                                       | 0.243                                                                                     | 0.192                                                                                   | 0.169                                                                         | 0.129                                                          | 0.068                                                                    | 0.084                                                                                                    | 0.243                                                                                                     | 0.486                                                                                                                  |
| Body-worn             |                                                                                      | 0.220                                                         | 0.020                                                          |                                                                   |                                                                                             |                                                                                           |                                                                                         |                                                                               |                                                                |                                                                          |                                                                                                          |                                                                                                           | 0                                                                                                                      |
|                       | Back                                                                                 | 0 287                                                         | 0.025                                                          | 0 199                                                             |                                                                                             |                                                                                           |                                                                                         |                                                                               |                                                                |                                                                          |                                                                                                          |                                                                                                           | 0.558                                                                                                                  |
|                       | Back<br>Front                                                                        | 0.287                                                         | 0.025                                                          | 0.199                                                             | 0.131                                                                                       | 0.315                                                                                     | 0.111                                                                                   | 0.166                                                                         | 0.159                                                          | 0.118                                                                    | 0.127                                                                                                    | 0.243                                                                                                     |                                                                                                                        |
|                       | Front                                                                                | 0.210                                                         | 0.036                                                          | 0.291                                                             | 0.131<br>0.315                                                                              | 0.315<br>0.261                                                                            | 0.111<br>0.304                                                                          | 0.166<br>0.275                                                                | 0.159<br>0.229                                                 | 0.118<br>0.143                                                           | 0.127<br>0.136                                                                                           | 0.243<br>0.365                                                                                            | 0.680                                                                                                                  |
|                       | Front<br>Back                                                                        | 0.210<br>0.311                                                | 0.036<br>0.051                                                 | 0.291<br>0.423                                                    | 0.131<br>0.315<br>0.221                                                                     | 0.315<br>0.261<br>0.365                                                                   | 0.111<br>0.304<br>0.227                                                                 | 0.166<br>0.275<br>0.359                                                       | 0.159<br>0.229<br>0.301                                        | 0.118                                                                    | 0.127<br>0.136<br>0.200                                                                                  | 0.243<br>0.365<br>0.365                                                                                   | 0.680                                                                                                                  |
| Hotspot               | Front<br>Back<br>Left                                                                | 0.210<br>0.311<br>0.407                                       | 0.036<br>0.051<br>0.040                                        | 0.291<br>0.423<br>0.356                                           | 0.131<br>0.315<br>0.221<br>0.148                                                            | 0.315<br>0.261<br>0.365<br>0.460                                                          | 0.111<br>0.304<br>0.227<br>0.243                                                        | 0.166<br>0.275<br>0.359<br>0.415                                              | 0.159<br>0.229<br>0.301<br>0.387                               | 0.118<br>0.143<br>0.210<br>/                                             | 0.127<br>0.136<br>0.200<br>/                                                                             | 0.243<br>0.365<br>0.365<br>0.365                                                                          | 0.680<br>0.788<br><b>0.825</b>                                                                                         |
| Hotspot               | Front<br>Back<br>Left<br>Right                                                       | 0.210<br>0.311<br>0.407<br>0.195                              | 0.036<br>0.051<br>0.040<br>0.009                               | 0.291<br>0.423<br>0.356<br>0.065                                  | 0.131<br>0.315<br>0.221<br>0.148<br>0.063                                                   | 0.315<br>0.261<br>0.365<br>0.460<br>0.227                                                 | 0.111<br>0.304<br>0.227<br>0.243<br>0.073                                               | 0.166<br>0.275<br>0.359<br>0.415<br>0.043                                     | 0.159<br>0.229<br>0.301<br>0.387<br>0.038                      | 0.118<br>0.143<br>0.210<br>/<br>0.285                                    | 0.127<br>0.136<br>0.200<br>/<br>0.395                                                                    | 0.243<br>0.365<br>0.365<br>0.365<br>0.365                                                                 | 0.680<br>0.788<br><b>0.825</b><br>0.622                                                                                |
| Hotspot               | Front<br>Back<br>Left<br>Right<br>Top                                                | 0.210<br>0.311<br>0.407                                       | 0.036<br>0.051<br>0.040                                        | 0.291<br>0.423<br>0.356                                           | 0.131<br>0.315<br>0.221<br>0.148                                                            | 0.315<br>0.261<br>0.365<br>0.460                                                          | 0.111<br>0.304<br>0.227<br>0.243                                                        | 0.166<br>0.275<br>0.359<br>0.415                                              | 0.159<br>0.229<br>0.301<br>0.387                               | 0.118<br>0.143<br>0.210<br>/                                             | 0.127<br>0.136<br>0.200<br>/                                                                             | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365                                                        | 0.558<br>0.680<br>0.788<br>0.825<br>0.622<br>0.656                                                                     |
| Hotspot               | Front<br>Back<br>Left<br>Right                                                       | 0.210<br>0.311<br>0.407<br>0.195                              | 0.036<br>0.051<br>0.040<br>0.009                               | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/                    | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/                                     | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/                                   | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/                                 | 0.166<br>0.275<br>0.359<br>0.415<br>0.043                                     | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/        | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/                      | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/                                                      | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365                                               | 0.680<br>0.788<br>0.825<br>0.622<br>0.656<br>0.365                                                                     |
| C                     | Front<br>Back<br>Left<br>Right<br>Top<br>Bottom                                      | 0.210<br>0.311<br>0.407<br>0.195                              | 0.036<br>0.051<br>0.040<br>0.009                               | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second          | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna                          | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax                         | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)                       | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/                       | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/        | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante         | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARm                                          | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365                                               | 0.680<br>0.788<br>0.828<br>0.622<br>0.656<br>0.365                                                                     |
| C                     | Front<br>Back<br>Left<br>Right<br>Top<br>Bottom                                      | 0.210<br>0.311<br>0.407<br>0.195<br>0.179<br>/                | 0.036<br>0.051<br>0.040<br>0.009                               | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second<br>WCDMA | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna                          | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax<br>WCDMA                | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)<br>LTE                | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/<br>LTE                | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/        | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante<br>WLAN | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARm<br>WLAN<br>5G                            | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>nax (W/kg<br>BT                            | 0.680<br>0.788<br>0.825<br>0.622<br>0.656<br>0.365<br>0.365<br>Summ<br>10g<br>SARm<br>(W/kg                            |
| C                     | Front<br>Back<br>Left<br>Right<br>Top<br>Bottom                                      | 0.210<br>0.311<br>0.407<br>0.195<br>0.179<br>/                | 0.036<br>0.051<br>0.040<br>0.009<br>0.036<br>/                 | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second<br>WCDMA | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna 3<br>WCDMA               | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax<br>WCDMA                | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)<br>LTE                | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/<br>LTE<br>Band 7<br>/ | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/<br>LTE | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante<br>WLAN | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARn<br>WLAN<br>5G<br>0.582                   | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>nax (W/kg<br>BT<br>0.292                   | 0.680<br>0.782<br>0.622<br>0.650<br>0.365<br>Summ<br>10g<br>SARm<br>(W/kg<br>0.582                                     |
| Test                  | Front<br>Back<br>Left<br>Right<br>Top<br>Bottom                                      | 0.210<br>0.311<br>0.407<br>0.195<br>0.179<br>/                | 0.036<br>0.051<br>0.040<br>0.009<br>0.036<br>/                 | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second<br>WCDMA | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna 3<br>WCDMA               | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax<br>WCDMA                | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)<br>LTE                | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/<br>LTE<br>Band 7      | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/<br>LTE | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante<br>WLAN | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARm<br>WLAN<br>5G                            | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>nax (W/kg<br>BT                            | 0.680<br>0.782<br>0.622<br>0.650<br>0.365<br>Summ<br>10g<br>SARm<br>(W/kg<br>0.582                                     |
| Test                  | Front<br>Back<br>Left<br>Right<br>Top<br>Bottom<br>position                          | 0.210<br>0.311<br>0.407<br>0.195<br>0.179<br>/<br>GSM850<br>/ | 0.036<br>0.051<br>0.040<br>0.009<br>0.036<br>/<br>GSM1900<br>/ | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second<br>WCDMA | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna<br>WCDMA<br>Band IV<br>/ | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax<br>WCDMA<br>Band V<br>/ | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)<br>LTE<br>Band 4<br>/ | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/<br>LTE<br>Band 7<br>/ | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/<br>LTE | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante<br>WLAN | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARn<br>WLAN<br>5G<br>0.582                   | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>nax (W/kg<br>BT<br>0.292                   | 0.680<br>0.788<br>0.829<br>0.622<br>0.656<br>0.365<br>0.365<br>Summ<br>10g<br>SARm<br>(W/kg<br>0.582<br>0.544          |
| Test Product specific | Front<br>Back<br>Left<br>Top<br>Bottom<br>position<br>Front<br>Back                  | 0.210<br>0.311<br>0.407<br>0.195<br>0.179<br>/<br>GSM850<br>/ | 0.036<br>0.051<br>0.040<br>0.009<br>0.036<br>/<br>GSM1900<br>/ | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second<br>WCDMA | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna<br>WCDMA<br>Band IV<br>/ | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax<br>WCDMA<br>Band V<br>/ | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)<br>LTE<br>Band 4<br>/ | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/<br>LTE<br>Band 7<br>/ | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/<br>LTE | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante<br>WLAN | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARm<br>WLAN<br>5G<br>0.582<br>0.544          | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>max (W/kg<br>BT<br>0.292<br>0.292          | 0.680<br>0.788<br>0.825<br>0.622<br>0.656<br>0.365                                                                     |
| Test                  | Front<br>Back<br>Left<br>Right<br>Top<br>Bottom<br>position<br>Front<br>Back<br>Left | 0.210<br>0.311<br>0.407<br>0.195<br>0.179<br>/<br>GSM850<br>/ | 0.036<br>0.051<br>0.040<br>0.009<br>0.036<br>/<br>GSM1900<br>/ | 0.291<br>0.423<br>0.356<br>0.065<br>0.291<br>/<br>Second<br>WCDMA | 0.131<br>0.315<br>0.221<br>0.148<br>0.063<br>0.222<br>/<br>Antenna<br>WCDMA<br>Band IV<br>/ | 0.315<br>0.261<br>0.365<br>0.460<br>0.227<br>0.194<br>/<br>SARmax<br>WCDMA<br>Band V<br>/ | 0.111<br>0.304<br>0.227<br>0.243<br>0.073<br>0.238<br>/<br>(W/kg)<br>LTE<br>Band 4<br>/ | 0.166<br>0.275<br>0.359<br>0.415<br>0.043<br>0.205<br>/<br>LTE<br>Band 7<br>/ | 0.159<br>0.229<br>0.301<br>0.387<br>0.038<br>0.209<br>/<br>LTE | 0.118<br>0.143<br>0.210<br>/<br>0.285<br>0.086<br>/<br>WiFi Ante<br>WLAN | 0.127<br>0.136<br>0.200<br>/<br>0.395<br>0.145<br>/<br>nna SARn<br>WLAN<br>5G<br>0.582<br>0.544<br>0.157 | 0.243<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>0.365<br>nax (W/kg<br>BT<br>0.292<br>0.292<br>0.292 | 0.680<br>0.788<br>0.825<br>0.622<br>0.656<br>0.365<br>0.365<br>Summ<br>10g<br>SARm<br>(W/kg<br>0.582<br>0.544<br>0.292 |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.


t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134號 www.tw.sgs.com





| 9           | Equipment                           | list        |                                          |                  |                  |                     |                         |
|-------------|-------------------------------------|-------------|------------------------------------------|------------------|------------------|---------------------|-------------------------|
|             | Test Platform                       | SPEA        | G DASY5 Profes                           | sional           |                  |                     |                         |
|             | Description                         | SAR T       | est System (Free                         | quency range 30  | 0MHz-6GHz)       |                     |                         |
| So          | oftware Reference                   | DASY        | 52 52.8.8(1222);                         | SEMCAD X 14.     | 6.10(7331)       |                     |                         |
|             |                                     |             | Hard                                     | dware Referenc   | e                |                     |                         |
|             | Equipment                           |             | Manufacturer                             | Model            | Serial<br>Number | Calibration<br>Date | Due date of calibration |
| $\boxtimes$ | Twin Phantom                        |             | SPEAG                                    | SAM 1            | 1283             | NCR                 | NCR                     |
| $\boxtimes$ | Twin Phantom                        |             | SPEAG                                    | SAM 2            | 1913             | NCR                 | NCR                     |
| $\boxtimes$ | Twin Phantom                        |             | SPEAG                                    | SAM 3            | 1912             | NCR                 | NCR                     |
| $\boxtimes$ | Twin Phantom                        |             | SPEAG                                    | SAM 4            | 1640             | NCR                 | NCR                     |
| $\boxtimes$ | DAE                                 |             | SPEAG                                    | DAE4             | 896              | 2018-11-08          | 2019-11-07              |
| $\boxtimes$ | DAE                                 |             | SPEAG                                    | DAE4             | 1428             | 2019-01-11          | 2020-01-10              |
| $\boxtimes$ | E-Field Probe                       |             | SPEAG                                    | EX3DV4           | 3923             | 2018-09-30          | 2019-09-29              |
| $\boxtimes$ | E-Field Probe                       |             | SPEAG                                    | ES3DV3           | 3121             | 2019-02-25          | 2020-02-24              |
| $\boxtimes$ | E-Field Probe                       |             | SPEAG                                    | EX3DV4           | 3962             | 2019-02-25          | 2020-02-24              |
| $\boxtimes$ | Validation Kits                     |             | SPEAG                                    | D835V2           | 4d105            | 2016-12-08          | 2019-12-07              |
| $\boxtimes$ | Validation Kits                     |             | SPEAG                                    | D1900V2          | 5d028            | 2016-12-07          | 2019-12-06              |
| $\boxtimes$ | Validation Kits                     |             | SPEAG                                    | D2450V2          | 733              | 2016-12-07          | 2019-12-06              |
| $\boxtimes$ | Validation Kits                     |             | SPEAG                                    | D2600V2          | 1125             | 2016-06-22          | 2019-06-21              |
| $\boxtimes$ | Validation Kits                     |             | SPEAG                                    | D5GHzV2          | 1165             | 2016-12-13          | 2019-12-12              |
|             |                                     | <b>I</b>    | A                                        | 550740           | NU/40500500      | 2018-03-13          | 2019-03-12              |
| $\square$   | Agilent Network Ana                 | alyzer      | Agilent                                  | E5071C           | MY46523590       | 2019-03-13          | 2020-03-12              |
| $\boxtimes$ | Dielectric Probe                    | Kit         | Agilent                                  | 85070E           | US01440210       | NCR                 | NCR                     |
| $\boxtimes$ | Universal Radio<br>Communication Te |             | R&S                                      | CMU200           | 123090           | 2018-06-21          | 2019-06-20              |
|             | Radio Communica<br>Analyzer         | ition       | Anritsu                                  | MT8821C          | 6201502984       | 2018-05-02          | 2019-05-01              |
| $\boxtimes$ | RF Bi-Directional Co                | oupler      | Agilent                                  | 86205-60001      | MY31400031       | NCR                 | NCR                     |
| $\boxtimes$ | Signal Concrete                     | .r          | Agilopt                                  | N5171B           | MY53050736       | 2018-03-13          | 2019-03-12              |
|             | Signal Generato                     | Л           | Agilent                                  |                  | WIT55050750      | 2019-03-13          | 2020-03-12              |
| $\boxtimes$ | Preamplifier                        |             | Mini-Circuits                            | ZHL-42W          | 15542            | NCR                 | NCR                     |
|             | Preamplifier                        |             | Compliance<br>Directions<br>Systems Inc. | AMP28-3W         | 073501433        | NCR                 | NCR                     |
|             | Power Meter                         | Power Motor |                                          | E4416A CB4400005 |                  | 2018-03-13 2019-0   |                         |
| $\boxtimes$ | Power weter                         |             | Agilent                                  | E4416A           | GB41292095       | 2019-03-13          | 2020-03-12              |

Equipment list ٥

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

t (886-2) 2299-3279

WhitSf faiting bate the results and the state at the state at the state and state at the state prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

f (886-2) 2298-0488

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan 24803/新北市五股區新北產業園區五工路 134 號 www.tw.sgs.com



| $\boxtimes$ | Power Sensor                          | Agilent       | 8481H       | MY41091234 | 2018-03-13 | 2019-03-12 |
|-------------|---------------------------------------|---------------|-------------|------------|------------|------------|
|             | Power Serisor                         | Agliefit      | 040111      | MT41091234 | 2019-03-13 | 2020-03-12 |
| $\boxtimes$ | Power Sensor                          | R&S           | NRP-Z92     | 100025     | 2018-03-13 | 2019-03-12 |
|             | Fower Sensor                          | Ras           | NRF-292     | 100025     | 2019-03-13 | 2020-03-12 |
| $\square$   | Attenuator                            | SHX           | TS2-3dB     | 30704      | NCR        | NCR        |
| $\square$   | Coaxial low pass filter               | Mini-Circuits | VLF-2500(+) | NA         | NCR        | NCR        |
| $\square$   | Coaxial low pass filter               | Microlab Fxr  | LA-F13      | NA         | NCR        | NCR        |
| $\boxtimes$ | 50 Ω coaxial load                     | Mini-Circuits | KARN-50+    | 00850      | NCR        | NCR        |
| $\square$   | DC POWER SUPPLY                       | SAKO          | SK1730SL5A  | NA         | NCR        | NCR        |
| $\boxtimes$ | Speed reading thermometer             | MingGao       | T809        | NA         | 2018-03-19 | 2019-03-18 |
| $\boxtimes$ | Humidity and Temperature<br>Indicator | KIMTOKA       | КІМТОКА     | NA         | 2018-03-19 | 2019-03-18 |

Note: All the equipments are within the valid period when the tests are performed.

#### 10 **Calibration certificate**

Please see the Appendix C

#### **Photographs** 11

Please see the Appendix D

# **Appendix A: Detailed System Check Results**

**Appendix B: Detailed Test Results** 

# **Appendix C: Calibration certificate**

**Appendix D: Photographs** 

**Appendix E: Antenna Locations** 



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms\_and\_conditions.htm</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

www.tw.sas.com