

Appendix C. Calibration Certificate

Table of contents

DAE-1235

Probe EX3DV4-3743

Dipole D2450V2-978

Dipole D5GHzV2-1155

Justification of the extended calibration of Dipole D2450V2-978

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

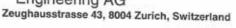
11.12.2009

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Huawei-SZ (Auden)


Certificate No: DAE4-1235_Nov17

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D	04 BM - SN: 1235	
Calibration procedure(s)	QA CAL-06.v29		
	Calibration proces	dure for the data acquisition elec	ctronics (DAE)
Calibration date:	November 16, 20	17	
All calibrations have been conduct Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	rtainties with confidence pro	nal standards, which realize the physical un obability are given on the following pages ar r facility: environment temperature (22 ± 3)°(<u>Cal Date (Certificate No.)</u> 31-Aug-17 (No:21092) Check Date (in house)	d are part of the certificate.
uto DAE Calibration Unit		05-Jan-17 (in house check)	In house check: Jan-18
			The second of the other of all in the
Calibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-17 (in house check)	In house check: Jan-18
	SE UMS 006 AA 1002	05-Jan-17 (in house check)	In house check: Jan-18
Calibrator Box V2.1	Name	Function	In house check: Jan-18 Signature
Calibrator Box V2.1			
Calibrator Box V2.1	Name Eric Hainfeld	Function Laboratory Technician	
	Name	Function	
Calibrator Box V2.1	Name Eric Hainfeld	Function Laboratory Technician	

Calibration Laboratory of Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Suice Colibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE

Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

ge = -100+300 mV
ge = -1+3mV
1

3 sec ing time:

Calibration Factors	X	Y	Z
High Range	405.059 ± 0.02% (k=2)	403.801 ± 0.02% (k=2)	404.495 ± 0.02% (k=2)
		3.98987 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system 205.0	0°±1°	
---	-------	--

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199993.98	-1.45	-0.00
Channel X + Input	20002.16	0.62	0.00
Channel X - Input	-19998.69	2.43	-0.01
Channel Y + Input	199990.18	-5.04	-0.00
Channel Y + Input	20000.13	-1.41	-0.01
Channel Y - Input	-20001.42	-0.31	0.00
Channel Z + Input	199991.13	-4.07	-0.00
Channel Z + Input	19999.72	-1.64	-0.01
Channel Z - Input	-20002.58	-1.38	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.94	-0.05	-0.00
Channel X + Input	201.20	-0.18	-0.09
Channel X - Input	-198.86	-0.40	0.20
Channel Y + Input	2001.17	0.23	0.01
Channel Y + Input	200.91	-0.48	-0.24
Channel Y - Input	-199.10	-0.68	0.34
Channel Z + Input	2001.10	0.31	0.02
Channel Z + Input	200.43	-0.77	-0.38
Channel Z - Input	-200.12	-1.54	0.78

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	5.59	3.80
	- 200	-3.66	-5.26
Channel Y	200	-23.64	-23.79
	- 200	23.21	22.97
Channel Z	200	6.38	6.07
	- 200	-8.80	-8.85

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.39	-5.00
Channel Y	200	8.36	-	3.68
Channel Z	200	9.75	6.01	-

Certificate No: DAE4-1235_Nov17

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16153	13693
Channel Y	16253	14943
Channel Z	15847	15917

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.38	-0.60	1.15	0.38
Channel Y	-0.02	-1.49	1.63	0.43
Channel Z	0.21	-0.89	1.65	0.38

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

In house check: Jun-18

Certificate No: EX3-3743 Nov17

Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden)

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

CALIBRATION CERTIFICATE Object EX3DV4 - SN:3743 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: November 23, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02525) Apr-18 Reference 20 dB Attenuator SN: S5277 (20x) 07-Apr-17 (No. 217-02528) Apr-18 Reference Probe ES3DV2 SN: 3013 31-Dec-16 (No. ES3-3013_Dec16) Dec-17 DAE4 SN: 660 7-Dec-16 (No. DAE4-660 Dec16) Dec-17 Secondary Standards ID Check Date (in house) Scheduled Check Power meter E4419B SN: GB41293874 06-Apr-16 (in house check Jun-16) In house check: Jun-18 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-16) In house check: Jun-18 Power sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-16) In house check: Jun-18

Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	tele
Approved by:	Katja Pokovic	Technical Manager	blilly
This calibration certificate shall r	not be reproduced except in	full without written approval of the laboratory.	Issued: November 24, 2017

04-Aug-99 (in house check Jun-16)

SN: US3642U01700

SN: US37390585

RF generator HP 8648C

Network Analyzer HP 8753E

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization @ or rotation around probe axis Polarization & 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3743_Nov17

Probe EX3DV4

SN:3743

Manufactured: March 26, 2010 Calibrated:

November 23, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Page 3 of 11

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.45	0.47	0.51	± 10.1 %
DCP (mV) ⁸	98.7	99.6	98.5	10.1 %

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	147.9	±2.5 %
		Y	0.0	0.0	1.0		135.6	
	1	Z	0.0	0.0	1.0		143.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

[®] Numerical linearization parameter: uncertainty not required. [©] Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

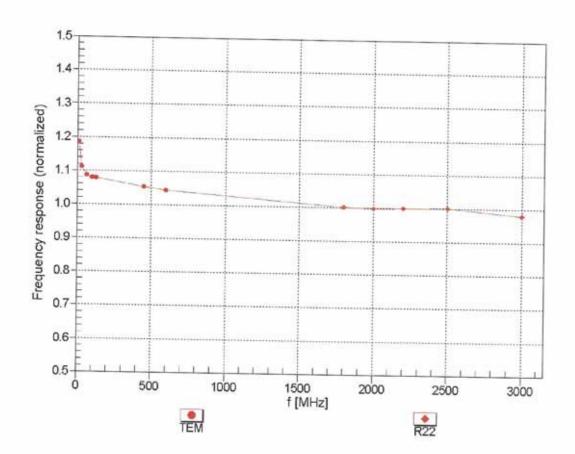
f (MHz) ^C	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.98	9.98	9.98	0.33	1.10	± 12.0 %
835	41.5	0.90	9.53	9.53	9.53	0.45	0.84	± 12.0 %
1750	40.1	1.37	8.48	8.48	8.48	0.46	0.82	± 12.0 %
1900	40.0	1.40	7.99	7.99	7.99	0.39	0.85	± 12.0 %
2000	40.0	1.40	7.86	7.86	7.86	0.39	0.86	± 12.0 %
2300	39.5	1.67	7.44	7.44	7.44	0.35	0.85	± 12.0 %
2450	39.2	1.80	7.08	7.08	7.08	0.41	0.85	± 12.0 %
2600	39.0	1.96	6.98	6.98	6.98	0.31	1.02	± 12.0 %
5250	35.9	4.71	5.10	5.10	5.10	0.35	1.90	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.40	1.90	± 13.1 %
5750	35.4	5.22	4.74	4.74	4.74	0.40	1.90	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

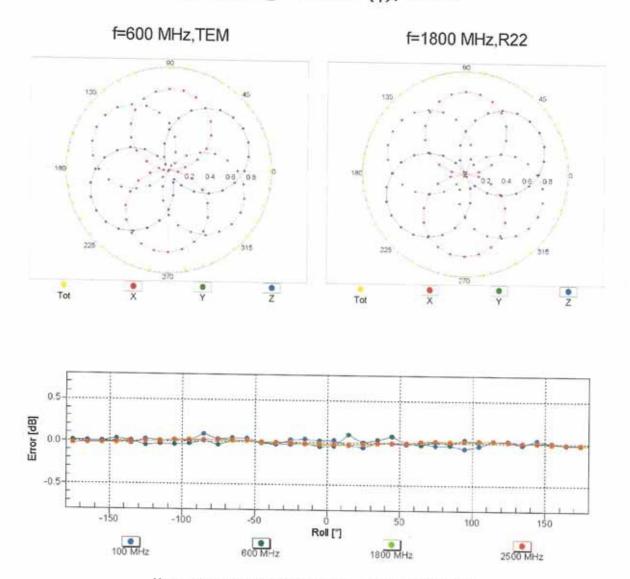
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.87	9.87	9.87	0.66	0.82	± 12.0 %
835	55.2	0.97	9.40	9.40	9.40	0.47	0.95	± 12.0 %
1750	53.4	1.49	8.01	8.01	8.01	0.35	0.94	± 12.0 %
1900	53.3	1.52	7.65	7.65	7.65	0.43	0.80	± 12.0 %
2000	53.3	1.52	7.53	7.53	7.53	0.46	0.85	± 12.0 %
2300	52.9	1.81	7.44	7.44	7.44	0.47	0.80	± 12.0 %
2450	52.7	1.95	7.34	7.34	7.34	0.37	0.88	± 12.0 %
2600	52.5	2.16	6.98	6.98	6.98	0.38	0.88	± 12.0 %
5250	48.9	5.36	4.85	4.85	4.85	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4.10	0.45	1.90	± 13.1 %
5750	48.3	5.94	4.32	4.32	4.32	0.45	1.90	± 13.1 %

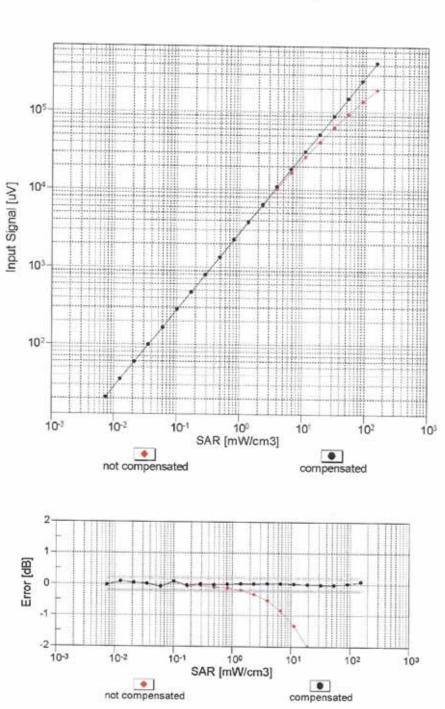
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

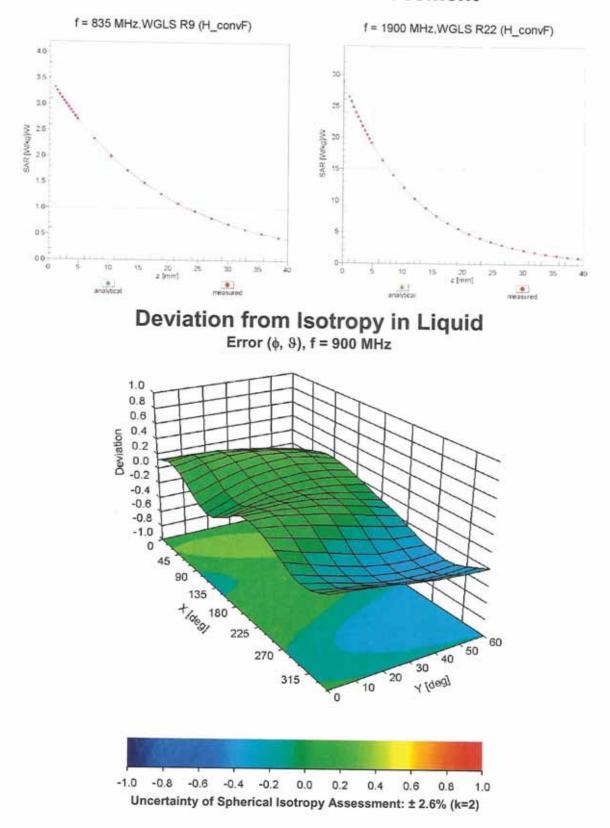

At frequencies below 3 GHz, the validity of tissue parameters (ic and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Page 8 of 11

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 9 of 11

Conversion Factor Assessment

Certificate No: EX3-3743_Nov17

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	74.6
Mechanical Surface Detection Mode	
Optical Surface Detection Mode	enabled
	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	
	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura Servizio Calibration Service

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Huawei (Auden)

CALIBRATION CERTIFICATE Object D2450V2 - SN: 978 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 08, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards 1D # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Oct-16 Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02222) Oct-16 Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Oct-16 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe EX3DV4 SN: 7349 31-Dec-15 (No. EX3-7349_Dec15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) In house check: Jun-18 Network Analyzer HP 8753E In house check: Oct-16 US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: February 8, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-978_Feb16

SAS) e signatories to the EA calibration certificates Certi

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.8.8
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	Prom	i Natio

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.26 W/kg

Certificate No: D2450V2-978_Feb16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 3.6 jΩ		
Return Loss	- 26.8 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 5.8 jΩ
Return Loss	- 24.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

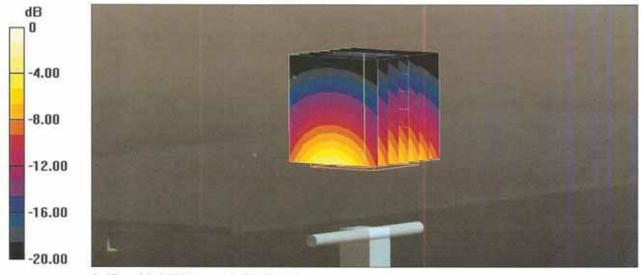
Manufactured by	SPEAG		
Manufactured on	December 30, 2014		

DASY5 Validation Report for Head TSL

Date: 08.02.2016

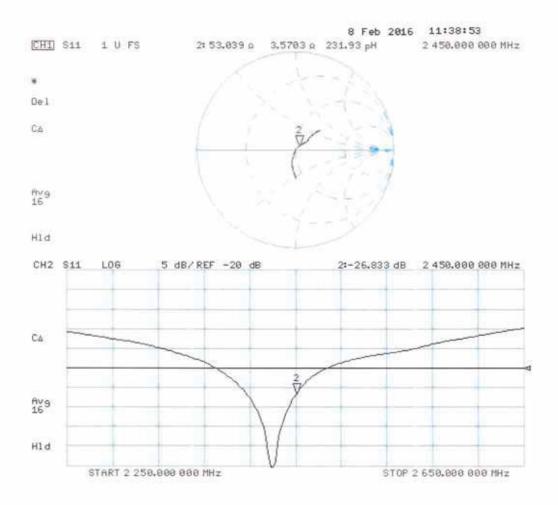
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN: 978


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.88 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.67, 7.67, 7.67); Calibrated: 30.12.2014;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.7 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.34 W/kg Maximum value of SAR (measured) = 23.1 W/kg

0 dB = 23.1 W/kg = 13.64 dBW/kg

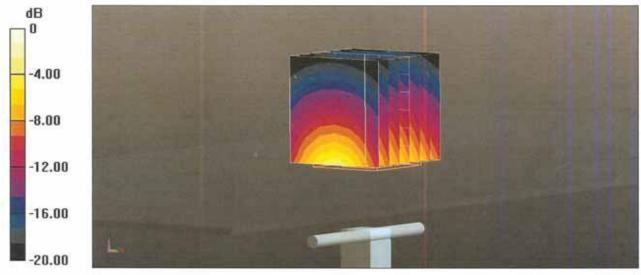
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.02.2016

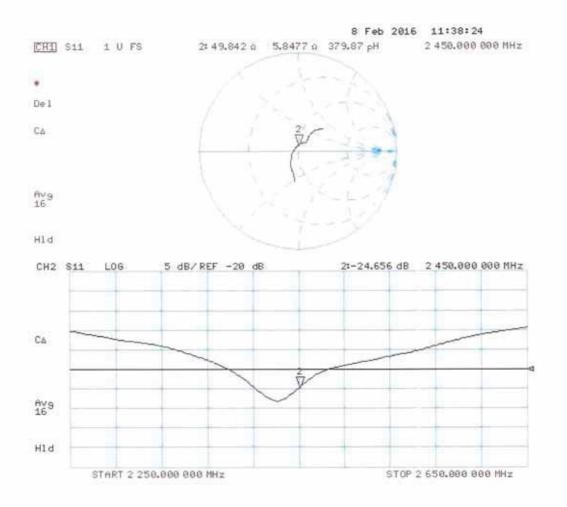
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN: 978


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.53, 7.53, 7.53); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.7 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.36 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1155_Apr17

CALIBRATION CERTIFICA

Huawei-SZ (Auden)

Object	D5GHzV2 - SN:1	1155	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	edure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	April 26, 2017		
Ne measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages ar bry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)		
rimary Standards		Cal Data (Cartificate No.)	
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
wer meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
wer meter NRP wer sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 aference 20 dB Attenuator ope-N mismatch combination aference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17
Vower meter NRP Vower sensor NRP-Z91 Vower sensor NRP-Z91 Veference 20 dB Attenuator ype-N mismatch combination Veference Probe EX3DV4 VAE4 VAE4 Vower meter EPM-442A Vower meter EPM-442A Vower sensor HP 8481A Vower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.63 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.7 Ω - 9.8 jΩ	
Return Loss	- 20.1 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.2 Ω - 6.4 jΩ	
Return Loss	- 21.0 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	56.4 Ω - 6.7 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.2 Ω - 8.3 jΩ	
Return Loss	- 21.6 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.9 Ω - 3.0 jΩ	
Return Loss	- 20.5 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	58.2 Ω - 4.5 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

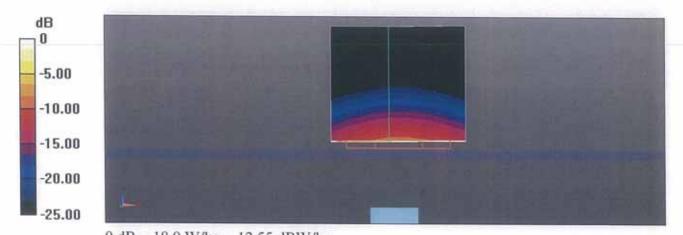
Manufactured by	SPEAG	
Manufactured on	September 20, 2012	

Date: 25.04.2017

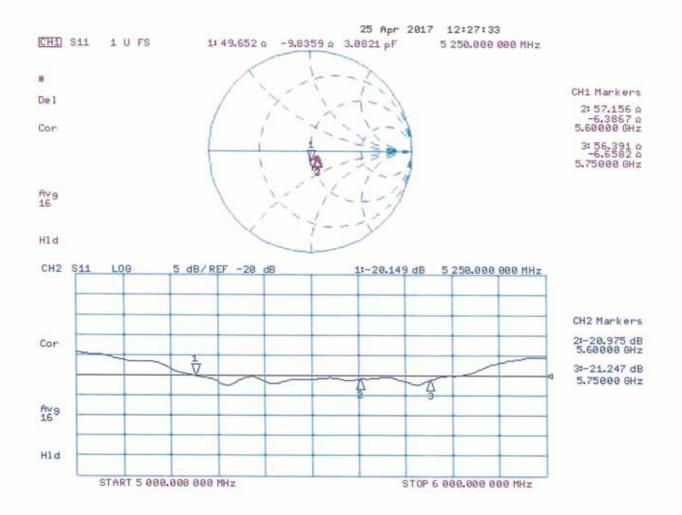
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1155

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.52 S/m; ϵ_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.86 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.06 S/m; ϵ_r = 33.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.22 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.31 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.08 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.7 W/kg

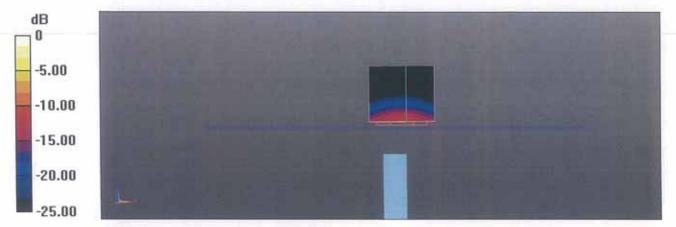
0 dB = 18.0 W/kg = 12.55 dBW/kg

Date: 26.04.2017

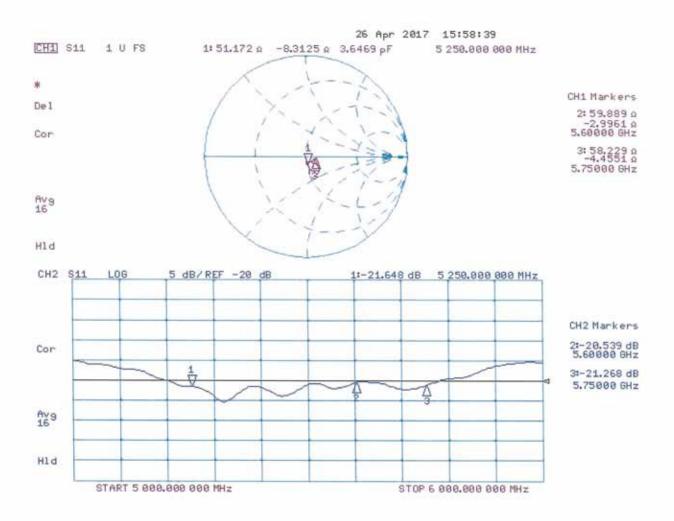
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1155

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.5 S/m; ε_r = 47.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.97 S/m; ε_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.18 S/m; ε_r = 46.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51), 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.55 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.72 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.66 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Justification of the extended calibration of Dipole D2450V2 SN:978

Per KDB 865664, we have measured the impedance and return loss as below.

1) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.

2) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50hm from the previous measurement.

Dipole 2450 Head TST	Target Value	Measured Value	Difference
Impedance transformed to feed point	53Ω+3.6jΩ	49.89Ω+0.34jΩ	R=-3.11Ω, X=-3.26Ω
Return Loss	-26.8dB	-29.17dB	8.84%
Dipole 2450 Body TST	Target Value	Measured Value	Difference
Impedance transformed to feed point	49.8Ω+5.8jΩ	50.68Ω+2.02jΩ	R=0.88Ω, X=-3.78Ω
Return Loss	-24.7dB	-23.91dB	-3.20%
Measured Date	2016-02-08	2017-01-26	
Impedance Tes	t-Head	Return Loss T	est-Head
		20.00 10.00 0.00 -0	
Impedance Tes	st-Body	Return Loss T	est- Body
51 2.450000 GHZ 50.677 0 2.0318 0 334.25 JH		30.10 31.2.4500000 Gnz -21.012 db 42.00 19.00 10.00 10.00 -25.00 -55.00	