

FCC Test Report

Product Name: cdma2000 Digital Mobile Phone

Model Number: HUAWEI C8600/HUAWEI M860

Report No: SYBHZ(R)E012062010EB-2

FCC ID: QISM860

Reliability Laboratory of Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L0310.
- 2. The laboratory has obtained the accreditation of THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION (A2LA), and Accreditation Council Certificate Number: 2174.01.
- 3. The laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 97556.
- 4. The laboratory has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 6369A-1.
- 5. The laboratory also has been listed by the VCCI to perform EMC measurements. The accreditation number is R2364, C2583, and T256.
- 6. The test report is invalid if not marked with "exclusive stamp for the test report".
- 7. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
- 8. The test report is invalid if there is any evidence of erasure and/or falsification.
- 9. If there is any dissidence for the test report, please file objection to the test centre within 15 days from the date of receiving the test report.
- 10. Normally, the test report is only responsible for the samples that have undergone the test.
- 11. Context of the test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the laboratory.

REPORT ON Mobile Phone

FCC Test of HUAWEI C8600/HUAWEI M860 cdma2000 Digital

M/N: HUAWEI C8600/HUAWEI M860

Report No: SYBHZ(R)E012062010EB-2

FCC ID: QISM860

REGULATION FCC CFR47 Part 2: Subpart J;

FCC CFR47 Part 22: Subpart H;

CONCLUSION PASS

General Manager 2010.06.21 张兴海

ate Name signature

Technical Responsibility

For Area of Testing 2010.06.21 余 辉

Date Name signature

Test Lab Engineer 2010.06.21 胡俊 がり つる`

Date Name signature

Contents

1 <u>Տ</u> ս	<u>ummary</u>	5
2 <u>Pr</u>	roduct Description	6
2.1	PRODUCTION INFORMATION	
2.2	MODIFICATION INFORMATION	
3 <u>Te</u>	est Site Description	7
3.1 3.2	TESTING PERIOD	
4 <u>Pr</u>	roduct Description	8
4.1 4.2	TECHNICAL CHARACTERISTICSEUT IDENTIFICATION LIST	
5 <u>Ma</u>	ain Test Instruments	11
6 <u>Tr</u>	ransmitter Measurements	12
6.1	EFFECTIVE RADIATED POWER OF TRANSMITTER (ERP)	12
6.2	CONDUCTED OUTPUT POWER	
6.3	MODULATION CHARACTERISTICS	
6.4	OCCUPIED BANDWIDTH	
6.5	BAND EDGES COMPLIANCE	
6.6	SPURIOUS EMISSION AT ANTENNA TERMINAL	25
6.7	FREQUENCY STABILITY	
7 <u>Sy</u>	ystem Measurement Uncertainty	33
Q A-	nnandiyas	3/

1 **Summary**

The table below summarizes the measurements and results for the cdma2000 Digital Mobile Phone HUAWEI C8600/HUAWEI M860. Detailed results and descriptions are shown in the following pages.

Table 1 Summary of results

FCC Measurement Specification	FCC Limits Part(s)	Description	Result
2.1046	22.913	Effective Radiated Power of Transmitter	PASS
2.1046	22.913	Conducted Power of Transmitter	PASS
2.1047		Modulation Characteristics	PASS
2.1049		Occupied Bandwidth	PASS
2.1051	22.917	Band Edges compliance	PASS
2.1051	22.917	Spurious Emission at Antenna Terminal	PASS
2.1053	22.917	Radiated Spurious Emission	PASS
2.1055	22.355	Frequency Stability	PASS

Note: The Radiated Spurious Emissions' test results are shown in the EMC report.

2 Product Description

2.1 Production Information

2.1.1 General Description

cdma2000 Digital Mobile Phone-HUAWEI C8600 /HUAWEI M860 is subscriber equipment in the CDMA/EVDO system. The frequency band is US Cellular and N.American PCS and AWS, But only US Cellular band test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, CDMA2000 1x and 1XEV-DO protocol processing, voice, MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port(to provide voice service) .

2.1.2 Support function and Service

The HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone support the function and service as follows:

Table 2 Service and Test mode List

	Table	2 Service and res	t mode List
Service Name	Characteristic	Corresponding Test	Note
		Mode	
voice and data	Modulation: QPSK	TM1*	
voice and data	Modulation: HPSK	TM3*	
Data(EV-DO)	Default Access Channel MAC	Subtype 0*	Modulation: HPSK
data(EV-DO)	Enhanced Access Channel MAC	Subtype 2*	The R-Data packet size determines the modulation format, R-Data Packet Size: 128, 256, 512, 768 or 1024 Modulation: BPSK R-Data Packet Size: 1536, 2048, 3072, 4096, 6144 or 8192 Modulation: QPSK R-Data Packet Size: 12288 Modulation: 8-PSK

Note: * Refer to ANSI/TIA-98-E section 1.3 for the information of TM (Test Mode).

2.2 Modification Information

For original equipment, following table is not application.

Table 3 Modification Information

Table 6 Medification information				
Model Number	Board/M	Original	New	Modify Information
	odule	Version	Version	
7		8 10 1		
	$M(\cap)$			
<u>L</u>				

3 Test Site Description

The test site of:

Huawei Technologies Co. Ltd. P.O. Box 518129 Huawei base, bantian, Longgang District, Shenzhen, China

3.1 Testing Period

The test have been performed during the period of

Jun. 14, 2010 — Jun. 20, 2010

3.2 General Set up Description

TM1: Forward Traffic Channel Radio Configuration 1, Reverse Traffic Channel Radio Configuration 1 **TM3:** Forward Traffic Channel Radio Configuration 3, Reverse Traffic Channel Radio Configuration 3

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
$\frac{\text{Pilot Ec}}{\text{I}_{\text{or}}}$	dB	-7
$\frac{\text{Traffic Ec}}{I_{\text{or}}}$	dB	-7.4

EVDO:

Current Physical Layer Subtype:

Subtype 0 * indicates that the protocol subtype assigned to the Access Channel MAC protocol is Default Access Channel MAC and its Subtype ID number is 0x0000.

Subtype 2 * indicates that the protocol subtype assigned to the Access Channel MAC protocol is Enhanced Access Channel MAC and its Subtype ID number is 0x0002

Note: *The test settings are defined in 3GPP2C.S0033.

4 Product Description

4.1 Technical Characteristics

4.1.1 Frequency Range

Table 4 Frequency Range

Uplink band:	824 to 849 MHz
Downlink band:	869 to 894 MHz

4.1.2 Channel Spacing / Separation

Table 5 Channel Spacing / Separation

Channel spacing:	1.23 MHz
Channel raster:	30 KHz

4.1.3 Type of Emission

Table 6 Type of Emission

Emission Designation:	1M23F9W	
Emission Designation.	TIVIZOT OVV	

According to CFR 47 (FCC) part 2, subpart C, section 2.201 and 2.202

4.1.4 Environmental Requirements

Table 7 Environmental Requirements

	Table 7 Litvilonnental Nequirements
Minimum temperature:	- 10 °C
Maximum temperature:	+ 55 °C
Relative Humidity:	5%-95%RH

4.1.5 Power Source

Table 8 Power Source

AC voltage nominal:	∼ 120 V
AC voltage range	~ 100 V to ~ 240 V
AC current maximal:	1A

4.1.6 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (9).

Please reference the document Tune-up Procedure in TCF.

4.1.7 Applied DC Voltages and Currents

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (8).

The voltage and current in the final RF stage is:

Table 9 Applied RF module DC Voltages and Currents

Voltage:	+3.7V
Current:	1000mA According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (8)

4.2 EUT Identification List

4.2.1 Board Information

Table 10 Board Information

Table to Beard Information			
HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone			
HUAWEI C8600/HUAWEI M860			
Board and Module			
Equipment Designation / Description	Hardware Version	Serial Number	
MAINBOARD	HC1M860M	2X2AA11051900075	

4.2.2 Battery Technical Data

Type: Rechargeable Li-ion

Manufacturer: Huawei Technologies Co., Ltd.

Battery Model: HB4F1
Rated capacity: 1500mAh
Nominal Voltage: +3.7V
Charging Voltage: +4.2V

4.2.3 FCC Identification

Grantee Code: QIS
Product Code: M860
FCC Identification: QISM860

5 Main Test Instruments

Main Test Equipments

Equipment Description	Manufacturer	Model Model	Serial Number	Calibrated until (MM.DD.YYYY)
Receiver	R&S	ESIB 26	100318	04.21.2011
BiLog Antenna	Schaffner	CBL 6112B	2747	11.16.2010
Horn Antenna	ETS-Lindgren	3117	00062553	08.15.2010
Horn Antenna	ETS-Lindgren	3160	00060006	08.03.2010
Dipole	Schwarzbeck	D69250- UHAP/D69250-VHAP	979/917	10.11.2010
Signal Generator	R&S	SMR 40	100325	05.11.2011
Signal Generator	R&S	SMU200A	101717	04.10.2011
Power Supply	Keithley	2306	1045337	05.11.2011
Climate Chamber	WEISS	WK11-180/170	5822604947001 0	10.23.2010
Universal Radio Communication Tester	R&S	CMU200	112347	03.30.2011
Wireless communication test set	Agilent	8960	GB43461081	05.10.2011
Spectrum Analyzer	R&S	FSU26	200245	08.27.2010
Spectrum Analysis	Agilent	E4440a	MY48250075	07.09.2010

6 Transmitter Measurements

6.1 Effective Radiated Power of Transmitter (ERP)

6.1.1 Test Conditions

Table 11 Test Conditions

Table	e ii iest conditions
Preconditioning:	0.5 hour
Measured at:	enclosure
Ambient temperature:	25℃
Relative humidity:	55%
Test Configurations:	CDMA TM1 and TM3 at frequency B,M,T
	EVDO Mode Subtype 0 and Subtype 2 at frequency B,M,T

6.1.2 Test Specifications and Limits

6.1.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 22.913

6.1.2.2 Supporting Standards

Table 12 Supporting Standards:

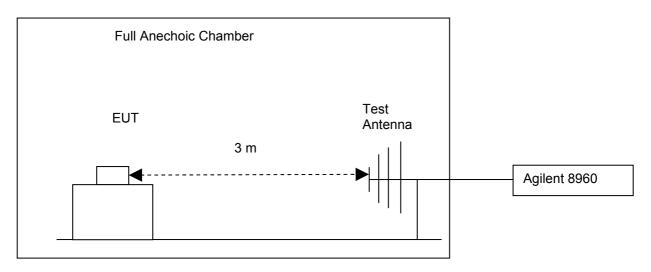
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum HUAWEI C8600/HUAWEI
	M860 cdma2000 Digital Mobile Phones

6.1.2.3 Limits

Compliance with part 22.913, in no any case may the peak power of a HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone transmitter exceed 7 W. The calculated longitude ERP by following formula: $ERP(dBm) = 10*log (ERP_{in mwatts})$.

Table 13 Limits

Maximum Output Power (Watts)	< 7 Watts	
Maximum Output Power (dBm)	< 38.5 dBm	


6.1.3 Test Method and Setup

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, ERP shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone to the wireless communication tester Agilent 8960 via the air interface. The band class is set as US Cellular.
- (b) Test the Radiated maximum output power by the Agilent 8960 received from test antenna.

(c) Use substitution method to verify the maximum output power. The EUT is substituted by a dipole antenna. The dipole is connected to a signal generator. And then adjust the output level of the signal generator to get the same received power recorded in step (b) on Agilent 8960, and record the power level of Signal Generator. Of course, the cable loss at the test frequency should be compensated.

Test setup

Step 1: Pre-test

Step 2: Substitution method to verify the maximum ERP

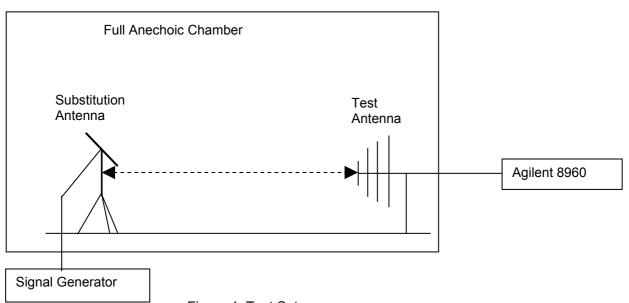


Figure 1. Test Set-up

NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

6.1.4 Measurement Results

Table 14 Measurement Results

Security	1 01/01:	Dublic
Security	ı evei.	Public

TEST CONDITIONS		Channel1013(B) 824.7MHz		Channel283(M) 833.49Mhz		Channel777(T) 848.31MHz	
		dBm		dBm		dBm	
		Measured	Limit	Measured	Limit	Measured	Limit
TM1	T _{nom} (25 °C) V _{nom} (3.7V)	26.20	38.5	25.65	38.5	25.83	38.5
ТМЗ	T _{nom} (25 °C) V _{nom} (3.7V)	26.19	38.5	25.70	38.5	25.87	38.5
Subtype 0	T _{nom} (25 °C) V _{nom} (3.7V)	25.89	38.5	25.46	38.5	25.76	38.5
Subtype 2	T _{nom} (25 °C) V _{nom} (3.7V)	25.86	38.5	25.48	38.5	25.81	38.5

6.1.4.1 Substitution Results

	Table 15 Substitution Results						1		
Test Mode	Freq. [MHz]	Meas. Level [dBm]	Substitution Antenna Type	SGP [dBm]	Substitution Gain [dBd]	Cable Loss [dB]	Substitution Level (ERP) [dBm]	Limit [dBm]	Result
TM1	824.7	26.20	Dipole Ant.	29.89	-2.95	0.6	26.34	38.5	Pass
TM1	833.49	25.65	Dipole Ant.	29.55	-3.02	0.6	25.93	38.5	Pass
TM1	848.31	25.83	Dipole Ant.	29.42	-3.11	0.6	25.71	38.5	Pass
TM3	824.7	26.19	Dipole Ant.	29.60	-2.95	0.6	26.05	38.5	Pass
TM3	833.49	25.70	Dipole Ant.	29.45	-3.02	0.6	25.83	38.5	Pass
TM3	848.31	25.87	Dipole Ant.	29.37	-3.11	0.6	25.66	38.5	Pass
Subtype	824.7	25.89	Dipole Ant.	29.53	-2.95	0.6	25.98	38.5	Pass
Subtype	833.49	25.46	Dipole Ant.	28.99	-3.02	0.6	25.37	38.5	Pass
Subtype	848.31	25.76	Dipole Ant.	29.20	-3.11	0.6	25.49	38.5	Pass
Subtype	824.7	25.86	Dipole Ant.	29.38	-2.95	0.6	25.83	38.5	Pass
Subtype	833.49	25.48	Dipole Ant.	29.36	-3.02	0.6	25.74	38.5	Pass
Subtype	848.31	25.81	Dipole Ant.	29.73	-3.11	0.6	26.02	38.5	Pass

Note: a, For get the ERP (Efficient Radiated Power) in substitution method, the following formula should take to calculate it,

ERP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd]

NOTE: SGP- Signal Generator Level

b, A CDMA EVDO signal with bandwidth of 1.23MHz is created by the vector generator R&S

SMU200A.

c, RBW=10kHz, VBW=300kHz, and integrated by the instrument to 1.23MHz.

6.1.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.2 Conducted output power

6.2.1 Test Conditions

Table 16 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25℃
Relative humidity:	55%
Test Configurations:	CDMA TM1 and TM3 at frequency B,M ,T
	EVDO Subtype 0 and Subtype 2 at frequency B,M ,T

6.2.2 Test Specifications and Limits

6.2.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 22.913

6.2.2.2 Supporting Standards

Table 17 Supporting Standards:

	· · · · · · · · · · · · · · · · · · ·
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum Mobile Stations

6.2.2.3 Limits

Compliance with part 22.913, in no any case may the peak power of a mobile station transmitter exceed 7 W. The calculated longitude ERP by following formula:

ERP(dBm)= 10*log (ERP_{in mwatts}).

And for conducted power, we can use Antenna Gain to calculate the limit. So the conducted power:

P_{cod}.(dBm)=ERP(dBm)- Gain(dBd). and Gain (dBd)= Gain(dBi)- 2.15dB

Table 18 Limits

Maximum Output Power (Watts)	< 7 Watts
Antenna Gain(dBd):	2.38
Maximum Conducted Output Power (dBm)	< 38.65dBm

6.2.3 Test Method and Setup

(a)For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, Conducted maximum power shall be measured when the transmitter is adjusted in

FCC ID: QISM860 Security Level: Public

accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Mobile Station to the wireless communication tester Agilent 8960 via the antenna connector. The band class is set as US Cellular. (b)Test the Conducted maximum output power by the Agilent 8960.

Test setup

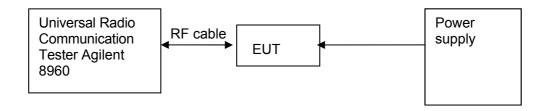


Figure 2. Test Set-up

6.2.4 Measurement Results

Table 19 Measurement Results

Table 19 Weasurement Results								
TEST CONDITIONS		RF Output Power(ERP)						
		Channel1013(B)		Channel283(M)		Channel777(T)		
		824.7MHz		833.49Mhz		848.31MHz		
		dBm		dBm		dBm		
		Measured	Limit	Measured	Limit	Measured	Limit	
TM1	T _{nom} (25 °C) V _{nom} (3.7V)	23.82	38.5	23.27	38.5	23.45	38.5	
TM3	T _{nom} (25 °C) V _{nom} (3.7V)	23.81	38.5	23.32	38.5	23.49	38.5	
Subtype 0	Tnom (25 °C) Vnom (3.7V)	23.51	38.5	23.08	38.5	23.38	38.5	
Subtype 2	Tnom (25 °C) Vnom (3.7V)	23.48	38.5	23.10	38.5	23.43	38.5	

6.2.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.3 Modulation Characteristics

6.3.1 Test Conditions

Table 20 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	47 %
Test Configurations:	CDMA mode TM1 and TM3 at frequency M
	EVDO mode Subtype 0 and Subtype 2 at frequency M

6.3.2 Test Specifications and Limits

6.3.2.1 Specification

CFR 47 (FCC) part 2.1047 and part 22 subpart H.

6.3.2.2 Supporting Standards

Table 21 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for cdma2000 Spread Spectrum HUAWEI C8600/HUAWEI M860 Wireless Modules.

6.3.2.3 Limits

No specific modulation characteristics requirement limits in part 2.1047 and part 22 subpart H.

Table 22 Limits

Limits Not applicable	
-----------------------	--

6.3.3 Test Method and Setup

Connect the HUAWEI C8600/HUAWEI M860 Wireless Module to Universal Radio Communication Tester CMU200 via the antenna connector. The band class is set as US Cellular; the HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone output is matched with 50 Ω loads, test method was according to ANSI/TIA-98-E. The waveform quality and constellation of the HUAWEI C8600/HUAWEI M860 Wireless Module were tested.

Test setup

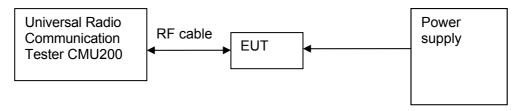


Figure 3. Test Set-up

6.3.4 Measurement Results

Table 23Measurement Results

		Table Zolvicabalement				
TEST CONDITIONS		Modulation Characteristic				
		Channel283(M)				
1231 001	NDITIONS	833.49MHz				
		Measured				
		CDMA Mode	EVDO Mode			
		TM1 & TM3	Subtype 0 & Subtype 2			
T _{nom} (25 °C)	V _{nom} (3.7V)	Refer to Appendix A	Refer to Appendix A			

6.3.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix A.

6.4 Occupied Bandwidth

6.4.1 Test Conditions

Table 24 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	CDMA TM1 and TM3 at frequency B,M ,T
	EVDO Mode Subtype 0 and Subtype 2 at frequency B,M ,T

6.4.2 Test Specifications and Limits

6.4.2.1 Specification

CFR 47 (FCC) part 2.1049 and part 22 subpart H.

6.4.2.2 Supporting Standards

Table 25 Supporting Standards:

	<u> </u>
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum HUAWEI C8600/HUAWEI M860
	cdma2000 Digital Mobile Phones.

6.4.2.3 Limits

No specific occupied bandwidth requirement in part 22 subpart H, but the occupied bandwidth was defined in part 2.1049: the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Table 26 Limits

Upper /lower frequency limits	0.5% of the mean power
-------------------------------	------------------------

6.4.3 Test Method and Setup

HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone was connected to the wireless signal analyzer PSA E4440A

via the one RF connector. The band class is set as US Cellular; HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone was controlled to transmit maximum power. Measure and record the occupied bandwidth of the HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone by the Agilent E4440A.

The OBW, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

Refer to 47CFR part2.1049 section (g)&(h).

- (g) Transmitter in which the modulating base band comprises not more than three independent channels when modulated by the full complement of signals for which the transmitter is rated. The level of modulation for each channel should be set to that prescribed in rule parts applicable to the services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.
- (h) Transmitters employing digital modulation techniques when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudorandom generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at discretion of the user.

Measurement bandwidth (RBW): 30 kHz (Resolution bandwidth)

Video bandwidth (VBW): 300 kHz

Test Set-up

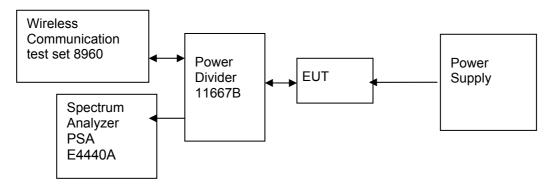


Figure 4. Test Set-up

6.4.4 Measurement Results

Table 27 Measurement Results

								Occupied Bandwidth						
CONDITIONS		l1013 (B) 70MHz		Channel283 (M) 833.49Mhz		Channel777(T) 848.31MHz)						
		sured Hz)		Measured (MHz)		Measured (MHz)								
CDMA		EVDO		CDMA		EVDO		CDMA		EVDO				
		TM1	TM3	Subtype 0	Subtype 2	TM1	TM3	Subtype 0	Subtype 2	TM1	TM3	Subtype 0	Subtype 2	
Tnom (25 °C)	Vnom (3.7V)	1.29	1.28	1.28	1.30	1.27	1.28	1.30	1.29	1.30	1.30	1.28	1.28	

6.4.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix B.

Security Level: Public

6.5 Band Edges Compliance

6.5.1 Test Conditions

Table 28 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	CDMA TM1 and TM3 at frequency B,T
	EVDO Mode Subtype 0 and Subtype 2 at frequency B,T

6.5.2 Test Specifications and Limits

6.5.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.5.2.2 Supporting Standards

Table 29 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum HUAWEI C8600/HUAWEI M860
	cdma2000 Digital Mobile Phones.

6.5.2.3 Limits

Compliance with 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 log_{10} P. (Whereas P is the rated power of the EUT in Watt).

Table 30 Limits

Rated Power:	24 dBm
Required attenuation:	43+10log (0.25) = 37 , 24 dBm – 37 dB
Absolute level	- 13 dBm

6.5.3 Test Method and Setup

HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone was connected to the wireless signal analyzer PSA E4440A

via the one RF connector, the band class is set as US Cellular. HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone was controlled to transmit maximum power. Measure and record Band edge compliance of the HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone by the Agilent PSA E4440A.

Measurement bandwidth (RBW): 13 kHz (Resolution bandwidth)

Video bandwidth (VBW): 130 kHz

Test Set-up

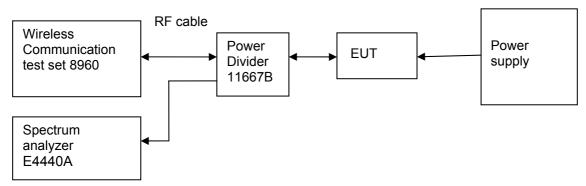


Figure 5. Test Set-up

6.5.4 Measurement Results

Table 31 Measurement Results outside Band Edges-- Single Carrier

	Table 31 Measurement Results outside Dania Luges Single Carrier								
Band	Frequency of Band edges [MHz]	Channel Number	Test Mode	Power [dBm]	Spurious Level measured [dBm]	FCC limit	Result		
		T _{nom} (25 °C), V _{nom} (3.7V)							
US Cellular	824	1013 (B)	TM1 & TM3	24	<-13(See appendix C)	- 13 dBm	Pass		
Celidial	849	777 (T)	TM1 & TM3	24	<-13(See appendix C)	- 13 dBm	Pass		
	T _{nom} (25 °C), V _{nom} (3.7V)								
US	824	1013 (B)	Subtype 0 & Subtype 2	24	<-13(See appendix C)	- 13 dBm	Pass		
Cellular	849	777 (T)	Subtype 0 & Subtype 2	24	<-13(See appendix C)	- 13 dBm	Pass		

6.5.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix C.

6.6 Spurious Emission at Antenna Terminal

6.6.1 Test Conditions

Table 32 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	CDMA TM1 and TM3 at frequency B,M,T
	EVDO Mode Subtype 0 and Subtype 2 at frequency B,M,T

6.6.2 Test Specifications and Limits

6.6.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.6.2.2 Supporting Standards

Table 33 Supporting Standards:

	<u> </u>
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum HUAWEI C8600/HUAWEI M860
	cdma2000 Digital Mobile Phones.

6.6.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 log_{10} P. (Whereas P is the rated power of the EUT in Watt).

Table 34 Limits

Rated Power:	24 dBm
Required attenuation:	43+10log (0.25) = 37 , 24 dBm – 37 dB
Absolute level	- 13 dBm

6.6.3 Test Method and Setup

HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone was connected to the wireless signal analyzer PSA E4440A

via the one RF connector, the band class is set as US Cellular. HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone was controlled to transmit maximum power.

Measure and record the Conducted Spurious Emission of the HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone by the Agilent PSA E4440A.

According to part 22.917, the defined measurement bandwidth as following:

22.917(b) Measurement procedure: Compliance with these rules is based on the use of measurement

SM860 Security Level: Public

instrumentation employing a resolution bandwidth of 100 kHz or greater.

Measurement bandwidth (RBW) for 9 kHz up to 150 kHz: 1 kHz; Measurement bandwidth (RBW) for 150 kHz up to 30 MHz: 10 kHz; Measurement bandwidth (RBW) for 30 MHz up to 1 GHz: 100 kHz; Measurement bandwidth (RBW) for 1GHz up to 12.75GHz: 1MHz;

Test Set-up

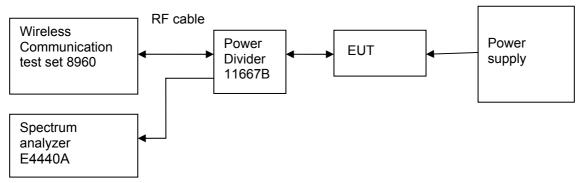


Figure 6. Test Set-up

6.6.4 Measurement Results

Table 35 Measurement Results

Channel Number	Test Mode	Test Range (Frequency)	Output Power	Spurious Level measured [dBm]	FCC limit	Result
Number		(Frequency)	[dBm]			
	TM1	9 kHz	24	<- 13 dBm	- 13	Pass
	1 101 1	~12.75GHz	24	(See appendix D)	dBm	Fass
	TM3	9 kHz	24	<- 13 dBm	- 13	Pass
Channel	TIVIS	~12.75GHz	24	(See appendix D)	dBm	rass
1013(B)	Subtype	9 kHz	24	<- 13 dBm	- 13	Pass
	0	~12.75GHz		(See appendix D)	dBm	1 ass
	Subtype	9 kHz	24	<- 13 dBm	- 13	Pass
	2	~12.75GHz		(See appendix D)	dBm	1 ass
	TM1	9 kHz	24	<- 13 dBm	- 13	Pass
	1 101 1	~12.75GHz		(See appendix D)	dBm	1 ass
	TM3	9 kHz	24	<- 13 dBm	- 13	Pass
Channel	TIVIS	~12.75GHz		(See appendix D)	dBm	rass
283 (M)	Subtype	9 kHz	24	<- 13 dBm	- 13	Pass
	0	~12.75GHz		(See appendix D)	dBm	газэ
	Subtype	9 kHz	24	<- 13 dBm	- 13	Pass
	2	~12.75GHz		(See appendix D)	dBm	F d55

	TN44	9 kHz	24	<- 13 dBm	- 13	Pass
	TM1	~12.75GHz		(See appendix D)	dBm	Pa55
	TM3	9 kHz	24	<- 13 dBm	- 13	Pass
Channel	TIVIS	~12.75GHz		(See appendix D)	dBm	F 455
777 (T)	Subtype	9 kHz	24	<- 13 dBm	- 13	Pass
	0	~12.75GHz		(See appendix D)	dBm	Pa55
	Subtype	9 kHz	24	<- 13 dBm	- 13	Daga
	2	~12.75GHz		(See appendix D)	dBm	Pass

(See appendix D)

6.6.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix D.

~12.75GHz

Security Level: Public

6.7 Frequency Stability

6.7.1 Test Conditions

Table 36 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	See below
Relative humidity:	55 % at 25 °C
Test Configurations:	CDMA TM1 and TM3 at frequency M
	EVDO Mode Subtype 0 and Subtype 2 at frequency M

6.7.2 Test Specifications and Limits

6.7.2.1 Specification

CFR 47 (FCC) part 2.1055 and part 22.355

6.7.2.2 Supporting Standards

Table 37 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum HUAWEI C8600/HUAWEI M860
	cdma2000 Digital Mobile Phones.

6.7.2.3 Limits

According to part 22.355, from 821MHz to 896MHz, for mobile device, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances 2.5ppm.

6.7.3 Test Method and Setup

The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) From –30 ° to +50 ° centigrade for all equipment except that specified in subparagraphs
- (2) and (3) of paragraph 2.1055
- (a) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (b) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment,

or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

(c) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

The EUT can only work in such extreme voltage 3.6V and 4.2V, so here the EUT is tested in the 3.6V and 4.2V.

Test Set up

Connect the HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone to the Wireless Communication test set 8960 via the connector. Then measure the frequency error by the Wireless Communication test set 8960. The HUAWEI C8600/HUAWEI M860 cdma2000 Digital Mobile Phone's output is matched with a 50 Ω loads.

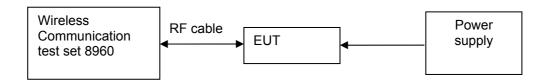


Figure 7. Test Set up

6.7.4 Measurement Results

6.7.4.1 Measurement Results vs. Variation of Temperature

TM1, 3.7V DC Channel No.283(833.49MHz)

Table 36 Measurement Results vs. Variation of Temperature—				
Temperature	Power	Nominal	Measured	Result

Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	24	833.49	-10	Pass
-20 °C	24	833.49	-8	Pass
-10 °C	24	833.49	2	Pass
0 °C	24	833.49	9	Pass
+10 °C	24	833.49	-5	Pass
+20 °C	24	833.49	6	Pass
+30 °C	24	833.49	-7	Pass
+40 °C	24	833.49	-1	Pass
+50 °C	24	833.49	4	Pass

TM3, 3.7V DC Channel No.283(833.49MHz)

Table 39 Measurement Results vs. Variation of Temperature—TM3

Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	24	833.49	-2	Pass
-20 °C	24	833.49	3	Pass
-10 °C	24	833.49	12	Pass
0 °C	24	833.49	-8	Pass
+10 °C	24	833.49	-3	Pass
+20 °C	24	833.49	6	Pass
+30 °C	24	833.49	13	Pass
+40 °C	24	833.49	4	Pass
+50 °C	24	833.49	-6	Pass

Subtype 0, 3.7V DC Channel No.283(833.49MHz)

Table 40 Measurement Results vs. Variation of Temperature—EVDO

h			· '	
Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	24	833.49	10	Pass
-20 °C	24	833.49	14	Pass
-10 °C	24	833.49	-5	Pass
0 °C	24	833.49	-13	Pass
+10 °C	24	833.49	1	Pass
+20 °C	24	833.49	7	Pass
+30 °C	24	833.49	9	Pass
+40 °C	24	833.49	-8	Pass
+50 °C	24	833.49	-4	Pass

• Subtype 2, 3.7V DC Channel No.283(833.49MHz)

Table 41 Measurement Results vs. Variation of Temperature—EVDO

Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	24	833.49	13	Pass
-20 °C	24	833.49	7	Pass
-10 °C	24	833.49	2	Pass
0 °C	24	833.49	-10	Pass
+10 °C	24	833.49	-8	Pass

+20 °C	24	833.49	5	Pass
+30 °C	24	833.49	11	Pass
+40 °C	24	833.49	14	Pass
+50 °C	24	833.49	-2	Pass

6.7.4.2 Measurement Results vs. Variation of Voltage

TM1, 25 °C ,Channel No. 283(833.49MHz)

Table 42 Measurement Results vs. Variation of Voltage—TM1

Voltage	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.6	24	833.49	7	Pass
3.7	24	833.49	-12	Pass
4.2	24	833.49	-4	Pass

• TM3, 25 °C ,Channel No. 283(833.49MHz)

Table 43 Measurement Results vs. Variation of Voltage—TM3

Voltage	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.6	24	833.49	-12	Pass
3.7	24	833.49	8	Pass
4.2	24	833.49	-3	Pass

• Subtype 0, 25 °C, Channel No. 283(833.49MHz)

Table 44 Measurement Results vs. Variation of Voltage—EVDO

Voltage	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.6	24	833.49	13	Pass
3.7	24	833.49	-10	Pass
4.2	24	833.49	1	Pass

• Subtype 2, 25 °C, Channel No. 283(833.49MHz)

Table 45 Measurement Results vs. Variation of Voltage—EVDO

Voltage	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.6	24	833.49	10	Pass

CC ID: QISM860 Security Level: Public

3.7	24	833.49	-5	Pass
4.2	24	833.49	-13	Pass

6.7.5 Conclusion

The equipment **PASSED** the requirement of this clause.

7 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 46 System Measurement Uncertainty

Items		Extended Uncertainty
Effective Radiated Power of	ERP(dBm)	U=3dB; k=2
Transmitter		
Band Width	Magnitude (%)	U=0.2%; k=2
Band Edge Compliance	Disturbance Power	U=2.0dB; k=2
	(dBm)	
Conducted Spurious	Disturbance Power	U=2.0dB; k=2
Emission at Antenna	(dBm)	
Terminal		
Frequency Stability	Frequency	U=0.21ppm; k=2
	Accuracy(ppm)	
Field Strength of Spurious	ERP(dBm)	U=2.2dB; k=2
Radiation		
Conducted Output Power	Power(dBm)	U=0.39dB; k=2

Appendixes

Appendix A	Measurement Results Modulation Characteristics	7 pages
Appendix B	Measurement Results Occupied Bandwidth	13 pages
Appendix C	Measurement Results Band Edges	13 pages
Appendix D	Measurement Results Spurious Emission at Antenna Terminal	73 pages

---- END OF REPORT ----