

FCC&ISED RF Test Report

Product Name: Smart Phone

Model Number: LYA-L29, LYA-L09

Report No.: SYBH(Z-RF)20180706013002-2006

FCC ID: QISLYA-LX9 IC: 6369A-LYALX9

Reliability Laboratory of Huawei Technologies Co., Ltd.

(Global Compliance and Testing Center of Huawei Technologies Co., Ltd)

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has passed the accreditation by China National Accreditation Service for Conformity Assessment (CNAS). The accreditation number is L0310.
- 2. The laboratory has passed the accreditation by The American Association for Laboratory Accreditation (A2LA). The accreditation number is 2174.01.
- 3. The laboratory has been recognized by the US Federal Communications Commission (FCC) to perform compliance testing subject to the Commission's Certification rules. The Designation Number is CN1173, and the Test Firm Registration Number is 294140.
- 4. The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 6369A-1.
- 5. The laboratory (Reliability Lab of Huawei Technologies Co., Ltd) is also named "Global Compliance and Testing Center of Huawei Technologies Co., Ltd", the both names have coexisted since 2009.
- 6. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 7. The test report is invalid if there is any evidence of erasure and/or falsification.
- 8. The test report is only valid for the test samples.
- 9. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Applicant: Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Technologies Co., Ltd.,

Bantian, Longgang District, Shenzhen, 518129, P.R.C

Date of Receipt Sample:2018-08-03Start Date of Test:2018-08-03End Date of Test:2018-08-27

Test Result: Pass

Approved by Senior 2018-08-30 He Hao He Hao

Engineer: Date Name Signature

Prepared by: 2018-08-29 zhoulingbo Zhoulingbo

Date Name Signature

Contents

1 <u>G</u>	General Information	5
1.1	APPLIED STANDARD	
1.2		
1.3	TEST ENVIRONMENTAL CONDITION	5
2 <u>S</u>	Summary	6
3 <u>P</u>	Product Description	7
3.1	PRODUCT INFORMATION	7
3.2	EUT IDENTITY	7
4 <u>M</u>	lain Test Instruments	9
5 <u>T</u>	est Results	10
5.1	Bandwidth	10
5.2	In-Band Radiated Spurious Emission Measurements	12
5.3	RADIATED SPURIOUS EMISSION MEASUREMENTS, OUT-OF-BAND	15
5.4	FREQUENCY STABILITY	18
5.5	AC Power Line Conducted Emissions	19
6 S	System Measurement Uncertainty	21

1 **General Information**

1.1 Applied Standard	
Applied Rules:	47 CFR FCC Part 02
	47 CFR FCC Part 15 Subpart C (15.225)
	ISED RSS-Gen (Issue 5, April 2018)
	ISED RSS-210 (Issue 9, August 2016)
1.2 Test Location	
Test Location 1:	Reliability Laboratory of Huawei Technologies Co., Ltd.
Address:	No.2 New City Avenue Songshan Lake Sci. &Tech. Industry Park,
	Dongguan, Guangdong, P.R.C
1.3 Test Environmental Co	ndition
1.3 Test Environmental Co	
Ambient Temperature:	20 – 25 °C
Ambient Relative Humidity:	45 – 55 %
Atmospheric Pressure:	101 kPa

2 **Summary**

FCC Rule No.	ISED Rule No.	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMIT	TTER MODE					
15.225 (a)	RSS-210, B6(a)	In-Band Emissions	15,848µV/m @ 30m 13.553 – 13.567 MHz		Pass	Section 5.2
2.1049	RSS-Gen, 6.7	Bandwidth	N/A		Pass	Section 5.1
15.225(b)	RSS-210, B6(b)	In-Band Emissions	334µV/m @ 30m 13.410 – 13.553 MHz 13.567 – 13.710 MHz		Pass	Section 5.2
15.225(c)	RSS-210, B6(c)	In-Band Emissions	106µV/m @ 30m 13.110 – 13.410 MHz 13.710 – 14.010 MHz		Pass	Section 5.2
15.225(d) 15.209	RSS-210, B6(d)	Out-of-Band Emissions	FCC: Emissions outside of the specified band (13.110 – 14.010 MHz) must meet the radiated limits detailed in 15.209	RADIATED	Pass	Section 5.3
			ISED: Emissions outside of the specified band (13.110 – 14.010 MHz) must meet the radiated limits detailed in RSS-Gen 8.9			
15.225(e)	RSS-210, B6(d)	Frequency Stability Tolerance	± 0.01% of Operating Frequency	Temperature Chamber	Pass	Section 5.4
15.207	RSS-Gen, 8.8	AC Conducted Emissions 150kHz – 30MHz	FCC: < FCC 15.207 limits ISED: < RSS-Gen, 8.8 limits.	LINE	Pass	Section 5.5

3 Product Description

3.1 Product Information

3.1.1 General Description

LYA-L29 is a subscriber equipment in the GSM/WCDMA/LTE system. The GSM frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900. The UMTS frequency band is B1 and B2 and B4 and B5 and B6 and B8 and B19. The LTE frequency band is B1 and B2 and B3 and B4 and B5 and B6 and B7 and B8 and B9 and B12 and B17 and B18 and B19 and B20 and B26 and B28 and B32 and B34 and B38 and B39 and B40 and B41. The Mobile Phone implements such functions as RF signal receiving/transmitting, LTE/HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, Bluetooth, NFC, Wi-Fi and Wirelessly Charging etc. LYA-L29 is a dual SIM smart phone, and one of the SIM card interfaces could be used as HUAWEI nano SD card interface. Externally it provides type C USB charging port, and the port could be used as the earphone port or data-transfer port.

LYA-L09 is a subscriber equipment in the GSM/WCDMA/LTE system. The GSM frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900. The UMTS frequency band is B1 and B2 and B4 and B5 and B6 and B8 and B19. The LTE frequency band is B1 and B2 and B3 and B4 and B5 and B6 and B7 and B8 and B9 and B12 and B17 and B18 and B19 and B20 and B26 and B28 and B32 and B34 and B38 and B39 and B40 and B41. The Mobile Phone implements such functions as RF signal receiving/transmitting, LTE/HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, Bluetooth, NFC, Wi-Fi and Wirelessly Charging etc. LYA-L09 provides one SIM card interface and one HUAWEI nano SD card interface. Externally it provides type C USB charging port, and the port could be used as the earphone port or data-transfer port.

The difference between LYA-L29 and LYA-L09:

The only difference between LYA-L29 and LYA-L09 is that LYA-L09 deletes into single SIM card by software. Other parts of the two models are the same.

NOTE1:Only NFC test data included in this report.

NOTE 2: We do not test the data of LYA-L09, all test data share the LYA-L29

3.2 EUT Identity

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

3.2.1 Board

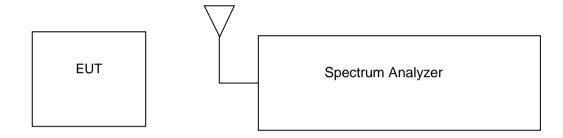
Board						
Description	Software version	Hardware version				
Main Board	9.0.0.82(C432E82R1P7)	HL2LAYAM				

3.2.2 Sub-Assembly

		Sub-Ass	embly
Sub-Assembly Name	Model	Manufacturer	Description
Adapter	HW-100400A00	Huawei Technologies Co.,Ltd.	Input Voltage:100V-240V~50/60Hz, 1.2A Output Voltage: 5V === 2A OR9V === 2A OR 10V === 4A
Adapter	HW- 100400U00	Huawei Technologies Co.,Ltd.	nput Voltage:100V-240V~50/60Hz, 1.2A Output Voltage: 5V ==== 2A OR9V ==== 2A OR 10V ==== 4A
Adapter	HW-100400E00	Huawei Technologies Co.,Ltd.	nput Voltage:100V-240V~50/60Hz, 1.2A Output Voltage: 5V ==== 2A OR9V ==== 2A OR 10V ==== 4A
Adapter	HW-100400B00	Huawei Technologies Co.,Ltd.	Input Voltage:100V-240V~50/60Hz, 1.2A Output Voltage: 5V ==== 2A OR9V ==== 2A OR 10V ==== 4A
Li-ion Polymer Battery	HB486486ECW	Huawei Technologies Co.,Ltd.	Rated capacity: 4100mAh Nominal Voltage: +3.82V Charging Voltage: +4.4V

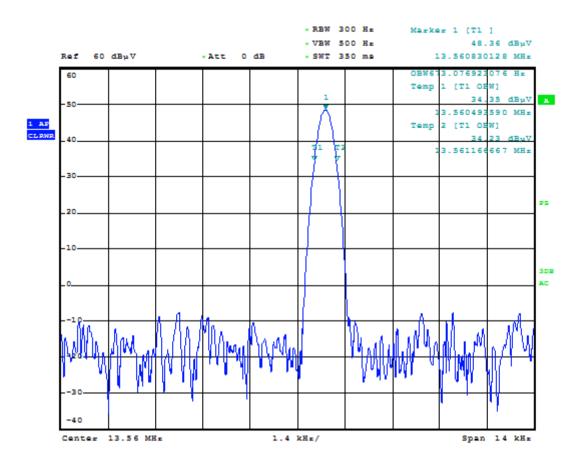
4 Main Test Instruments

Main Test Equipments							
Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal- Due		
Equipment Name							
Test receiver	R&S	ESU26	100387	2018/1/20	2019/1/19		
Test receiver	R&S	ESU26	100387	2018/1/20	2019/1/19		
Test receiver	R&S	ESCI	101163	2018/1/20	2019/1/19		
Spectrum analyzer	R&S	FSU3	200474	2018/1/20	2019/1/19		
Spectrum analyzer	R&S	FSU43	100144	2018/1/20	2019/1/19		
LOOP Antennas(9kHz- 30MHz)	R&S	HFH2-Z2	100262	2017/4/25	2019/4/25		
LOOP Antennas(9kHz- 30MHz)	R&S	HFH2-Z2	100263	2017/4/25	2019/4/25		
Trilog Broadband Antenna (30M~3GHz)	SCHWARZBECK	VULB 9163	9163-357	2017/4/21	2019/4/20		
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100304	2017/5/27	2019/5/27		
Pyramidal Horn Antenna(18GHz- 26.5GHz)	ETS-Lindgren	3160-09	5140299	2017/7/20	2019/7/19		
Artificial Main Network	R&S	ENV4200	100134	2018/5/8	2019/5/7		
Line Impedance Stabilization Network	R&S	ENV216	100382	2018/5/8	2019/5/7		
	Sof	tware Inforr	nation				
Test Item	Software Na	ame	Manufacturer		Version		
RE	EMC32		R&S		V9.25.0		
CE	EMC32		R&S		V9.25.0		



5 Test Results

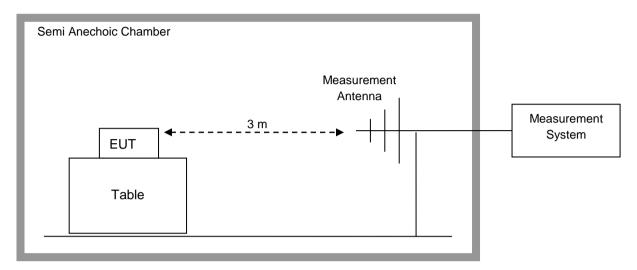
5.1 Bandwidth


The 99% emission bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

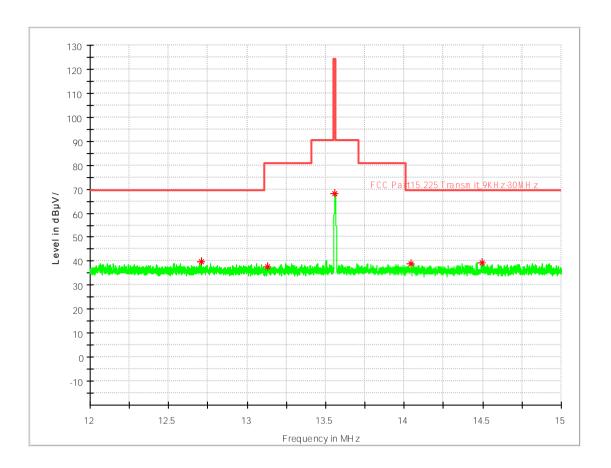
5.1.1 Test Set-up

5.1.2 Test Result

Date: 23.AUG.2018 20:42:47


Result: The result of the measurement is passed.

Test Environment	OBW (Hz)	FL@OBW (MHz)	FH@OBW (MHz)	Verdict
TN/VN	673.078	13.560493590	13.561166667	PASS


5.2 In-Band Radiated Spurious Emission Measurements

5.2.1 Test Setup

Measurement parameters				
Detector:	Quasi Peak			
Sweep time:	-/-			
Resolution bandwidth:	10 kHz			
Video bandwidth:	10 kHz			
Span:	-/-			
Trace-Mode:	Max Hold			

5.2.2 Test Result

MEASUREMENT RESULT: QP Detector

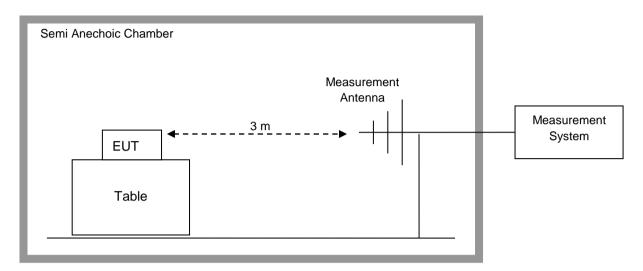
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Azimuth (deg)	Transd (dB)
12.708375	39.61	69.50	29.89	V	0.0	21.1
13.132500	37.80	80.50	42.70	V	0.0	21.1
13.559438	68.22	124.00	55.78	V	0.0	21.1
14.040563	38.87	69.50	30.63	V	90.0	21.1
14.494125	39.50	69.50	30.01	V	0.0	21.1

NOTES:

- 1. All measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.
- 2. When using other measurement distance, according to the standard C63.10, If that point is closer to the EUT than $\lambda/2\pi$ and the limit distance is greater than $\lambda/2\pi$, the data was extrapolated to the specified measurement distance of 30m using extrapolation factor as specified in

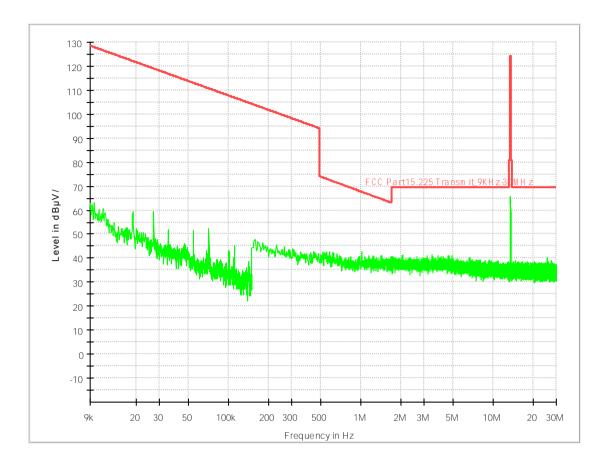
$$\S 6.4.4.2. \ \text{Extrapolation Factor} = 40 \text{log}(\frac{d_{near field}}{d_{measure}}) + 20 \text{log}(\frac{d_{limit}}{d_{near field}}).$$

- 3. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector.
- 4. Level =Reading level by receiver + Transd (Antenna factor + cable loss preamplifier gain). The

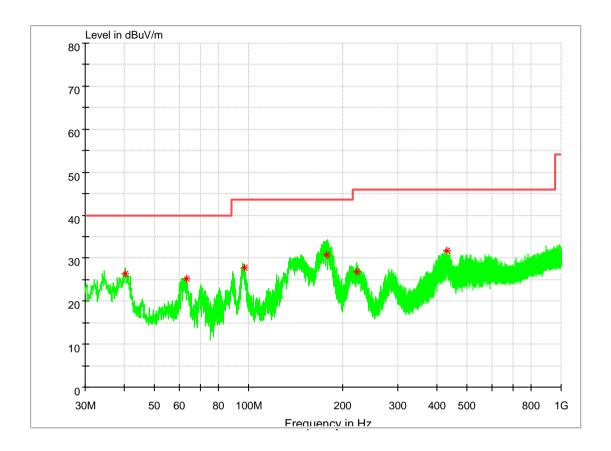

reading level is calculated by software which is not shown in the sheet.

The result of the measurement is passed.

5.3 Radiated Spurious Emission Measurements, Out-of-Band


5.3.1 Test Setup

Measurement parameters					
Detector:	Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	9 kHz – 150 kHz: 200 Hz 150 kHz – 30 MHz: 9 kHz 30 MHz – 1000 MHz: 100 kHz				
Video bandwidth:	9 kHz – 150 kHz: 200 Hz 150 kHz – 30 MHz: 9 kHz 30 MHz – 1000 MHz: 100 kHz				
Span:	See Plots				
Trace-Mode:	Max Hold				


5.3.2 Test Result

9k~30MHz

30M~1GHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polar isatio n	Azimut h (deg)	Transd (dB)
40.301660	26.38	40.00	13.82	101.0	V	69.0	14.3
63.136440	25.12	40.00	14.66	101.0	V	192.0	12.6
96.934140	27.78	43.50	15.84	101.0	V	236.0	14.3
178.044820	30.77	43.50	9.96	102.0	V	128.0	11.3
222.022240	26.94	46.00	17.64	100.0	Н	25.0	13.3
430.736120	31.79	46.00	14.34	100.0	V	27.0	18.4

NOTES:

- 1. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector for emissions below 960MHz.
- 2. Both Vertical and Horizontal polarities of the receive antenna were evaluated with the worst case emissions being reported. Below 30MHz the Loop antenna was positioned in 3 separate radials.
- 3. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.
- 4. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
- 5. Level =Reading level by receiver + Transd (Antenna factor + cable loss preamplifier gain). The reading level is calculated by software which is not shown in the sheet.

The result of the measurement is passed.

5.4 Frequency Stability

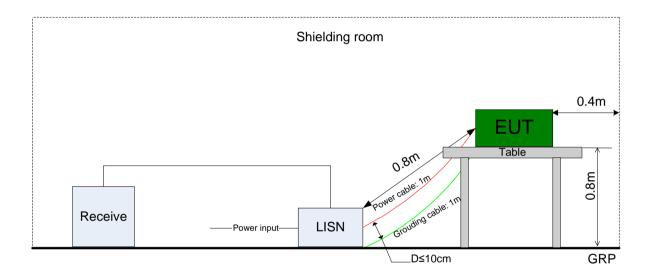
5.4.1 Test Setup

The EUT was placed in a Climatic Chamber. A small whip antenna was placed close to the EUT, and connected to the measuring Spectrum Analyzer. Measurement performed without modulation on TX.

5.4.2 Test Result

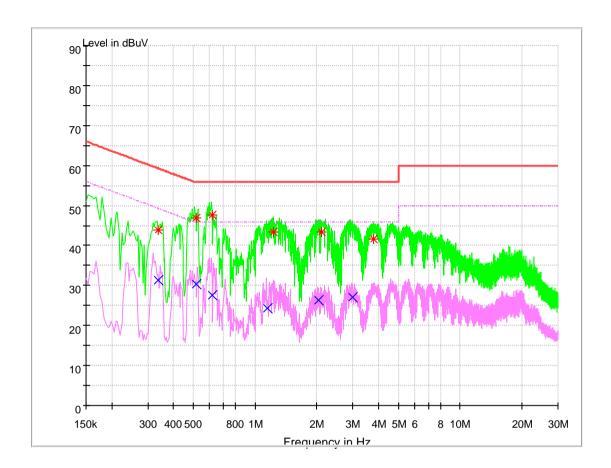
VOLTAGE (%)	POWER Battery	TEMP (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
100%		-20	13559982	-18	-0.00013274336
100%		-10	13559985	-15	-0.00011061947
100%		0	13560017	17	0.00000125369
100%		10	13560012	12	0.000000884956
100%		20	13560009	9	0.00006637168
100%		30	13560019	19	0.00000140118
100%		40	13560011	11	0.000000811209
100%		50	13559981	-19	-0.00000140118
Battery End Point	3.6	20	13560015	15	0.00011061947
115%	4.35	20	13559986	-14	-0.00010324484

The result of the measurement is passed.



5.5 AC Power Line Conducted Emissions

5.5.1 Test Setup


The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

5.5.2 Test Result

MEASUREMENT RESULT: QP Detector

Frequency	Level	Limit	Transd	Margin	Line	PE
MHz	dΒμV	dΒμV	dB	dB		
0.336272	43.76	N	9.7	15.54	59.30	FLO
0.517978	46.82	L1	9.7	9.18	56.00	FLO
0.615686	47.71	L1	9.7	8.29	56.00	FLO
1.229777	43.28	L1	9.7	12.72	56.00	FLO
2.101718	43.38	L1	9.7	12.62	56.00	FLO
3.769949	41.69	L1	9.7	14.31	56.00	FLO

MEASUREMENT RESULT: AV Detector

Frequency MHz	Level dBµV	Limit dBµV	Transd dB	Margin dB	Line dBµV	PE
0.337662	31.29	L1	9.7	17.97	49.26	FLO
0.517042	30.28	L1	9.7	15.72	46.00	FLO
0.618527	27.51	L1	9.7	18.49	46.00	FLO
1.148974	24.28	L1	9.7	21.72	46.00	FLO
2.032836	26.25	L1	9.7	19.75	46.00	FLO
0.337662	31.29	L1	9.7	17.97	49.26	FLO

Note:

1, Level =Reading level by receiver + Transd (Antenna factor + cable loss - preamplifier gain)

The reading level is calculated by software which is not shown in the sheet.

2, Margin=Limit - Level

The result of the measurement is passed.

6 System Measurement Uncertainty

For a 95% confidence level (k = 2), the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Test Item		Extended Uncertainty
All Emissions, Radiated	Field Strength [dBµV/m]	For 3 m Chamber: U = 5.90 dB (30 MHz-1 GHz) U = 4.94 dB (1 GHz-18 GHz) U = 4.24 dB (18 GHz-26.5 GHz)
AC Power Line Conducted Emissions	Disturbance Voltage[dBµV]	U=2.3 dB

The END)
)