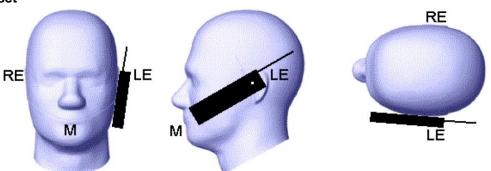



## ANNEX D Position of the wireless device in relation to the phantom

## **D.1 General Considerations**

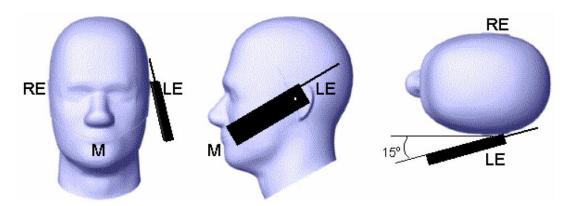
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.




 $W_t$  Width of the handset at the level of the acoustic

 $W_b$  Width of the bottom of the handset

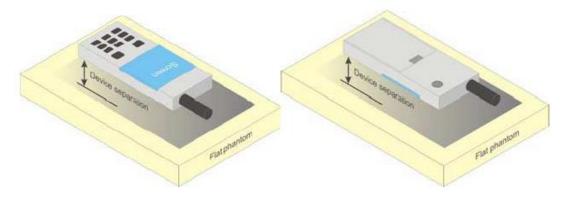
A Midpoint of the width  $W_t$  of the handset at the level of the acoustic output


B Midpoint of the width  $W_h$  of the bottom of the handset

## Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset



Picture D.2 Cheek position of the wireless device on the left side of SAM



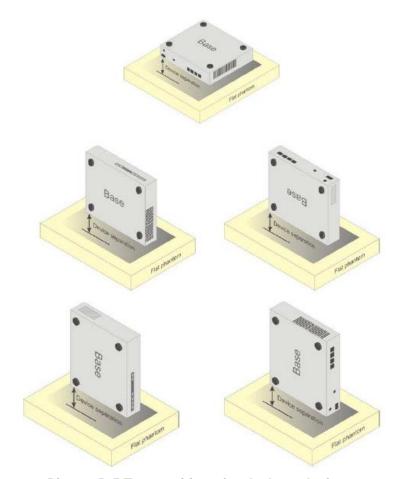



Picture D.3 Tilt position of the wireless device on the left side of SAM

## D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.




Picture D.4 Test positions for body-worn devices

## D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.





Picture D.5 Test positions for desktop devices

## **D.4 DUT Setup Photos**



Picture D.6



## **ANNEX E Equivalent Media Recipes**

The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

**Table E.1: Composition of the Tissue Equivalent Matter** 

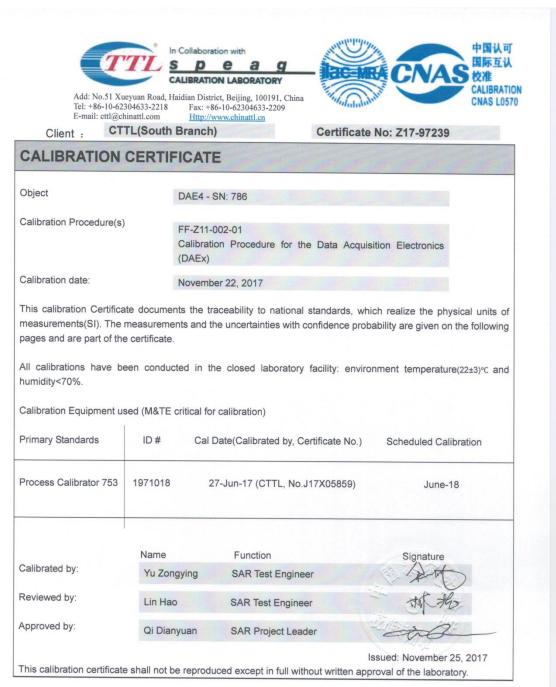
|                   |                 |        |        |        | -      |        |        |        |
|-------------------|-----------------|--------|--------|--------|--------|--------|--------|--------|
| Frequency         | 835             | 835    | 1900   | 1900   | 2450   | 2450   | 5800   | 5800   |
| (MHz)             | Head            | Body   | Head   | Body   | Head   | Body   | Head   | Body   |
| Ingredients (% by | / weight)       |        |        |        |        |        |        |        |
| Water             | 41.45           | 52.5   | 55.242 | 69.91  | 58.79  | 72.60  | 65.53  | 65.53  |
| Sugar             | 56.0            | 45.0   | \      | \      | \      | \      | \      | \      |
| Salt              | 1.45            | 1.4    | 0.306  | 0.13   | 0.06   | 0.18   | \      | \      |
| Preventol         | 0.1             | 0.1    | \      | \      | \      | \      | \      | \      |
| Cellulose         | 1.0             | 1.0    | \      | \      | \      | \      | \      | \      |
| Glycol            | \               | \      | 44.452 | 29.96  | 41.15  | 27.22  |        |        |
| Monobutyl         | \               | \      | 44.432 | 29.90  | 41.15  | 21.22  | \      | \      |
| Diethylenglycol   | ,               | \      | ,      | \      | \      | \      |        |        |
| monohexylether    | \               | \      | \      | \      | \      | \      | 17.24  | 17.24  |
| Triton X-100      | \               | \      | \      | \      | \      | \      | 17.24  | 17.24  |
| Dielectric        | ε=41.5          | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 |        |        |
| Parameters        | $\sigma = 0.90$ | σ=0.97 | σ=1.40 | σ=1.52 | σ=1.80 | σ=1.95 | ε=35.3 | ε=48.2 |
| Target Value      | 0-0.90          | 0-0.97 | 0-1.40 | 0-1.52 | 0-1.60 | 0-1.95 | σ=5.27 | σ=6.00 |

Note: There is a little adjustment respectively for 750, 1800, 2600, 5200, 5300, and 5600, based on the recipe of closest frequency in table E.1



## **ANNEX F System Validation**

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.


**Table F.1: System Validation** 

| Probe SN. | Liquid name  | Validation date | Frequency point | Status (OK or Not) |
|-----------|--------------|-----------------|-----------------|--------------------|
| 3151      | Head 750MHz  | 2017-12-17      | 750 MHz         | OK                 |
| 3151      | Head 835MHz  | 2017-12-17      | 835 MHz         | OK                 |
| 3151      | Head 1800MHz | 2017-12-19      | 1800 MHz        | OK                 |
| 3151      | Head 1900MHz | 2017-12-19      | 1900 MHz        | OK                 |
| 3151      | Head 2450MHz | 2017-12-20      | 2450 MHz        | OK                 |
| 3151      | Head 2550MHz | 2017-12-20      | 2550 MHz        | OK                 |
| 3151      | Body 750MHz  | 2017-12-17      | 750 MHz         | OK                 |
| 3151      | Body 835MHz  | 2017-12-17      | 835 MHz         | OK                 |
| 3151      | Body 1800MHz | 2017-12-19      | 1800 MHz        | OK                 |
| 3151      | Body 1900MHz | 2017-12-19      | 1900 MHz        | OK                 |
| 3151      | Body 2450MHz | 2017-12-20      | 2450 MHz        | OK                 |
| 3151      | Body 2550MHz | 2017-12-20      | 5200 MHz        | OK                 |



## **ANNEX G DAE Calibration Certificate**

#### **DAE4 SN: 786 Calibration Certificate**



Certificate No: Z17-97239 Page 1 of 3





## Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

## Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.



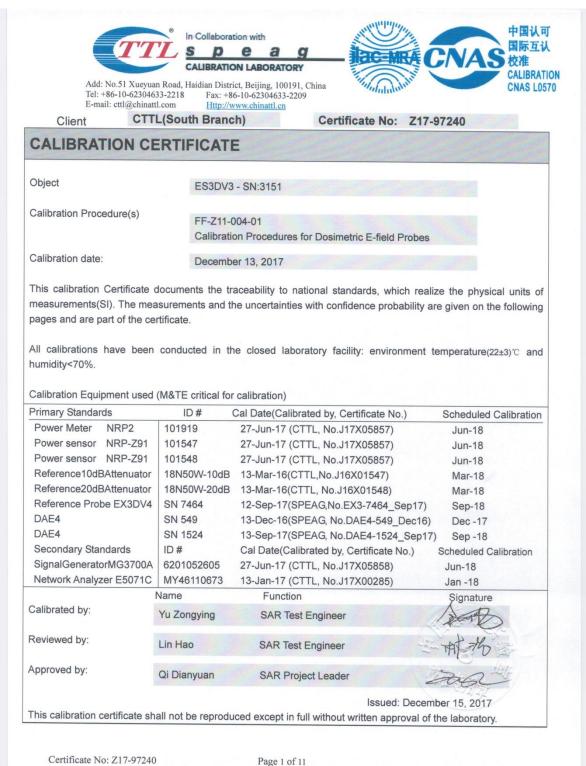




## DC Voltage Measurement

A/D - Converter Resolution nominal

| Calibration Factors | Х                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.138 ± 0.15% (k=2) | 404.330 ± 0.15% (k=2) | 404.714 ± 0.15% (k=2) |
| Low Range           | 3.97217 ± 0.7% (k=2)  | 3.97384 ± 0.7% (k=2)  | 3.95842 ± 0.7% (k=2)  |


#### **Connector Angle**

| Connector Angle to be used in DASY system | 229.5° ± 1 ° |
|-------------------------------------------|--------------|
|-------------------------------------------|--------------|



## ANNEX H Probe Calibration Certificate

#### Probe ES3DV3-SN: 3151 Calibration Certificate







Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 $\theta$ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z\* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
  frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
  data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
  media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).





## Probe ES3DV3

SN: 3151

Calibrated: December 13, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)





## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3151

## **Basic Calibration Parameters**

|                         | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|-------------------------|----------|----------|----------|-----------|
| $Norm(\mu V/(V/m)^2)^A$ | 1.16     | 1.26     | 1.20     | ±10.0%    |
| DCP(mV) <sup>B</sup>    | 104.2    | 103.5    | 102.9    |           |

## **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dBõV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|-----------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0       | 1.0 | 0.00    | 270.6    | ±2.6%                     |
|     |                           | Υ | 0.0     | 0.0       | 1.0 |         | 284.7    |                           |
|     |                           | Z | 0.0     | 0.0       | 1.0 |         | 272.5    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5 and Page 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.





## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3151

## Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.47    | 6.47    | 6.47    | 0.40               | 1.35                       | ±12.1%         |
| 900                  | 41.5                                  | 0.97                               | 6.24    | 6.24    | 6.24    | 0.35               | 1.58                       | ±12.1%         |
| 1450                 | 40.5                                  | 1.20                               | 5.45    | 5.45    | 5.45    | 0.31               | 1.69                       | ±12.1%         |
| 1750                 | 40.1                                  | 1.37                               | 5.27    | 5.27    | 5.27    | 0.68               | 1.22                       | ±12.1%         |
| 1900                 | 40.0                                  | 1.40                               | 5.09    | 5.09    | 5.09    | 0.68               | 1.21                       | ±12.1%         |
| 2000                 | 40.0                                  | 1.40                               | 5.13    | 5.13    | 5.13    | 0.69               | 1.21                       | ±12.1%         |
| 2300                 | 39.5                                  | 1.67                               | 4.89    | 4.89    | 4.89    | 0.79               | 1.18                       | ±12.1%         |
| 2450                 | 39.2                                  | 1.80                               | 4.57    | 4.57    | 4.57    | 0.60               | 1.47                       | ±12.1%         |
| 2600                 | 39.0                                  | 1.96                               | 4.53    | 4.53    | 4.53    | 0.71               | 1.32                       | ±12.1%         |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



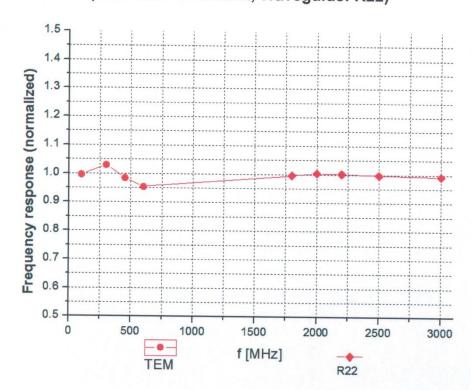


## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3151

## Calibration Parameter Determined in Body Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 6.38    | 6.38    | 6.38    | 0.40               | 1.45                       | ±12.1%         |
| 900                  | 55.0                                  | 1.05                               | 6.20    | 6.20    | 6.20    | 0.46               | 1.49                       | ±12.1%         |
| 1450                 | 54.0                                  | 1.30                               | 5.59    | 5.59    | 5.59    | 0.38               | 1.63                       | ±12.1%         |
| 1750                 | 53.4                                  | 1.49                               | 5.11    | 5.11    | 5.11    | 0.67               | 1.25                       | ±12.1%         |
| 1900                 | 53.3                                  | 1.52                               | 4.89    | 4.89    | 4.89    | 0.65               | 1.28                       | ±12.1%         |
| 2000                 | 53.3                                  | 1.52                               | 4.82    | 4.82    | 4.82    | 0.63               | 1.30                       | ±12.1%         |
| 2300                 | 52.9                                  | 1.81                               | 4.60    | 4.60    | 4.60    | 0.62               | 1.51                       | ±12.1%         |
| 2450                 | 52.7                                  | 1.95                               | 4.46    | 4.46    | 4.46    | 0.49               | 1.83                       | ±12.1%         |
| 2600                 | 52.5                                  | 2.16                               | 4.24    | 4.24    | 4.24    | 0.54               | 1.72                       | ±12.1%         |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

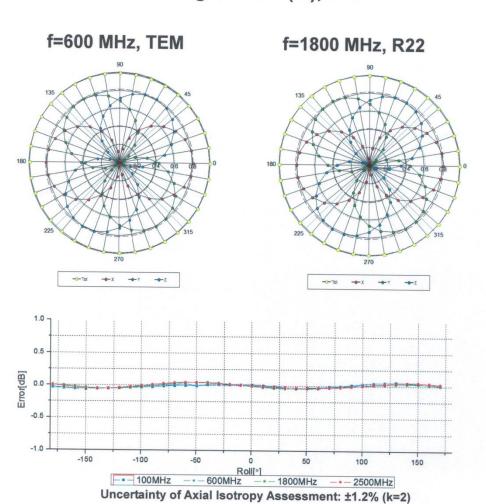

F At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

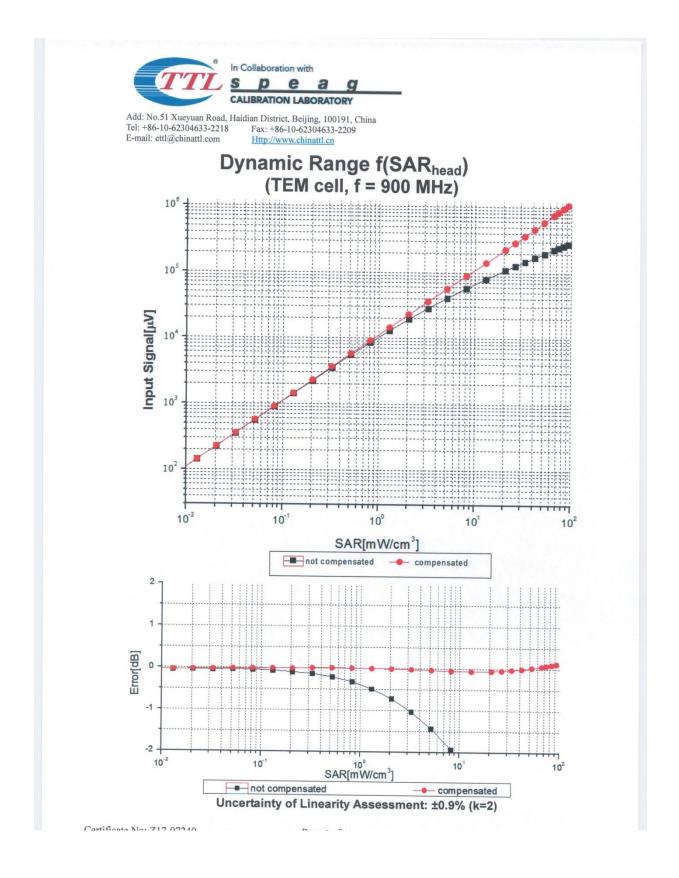




# Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ±7.4% (k=2)



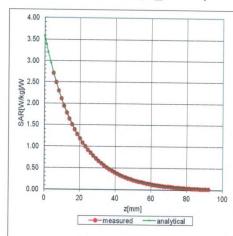


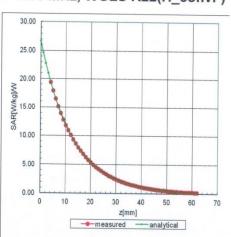

## Receiving Pattern (Φ), θ=0°



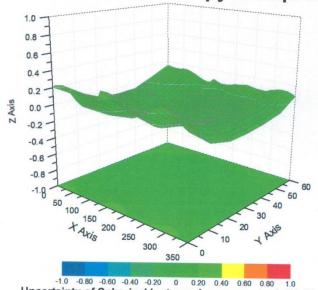







## **Conversion Factor Assessment**


## f=900 MHz, WGLS R9(H\_convF)

## f=1750 MHz, WGLS R22(H\_convF)





## **Deviation from Isotropy in Liquid**



-1.0 -0.80 -0.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1.0 Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)





## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3151

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 88.2       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 10mm       |
| Tip Diameter                                  | 4mm        |
| Probe Tip to Sensor X Calibration Point       | 2mm        |
| Probe Tip to Sensor Y Calibration Point       | 2mm        |
| Probe Tip to Sensor Z Calibration Point       | 2mm        |
| Recommended Measurement Distance from Surface | 3mm        |



## **ANNEX I Dipole Calibration Certificate**

## 835 MHz Dipole Calibration Certificate



In Collaboration with

CALIBRATION No. L0570

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

CTTL(South Branch) Client

Certificate No: Z15-97173

## **CALIBRATION CERTIFICATE**

Object

D835V2 - SN: 4d057

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

October 22, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Reference Probe EX3DV4  | SN 3617    | 26-Aug-15(SPEAG,No.EX3-3617_Aug15)       | Aug -16               |
| DAE4                    | SN 777     | 26-Aug-15(SPEAG,No.DAE4-777_Aug15)       | Aug -16               |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729)           | Feb-16                |
| Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728)           | Feb-16                |
|                         |            |                                          |                       |

|                | Name        | Function                          | Signature    |
|----------------|-------------|-----------------------------------|--------------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer                 | 多型           |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                | 302          |
| Approved by:   | Lu Bingsong | Deputy Director of the laboratory | The was fr   |
|                |             | Issued: Oct                       | obor 06 2015 |

Issued: October 26, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 
E-mail: cttl@chinattl.com 
Http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1222 |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 15 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 835 MHz ± 1 MHz          |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.2 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 2.31 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 9.22 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 1.51 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.03 mW /g ± 20.4 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.1 ± 6 %   | 0.96 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 2.34 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 9.44 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 1.54 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.20 mW /g ± 20.4 % (k=2) |

Page 3 of 8





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.2Ω- 3.12jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 29.8dB      |  |

## Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.1Ω- 5.38jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 24.7dB      |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.500 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
| Manufactured by | SPEAG |





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 
E-mail: cttl@chinattl.com 
Http://www.chinattl.cn

**DASY5 Validation Report for Head TSL** 

Date: 10.22.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz;  $\sigma = 0.907$  S/m;  $\epsilon_r = 42.15$ ;  $\rho = 1000$  kg/m<sup>3</sup>

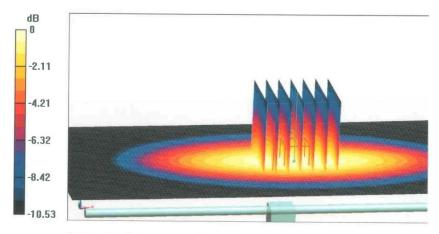
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.56, 9.56, 9.56); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

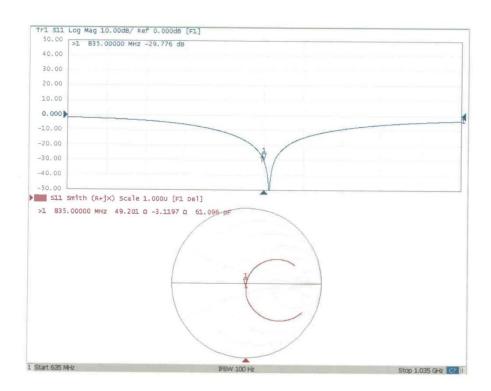

dy=5mm, dz=5mm

Reference Value = 57.74 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 2.94 W/kg




0 dB = 2.94 W/kg = 4.68 dBW/kg





## Impedance Measurement Plot for Head TSL



Date: 10.22.2015





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz;  $\sigma$  = 0.958 S/m;  $\epsilon_r$  = 55.11;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.71,9.71, 9.71); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

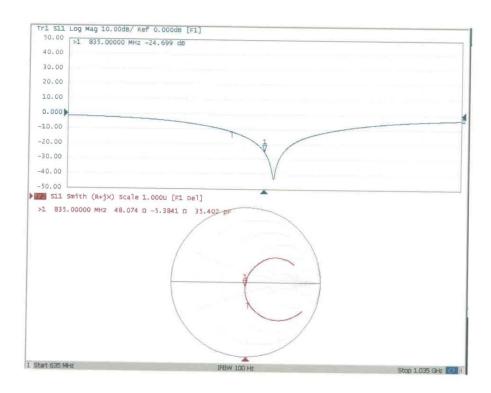

dy=5mm, dz=5mm

Reference Value = 56.68 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.46 W/kg

SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 2.95 W/kg




0 dB = 2.95 W/kg = 4.70 dBW/kg





## Impedance Measurement Plot for Body TSL





## 1900 MHz Dipole Calibration Certificate



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn



Client

CTTL(South Branch)

Certificate No:

Z15-97179

## **CALIBRATION CERTIFICATE**

Object

D1900V2 - SN: 5d088

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 4, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature( $22\pm3$ )°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Reference Probe EX3DV4  | SN 3617    | 26-Aug-15(SPEAG,No.EX3-3617_Aug15)       | Aug -16               |
| DAE4                    | SN 777     | 26-Aug-15(SPEAG,No.DAE4-777_Aug15)       | Aug -16               |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729)           | Feb-16                |
| Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728)           | Feb-16                |
|                         |            |                                          |                       |

|                | Name        | Function                          | Signature |
|----------------|-------------|-----------------------------------|-----------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer                 | 是         |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                | Sor       |
| Approved by:   | Lu Bingsong | Deputy Director of the laboratory | 强级好       |

Issued: November 8, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97179

Page 1 of 8





Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1222 |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1900 MHz ± 1 MHz         |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.6 ± 6 %   | 1.39 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition                              |                           |
|---------------------------------------------------------|----------------------------------------|---------------------------|
| SAR measured                                            | 250 mW input power                     | 10.1 mW/g                 |
| SAR for nominal Head TSL parameters                     | normalized to 1W 40.8 mW /g ± 20.8 % ( |                           |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition                              |                           |
| SAR measured                                            | 250 mW input power                     | 5.22 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W                       | 21.0 mW /g ± 20.4 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.1 ± 6 %   | 1.54 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                                          |  |
|---------------------------------------------------------|--------------------|------------------------------------------|--|
| SAR measured                                            | 250 mW input power | 10.3 mW / g<br>41.1 mW /g ± 20.8 % (k=2) |  |
| SAR for nominal Body TSL parameters                     | normalized to 1W   |                                          |  |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                                          |  |
| SAR measured                                            | 250 mW input power | 5.33 mW / g                              |  |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.3 mW /g ± 20.4 % (k=2)                |  |

Page 3 of 8