SAR TESTREPORT **ISSUED BY** Shenzhen BALUN Technology Co., Ltd. **FOR** ## **HUAWEI MateBook** **ISSUED TO** Huawei Technologies Co., Ltd. Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, China Report No.: BL-SZ18C0049-701 **EUT Name: HUAWEI MateBook** Model Name: KLV-W19 (refer section 2.4) Brand Name: HUAWEI > FCC ID: QISKLV-WX9 Test Standard: FCC 47 CFR Part 2.1093 ANSI C95.1: 1999, IEEE 1528: 2013 Maximum SAR: Body (1 g): 0.75 W/kg Test Conclusion: **Pass** > Test Date: Dec. 19, 2018 ~ Jan. 17, 2019 Date of Issue: Jan. 28, 2019 NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us. ## **Revision History** VersionIssue DateRevisions ContentRev. 01Jan. 22, 2019Initial Issue Rev. 02 Jan. 28, 2019 Updated the information in section 12.2 ## **TABLE OF CONTENTS** | 1 | GENERAL INFORMATION | 4 | |---|--|----| | | 1.1 Identification of the Testing Laboratory | 4 | | | 1.2 Identification of the Responsible Testing Location | 4 | | | 1.3 Test Environment Condition | 4 | | | 1.4 Announce | 5 | | 2 | PRODUCT INFORMATION | 6 | | | 2.1 Applicant Information | 6 | | | 2.2 Manufacturer Information | 6 | | | 2.3 Factory Information | 6 | | | 2.4 General Description for Equipment under Test (EUT) | 6 | | | 2.5 Differences Description | 7 | | | 2.6 Ancillary Equipment | 8 | | | 2.7 Technical Information | 9 | | 3 | SUMMARY OF TEST RESULT | 10 | | | 3.1 Test Standards | 10 | | | 3.2 Device Category and SAR Limit | 11 | | | 3.3 Test Result Summary | 12 | | | 3.4 Test Uncertainty | 13 | | 4 | MEASUREMENT SYSTEM | 14 | | | 4.1 Specific Absorption Rate (SAR) Definition | 14 | | | 4.2 DASY SAR System | 15 | | 5 | SYSTEM VERIFICATION | 23 | | | 5.1 Purpose of System Check | 23 | | | 5.2 System Check Setup | 23 | | 6 | TEST POSITION CONFIGURATIONS | 24 | | | 6.1 Body Supported Exposure Condition | 24 | | 7 | MEASU | JREMENT PROCEDURE | 25 | |------|--------|---|----| | | 7.1 | Measurement Process Diagram | 25 | | | 7.2 | SAR Scan General Requirement | 26 | | | 7.3 | Measurement Procedure | 27 | | | 7.4 | Area & Zoom Scan Procedure | 27 | | 8 | COND | JCTED RF OUPUT POWER | 28 | | | 8.1 | WIFI | 28 | | | 8.2 | Bluetooth (A Antenna) | 36 | | 9 | TEST E | EXCLUSION CONSIDERATION | 37 | | 10 | TEST F | RESULT | 41 | | | 10. | 1 Bluetooth | 41 | | | 10.2 | 2 WIFI 2.4GHz | 41 | | | 10.3 | 3 WIFI 5GHz | 42 | | 11 | SAR M | easurement Variability | 43 | | 12 | SIMUL | TANEOUS TRANSMISSION | 44 | | | 12. | 1 Simultaneous Transmission Mode Consider | 44 | | | 12. | 2 Sum SAR of Simultaneous Transmission | 44 | | 13 | TEST E | EQUIPMENTS LIST | 45 | | ANI | NEX A | SIMULATING LIQUID VERIFICATION RESULT | 46 | | ANI | NEX B | SYSTEM CHECK RESULT | 47 | | ANI | NEX C | TEST DATA | 53 | | ANI | NEX D | EUT EXTERNAL PHOTOS | 62 | | ANI | NEX E | SAR TEST SETUP PHOTOS | 62 | | ANI | NEX F | CALIBRATION REPORT | 62 | | ANI | NEX G | ANTENNA LOCATION PHOTOS | 62 | | ΔΝΙΙ | NEX H | SAR SYSTEM VALIDATION | 62 | ## 1 GENERAL INFORMATION # 1.1 Identification of the Testing Laboratory | Company Name | Shenzhen BALUN Technology Co., Ltd. | | |---|-------------------------------------|--| | Block B, 1st FL, Baisha Science and Technology Park, Sha | | | | Address Road, Nanshan District, Shenzhen, Guangdong Province, F | | | | China | | | | Phone Number +86 755 6685 0100 | | | | Fax Number | +86 755 6182 4271 | | # 1.2 Identification of the Responsible Testing Location | Test Location | Shenzhen BALUN Technology Co., Ltd. | | | |---------------|---|--|--| | | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi | | | | Address | Road, Nanshan District, Shenzhen, Guangdong Province, P. R. | | | | | China | | | | | The laboratory has been listed by Industry Canada to perform | | | | | electromagnetic emission measurements. The recognition numbers | | | | | of test site are 11524A-1. | | | | | The laboratory is a testing organization accredited by FCC as a | | | | Accreditation | accredited testing laboratory. The designation number is CN1196. | | | | Certificate | The laboratory is a testing organization accredited by American | | | | Certificate | Association for Laboratory Accreditation (A2LA) according to | | | | | ISO/IEC 17025.The accreditation certificate is 4344.01. | | | | | The laboratory is a testing organization accredited by China National | | | | | Accreditation Service for Conformity Assessment (CNAS) according | | | | | to ISO/IEC 17025. The accreditation certificate number is L6791. | | | | | All measurement facilities used to collect the measurement data are | | | | Description | located at Block B, FL 1, Baisha Science and Technology Park, | | | | Description | Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, | | | | | P. R. China 518055 | | | ## 1.3 Test Environment Condition | Ambient Temperature | 21°C to 23°C | |------------------------------|--------------------| | Ambient Relative
Humidity | 36% to 48% | | Ambient Pressure | 100 KPa to 102 KPa | #### 1.4 Announce - (1) The test report reference to the report template version v2.2. - (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report. - (3) The test report is invalid if there is any evidence and/or falsification. - (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. - (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section. - (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory. ## **2 PRODUCT INFORMATION** # 2.1 Applicant Information | Applicant | Huawei Technologies Co., Ltd. | |-----------|---| | Address | Administration Building, Headquarters of Huawei Technologies Co., | | | Ltd., Bantian, Longgang District, Shenzhen, 518129, China | ## 2.2 Manufacturer Information | Manufacturer | Huawei Technologies Co., Ltd. | |--------------|---| | Address | Administration Building, Headquarters of Huawei Technologies Co., | | | Ltd., Bantian, Longgang District, Shenzhen, 518129, China | # 2.3 Factory Information | Factory | N/A | |---------|-----| | Address | N/A | # 2.4 General Description for Equipment under Test (EUT) | EUT Name | HUAWEI MateBook | | |-----------------------|--|--| | Model Name Under Test | KLV-W19 | | | | KLV-W09, KLV-W29, KLV-WXXXXX | | | Series Model Name | (The "X" in model name can be 0 to 9, A to Z, a to z, "-" or blank, only | | | | differences are model names for trading purpose) | | | Description of Model | Refer section 2.5 NB8510_PCB_MB_V5 HF | | | Name Differentiation | | | | Hardware Version | | | | Software Version | 1.5.0.10(C001) | | | Dimensions (Approx.) | N/A
N/A | | | Weight (Approx.) | | | # 2.5 Differences Description | | KLV-W29 | KLV-W19 | KLV-W19 | KLV-W09 | |--------------|--------------------|--------------------|---------------------|---------------------| | | (with GPU | (with GPU | (without GPU | (without GPU | | | version) | version) | version) | version) | | PCB layout | The same | The same | The same | The same | | Main board | The same | The same | Delete GPU chip and | Delete GPU chip and | | Main board | The same | The same | related components | related components | | | The same, | The same, | The same, | The same, | | Frequency | Support Wi- | Support Wi-Fi | Support Wi-Fi | Support Wi-Fi | | bands | Fi 2.4G&5G, | 2.4G&5G, | 2.4G&5G, | 2.4G&5G, | | | Support BT | Support BT | Support BT | Support BT | | BT/Wi-Fi | The come | The come | The come | The come | | antenna | The same | The same | The same | The same | | Appearance | The same | The same | The same | The same | | Dimension | The same | The same | The same | The same | | | Intel core i7, | Intel core i5, | Intol coro iF | Intol coro i? | | CPU | Support Max | Support Max | Intel core i5, | Intel core i3, | | | 4.6GHz | 3.9GHz | Support Max 3.9GHz | Support Max 3.9GHz | | GPU | Support | Support | Not support | Not support | | Memory | 16G/8G | 8G | 8G | 4G | | SSD | 512G/256G | 512G/256G | 512G/256G | 256G | | Rear camera | Not support | Not support | Not support | Not support | | Front camera | The same | The same | The same | The same | | Adapter | The same | The same | The same | The same | | Battery | The same | The same | The same | The same | | Accessories | Docking
Station | Docking
Station | Docking Station | Docking Station | Note 1: The models KLV-W29, KLV-W19 and KLV-W09 are identical each other, except model name and main board and memory and CPU and GPU and SSD. Note 2: Tested all mode on model KLV-W19 to represent the other model and configuration in this report. # 2.6 Ancillary Equipment | | Rechargeable Li-ion Polymer Battery 1 | | |-----------------------|---------------------------------------|---| | | Brand Name | HUAWEI | | | Model No. | HB4593R1ECW | | Ancillant Equipment 1 | Serial No. | N/A | | Ancillary Equipment 1 | Capacity | 7410 mAh | | | Rated Voltage | 7.6 V | | | Limit Charge Voltage | 8.7 V | | |
Factory | Dynapack international technology corp. | | | Rechargeable Li-ion Polymer Battery 2 | | | | Brand Name | HUAWEI | | | Model No. | HB4593R1ECW | | Ancillant Equipment 2 | Serial No. | N/A | | Ancillary Equipment 2 | Capacity | 7410 mAh | | | Rated Voltage | 7.6 V | | | Limit Charge Voltage | 8.7 V | | | Factory | Sunwoda Electronic Co., Ltd. | # 2.7 Technical Information | Network and Wireless | Bluetooth 5.0 (BR+EDR+BLE) | | |----------------------|---|--| | connectivity | WIFI 802.11a, 802.11b, 802.11g, 802.11n(HT20/40) and 802.11ac | | The requirement for the following technical information of the EUT was tested in this report: | Operating Mode | 2.4G WLAN; 5G WLAN; Bluetooth | | | | |-------------------|-------------------------------|-----------------|-----------------------|--| | | 802.11b/g/n(HT20) | 2402 ~ 246 | S2 MHz | | | | 802.11n(HT40) | 2402 ~ 245 | 52 MHz | | | | | 5150 ~ 5350 MHz | | | | | 802.11 a | 5470 ~ 572 | 25 MHz | | | | | 5725 ~ 585 | 60 MHz | | | Frequency Range | 802.11 | 5150 ~ 535 | 60 MHz | | | Trequency realige | n(HT20/HT40) | 5470 ~ 572 | 25 MHz | | | | 11(11120/11140) | 5725 ~ 585 | 60 MHz | | | | 802.11 | 5150 ~ 5350 MHz | | | | | ac(VHT20/VHT40/ | 5470 ~ 5725 MHz | | | | | VHT80/VHT160) | 5725 ~ 5850 MHz | | | | | Bluetooth | 2400 ~ 248 | 33.5 MHz | | | Antenna Type | WLAN | PIFA | | | | Antenna Type | Bluetooth | PIFA | | | | Hotspot Function | N/A | | | | | Power Reduction | Not Support | | | | | Exposure Category | General Population/ | Uncontrolled | l exposure | | | EUT Stage | Portable Device | | | | | Draduot | Туре | | | | | Product | | | ☐ Identical prototype | | # **3 SUMMARY OF TEST RESULT** ## 3.1 Test Standards | No. | Identity | Document Title | | | | |-----|-----------------|--|--|--|--| | 1 | 47 CFR Part 2 | Frequency Allocations and Radio Treaty Matters; General Rules | | | | | ı | 47 CFR Fall 2 | and Regulations | | | | | 2 | ANSI/IEEE Std. | IEEE Standard for Safety Levels with Respect to Human Exposure | | | | | 2 | C95.1-1999 | to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz | | | | | | IEEE Std. 1528- | Recommended Practice for Determining the Peak Spatial-Average | | | | | 3 | 2013 | Specific Absorption Rate (SAR) in the Human Head from Wireless | | | | | | 2013 | Communications Devices: Measurement Techniques | | | | | 4 | FCC KDB 447498 | Mobile and Portable Device RF Exposure Procedures and | | | | | 4 | D01 v06 | Equipment Authorization Policies | | | | | 5 | FCC KDB 865664 | SAR Measurement 100 MHz to 6 GHz | | | | | 3 | D01 v01r04 | SAR Measurement 100 MHz to 0 GHz | | | | | 6 | FCC KDB 865664 | RF Exposure Reporting | | | | | 0 | D02 v01r02 | RF Exposure Reporting | | | | | 7 | KDB 248227 D01 | SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters | | | | | | v02r02 | SAN Guidance for IEEE 602.11 (WI-FI) Haristillers | | | | | 0 | KDB 616217 | SAR for lantan and tablets | | | | | 8 | D04v01r02 | SAR for laptop and tablets | | | | ## 3.2 Device Category and SAR Limit This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. #### Table of Exposure Limits: | | SAR Value (W/Kg) | | | | | | |--|-----------------------|--------------------|--|--|--|--| | Body Position | General Population/ | Occupational/ | | | | | | | Uncontrolled Exposure | ControlledExposure | | | | | | Whole-Body SAR | 0.08 | 0.4 | | | | | | (averaged over the entire body) | 0.08 | 0.4 | | | | | | Partial-Body SAR | 1.60 | 8.0 | | | | | | (averaged over any 1 gram of tissue) | 1.00 | 8.0 | | | | | | SAR for hands, wrists, feet and | | | | | | | | ankles | 4.0 | 20.0 | | | | | | (averaged over any 10 grams of tissue) | | | | | | | #### NOTE: **General Population/Uncontrolled Exposure:** Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. # 3.3 Test Result Summary # 3.3.1 Highest SAR (1 g Value) | | Maximum Scaled SAR | Maximum Report SAR | | | |---------------------|--------------------|--------------------|--|--| | Band | (W/kg) | (W/kg) | | | | Bana | Body | Body | | | | 2.4 G A Antenna | 0.33 | | | | | 2.4 G B Antenna | 0.60 | | | | | 5.3G A Antenna | 0.40 | | | | | 5.3G B Antenna | 0.48 | | | | | 5.6 G A Antenna | 0.41 | 0.75 | | | | 5.6 G B Antenna | 0.62 | | | | | 5.8 G A Antenna | 0.53 | | | | | 5.8 G B Antenna | 0.75 | | | | | Bluetooth A Antenna | 0.10 | | | | | Limit (W/kg) | 1.60 | | | | | Verdict | Pass | | | | ## 3.3.2 Highest Simultaneous SAR | Position | Simultaneous Configuration | Simultaneous SAR
(W/kg) | Limit (W/kg) | Verdict | |----------|----------------------------|----------------------------|--------------|---------| | | WLAN 5 G Antenna B | | | | | Body | + 5 G WLAN Antenna A | 1.37 | 1.6 | Pass | | | + Bluetooth Antenna A | | | | ## 3.4 Test Uncertainty According to KDB 865664 D01, when the highest measured 1 g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis is not required in SAR reports submitted for equipment approval. The maximum 1 g SAR for the EUT in this report is 0.746 W/kg, which is lower than 1.5 W/kg, so the extensive SAR measurement uncertainty analysis is not required in this report. #### 4 MEASUREMENT SYSTEM ## 4.1 Specific Absorption Rate (SAR) Definition SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma E^2}{\rho}$$ Where: σ is the conductivity of the tissue, pis the mass density of the tissue and E is the RMS electrical field strength. ## 4.2 DASY SAR System #### 4.2.1 DASY SAR System Diagram The DASY5 system for performing compliance tests consists of the following items: - 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE). - 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - 3. A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - 4. A unit to operate the optical surface detector which is connected to the EOC. - 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server. - 6. The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. - 7. DASY5 software and SEMCAD data evaluation software. - 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc. - 9. The generic twin phantom enabling the testing of left-hand and right-hand usage. - 10. The device holder for handheld mobile phones. - 11. Tissue simulating liquid mixed according to the given recipes. - 12. System validation dipoles allowing to validate the proper functioning of the system. #### 4.2.2 Robot The Dasy SAR system uses the high precision robots. Symmetrical design with triangular core Built-in optical fiber for surface detection system For the 6-axis controller
system, Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents). The robot series have many features that are important for our application: - High precision (repeatability ±0.02 mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brush less synchron motors; no stepper motors) - Low ELF interference (motor control _elds shielded via the closed metallic construction shields) #### 4.2.3 E-Field Probe The probe is specially designed and calibrated for use in liquids with high permittivities for the measurements the Specific Dosimetric E-Field Probe EX3DV4-SN:7510 with following specifications is used. Construction Symmetrical design with triangular core Built-in optical fiber for surface detection systemBuilt-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether) Calibration ISO/IEC 17025 calibration service available Frequency 10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz) Directivity ± 0.2 dB in HSL (rotation around probe axis); ± 0.4 dB in HSL (rotation normal to probe axis) Dynamic range $5 \mu \text{W/g}$ to > 100 mW/g; Linearity: $\pm 0.2 \text{ dB}$ Dimensions Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from probe tip to dipole centers: 1.0 mm Application General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (EX3DV4) #### **E-Field Probe Calibration Process** Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1/2 annexe technique using reference guide at the five frequencies. #### 4.2.4 Data Acquisition Electronics The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. - Input Impedance: 200MOhm - The Inputs: Symmetrical and Floating - · Commom Mode Rejection: Above 80dB #### 4.2.5 Phantoms For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. - Left hand - Right hand - -Flat phantom #### **Photo of Phantom SN1857** | Serial Number | Material | Length | Height | |---------------|------------------------------------|--------|--------| | SN 1857 SAM | Vinylester, glass fiber reinforced | 1000 | 500 | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. ·Flat phantom #### **Photo of Phantom SN1012** | Serial Number Shell Thickness (mm) | | Major ellipse axis (mm) | Minor axis (mm) | | |------------------------------------|-----------|-------------------------|-------------------|--| | SN 1012 ELI4 | 2.0 ± 0.2 | 600 | 500 | | #### 4.2.6 Device Holder The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA"s only. If necessary an additional support of polystyrene material is used. Larger DUT"s (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM. The positioning system allows obtaining cheek and tilting position with a very good accuracy. Incompliance with CENELEC, the tilt angle uncertainty is lower than 1°. #### 4.2.7 Simulating Liquid For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%. The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity. | | Head (Reference IEEE1528) | | | | | | | | | | |------------------|---------------------------|---------|---------------|-----------|-----------|---------|--------------|--------------|--|--| | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | | | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | σ (S/m) | ε | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.4 | 40.0 | | | | 2450 | 55.0 | 0 | 0 | 0.1 | 0 | 44.9 | 1.80 | 39.2 | | | | 2600 | 54.9 | 0 | 0 | 0.1 | 0 | 45.0 | 1.96 | 39.0 | | | | Frequency | Water | H | lexyl Carbito | ol | Triton | X-100 | Conductivity | Permittivity | | | | (MHz) | (%) | | (%) | | (%) | | σ (S/m) | 3 | | | | 5200 | 62.52 | | 17.24 | | 17.24 | | 4.66 | 36.0 | | | | 5800 | 62.52 | | 17.24 | | 17.24 | | 5.27 | 35.3 | | | | | | Body (F | rom instrun | nent manu | facturer) | | | | | | | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | | | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | σ (S/m) | ε | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | 2450 | 68.6 | 0 | 0 | 0.1 | 0 | 31.3 | 1.95 | 52.7 | | | | 2600 | 68.2 | 0 | 0 | 0.1 | 0 | 31.7 | 2.16 | 52.5 | | | | Engage and Alley | \\/e+ | | DGBE | | Sa | alt | Conductivity | Permittivity | | | | Frequency(MHz) | Water | (%) | | (%) | | σ (S/m) | ε | | | | | 5200 | 78.60 | 21.40 | | | / | | 5.54 | 47.86 | | | | 5800 | 78.50 | | 21.40 | | 0. | 1 | 6.0 | 48.20 | | | #### 5 SYSTEM VERIFICATION ## 5.1 Purpose of System Check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ## 5.2 System Check Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: ## 6 TEST POSITION CONFIGURATIONS This DUT was tested in one position which is bottom of laptop touching with phantom 0 mm air gap. ## **6.1 Body Supported Exposure Condition** #### Note: - 1) For feet in Laptop, the antenna location can be positioned against the user during normal use and the additional separation introduced by such protrusions between the outer housing and a flat phantom is <5mm; - 2) The antenna is installed at laptop shaft, and the corresponding Angle of the antenna to the bottom Side minimum distance is 150 degrees, so perform the SAR tests for the bottom side of the keyboard with the display at 90 degrees and 150 degrees. ## 7 MEASUREMENT PROCEDURE # 7.1 Measurement Process Diagram ## 7.2 SAR Scan General Requirement Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Boththe probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly
measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. | | | | ≤3GHz | >3GHz | | |--|------------------|------------------------|--------------------------------|--|--| | Maximum distance from | closest meas | surement point | 5±1 mm | ½·δ·ln(2)±0.5 mm | | | (geometric center of probe sensors) to phantom surface | | J±1 IIIIII | /2·0·111(2)±0.5 111111 | | | | Maximum probe angle from probe axis to phantom surface | | 30°±1° | 20°±1° | | | | normal at the measureme | ent location | | 30 11 | 20 11 | | | | | | ≤ 2 GHz: ≤ 15 mm | 3–4 GHz: ≤ 12 mm | | | | | | 2 – 3 GHz: ≤ 12 mm | 4 – 6 GHz: ≤ 10 mm | | | | | | When the x or y dimension of t | he test device, in the | | | Maximum area scan spat | tial resolution | n: Δx Area , Δy Area | measurement plane orientation | n, is smaller than the above, | | | | | | the measurement resolution m | ust be ≤ the corresponding x or | | | | | | y dimension of the test device | with at least one measurement | | | | | | point on the test device. | | | | Maximum zoom scan spa | atial recolution | on: Av Zoom Av Zoom | ≤ 2 GHz: ≤ 8 mm | 3–4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | Waximum 200m Scan Spa | aliai resolulio | лг. Дх 200m , Ду 200m | 2 –3 GHz: ≤ 5 mm* | 4 – 6 GHz: ≤ 4 mm* | | | | | | ≤ 5 mm | 3–4 GHz: ≤ 4 mm | | | | unifor | m grid: Δz Zoom (n) | | 4–5 GHz: ≤ 3 mm | | | Maximum zoom scan | | | | 5–6 GHz: ≤ 2 mm | | | spatial resolution, | | Δz Zoom (1): between | | 3–4 GHz: ≤ 3 mm | | | normal to phantom | | 1st two points closest | ≤ 4 mm | 4–5 GHz: ≤ 2.5 mm | | | surface | graded | to phantom surface | | 5–6 GHz: ≤ 2 mm | | | | grid | Δz Zoom (n>1): | | | | | | | between subsequent | ≤ 1.5·Δz 2 | Zoom (n-1) | | | | | points | | | | | Minimum zoom | | | | 3–4 GHz: ≥ 28 mm | | | scan volume | | x, y, z | ≥30 mm | 4–5 GHz: ≥ 25 mm | | | Journ Volumo | | | | 5–6 GHz: ≥ 22 mm | | #### Note: - 1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. - 2. * When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 7.3 Measurement Procedure The following steps are used for each test position - a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface - b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 *32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. #### 7.4 Area & Zoom Scan Procedure First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below. When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. # **8 CONDUCTED RF OUPUT POWER** ## 8.1 WIFI ## 8.1.1 2.4G WIFI (SISO B Antenna) | Band | Mode | Channel | Freq. | Conducted | Tune-up Power | SAR Test | |--------------|----------------|-----------|-------|-------------|---------------|----------| | (GHz) | ivioue | 011411101 | (MHz) | Power (dBm) | Limit (dBm) | Require. | | | | 1 | 2412 | 15.6 | 16 | Yes | | | 802.11b | 2 | 2417 | 16.8 | 17 | Yes | | | 802.110 | 6 | 2437 | 16.7 | 17 | Yes | | | | 11 | 2462 | 16.7 | 17 | Yes | | | | 1 | 2412 | 15.6 | 16 | No | | | 802.11g | 2 | 2417 | 16.8 | 17 | No | | 2.4 | | 6 | 2437 | 16.8 | 17 | No | | (2.4~2.4835) | | 11 | 2462 | 16.7 | 17 | No | | (2.4*2.4655) | | 1 | 2412 | 15.8 | 16 | No | | | 802.11n(HT20) | 2 | 2417 | 16.7 | 17 | No | | | 802.1111(1120) | 6 | 2437 | 16.6 | 17 | No | | | | 11 | 2462 | 16.7 | 17 | No | | | | 3 | 2422 | 13.8 | 14 | No | | | 802.11n(HT40) | 6 | 2437 | 13.9 | 14 | No | | | | 9 | 2452 | 13.7 | 14 | No | # 8.1.2 2.4G WIFI (SISO A Antenna) | Band | Mada | Ohamaal | Freq. | Conducted | Tune-up Power | SAR Test | |--------------|---------------|---------|-------|-------------|---------------|----------| | (GHz) | Mode | Channel | (MHz) | Power (dBm) | Limit (dBm) | Require. | | | | 1 | 2412 | 15.6 | 16 | Yes | | | 802.11b | 6 | 2437 | 15.7 | 16 | Yes | | | | 11 | 2462 | 15.6 | 16 | Yes | | | | 1 | 2412 | 15.8 | 16 | No | | | 802.11g | 6 | 2437 | 15.7 | 16 | No | | 2.4 | | 11 | 2462 | 15.9 | 16 | No | | (2.4~2.4835) | 802.11n(HT20) | 1 | 2412 | 15.8 | 16 | No | | | | 6 | 2437 | 15.9 | 16 | No | | | | 11 | 2462 | 15.7 | 16 | No | | | | 3 | 2422 | 13.8 | 14 | No | | | 802.11n(HT40) | 6 | 2437 | 13.9 | 14 | No | | | | 9 | 2452 | 13.6 | 14 | No | ## 8.1.3 2.4G WIFI (MIMO) | Band | Mode | Channal | Freq. | Conducted | Tune-up Power | SAR Test | |--------------|---------------|---------|-------|-------------|---------------|----------| | (GHz) | Mode | Channel | (MHz) | Power (dBm) | Limit (dBm) | Require. | | | | 1 | 2412 | 15.8 | 16 | No | | | 802.11n(HT20) | 2 | 2417 | 16.3 | 16.5 | No | | 2.4 | | 6 | 2437 | 16.4 | 16.5 | No | | 2.4 | | 11 | 2462 | 16.2 | 16.5 | No | | (2.4~2.4835) | | 3 | 2422 | 13.8 | 14 | No | | | 802.11n(HT40) | 6 | 2437 | 13.9 | 14 | No | | | | 9 | 2452 | 13.7 | 14 | No | Note: For 2.4G WiFi SAR testing was performed on single antenna RF power in SISO mode that is larger to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission used more conservative "Max. (B ant) + Max. (A ant) " method to determine SAR compliance. When the sum of 1-g SISO transmission SAR measurement is <1.6W/kg, 2.4G MIMO SAR test is not required. #### 8.1.4 5G WIFI (SISO B Antenna) | Band | Mode | Channal | Freq. | Conducted | Tune-up Power | SAR Test | |-------------|------------------|---------|-------|-------------|---------------|----------| | (GHz) | Iviode | Channel | (MHz) | Power (dBm) | Limit (dBm) | Require. | | | | 36 | 5180 | 14.2 | 14.5 | No | | | 000 44- | 40 | 5200 | 14.1 | 14.5 | No | | | 802.11a | 44 | 5220 | 14.5 | 14.5 | No | | | | 48 | 5240 | 14.1 | 14.5 | No | | | | 36 | 5180 | 14.2 | 14.5 | No | | | 902 44p/UT20) | 40 | 5200 | 14.1 | 14.5 | No | | | 802.11n(HT20) | 44 | 5220 | 14.4 | 14.5 | No | | | | 48 | 5240 | 14.4 | 14.5 | No | | 5.2 | 902 44p(UT40) | 38 | 5190 | 12.5 | 12.5 | No | | (5.15~5.25) | 802.11n(HT40) | 46 | 5230 | 12.2 | 12.5 | No | | | 802.11ac(VHT20) | 36 | 5180 | 14.2 | 14.5 | No | | | | 40 | 5200 | 14.3 | 14.5 | No | | | | 44 | 5220 | 14.1 | 14.5 | No | | | | 48 | 5240 | 14.4 | 14.5 | No | | | 802.11ac(VHT40) | 38 | 5190 | 12.3 | 12.5 | No | | | | 46 | 5230 | 12.2 | 12.5 | No | | | 802.11ac(VHT80) | 42 | 5210 | 14.5 | 14.5 | No | | | 802.11ac(VHT160) | 50 | 5250 | 14.3 | 14.5 | No | | | | 52 | 5260 | 14.3 | 14.5 | No | | | 802.11a | 56 | 5280 | 14.2 | 14.5 | No | | | 002.118 | 60 | 5300 | 14.2 | 14.5 | No | | 5.3 | | 64 | 5320 | 14.3 | 14.5 | No | | (5.25~5.35) | | 52 | 5260 | 14.2 | 14.5 | No | | | 802.11n(HT20) | 56 | 5280 | 14.5 | 14.5 | No | | | 002.111(1120) | 60 | 5300 | 14.3 | 14.5 | No | | | | 64 | 5320 | 14.5 | 14.5 | No | | 802.11n(HT40) |
---| | 802.11ac(VHT20) 52 5260 14.4 14.5 No 56 5280 14.2 14.5 No 60 5300 14.2 14.5 No 64 5320 14.3 14.5 No 802.11ac(VHT40) 54 5270 12.4 12.5 No 802.11ac(VHT80) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 802.11ac(VHT20) 56 5280 14.2 14.5 No 60 5300 14.2 14.5 No 64 5320 14.3 14.5 No 64 5320 14.3 14.5 No 62 5310 12.2 12.5 No 802.11ac(VHT40) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 802.11ac(VHT20) 60 5300 14.2 14.5 No 64 5320 14.3 14.5 No 802.11ac(VHT40) 54 5270 12.4 12.5 No 802.11ac(VHT80) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 60 5300 14.2 14.5 No 64 5320 14.3 14.5 No 802.11ac(VHT40) 54 5270 12.4 12.5 No 802.11ac(VHT80) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 802.11ac(VHT40) 54 5270 12.4 12.5 No 802.11ac(VHT80) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 802.11ac(VHT40) 62 5310 12.2 12.5 No 802.11ac(VHT80) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 62 5310 12.2 12.5 No 802.11ac(VHT80) 58 5290 14.4 14.5 Yes 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 100 5500 13.3 13.5 No 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 104 5520 13.5 13.5 No 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 108 5540 13.1 13.5 No 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 112 5560 13.4 13.5 No 116 5580 13.3 13.5 No | | 116 5580 13.3 13.5 No | | | | | | 802.11a 120 5600 13.1 13.5 No | | 124 5620 13.2 13.5 No | | 128 5640 13.5 13.5 No | | 132 5660 13.3 13.5 No | | 136 5680 13.2 13.5 No | | 140 5700 13.1 13.5 No | | 144 5720 13.5 No | | 100 5500 13.2 13.5 No | | 104 5520 13.3 13.5 No | | 108 5540 13.4 13.5 No | | 112 5560 13.2 13.5 No | | 116 5580 13.1 13.5 No | | 5.6 120 5600 13.5 13.5 No | | (5.47~5.725) 802.11n(HT20) 124 5620 13.4 13.5 No | | 128 5640 13.2 13.5 No | | 132 5660 13.3 13.5 No | | 136 5680 13.1 13.5 No | | 140 5700 13.4 13.5 No | | 144 5720 13.2 13.5 No | | 102 5510 13.2 13.5 No | | 110 5550 13.2 13.5 No | | 118 5590 13.4 13.5 No | | 802.11n(HT40) 126 5630 13.3 13.5 No | | 134 5670 13.1 13.5 No | | 142 5710 13.4 13.5 No | | 100 5500 13.3 13.5 No | | 104 5520 13.2 13.5 No | | 108 5540 13.5 No | | 802.11ac(VHT20) 112 5560 13.2 13.5 No | | 116 5580 13.2 13.5 No | | 120 5600 13.1 13.5 No | | | | 124 | 5620 | 13.5 | 13.5 | No | |---------------|---------------------|-----|------|------|------|-----| | | | 128 | 5640 | 13.4 | 13.5 | No | | | | 132 | 5660 | 13.3 | 13.5 | No | | | | 136 | 5680 | 13.5 | 13.5 | No | | | | 140 | 5700 | 13.4 | 13.5 | No | | | | 144 | 5720 | 13.2 | 13.5 | No | | | | 102 | 5510 | 13.1 | 13.5 | No | | | | 110 | 5550 | 13.4 | 13.5 | No | | | 000 44 - 0 (1 1740) | 118 | 5590 | 13.5 | 13.5 | No | | | 802.11ac(VHT40) | 126 | 5630 | 13.3 | 13.5 | No | | | | 134 | 5670 | 13.3 | 13.5 | No | | | | 142 | 5710 | 13.4 | 13.5 | No | | | | 106 | 5530 | 13.2 | 13.5 | No | | | 802.11ac(VHT80) | 122 | 5610 | 13.4 | 13.5 | No | | | | 138 | 5690 | 13.3 | 13.5 | No | | | 802.11ac(VHT160) | 114 | 5570 | 13.3 | 13.5 | Yes | | | | 149 | 5745 | 14.2 | 14.5 | No | | | | 153 | 5765 | 14.3 | 14.5 | No | | | 802.11a | 157 | 5785 | 14.2 | 14.5 | No | | | | 161 | 5805 | 14.5 | 14.5 | No | | | | 165 | 5825 | 14.3 | 14.5 | No | | | | 149 | 5745 | 14.3 | 14.5 | No | | | | 153 | 5765 | 14.5 | 14.5 | No | | | 802.11n(HT20) | 157 | 5785 | 14.3 | 14.5 | No | | | | 161 | 5805 | 14.2 | 14.5 | No | | 5.8 | | 165 | 5825 | 14.4 | 14.5 | No | | (5.725~5.850) | 200 11 (11710) | 151 | 5755 | 14.3 | 14.5 | No | | | 802.11n(HT40) | 159 | 5790 | 14.2 | 14.5 | No | | | | 149 | 5745 | 14.1 | 14.5 | No | | | | 153 | 5765 | 14.2 | 14.5 | No | | | 802.11ac(VHT20) | 157 | 5785 | 14.4 | 14.5 | No | | | | 161 | 5805 | 14.4 | 14.5 | No | | | | 165 | 5825 | 14.3 | 14.5 | No | | | 000 44 - 0.01740 | 151 | 5755 | 14.2 | 14.5 | No | | | 802.11ac(VHT40) | 159 | 5790 | 14.3 | 14.5 | No | | | 802.11ac(VHT80) | 155 | 5775 | 14.3 | 14.5 | Yes | | | 1 | | 1 | | | · | # 8.1.5 5G WIFI (SISO A Antenna) | Band | | | Freq. | Conducted | Tune-up Power | SAR Test | |---------------------|--------------------|---------|-------|-------------|---------------|----------| | (GHz) | Mode | Channel | (MHz) | Power (dBm) | Limit (dBm) | Require. | | | | 36 | 5180 | 14.3 | 14.5 | No | | | 202.44 | 40 | 5200 | 14.2 | 14.5 | No | | | 802.11a | 44 | 5220 | 14.3 | 14.5 | No | | | | 48 | 5240 | 14.4 | 14.5 | No | | | | 36 | 5180 | 14.2 | 14.5 | No | | | 000 44 = (UT00) | 40 | 5200 | 14.4 | 14.5 | No | | | 802.11n(HT20) | 44 | 5220 | 14.5 | 14.5 | No | | | | 48 | 5240 | 14.3 | 14.5 | No | | 5.2 | 000 44 = (UT40) | 38 | 5190 | 12.3 | 12.5 | No | | (5.15~5.25) | 802.11n(HT40) | 46 | 5230 | 12.5 | 12.5 | No | | | | 36 | 5180 | 14.2 | 14.5 | No | | | 000 44 () (ITOO) | 40 | 5200 | 14 | 14.5 | No | | | 802.11ac(VHT20) | 44 | 5220 | 14.3 | 14.5 | No | | | | 48 | 5240 | 14.5 | 14.5 | No | | | 000 44 () (1740) | 38 | 5190 | 12.4 | 12.5 | No | | | 802.11ac(VHT40) | 46 | 5230 | 12.4 | 12.5 | No | | | 802.11ac(VHT80) | 42 | 5210 | 14.3 | 14.5 | No | | | 802.11ac(VHT160) | 50 | 5250 | 14.4 | 14.5 | No | | | 802.11a | 52 | 5260 | 14.1 | 14.5 | No | | | | 56 | 5280 | 14.5 | 14.5 | No | | | | 60 | 5300 | 14.3 | 14.5 | No | | | | 64 | 5320 | 14.1 | 14.5 | No | | | | 52 | 5260 | 14.3 | 14.5 | No | | | 802.11n(HT20) | 56 | 5280 | 14.1 | 14.5 | No | | | 002.1111(11120) | 60 | 5300 | 14.4 | 14.5 | No | | 5.3 | | 64 | 5320 | 14.2 | 14.5 | No | | (5.25~5.35) | 802.11n(HT40) | 54 | 5270 | 12.3 | 12.5 | No | | (5.25~5.55) | 802.1111(11140) | 62 | 5310 | 12.4 | 12.5 | No | | | | 52 | 5260 | 14.1 | 14.5 | No | | | 802.11ac(VHT20) | 56 | 5280 | 14.4 | 14.5 | No | | | 002.11ac(V11120) | 60 | 5300 | 14.3 | 14.5 | No | | | | 64 | 5320 | 14.2 | 14.5 | No | | | 802.11ac(VHT40) | 54 | 5270 | 12.3 | 12.5 | No | | | 002.11ac(VF140) | 62 | 5310 | 12.2 | 12.5 | No | | | 802.11ac(VHT80) | 58 | 5290 | 14.2 | 14.5 | Yes | | | | 100 | 5500 | 13.2 | 13.5 | No | | | | 104 | 5520 | 13.1 | 13.5 | No | | 5.6 | | 108 | 5540 | 13.3 | 13.5 | No | | 5.6
(5.47~5.725) | 802.11a | 112 | 5560 | 13.4 | 13.5 | No | | (0.41~0.120) | | 116 | 5580 | 13.2 | 13.5 | No | | | | 120 | 5600 | 13.2 | 13.5 | No | | | | 124 | 5620 | 13.3 | 13.5 | No | | | | 128
132
136
140 | 5640
5660
5680 | 13.4
13.2
13.3 | 13.5
13.5
13.5 | No
No
No | |---------|--------------|--------------------------|----------------------|----------------------|----------------------|----------------| | | | 136 | 5680 | | | | | | | | | 13.3 | 13.5 | No | | | | 140 | E=00 | | | | | | _ | | 5700 | 13.1 | 13.5 | No | | | | 144 | 5720 | 13.5 | 13.5 | No | | | | 100 | 5500 | 13.3 | 13.5 | No | | 1 | | 104 | 5520 | 13.1 | 13.5 | No | | | | 108 | 5540 | 13.1 | 13.5 | No | | | | 112 | 5560 | 13.3 | 13.5 | No | | | | 116 | 5580 | 13.5 | 13.5 | No | | 200 44 | (((ITOO) | 120 | 5600 | 13.2 | 13.5 | No | | 802.11 | 1n(HT20) | 124 | 5620 | 13.4 | 13.5 | No | | | | 128 | 5640 | 13.1 | 13.5 | No | | | | 132 | 5660 | 13.1 | 13.5 | No | | | | 136 | 5680 | 13.2 | 13.5 | No | | | | 140 | 5700 | 13.3 | 13.5 | No | | | | 144 | 5720 | 13.4 | 13.5 | No | | | | 102 | 5510 | 13.1 | 13.5 | No | | | | 110 | 5550 | 13.2 | 13.5 | No | | | | 118 | 5590 | 13.2 | 13.5 | No | | 802.11 | 1n(HT40) | 126 | 5630 | 13.5 | 13.5 | No | | | | 134 | 5670 | 13.4 | 13.5 | No | | | | 142 | 5710 | 13.2 | 13.5 | No | | | | 100 | 5500 | 13.5 | 13.5 | No | | | | 104 | 5520 | 13.2 | 13.5 | No | | | | 108 | 5540 |
13.4 | 13.5 | No | | | | 112 | 5560 | 13.2 | 13.5 | No | | | | 116 | 5580 | 13.1 | 13.5 | No | | | | 120 | 5600 | 13.4 | 13.5 | No | | 802.11a | ac(VHT20) | 124 | 5620 | 13.3 | 13.5 | No | | | | 128 | 5640 | 13.2 | 13.5 | No | | | | 132 | 5660 | 13.5 | 13.5 | No | | | | 136 | 5680 | 13.4 | 13.5 | No | | | | 140 | 5700 | 13.3 | 13.5 | No | | | | 144 | 5720 | 13.2 | 13.5 | No | | | | 102 | 5510 | 13.4 | 13.5 | No | | | | 110 | 5550 | 13.2 | 13.5 | No | | | | 118 | 5590 | 13.1 | 13.5 | No | | 802.11a | ac(VHT40) | 126 | 5630 | 13.3 | 13.5 | No | | | | 134 | 5670 | 13.4 | 13.5 | No | | 1 | | 142 | 5710 | 13.2 | 13.5 | No | | | | 106 | 5530 | 13.3 | 13.5 | No | | | l | | | | | | | 802.11a | ac(VHT80) | | | | | No | | 802.11a | ac(VHT80) | 122 | 5610
5690 | 13.5
13.3 | 13.5
13.5 | No
No | | | | 149 | 5745 | 14.3 | 14.5 | No | |---------------|-----------------|-----|------|------|------|-----| | | | 153 | 5765 | 14.2 | 14.5 | No | | | 802.11a | 157 | 5785 | 14.5 | 14.5 | No | | | | 161 | 5805 | 14.2 | 14.5 | No | | | | 165 | 5825 | 14.3 | 14.5 | No | | | | 149 | 5745 | 14.3 | 14.5 | No | | | | 153 | 5765 | 14.2 | 14.5 | No | | | 802.11n(HT20) | 157 | 5785 | 14.4 | 14.5 | No | | | | 161 | 5805 | 14.3 | 14.5 | No | | 5.8 | | 165 | 5825 | 14.3 | 14.5 | No | | (5.725~5.850) | 802.11n(HT40) | 151 | 5755 | 14.4 | 14.5 | No | | | | 159 | 5790 | 14.2 | 14.5 | No | | | | 149 | 5745 | 14.2 | 14.5 | No | | | | 153 | 5765 | 14.1 | 14.5 | No | | | 802.11ac(VHT20) | 157 | 5785 | 14.2 | 14.5 | No | | | | 161 | 5805 | 14.5 | 14.5 | No | | | | 165 | 5825 | 14.1 | 14.5 | No | | | 000 44(////Т40) | 151 | 5755 | 14.5 | 14.5 | No | | | 802.11ac(VHT40) | 159 | 5790 | 14.2 | 14.5 | No | | | 802.11ac(VHT80) | 155 | 5775 | 14.2 | 14.5 | Yes | ## 8.1.6 5G WIFI (MIMO) | Band
(GHz) | Mode | Channel | Freq.
(MHz) | Conducted Power (dBm) | Tune-up Power
Limit (dBm) | SAR Test
Require. | |---------------|------------------|---------|----------------|-----------------------|------------------------------|----------------------| | | | 36 | 5180 | 14.2 | 14.5 | No | | | 000 44 - (LITOO) | 40 | 5200 | 14.3 | 14.5 | No | | | 802.11n(HT20) | 44 | 5220 | 14.4 | 14.5 | No | | | | 48 | 5240 | 14.2 | 14.5 | No | | | 902 44p(UT40) | 38 | 5190 | 12.4 | 12.5 | No | | | 802.11n(HT40) | 46 | 5230 | 12.1 | 12.5 | No | | 5.2 | | 36 | 5180 | 14.5 | 14.5 | No | | (5.15~5.25) | 802.11ac(VHT20) | 40 | 5200 | 14.1 | 14.5 | No | | | 602.11aC(VH120) | 44 | 5220 | 14.1 | 14.5 | No | | | | 48 | 5240 | 14.2 | 14.5 | No | | | 802.11ac(VHT40) | 38 | 5190 | 12.3 | 12.5 | No | | | | 46 | 5230 | 12.4 | 12.5 | No | | | 802.11ac(VHT80) | 42 | 5210 | 14.3 | 14.5 | No | | | 802.11ac(VHT160) | 50 | 5250 | 14.4 | 14.5 | No | | | | 52 | 5260 | 14.1 | 14.5 | No | | | 000 44 = (UT00) | 56 | 5280 | 14.1 | 14.5 | No | | 5.3 | 802.11n(HT20) | 60 | 5300 | 14.5 | 14.5 | No | | (5.25~5.35) | | 64 | 5320 | 14.3 | 14.5 | No | | | 902 11p/UT40\ | 54 | 5270 | 12.3 | 12.5 | No | | | 802.11n(HT40) | 62 | 5310 | 12.4 | 12.5 | No | | | T | | T | | | 1 | |--------------|-----------------|-----|------|------|------|----| | | | 52 | 5260 | 14.4 | 14.5 | No | | | 802.11ac(VHT20) | 56 | 5280 | 14 | 14.5 | No | | | , , | 60 | 5300 | 14.3 | 14.5 | No | | | | 64 | 5320 | 14.2 | 14.5 | No | | | 802.11ac(VHT40) | 54 | 5270 | 12.3 | 12.5 | No | | | | 62 | 5310 | 12.2 | 12.5 | No | | | 802.11ac(VHT80) | 58 | 5290 | 14.1 | 14.5 | No | | | | 100 | 5500 | 13.4 | 13.5 | No | | | | 104 | 5520 | 13.2 | 13.5 | No | | | | 108 | 5540 | 13.4 | 13.5 | No | | | | 112 | 5560 | 13.2 | 13.5 | No | | | | 116 | 5580 | 13.1 | 13.5 | No | | | 802.11n(HT20) | 120 | 5600 | 13.5 | 13.5 | No | | | 002.1111(11120) | 124 | 5620 | 13.1 | 13.5 | No | | | | 128 | 5640 | 13.2 | 13.5 | No | | | | 132 | 5660 | 13.2 | 13.5 | No | | | | 136 | 5680 | 13.4 | 13.5 | No | | | | 140 | 5700 | 13.3 | 13.5 | No | | | | 144 | 5720 | 13.4 | 13.5 | No | | | | 102 | 5510 | 13.3 | 13.5 | No | | | | 110 | 5550 | 13.4 | 13.5 | No | | | 802.11n(HT40) | 118 | 5590 | 13.1 | 13.5 | No | | | 302.1111(11140) | 126 | 5630 | 13.4 | 13.5 | No | | | | 134 | 5670 | 13.5 | 13.5 | No | | | | 142 | 5710 | 13.4 | 13.5 | No | | 5.6 | | 100 | 5500 | 13.1 | 13.5 | No | | (5.47~5.725) | | 104 | 5520 | 13.4 | 13.5 | No | | | | 108 | 5540 | 13.2 | 13.5 | No | | | | 112 | 5560 | 13.3 | 13.5 | No | | | | 116 | 5580 | 13.2 | 13.5 | No | | | 802.11ac(VHT20) | 120 | 5600 | 13.4 | 13.5 | No | | | 002.11ac(VH120) | 124 | 5620 | 13.4 | 13.5 | No | | | | 128 | 5640 | 13.5 | 13.5 | No | | | | 132 | 5660 | 13.1 | 13.5 | No | | | | 136 | 5680 | 13.2 | 13.5 | No | | | | 140 | 5700 | 13.4 | 13.5 | No | | | | 144 | 5720 | 13.3 | 13.5 | No | | | | 102 | 5510 | 13.1 | 13.5 | No | | | | 110 | 5550 | 13.4 | 13.5 | No | | | 902 11cc///UT40 | 118 | 5590 | 13.3 | 13.5 | No | | | 802.11ac(VHT40) | 126 | 5630 | 13.2 | 13.5 | No | | | | 134 | 5670 | 13.5 | 13.5 | No | | | Ţ | 142 | 5710 | 13.1 | 13.5 | No | | | 000 44 0.01700 | 106 | 5530 | 13.2 | 13.5 | No | | | 802.11ac(VHT80) | 122 | 5610 | 13.4 | 13.5 | No | | | | 138 | 5690 | 13.3 | 13.5 | No | |----------------------|------------------|-----|------|------|------|----| | | 802.11ac(VHT160) | 114 | 5570 | 13.2 | 13.5 | No | | | | 149 | 5745 | 14.5 | 14.5 | No | | | | 153 | 5765 | 14.4 | 14.5 | No | | | 802.11n(HT20) | 157 | 5785 | 14.2 | 14.5 | No | | | | 161 | 5805 | 14.2 | 14.5 | No | | | | 165 | 5825 | 14.1 | 14.5 | No | | | 802.11n(HT40) | 151 | 5755 | 14.2 | 14.5 | No | | E 0 | | 159 | 5790 | 14.3 | 14.5 | No | | 5.8
(5.725~5.850) | 802.11ac(VHT20) | 149 | 5745 | 14.4 | 14.5 | No | | (5.725*5.850) | | 153 | 5765 | 14.2 | 14.5 | No | | | | 157 | 5785 | 14.1 | 14.5 | No | | | | 161 | 5805 | 14.3 | 14.5 | No | | | | 165 | 5825 | 14.4 | 14.5 | No | | | 802.11ac(VHT40) | 151 | 5755 | 14.3 | 14.5 | No | | | | 159 | 5790 | 14.4 | 14.5 | No | | | 802.11ac(VHT80) | 155 | 5775 | 14.5 | 14.5 | No | #### Note: - 1. For 5GHz SAR testing was performed on single antenna RF power in SISO mode that is larger to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission used more conservative "Max. (B ant) + Max. (A ant) " method to determine SAR compliance. When the sum of 1-g SISO transmission SAR measurement is <1.6W/kg, 5G MIMO SAR test is not required. - 2. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. ## 8.2 Bluetooth (A Antenna) | Mode | | GFSK | | | π/4-DQPSK | | | |-----------------------|------|-------------|------|-------------|-----------|------|--| | Channel | 0 | 39 | 78 | 0 | 39 | 78 | | | Frequency (MHz) | 2402 | 2441 | 2480 | 2402 | 2441 | 2480 | | | Conducted Power (dBm) | 7.19 | 8.82 | 9.41 | 4.23 | 5.3 | 5.41 | | | Tune-Up Limit (dBm) | | 9.5 | | | 5.5 | | | | Mode | | 8-DPSK | | BLE (1Mbps) | | | | | Channel | 0 | 39 | 78 | 0 | 19 | 39 | | | Frequency (MHz) | 2402 | 2441 | 2480 | 2402 | 2440 | 2480 | | | Conducted Power (dBm) | 4.21 | 5.36 | 5.39 | 4.12 | 5.31 | 5.21 | | | Tune-Up Limit (dBm) | | 5.5 | | 5.5 | | | | | Mode | | BLE (2Mbps) | | | - | | | | Channel | 0 | 19 | 39 | - | | | | | Frequency (MHz) | 2402 | 2440 | 2480 | - | | | | | Conducted Power (dBm) | 4.14 | 5.32 | 5.22 | - | | | | | Tune-Up Limit (dBm) | | 5.5 | | - | | | | ## 9 TEST EXCLUSION CONSIDERATION According with FCC KDB 447498 D01, the 1g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] *·[$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - a. f(GHz) is the RF channel transmit frequency in GHz - b. Power and distance are rounded to the nearest mW and mm before calculation - c. The result is rounded to one decimal place for comparison - d. For < 50 mm distance, just calculate mW of the exclusion threshold value (3.0) to do compare. This formula is [3.0] / $[\sqrt{f(GHz)}] * \cdot [(min. test separation distance, mm)] = exclusion threshold of mW.$ This device SAR test configurations consider as following: For antenna location photo, please refer the document "BL-SZ18C0049-AA.pdf". #### .B Antenna | Band | Mode | Max. Cond | lucted Power | Test Position Configurations | |-------|------------------|--------------|--------------|------------------------------| | | | dBm | mW | Bottom Edge | | | Dista | ance to User | | <5mm | | WLAN | 802.11b | 17 | 50.12 | Yes | | 2.4 G | 802.11g | 17 | 50.12 | No | | 2.4 0 | 802.11n(HT20) | 17 | 50.12 | No | | | 802.11n(HT40) | 14 | 25.12 | No | | | Dista | ance to User | | <5mm | | | 802.11a | 14.5 | 28.18 | No | | | 802.11n(HT20) | 14.5 | 28.18 | No | | WLAN | 802.11n(HT40) | 12.5 | 17.78 | No | | 5.2 G | 802.11ac(VHT20) | 14.5 | 28.18 | No | | | 802.11ac(VHT40) | 12.5 | 17.78 | No | | | 802.11ac(VHT80) | 14.5 | 28.18 | No | | | 802.11ac(VHT160) | 14.5 | 28.18 | No | | | Dista | ance to User | | <5mm | | | 802.11a | 14.5 | 28.18 | No | | WLAN | 802.11n(HT20) | 14.5 | 28.18 | No | | 5.3 G | 802.11n(HT40) | 12.5 | 17.78 | No | | 3.3 G | 802.11ac(VHT20) | 14.5 | 28.18 | No | | | 802.11ac(VHT40) | 12.5 | 17.78 | No | | | 802.11ac(VHT80) | 14.5 | 28.18 | Yes | | | Dista | ance to User | | <5mm | | | 802.11a | 13.5 | 22.39 | No | | WLAN | 802.11n(HT20) | 13.5 | 22.39 | No | | 5.6 G | 802.11n(HT40) | 13.5 | 22.39 | No | | | 802.11ac(VHT20) | 13.5 | 22.39 | No | | | 802.11ac(VHT40) | 13.5 | 22.39 | No | | | 802.11ac(VHT80) | 13.5 | 22.39 | No | |---------------|------------------|--------------|-------|------| | | 802.11ac(VHT160) | 13.5 | 22.39 | Yes | | | Dista | ance to User | | <5mm | | | 802.11a | 14.5 | 28.18 | No | | \A/I ANI | 802.11n(HT20) | 14.5 | 28.18 | No | |
WLAN
5.8 G | 802.11n(HT40) | 14.5 | 28.18 | No | | 3.8 G | 802.11ac(VHT20) | 14.5 | 28.18 | No | | | 802.11ac(VHT40) | 14.5 | 28.18 | No | | | 802.11ac(VHT80) | 14.5 | 28.18 | Yes | ## A Antenna | David | Mada | Max. Condu | Max. Conducted Power dBm mW | Test Position Configurations | |---------------|------------------|-------------|------------------------------|------------------------------| | Band | Mode | dBm | mW | Bottom Edge | | | Dista | nce to User | | <5mm | | | 802.11b | 16 | 39.81 | Yes | | WLAN
2.4 G | 802.11g | 16 | 39.81 | No | | 2.4 G | 802.11n(HT20) | 16 | 39.81 | No | | | 802.11n(HT40) | 14 | 25.12 | No | | | Dista | nce to User | | <5mm | | | 802.11a | 14.5 | 28.18 | No | | | 802.11n(HT20) | 14.5 | 28.18 | No | | WLAN | 802.11n(HT40) | 12.5 | 17.78 | No | | 5.2 G | 802.11ac(VHT20) | 14.5 | 28.18 | No | | | 802.11ac(VHT40) | 12.5 | 17.78 | No | | | 802.11ac(VHT80) | 14.5 | 28.18 | No | | | 802.11ac(VHT160) | 14.5 | 28.18 | No | | | Dista | nce to User | | <5mm | | | 802.11a | 14.5 | 28.18 | No | | \A/I ANI | 802.11n(HT20) | 14.5 | 28.18 | No | | WLAN
5.3 G | 802.11n(HT40) | 12.5 | 17.78 | No | | 5.5 G | 802.11ac(VHT20) | 14.5 | 28.18 | No | | | 802.11ac(VHT40) | 12.5 | 17.78 | No | | | 802.11ac(VHT80) | 14.5 | 28.18 | Yes | | | Dista | nce to User | | <5mm | | | 802.11a | 13.5 | 22.39 | No | | | 802.11n(HT20) | 13.5 | 22.39 | No | | WLAN | 802.11n(HT40) | 13.5 | 22.39 | No | | 5.6 G | 802.11ac(VHT20) | 13.5 | 22.39 | No | | | 802.11ac(VHT40) | 13.5 | 22.39 | No | | | 802.11ac(VHT80) | 13.5 | 22.39 | No | | | 802.11ac(VHT160) | 13.5 | 22.39 | Yes | | | Distar | nce to User | | <5mm | |---------------|-----------------|-------------|-------|------| | | 802.11a | 14.5 | 28.18 | No | | \A/I ANI | 802.11n(HT20) | 14.5 | 28.18 | No | | WLAN
5.8 G | 802.11n(HT40) | 14.5 | 28.18 | No | | 3.6 G | 802.11ac(VHT20) | 14.5 | 28.18 | No | | | 802.11ac(VHT40) | 14.5 | 28.18 | No | | | 802.11ac(VHT80) | 14.5 | 28.18 | Yes | | | Distar | nce to User | | <5mm | | Bluetooth | BR/EDR | 9.5 | 8.91 | Yes | | | BLE | 5.5 | 3.55 | No | #### Note: - 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units. - 2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 3. Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold - 4. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following: - a. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz - 5. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions. - a. When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel - 6. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions. - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration. - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. - 7. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions. - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR. - c. The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion. - 8. Per KDB 248227 D01 5G WLAN Subsequent Test Configuration Procedures - SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. - a. When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration. - b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. - 9. According to 2016 Oct. TCB workshop the Bluetooth time-domain plot is required to identify duty cycle in SAR report. The Bluetooth (DH5) duty cycle is 77.0% and time-domain plot as following figure. ## **10 TEST RESULT** ## 10.1 Bluetooth | Battery
No. | Antenna | Mode | Position | Degree° | Dist.
(mm) | Ch. | Freq.
(MHz) | Power
Drift (dB) | 1 g
Meas.
SAR
(W/Kg) | Meas. Power (dBm) | Max.
tune-up
Power
(dBm) | Scaling
Factor | Duty
Cycle
(%) | Duty
Cycle
Factor | 1 g
Scaled
SAR
(W/Kg) | Meas
No. | |----------------|---------|------|----------------|---------|---------------|-----|----------------|---------------------|-------------------------------|-------------------|-----------------------------------|-------------------|----------------------|-------------------------|--------------------------------|-------------| | Body | 90° | 0 | 78 | 2480 | -0.06 | 0.055 | 9.41 | 9.50 | 1.021 | 77.00 | 1.299 | 0.073 | 1 | | Dattam: 2 | | DH5 | Bottom | | 0 | 78 | 2480 | 0.19 | 0.067 | 9.41 | 9.50 | 1.021 | 77.00 | 1.299 | 0.089 | / | | Battery 2 | Α | DHO | Edge | 150° | 0 | 0 | 2402 | 0.04 | 0.038 | 7.19 | 9.50 | 1.702 | 77.00 | 1.299 | 0.085 | / | | | | | | | 0 | 39 | 2441 | -0.08 | 0.048 | 8.82 | 9.50 | 1.169 | 77.00 | 1.299 | 0.073 | 1 | | Battery 1 | А | DH5 | Bottom
Edge | 150° | 0 | 78 | 2480 | -0.03 | 0.072 | 9.41 | 9.50 | 1.021 | 77.00 | 1.299 | 0.095 | 1# | Note: ## 10.2 WIFI 2.4GHz | Battery
No. | Antenna | Mode | Position | Degree° | Dist.
(mm) | Ch. | Freq.
(MHz) | Power
Drift (dB) | 1 g
Meas.
SAR
(W/Kg) | Meas. Power (dBm) | Max.
tune-up
Power
(dBm) | Scaling
Factor | Duty Cycle (%) | Duty
Cycle
Factor | 1 g
Scaled
SAR
(W/Kg) | Meas
No. | |----------------|---------|----------|----------------|---------|---------------|-----|----------------|---------------------|-------------------------------|-------------------|-----------------------------------|-------------------|----------------|-------------------------|--------------------------------|-------------| | | | | | 90° | 0 | 6 | 2437 | 0.12 | 0.229 | 15.70 | 16.00 | 1.072 | 99.00 | 1.010 | 0.248 | 1 | | | Α | 802.11 b | Bottom | | 0 | 6 | 2437 | 0.09 | 0.283 | 15.70 | 16.00 | 1.072 | 99.00 | 1.010 | 0.306 | 1 | | | ^ | 002.11 0 | Edge | 150° | 0 | 1 | 2412 | 0.11 | 0.293 | 15.60 | 16.00 | 1.096 | 99.00 | 1.010 | 0.325 | 2# | | | | | | | 0 | 11 | 2462 | -0.03 | 0.253 | 15.60 | 16.00 | 1.096 | 99.00 | 1.010 | 0.280 | 1 | | Battery 2 | | | | 90° | 0 | 6 | 2437 | 0.01 | 0.249 | 16.70 | 17.00 | 1.072 | 99.00 | 1.010 | 0.270 | 1 | | | | | Dettern | | 0 | 6 | 2437 | 0.04 | 0.551 | 16.70 | 17.00 | 1.072 | 99.00 | 1.010 | 0.596 | 1 | | | В | 802.11 b | Bottom
Edge | 150° | 0 | 1 | 2412 | 0.08 | 0.410 | 15.60 | 16.00 | 1.096 | 99.00 | 1.010 | 0.454 | 1 | | | | | Euge | 150 | 0 | 2 | 2417 | 0.08 | 0.433 | 16.80 | 17.00 | 1.047 | 99.00 | 1.010 | 0.458 | 1 | | | | | | | 0 | 11 | 2462 | -0.05 | 0.552 | 16.70 | 17.00 | 1.072 | 99.00 | 1.010 | 0.597 | 3# | | Battery 1 | В | 802.11 b | Bottom
Edge | 150° | 0 | 11 | 2462 | 0.08 | 0.396 | 16.70 | 17.00 | 1.072 | 99.00 | 1.010 | 0.429 | 1 | Note: Refer to ANNEX C for the detailed test data for
each test configuration. ^{2.} Tested all mode on Battery 2, the Battery 1 test the worst case on Battery 2 mode. Refer to ANNEX C for the detailed test data for each test configuration. Tested all mode on Battery 2, the Battery 1 test the worst case on Battery 2 mode. ## 10.3 WIFI 5GHz | Battery
No. | Antenna | Mode | Position | Degree° | Dist.
(mm) | Ch. | Freq.
(MHz) | Power Drift (dB) | 1 g
Meas.
SAR
(W/Kg) | Meas. Power (dBm) | Max. tune-up Power (dBm) | Scaling
Factor | Duty
Cycle
(%) | Duty
Cycle
Factor | 1 g
Scaled
SAR
(W/Kg) | Meas
No. | |----------------|---------|--------|----------------|---------|---------------|-----|----------------|------------------|-------------------------------|-------------------|--------------------------|-------------------|----------------------|-------------------------|--------------------------------|-------------| | 5.3G Body | ı | T | ı | T | | | | ı | | T | T | | | | | ı | | | Α | | Bottom | 90° | 0 | 58 | 5290 | -0.09 | 0.241 | 14.20 | 14.50 | 1.072 | 92.30 | 1.083 | 0.280 | 1 | | Battery 2 | | 802.11 | Edge | 150° | 0 | 58 | 5290 | 0.06 | 0.340 | 14.20 | 14.50 | 1.072 | 92.30 | 1.083 | 0.395 | 4# | | Dattery 2 | В | ac(VHT | Bottom | 90° | 0 | 58 | 5290 | 0.02 | 0.299 | 14.40 | 14.50 | 1.023 | 92.30 | 1.083 | 0.331 | / | | | В | 80) | Edge | 150° | 0 | 58 | 5290 | -0.18 | 0.437 | 14.40 | 14.50 | 1.023 | 92.30 | 1.083 | 0.484 | 5# | | Battery 1 | В | | Bottom
Edge | 150° | 0 | 58 | 5290 | 0.09 | 0.420 | 14.40 | 14.50 | 1.023 | 92.30 | 1.083 | 0.466 | 1 | | 5.6G Body | Bottom | 90° | 0 | 114 | 5570 | 0.04 | 0.312 | 13.50 | 13.50 | 1.000 | 87.00 | 1.149 | 0.359 | 1 | | Datta a co | A | 802.11 | Edge | 150° | 0 | 114 | 5570 | 0.12 | 0.358 | 13.50 | 13.50 | 1.000 | 87.00 | 1.149 | 0.411 | 6# | | Battery 2 | | ac(VHT | Bottom | 90° | 0 | 114 | 5570 | 0.17 | 0.408 | 13.30 | 13.50 | 1.096 | 87.00 | 1.149 | 0.514 | 1 | | | В | 160) | Edge | 150° | 0 | 114 | 5570 | -0.09 | 0.514 | 13.30 | 13.50 | 1.047 | 87.00 | 1.149 | 0.619 | 7# | | Battery 1 | В | | Bottom
Edge | 150° | 0 | 114 | 5570 | 0.15 | 0.391 | 13.30 | 13.50 | 1.047 | 87.00 | 1.149 | 0.471 | 1 | | 5.8G Body | | | | | | | | | | | | | | | | | | | Α | | Bottom | 90° | 0 | 155 | 5775 | 0.04 | 0.456 | 14.20 | 14.50 | 1.072 | 92.30 | 1.083 | 0.529 | 8# | | Dattam: 2 | A | 802.11 | Edge | 150° | 0 | 155 | 5775 | -0.09 | 0.356 | 14.20 | 14.50 | 1.072 | 92.30 | 1.083 | 0.413 | 1 | | Battery 2 | В | ac(VHT | Bottom | 90° | 0 | 155 | 5775 | -0.08 | 0.658 | 14.30 | 14.50 | 1.047 | 92.30 | 1.083 | 0.746 | 9# | | | В | 80) | Edge | 150° | 0 | 155 | 5775 | 0.12 | 0.634 | 14.30 | 14.50 | 1.047 | 92.30 | 1.083 | 0.719 | 1 | | Battery 1 | В | | Bottom
Edge | 90° | 0 | 155 | 5775 | 0.07 | 0.483 | 14.30 | 14.50 | 1.047 | 92.30 | 1.083 | 0.548 | / | ### Note: ^{1.} Refer to ANNEX C for the detailed test data for each test configuration. ^{2.} Tested all mode on Battery 2, the Battery 1 test the worst case on Battery 2 mode. ## 11 SAR Measurement Variability According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. #### SAR repeated measurement procedure: - 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required. - 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. - 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. - 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement. The highest measured SAR is 0.746W/kg < 0.80 W/kg, so the repeated measurement is not required. ## 12 SIMULTANEOUS TRANSMISSION Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR). ### 12.1 Simultaneous Transmission Mode Consider | NO. | Mode | 2.4G WLAN & 5G WLAN & 2.4G Bluetooth | |----------------|-----------------------------------|--| | NO. | iviode | Body | | 1 | WLAN 2.4G B Antenna | + 2.4 G WLAN A Antenna | | 2 | WLAN 2.4G B Antenna | + Bluetooth A Antenna | | 3 | WLAN 5G B Antenna | + 5 G WLAN A Antenna | | 4 | WLAN 5G B Antenna | + Bluetooth A Antenna | | 5 | WLAN 5G B Antenna | + 5 G WLAN A Antenna + Bluetooth A Antenna | | 6 | WLAN 5G A Antenna | + Bluetooth Antenna A | | Note: WLAN 2.4 | G A and Bluetooth A share the sar | me antenna and cannot transmit simultaneously. | ### 12.2Sum SAR of Simultaneous Transmission ## 12.2.1 Sum Body SAR of Simultaneous Transmission | Simultaneous Mode | Mode | Max. 1g SAR | 1g Sum SAR | SPLSR | |------------------------|----------------------|-------------|------------|----------| | Simultaneous Mode | iviode | (W/kg) | (W/kg) | (Yes/No) | | WLAN 2.4G Antenna B | WLAN 2.4G Antenna B | 0.597 | 0.922 | No | | + 2.4 G WLAN Antenna A | 2.4 G WLAN Antenna A | 0.325 | 0.922 | INO | | 2.4 G WLAN Antenna B | 2.4 G WLAN Antenna B | 0.597 | 0.692 | No | | + Bluetooth Antenna A | Bluetooth Antenna A | 0.095 | 0.692 | No | | WLAN 5 G Antenna B | WLAN 5G Antenna B | 0.746 | 1.275 | No | | + 5 G WLAN Antenna A | 5 G WLAN Antenna A | 0.529 | 1.275 | No | | 5 G WLAN Antenna B | 5 G WLAN Antenna B | 0.746 | 0.841 | No | | + Bluetooth Antenna A | Bluetooth Antenna A | 0.095 | 0.041 | INO | | WLAN 5 G Antenna B | WLAN 5G Antenna B | 0.746 | | | | + 5 G WLAN Antenna A | 5 G WLAN Antenna A | 0.529 | 1.370 | No | | + Bluetooth Antenna A | Bluetooth Antenna A | 0.095 | | | | 5 G WLAN Antenna A | 5 G WLAN Antenna A | 0.529 | 0.624 | No | | + Bluetooth Antenna A | Bluetooth Antenna A | 0.095 | 0.024 | No | ## **13 TEST EQUIPMENTS LIST** | Description | Manufacturer | Model | Serial No. | Cal. Date | Cal. Due | |------------------------------|--------------|-----------|-----------------|------------|------------| | PC | Dell | N/A | N/A | N/A | N/A | | 2450MHz Validation Dipole | Speag | D2450V2 | SN: 952 | 2017/03/21 | 2020/03/20 | | 5GHz Validation Dipole | Speag | D5GHzV2 | SN: 1200 | 2017/06/29 | 2020/06/28 | | E-Field Probe | Speag | EX3DV4 | SN: 7510 | 2018/07/14 | 2019/07/13 | | Data acquisition electronics | Speag | DAE4 | SN: 1454 | 2018/01/11 | 2019/01/10 | | Data acquisition electronics | Speag | DAE4 | SN: 685 | 2018/07/14 | 2019/07/13 | | Signal Generator | R&S | SMBV100A | 260592 | 2018/06/15 | 2019/06/14 | | Power Meter | Agilent | E4419B | GB40201833 | 2018/11/01 | 2019/10/31 | | Power Sensor | Agilent | E9300A | MY41498012 | 2018/11/01 | 2019/10/31 | | Power Sensor | Agilent | E9300A | MY41499891 | 2018/11/01 | 2019/10/31 | | Network Analyzer | Agilent | 5071C | MY46103472 | 2018/03/14 | 2019/03/13 | | Thermometer | Elitech | RC-4HC | N/A | 2018/03/21 | 2019/03/20 | | Dielectric Probe Kit | SATIMO | SCLMP | SN 25/13 OCPG56 | N/A | N/A | | Phantom1 | Speag | SAM | SN: 1859 | N/A | N/A | | Phantom2 | Speag | ELI4 | SN: 1012 | N/A | N/A | | Power Amplifier | SATIMO | 6552B | 22374 | N/A | N/A | | Attenuator | COM-MW | ZA-S1-31 | 1305003187 | N/A | N/A | | Directional coupler | AA-MCS | AAMCS-UDC | 000272 | N/A | N/A | Note: For dipole antennas, BALUN has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria: - 1. There is no physical damage on the dipole; - 2. System validation with specific dipole is within 10% of calibrated value; - 3. Return-loss in within 20% of calibrated measurement. - 4. Impedance (real or imaginary parts) in within 5 Ohms of calibrated measurement. ## ANNEX A SIMULATING LIQUID VERIFICATION RESULT The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit. | Liquid
Type | Fre.
(MHz) | Temp.
(℃) | Meas. Conductivity (σ) (S/m) | Meas.
Permittivity
(ε) | Target Conductivity (σ) (S/m) | Target
Permittivity
(ε) | Conductivity Tolerance (%) | Permittivity Tolerance (%) | |----------------|--------------------------|---
---|--|---|---|--|---| | Body | 2450 | 21.2 | 1.97 | 52.00 | 1.95 | 52.70 | 0.92 | -1.33 | | Body | 2450 | 21.4 | 2.01 | 51.59 | 1.95 | 52.70 | 3.08 | -2.11 | | Body | 5250 | 21.3 | 5.34 | 49.30 | 5.36 | 48.95 | -0.35 | 0.72 | | Body | 5600 | 21.5 | 5.69 | 47.97 | 5.77 | 48.47 | -1.25 | -1.03 | | Body | 5750 | 21.3 | 5.98 | 47.05 | 5.94 | 48.27 | 0.57 | -2.54 | | | Body Body Body Body Body | Type (MHz) Body 2450 Body 2450 Body 5250 Body 5600 Body 5750 | Type (MHz) (°C) Body 2450 21.2 Body 2450 21.4 Body 5250 21.3 Body 5600 21.5 Body 5750 21.3 | Type (MHz) (°C) (σ) (S/m) Body 2450 21.2 1.97 Body 2450 21.4 2.01 Body 5250 21.3 5.34 Body 5600 21.5 5.69 Body 5750 21.3 5.98 | Liquid Type Fre. (MHz) Temp. (°C) Conductivity (σ) (s/m) Permittivity (ε) Body 2450 21.2 1.97 52.00 Body 2450 21.4 2.01 51.59 Body 5250 21.3 5.34 49.30 Body 5600 21.5 5.69 47.97 | Liquid Type Fre. (MHz) Temp. (°C) Conductivity (σ) Meas. Permittivity (ε) Conductivity (σ) Body 2450 21.2 1.97 52.00 1.95 Body 2450 21.4 2.01 51.59 1.95 Body 5250 21.3 5.34 49.30 5.36 Body 5600 21.5 5.69 47.97 5.77 Body 5750 21.3 5.98 47.05 5.94 | Liquid Type Fre. (MHz) Temp. (°C) Conductivity (σ) Meas. Permittivity (ε) Conductivity (σ) Target Permittivity (σ) Permittivity (σ) Target Permittivity (σ) Permittivity (ε) Permittivity (σ) Permittivity (ε) Permittivity (σ) Permittivity (ε) Permittivity (σ) Permittivity (σ) Permittivity (ε) Permittivity (σ) Permittivity (ε) Permittivity (σ) Permittivity (σ) Permittivity (ε) Permittivity (σ) | Liquid Type Fre. (MHz) Temp. (°C) Conductivity (σ) (S/m) Meas. Permittivity (σ) (S/m) Conductivity (σ) (S/m) Target Permittivity (σ) (ε) Conductivity Tolerance (%) Body 2450 21.2 1.97 52.00 1.95 52.70 0.92 Body 2450 21.4 2.01 51.59 1.95 52.70 3.08 Body 5250 21.3 5.34 49.30 5.36 48.95 -0.35 Body 5600 21.5 5.69 47.97 5.77 48.47 -1.25 Body 5750 21.3 5.98 47.05 5.94 48.27 0.57 | Note: The tolerance limit of Conductivity and Permittivity is± 5%. ## ANNEX B SYSTEM CHECK RESULT Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %(for 1 g). | Date | Liquid
Type | Freq.
(MHz) | Power (mW) | Measured
SAR
(W/kg) | Normalized
SAR (W/kg) | Dipole SAR
(W/kg) | Tolerance (%) | Targeted
SAR(W/kg) | Tolerance (%) | |------------|----------------|----------------|------------|---------------------------|--------------------------|----------------------|---------------|-----------------------|---------------| | 2019.01.02 | Body | 2450 | 100 | 5.30 | 53.00 | 50.50 | 4.95 | 52.40 | 1.15 | | 2019.01.17 | Body | 2450 | 100 | 5.19 | 51.90 | 50.50 | 2.77 | 52.40 | -0.94 | | 2018.12.19 | Body | 5250 | 100 | 7.29 | 72.90 | 75.20 | -3.06 | 76.50 | -4.71 | | 2018.12.20 | Body | 5600 | 100 | 8.24 | 82.40 | 77.90 | 5.78 | 83.30 | -1.08 | | 2018.12.19 | Body | 5750 | 100 | 7.79 | 77.90 | 75.00 | 3.87 | 78.00 | -0.13 | Note: The tolerance limit of System validation ±10%. # System Performance Check Data (2450MHz Body) Date: 2019.01.02 Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.968$ S/m; $\epsilon_r = 51.997$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4 Liquid Temperature:21.2 #### **DASY5** Configuration: - Probe: EX3DV4 SN7510;ConvF(7.8, 7.8, 7.8); Calibrated: 2018.07.14; - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 - Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **CW2450/Area Scan (101x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 6.18 W/kg CW2450/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.27 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.3 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 6.09 W/kg 0 dB = 6.09 W/kg ## System Performance Check Data (2450MHz Body) Date: 2019.01.17 Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2.01 S/m; ε_r = 51.59; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.5 Liquid Temperature:21.4 #### DASY5 Configuration: - Probe: EX3DV4 SN7510;ConvF(7.8, 7.8, 7.8); Calibrated: 2018.07.14; - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn685; Calibrated: 2018.07.14 - Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **CW2450/Area Scan (101x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.84 W/kg CW2450/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.81 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 10.7 W/kg **SAR(1 g) = 5.19 W/kg; SAR(10 g) = 2.34 W/kg**Maximum value of SAR (measured) = 5.85 W/kg 0 dB = 5.85 W/kg # System Performance Check Data (5250MHz Body) Date: 2018.12.19 Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 5.339 S/m; ϵ_r = 49.301; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.6 Liquid Temperature:21.3 #### **DASY5** Configuration: Probe: EX3DV4 - SN7510; ConvF(5.09, 5.09, 5.09); Calibrated: 2018.07.14; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) CW 5250/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.05 W/kg CW 5250/Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 36.67 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 7.29 W/kg; SAR(10 g) = 2.01 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg ## System Performance Check Data (5600MHz Body) Date: 2018.12.20 Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.694 S/m; ϵ_r = 47.97; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.2 Liquid Temperature:21.5 #### **DASY5** Configuration: Probe: EX3DV4 - SN7510;ConvF(4.35, 4.35, 4.35);
Calibrated: 2018.07.14; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) CW 5600/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.74 W/kg CW 5600/Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.71 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg ## System Performance Check Data (5750MHz Body) Date: 2018.12.19 Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.976 S/m; ϵ_r = 47.045; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.6 Liquid Temperature:21.3 #### **DASY5** Configuration: Probe: EX3DV4 - SN7510;ConvF(4.52, 4.52, 4.52); Calibrated: 2018.07.14; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) CW 5750/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.63 W/kg CW 5750/Zoom Scan (7x7x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 36.53 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg ## ANNEX C TEST DATA ### MEAS.1 Body Plane with Bottom Edge 0mm on High Channel in Bluetooth mode Date: 2019.01.02 Communication System Band: BT; Frequency: 2480 MHz; Duty Cycle: 1:1.299 Medium parameters used: f = 2480 MHz; $\sigma = 2.027$ S/m; $\varepsilon_r = 51.72$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4 Liquid Temperature:21.2 ### **DASY5** Configuration: Probe: EX3DV4 - SN7510; ConvF(7.8, 7.8, 7.8); Calibrated: 2018.07.14; • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch78/Area Scan (81x121x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0831 W/kg Ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.585 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.164 W/kg SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.032 W/kg Maximum value of SAR (measured) = 0.113 W/kg 0 dB = 0.113 W/kg ### MEAS.2 Body Plane with Bottom Edge 0mm on Low Channel in IEEE802.11b mode with Antenna A Date: 2019.01.02 Communication System Band: WLAN(b); Frequency: 2412 MHz; Duty Cycle: 1:1.01 Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.898 \text{ S/m}$; $\epsilon_r = 52.282$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Ambient Temperature:22.4 Liquid Temperature:21.2 #### **DASY5** Configuration: Probe: EX3DV4 - SN7510; ConvF(7.8, 7.8, 7.8); Calibrated: 2018.07.14; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 • Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch1/Area Scan (81x121x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.303 W/kg Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.55 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.689 W/kg SAR(1 g) = 0.293 W/kg; SAR(10 g) = 0.132 W/kg Maximum value of SAR (measured) = 0.452 W/kg 0 dB = 0.452 W/kg ## MEAS.3 Body Plane with Bottom Edge 0mm on High Channel in IEEE802.11b mode with Antenna B Date: 2019.01.02 Communication System Band: WLAN(b); Frequency: 2462 MHz; Duty Cycle: 1:1.01 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.981$ S/m; $\epsilon_r = 51.867$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4 Liquid Temperature:21.2 #### **DASY5** Configuration: Probe: EX3DV4 - SN7510; ConvF(7.8, 7.8, 7.8); Calibrated: 2018.07.14; Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 • Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch11/ Area Scan (81x121x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.632 W/kg Ch11/ Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.549 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.552 W/kg; SAR(10 g) = 0.263 W/kg Maximum value of SAR (measured) = 0.834 W/kg 0 dB = 0.834 W/kg # MEAS.4 Body Plane with Bottom Edge 0mm on Channel 58 in IEEE802.11ac(VHT80) mode with Antenna Δ Date: 2018.12.19 Communication System Band: WLAN(ac) 80Mhz; Frequency: 5290 MHz; Duty Cycle: 1:1.083 Medium parameters used: f = 5290 MHz; $\sigma = 5.39 \text{ S/m}$; $\varepsilon_f = 48.654$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Ambient Temperature:22.6 Liquid Temperature:21.3 ### **DASY5** Configuration: Probe: EX3DV4 - SN7510; ConvF(5.09, 5.09, 5.09); Calibrated: 2018.07.14; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 • Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch58/Area Scan (101x151x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.368 W/kg Ch58/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.455 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 0.340 W/kg; SAR(10 g) = 0.144 W/kg Maximum value of SAR (measured) = 0.663 W/kg 0 dB = 0.663 W/kg # MEAS.5 Body Plane with Bottom Edge 0mm on Channel 58 in IEEE802.11ac(VHT80) mode with Antenna B Date: 2018.12.19 Communication System Band: WLAN(ac) 80Mhz; Frequency: 5290 MHz; Duty Cycle: 1:1.083 Medium parameters used: f = 5290 MHz; $\sigma = 5.39 \text{ S/m}$; $\varepsilon_r = 48.654$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Ambient Temperature:22.6 Liquid Temperature:21.3 ### **DASY5** Configuration: • Probe: EX3DV4 - SN7510; ConvF(5.09, 5.09, 5.09); Calibrated: 2018.07.14; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 • Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch58/Area Scan (101x151x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.469 W/kg Ch58/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.314 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 1.91 W/kg SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.772 W/kg 0 dB = 0.772 W/kg # MEAS.6 Body Plane with Bottom Edge 0mm on Channel 114 in IEEE802.11ac(VHT160) mode with Antenna A Date: 2018.12.20 Communication System Band: WLAN(ac)160MHz; Frequency: 5570 MHz; Duty Cycle: 1:1.149 Medium parameters used: f = 5570 MHz; σ = 5.612 S/m; ϵ_r = 48.156; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.2 Liquid Temperature:21.5 ### **DASY5** Configuration: • Probe: EX3DV4 - SN7510; ConvF(4.35, 4.35, 4.35); Calibrated: 2018.07.14; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 • Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch114/Area Scan (101x151x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.331 W/kg Ch114/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.416 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 0.358 W/kg; SAR(10 g) = 0.142 W/kg Maximum value of SAR (measured) = 0.710 W/kg 0 dB = 0.710 W/kg # MEAS.7 Body Plane with Bottom Edge 0mm on Channel 114 in IEEE802.11ac(VHT160) mode with Antenna B Date: 2018.12.20 Communication System Band: WLAN(ac)160MHz; Frequency: 5570 MHz; Duty Cycle: 1:1.149 Medium parameters used: f = 5570 MHz; σ = 5.612 S/m; ϵ_r = 48.156; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.2 Liquid Temperature:21.5 ### **DASY5** Configuration: • Probe: EX3DV4 - SN7510; ConvF(4.35, 4.35, 4.35); Calibrated: 2018.07.14; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch114/Area Scan (101x151x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.537 W/kg Ch114/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.090 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 2.22 W/kg SAR(1 g) = 0.514 W/kg; SAR(10 g) = 0.206 W/kg Maximum value of SAR (measured) = 0.992 W/kg 0 dB = 0.992 W/kg # MEAS.8 Body Plane with Bottom Edge 0mm on Channel 155 in IEEE802.11ac(VHT80) mode with Antenna Δ Date: 2018.12.19 Communication System Band: WLAN(ac) 80Mhz; Frequency: 5775 MHz; Duty Cycle: 1:1.083 Medium parameters used: f = 5775 MHz; σ = 6.114 S/m; ϵ_r = 46.647; ρ = 1000 kg/m³
Phantom section: Flat Section Ambient Temperature:22.6 Liquid Temperature:21.3 ### **DASY5** Configuration: • Probe: EX3DV4 - SN7510; ConvF(4.52, 4.52, 4.52); Calibrated: 2018.07.14; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 • Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch155/Area Scan (101x151x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.488 W/kg Ch155/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.564 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.20 W/kg SAR(1 g) = 0.456 W/kg; SAR(10 g) = 0.141 W/kg Maximum value of SAR (measured) = 0.962 W/kg 0 dB = 0.962 W/kg # MEAS.9 Body Plane with Bottom Edge 0mm on Channel 155 in IEEE802.11ac(VHT80) mode with Antenna B Date: 2018.12.19 Communication System Band: WLAN(ac) 80Mhz; Frequency: 5775 MHz; Duty Cycle: 1:1.083 Medium parameters used: f = 5775 MHz; $\sigma = 6.114 \text{ S/m}$; $\varepsilon_r = 46.647$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Ambient Temperature:22.6 Liquid Temperature:21.3 ### **DASY5** Configuration: • Probe: EX3DV4 - SN7510; ConvF(4.52, 4.52, 4.52); Calibrated: 2018.07.14; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 2018.01.11 Phantom: ELI v4.0 (30deg probe tilt); Type: QDOVA001BB; Serial: TP:1012 • Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch155/Area Scan (101x151x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.626 W/kg Ch155/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.172 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.30 W/kg SAR(1 g) = 0.658 W/kg; SAR(10 g) = 0.205 W/kg Maximum value of SAR (measured) = 1.34 W/kg 0 dB = 1.34 W/kg ## ANNEX D EUT EXTERNAL PHOTOS Please refer the document "BL-SZ18C0049-AW.pdf". ## ANNEX E SAR TEST SETUP PHOTOS Please refer the document "BL-SZ18C0049-AS.pdf". ## ANNEX F CALIBRATION REPORT Please refer the document "CALIBRATION REPORT.pdf". ## ANNEX G ANTENNA LOCATION PHOTOS Please refer the document "BL-SZ18C0049-AA.pdf". ## ANNEX H SAR SYSTEM VALIDATION Please refer the document "SAR SYSTEM VALIDATION.pdf". --END OF REPORT--