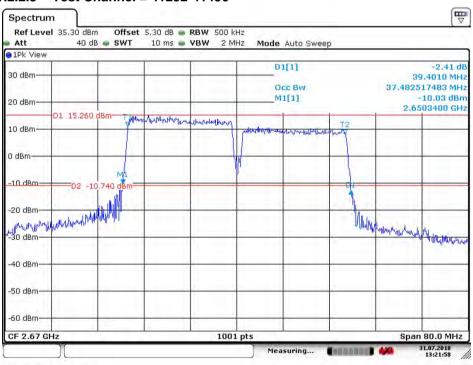


Report No.: SZEM180700654901 Page: 41 of 90

4.1.2.2 Test Mode = LTE/TM2

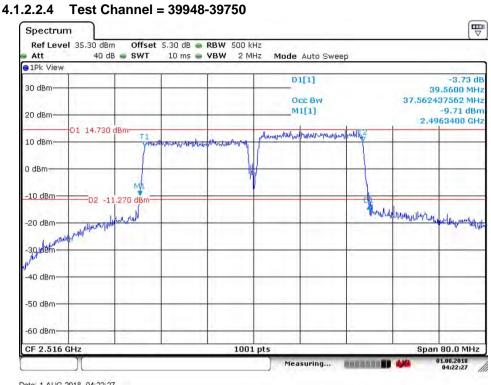
Date: 31.JUL.2018 13:15:28



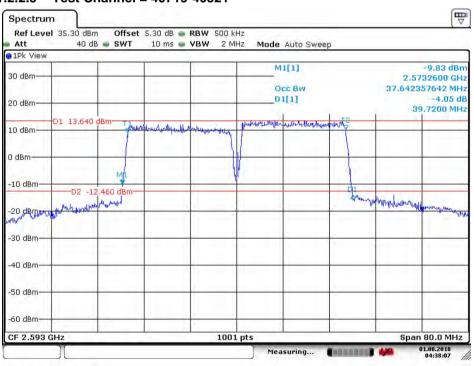
Report No.: SZEM180700654901 Page: 42 of 90

4.1.2.2.2 Test Channel = 40521-40719 ₩ Spectrum Ref Level 35.30 dBm Offset 5.30 dB 👄 RBW 500 kHz Att 40 dB 🖷 SWT 10 ms 👄 VBW 2 MHz Mode Auto Sweep 01Pk View D1[1] -1.57 dE 30 dBm-39.8000 MHz Occ Bw 37.562437562 MHz M1[1] -10.06 dBm 20 dBm 2.5730200 GHz D1 15,480 dBm-Jacob warmen monter allor an Τ2 10 dBm-0 dBm--10 dBm-D2 -10 520 de parter with hours way Alemtellherese Hurryuker -30 dBm 40 dBm -50 dBm--60 dBm-CF 2.593 GHz 1001 pts Span 80.0 MHz 31.07.2018 Measuring... **H**RANARS

Date: 31.JUL.2018 04:05:07

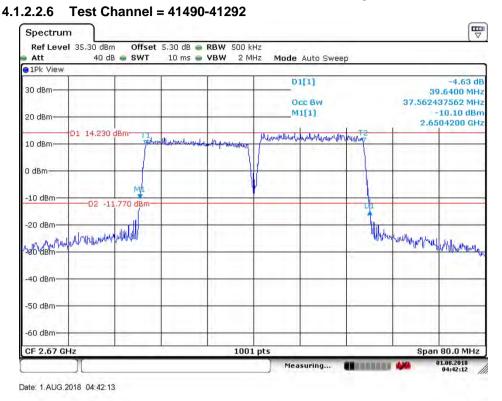

4.1.2.2.3 Test Channel = 41292-41490

Date: 31.JUL.2018 13:21:58

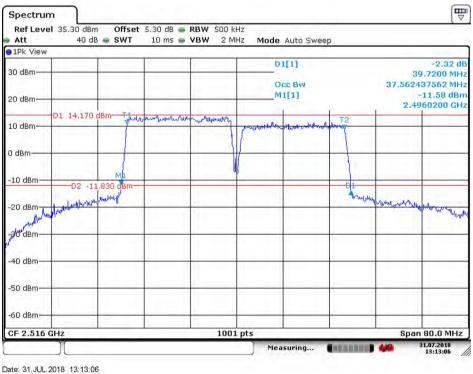


Report No.: SZEM180700654901 Page: 43 of 90

Date: 1.AUG.2018 04:22:27


4.1.2.2.5 Test Channel = 40719-40521

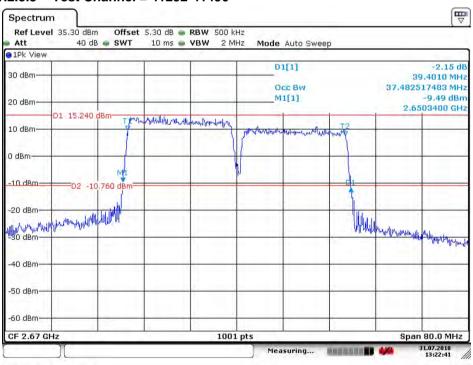
Date: 1.AUG.2018 04:38:07



Report No.: SZEM180700654901 Page: 44 of 90

4.1.2.3 Test Mode = LTE/TM3

4.1.2.3.1 Test Channel = 39750-39948

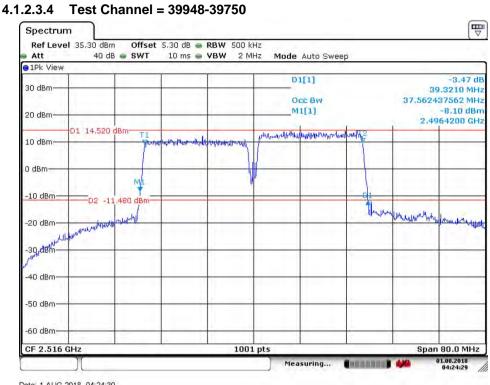


Report No.: SZEM180700654901 45 of 90 Page:

4.1.2.3.2 Test Channel = 40521-40719 ₩ Spectrum Ref Level 35.30 dBm Offset 5.30 dB 👄 RBW 500 kHz Att 40 dB 🥌 SWT 10 ms 👄 VBW 2 MHz Mode Auto Sweep 01Pk View D1[1] -3.23 dE 30 dBm-39.8800 MHz Occ Bw 37,482517483 MHz M1[1] -7.73 dBm 20 dBm 2.5728600 GHz D1 15,470 dBm-Hundred Haber marine T2 10 dBm-0 dBm-M -10 dBm D2 -10 530 All and a later and all martigioning wind with a for the for 120-deltruch -30 dBm 40 dBm -50 dBm--60 dBm-CF 2.593 GHz 1001 pts Span 80.0 MHz 31.07.2018 04:04:21 Measuring... (maaaaa) 👾

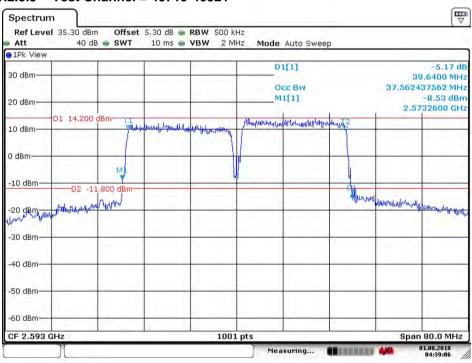
Date: 31.JUL.2018 04:04:22

4.1.2.3.3 Test Channel = 41292-41490



Date: 31.JUL.2018 13:22:41

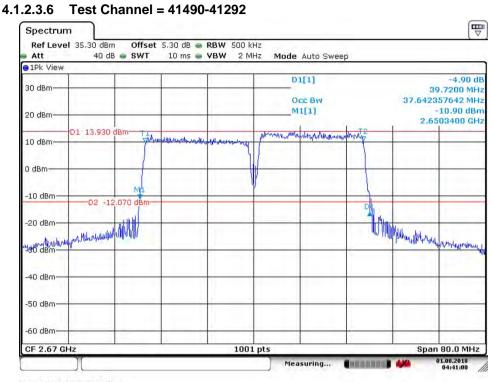
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, This document is issued by the Company subject to this observed printed overlear, available on request or accessible at <u>http://www.sgs.com/en/ terms-and-contions.aspx</u> and, for electronic format documents, subject to Terms and Conditions. for electronic Documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/ terms-and-conditions/Terms-and-Condi</u>



Report No.: SZEM180700654901 46 of 90 Page:

Date: 1.AUG.2018 04:24:30

4.1.2.3.5 Test Channel = 40719-40521



Date: 1.AUG.2018 04:39:06

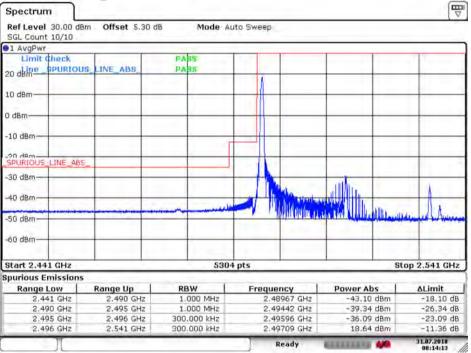
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, This document is issued by the Company subject to this observed printed overlear, available on request or accessible at <u>http://www.sgs.com/en/ terms-and-contions.aspx</u> and, for electronic format documents, subject to Terms and Conditions. for electronic Documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/ terms-and-conditions/Terms-and-Condi</u>

Report No.: SZEM180700654901 Page: 47 of 90

Date: 1.AUG.2018 04:41:01

Report No.: SZEM180700654901 Page: 48 of 90

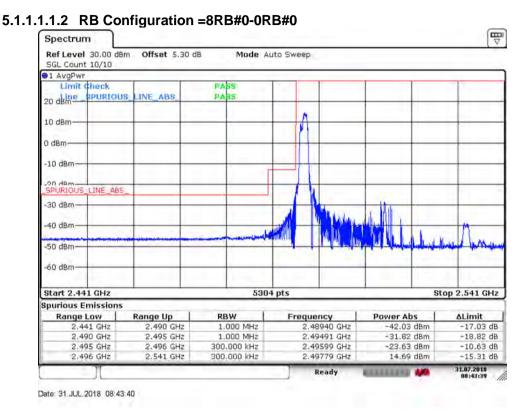
5 Band Edges Compliance


5.1 For LTE_CA_41C

5.1.1 Test Band = Bandwidth=100RB+25RB

5.1.1.1 Test Mode = LTE/TM1

5.1.1.1.1 Test Channel = 39750-39867


5.1.1.1.1.1 RB Configuration =1RB#0-0RB#0

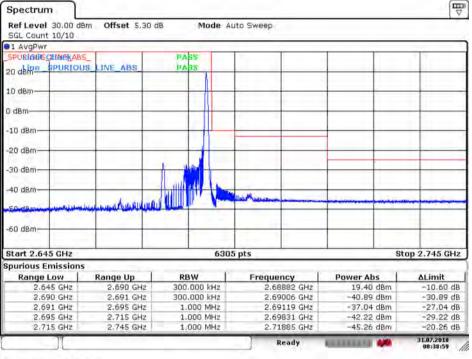
Date: 31.JUL 2018 08:14:13

Report No.: SZEM180700654901 Page: 49 of 90

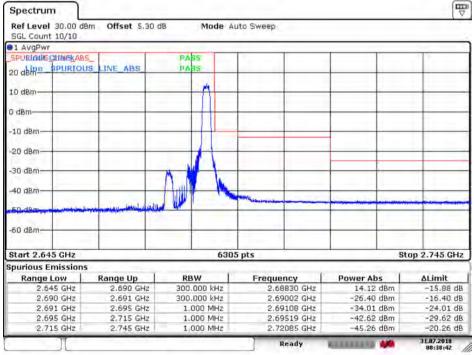
5.1.1.1.1.3 RB Configuration =100RB#0-25RB#0

The second secon Spectrum Ref Level 30.00 dBm Offset 5.30 dB Mode Auto Sweep SGL Count 10/10 ●1 AvgPwr Imit Check 20 dam SPURIOUS LINE_ABS PARS 10 dBm-0 dBm -10 dBm--20 de LINE ABS -30 dBm LANA A man a hugh subs 40 dBm -50 dBm--60 dBm-Start 2.441 GHz 5304 pts Stop 2.541 GHz **Spurious Emissions** Range Low Range Up RBW **ALimit** Frequency **Power Abs** 1.000 MHz 2.48925 GHz -7.44 dB 2,441 GHz 2.490 GHz -32.44 dBm -17.14 dB -22.17 dB 2.490 GHz 2.495 GHz 1.000 MHz 2.49469 GHz -30.14 dBm -35.17 dBm 300.000 kHz 2.495 GHz 2.496 GHz 2.49595 GHz 496 GHz 2.541 GHz 300.000 kHz 2.51881 GHz 2.15 dBm -27.85 dB 31.07.2018 08:13:35 Ready

Date: 31.JUL.2018 08:13:35

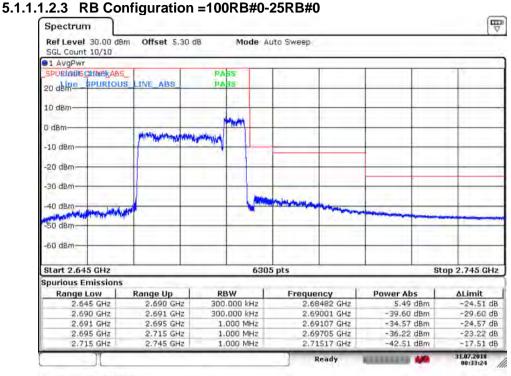

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180700654901 Page: 50 of 90


5.1.1.1.2 Test Channel = 41440-41557

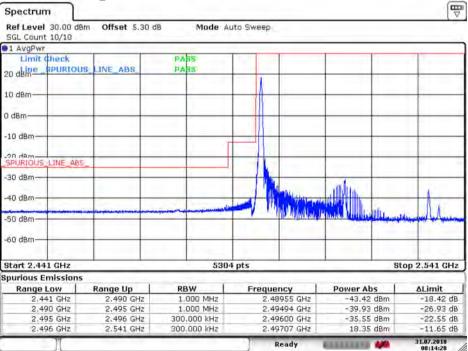
5.1.1.1.2.1 RB Configuration =1RB#0-0RB#0

Date: 31.JUL.2018 08:38:59


5.1.1.1.2.2 RB Configuration =8RB#17-0RB#0

Date: 31.JUL 2018 08:38:42

Report No.: SZEM180700654901 Page: 51 of 90

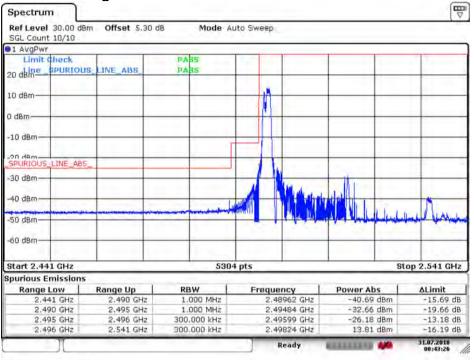


Date: 31.JUL 2018 08:33:25

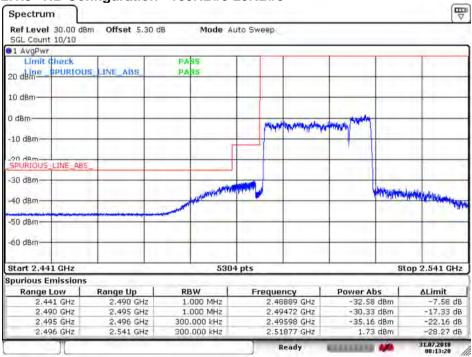
5.1.1.2 Test Mode = LTE/TM2

5.1.1.2.1 Test Channel = 39750-39867

5.1.1.2.1.1 RB Configuration =1RB#0-0RB#0



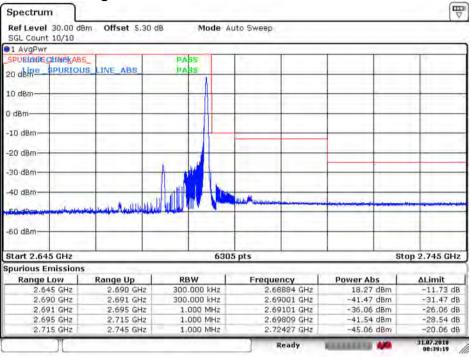
Date: 31 JUL 2018 08:14:28


Report No.: SZEM180700654901 Page: 52 of 90

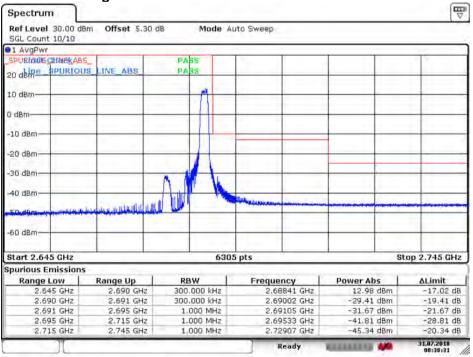
5.1.1.2.1.2 RB Configuration =8RB#0-0RB#0

Date: 31.JUL 2018 08:43:27

5.1.1.2.1.3 RB Configuration =100RB#0-25RB#0

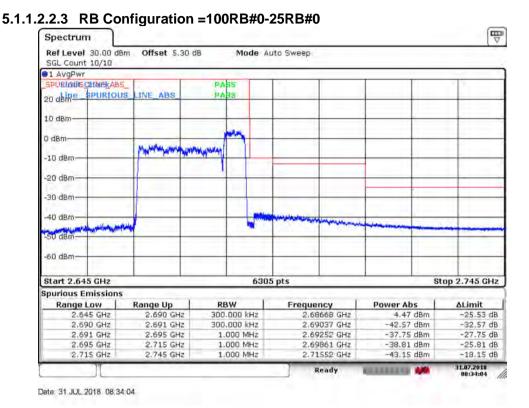

Date: 31.JUL 2018 08:13:20

Report No.: SZEM180700654901 Page: 53 of 90

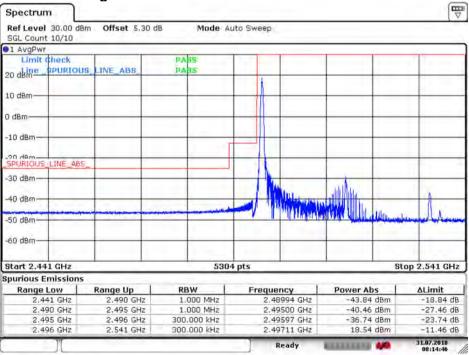

5.1.1.2.2 Test Channel = 41440-41557

5.1.1.2.2.1 RB Configuration =1RB#0-0RB#0

Date: 31 JUL 2018 08:39:19


5.1.1.2.2.2 RB Configuration =8RB#17-0RB#0

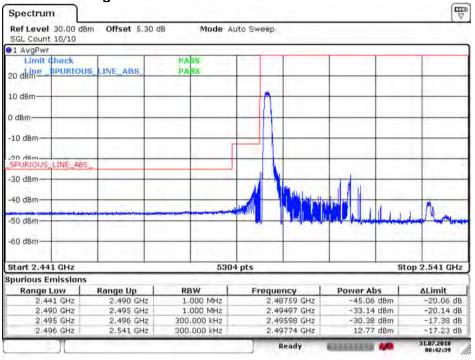
Date: 31.JUL 2018 08:38:31


Report No.: SZEM180700654901 Page: 54 of 90

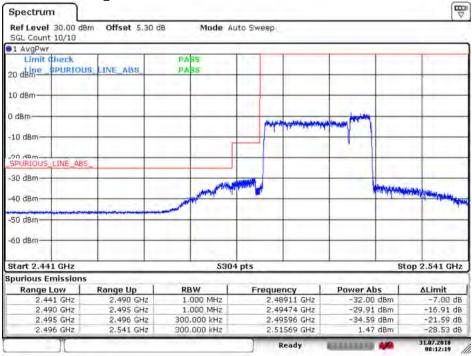
5.1.1.3 Test Mode = LTE/TM3

5.1.1.3.1 Test Channel = 39750-39867

5.1.1.3.1.1 RB Configuration =1RB#0-0RB#0



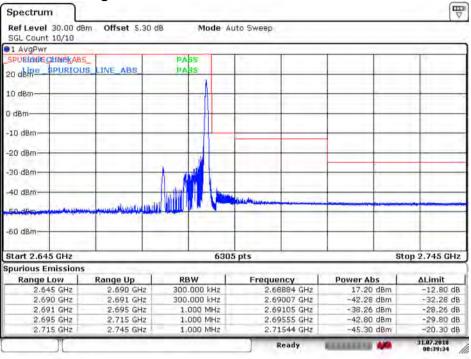
Date: 31.JUL.2018 08:14:46


Report No.: SZEM180700654901 Page: 55 of 90

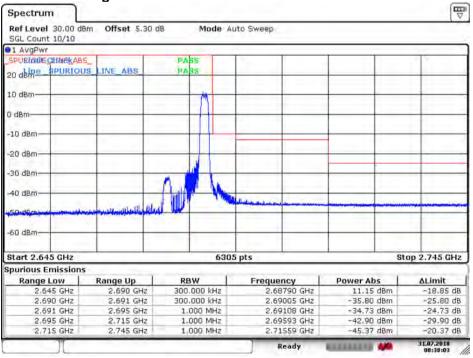
5.1.1.3.1.2 RB Configuration =8RB#0-0RB#0

5.1.1.3.1.3 RB Configuration =100RB#0-25RB#0

Date: 31.JUL 2018 08:42:39

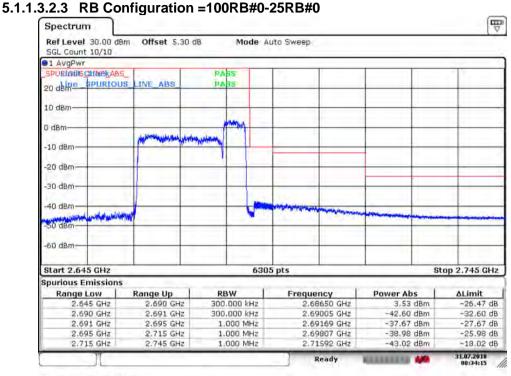

Date: 31.JUL 2018 08:12:19

Report No.: SZEM180700654901 Page: 56 of 90


5.1.1.3.2 Test Channel = 41440-41557

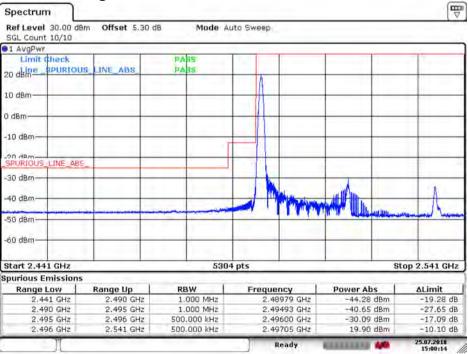
5.1.1.3.2.1 RB Configuration =1RB#0-0RB#0

Date: 31 JUL 2018 08:39:35


5.1.1.3.2.2 RB Configuration =8RB#17-0RB#0

Date: 31.JUL 2018 08:38:03

Report No.: SZEM180700654901 Page: 57 of 90

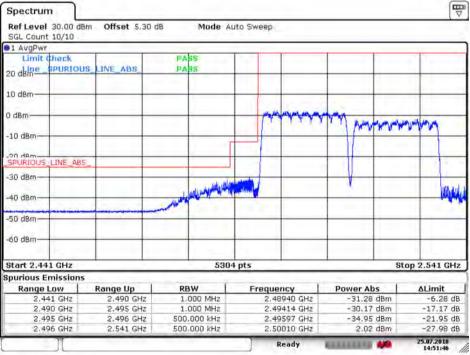

Date: 31.JUL 2018 08:34:15

5.1.2 Test Band = Bandwidth=100RB+100RB

5.1.2.1 Test Mode = LTE/TM1

5.1.2.1.1 Test Channel = 39750-39948

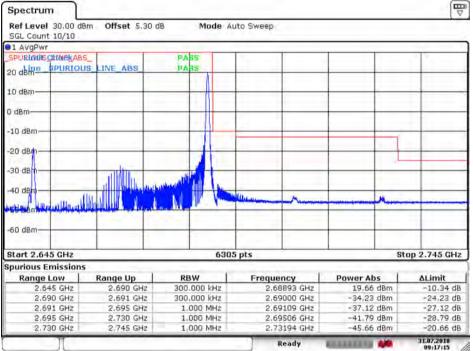
5.1.2.1.1.1 RB Configuration =1RB#0-0RB#0


Date: 25 JUL 2018 15:00:15

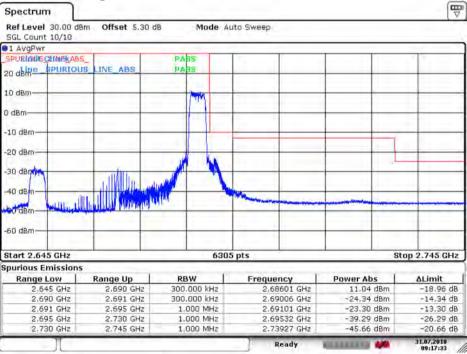
Report No.: SZEM180700654901 Page: 58 of 90

5.1.2.1.1.2 RB Configuration =18RB#0-0RB#0 -Spectrum Ref Level 30.00 dBm Offset 5.30 dB Mode Auto Sweep SGL Count 10/10 1 AvgPwr Limit Check PAB 20 dame spurious LINE ABS DARS 10 dBm 0 dBm -10 dBm-SPURI URIOUS_LINE ABS -30 dBm 40 dBm -50 dBm--60 dBm-Start 2.441 GHz 5304 pts Stop 2.541 GHz Spurious Emissions RBW Erequency 2.48979 GHz ∆Limit Range Low Range Up **Power Abs** 41.52 dBm 2,441 GHz 2.490 GHz 1.000 MHz -16.52 dB 2.490 GHz 2.495 GHz 1.000 MHz 2.49500 GHz -22.65 dBm -9.65 dB 2.495 GHz 2.496 GHz 500.000 kHz 2.49596 GHz -22.30 dBm -9.30 dB 2.496 GHz 2.541 GHz 500.000 kHz 2.49986 GHz 12.56 dBm -17.44 dB 25.07.2018 ----Ready Date: 25.JUL 2018 14:57:43

5.1.2.1.1.3 RB Configuration =100RB#0-100RB#0

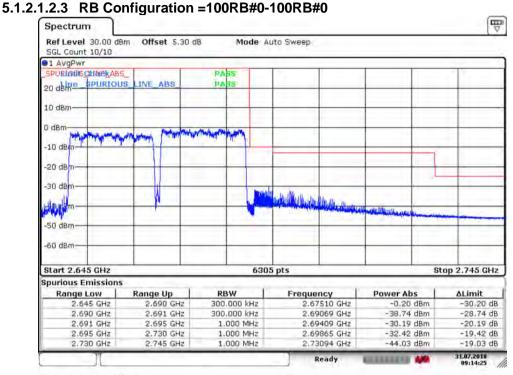

Date: 25.JUL 2018 14:51:47

Report No.: SZEM180700654901 Page: 59 of 90


5.1.2.1.2 Test Channel = 41292-41490

5.1.2.1.2.1 RB Configuration =1RB#99-0RB#0

Date: 31 JUL 2018 09:17:15


5.1.2.1.2.2 RB Configuration =18RB#82-0RB#0

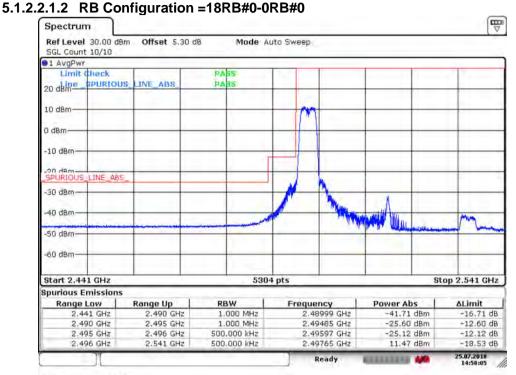
Date: 31 JUL 2018 09:17:33

Report No.: SZEM180700654901 Page: 60 of 90

Date: 31.JUL 2018 09:14:26

5.1.2.2 Test Mode = LTE/TM2

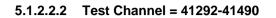
5.1.2.2.1 Test Channel = 39750-39948


5.1.2.2.1.1 RB Configuration =1RB#0-0RB#0

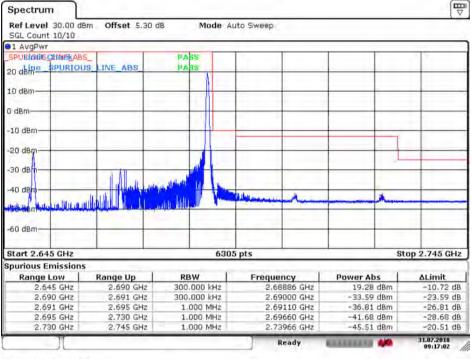
Date: 31.JUL 2018 09:20:38

Report No.: SZEM180700654901 Page: 61 of 90

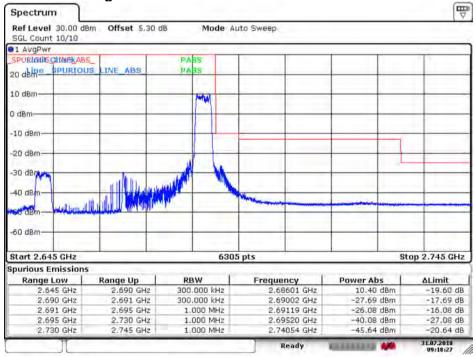
Date: 25 JUL 2018 14:58:05


5.1.2.2.1.3 RB Configuration =100RB#0-100RB#0

Spectrum Ref Level 30.00 dBm Offset 5.30 dB Mode Auto Sweep SGL Count 10/10 1 AvgPwr Limit theck PAB 20 dbm SPURIOUS LINE ABS PASS 10 dBm-0 dBm Manuf Manuf Mary Mary Mary 10 dBm SPURIOUS_LINE_ABS -30 dBm and all with 101 40 dBm--50 dBm--60 dBm-Stop 2.541 GHz 5304 pts Start 2,441 GHz Spurious Emissions RBW Range Low Range Up Frequency Power Abs ∆Limit -33.36 dBm -31.30 dBm 2.441 GHz 2,490 GHz 1.000 MHz 2.48898 GHz -8.36 dB 2.490 GHz 2.495 GHz 2.49461 GHz 1.000 MHz -18.30 dB 2.495 GHz 2.496 GHz 2.541 GHz 2.49592 GHz 500.000 kHz -35.98 dBm -22.98 dB -28.75 dB 2.496 GHz 500.000 kHz 2.51076 GHz 1.25 dBm 25.07.2018 Ready

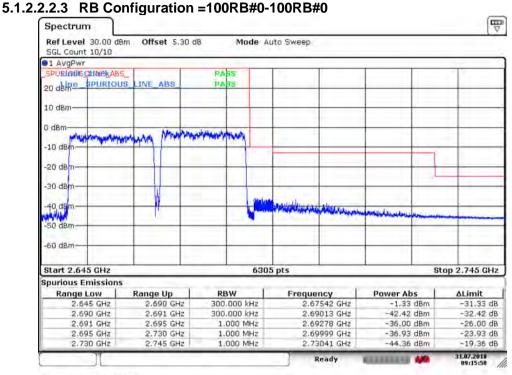

Date: 25 JUL 2018 14:53:01

Report No.: SZEM180700654901 Page: 62 of 90



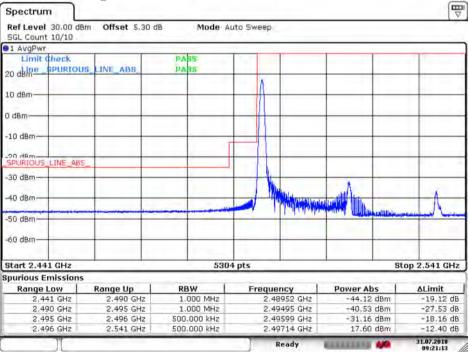
5.1.2.2.2.1 RB Configuration =1RB#99-0RB#0

Date: 31.JUL 2018 09:17:02


5.1.2.2.2.2 RB Configuration =18RB#82-0RB#0

Date: 31.JUL 2018 09:18:27

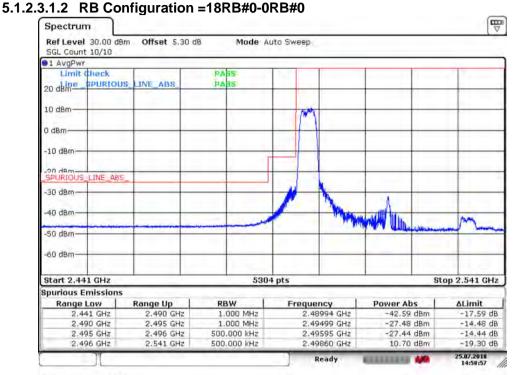
Report No.: SZEM180700654901 Page: 63 of 90



Date: 31.JUL 2018 09:15:58

5.1.2.3 Test Mode = LTE/TM3

5.1.2.3.1 Test Channel = 39750-39948


5.1.2.3.1.1 RB Configuration =1RB#0-0RB#0

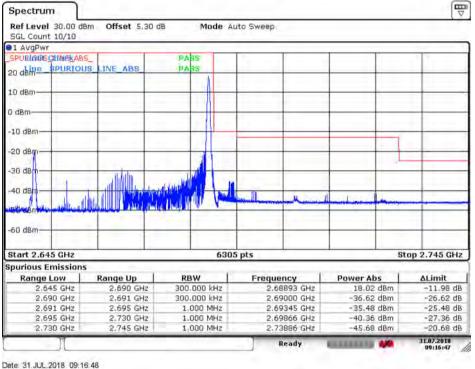
Date: 31 JUL 2018 09:21:13

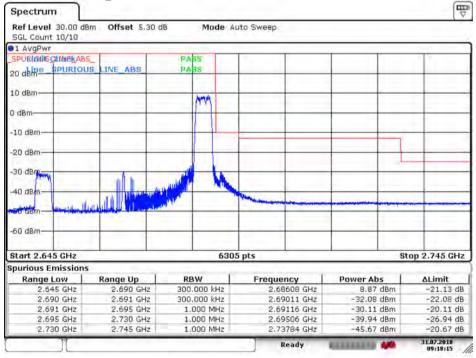
Report No.: SZEM180700654901 Page: 64 of 90

Date: 25 JUL 2018 14:58:57

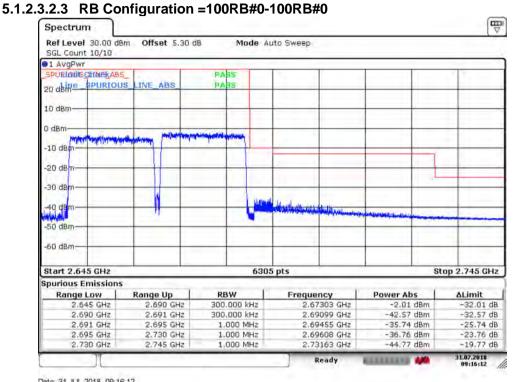
5.1.2.3.1.3 RB Configuration =100RB#0-100RB#0

Spectrum Ref Level 30.00 dBm Offset 5.30 dB Mode Auto Sweep SGL Count 10/10 1 AvgPwr Limit theck PAB 20 dbm SPURIOUS LINE ABS PABS 10 dBm-0 dBm Y and the second s 10 dBm SPURIOUS_LINE_ABS -30 dBm الماليل والمعل 40 dBm--SO dBm--60 dBm-Stop 2.541 GHz 5304 pts Start 2,441 GHz Spurious Emissions RBW Range Low Range Up Frequency Power Abs ∆Limit 2.48994 GHz -32.08 dBm -31.36 dBm 2.441 GHz 2,490 GHz 1.000 MHz -7.08 dB 2.490 GHz 2.495 GHz -18.36 dB 1.000 MHz 2.49406 GHz 2.495 GHz 2.49595 GHz 2.496 GHz 500.000 kHz -34.88 dBm -21.88 dB 2.541 GHz 2.496 GHz 500.000 kHz 2.50294 GHz 0.89 dBm -29.11 dB 25.07.2018 Ready


Date: 25.JUL 2018 14:53:33


Report No.: SZEM180700654901 Page: 65 of 90

5.1.2.3.2.1 RB Configuration =1RB#99-0RB#0


5.1.2.3.2.2 RB Configuration =18RB#82-0RB#0

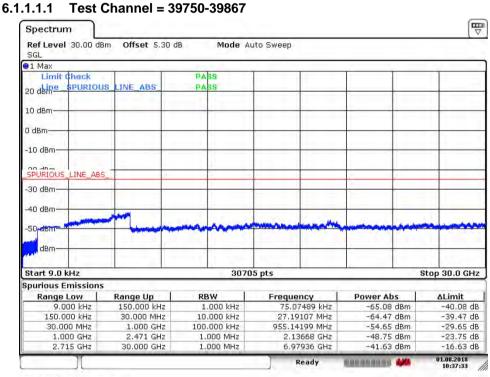
Date: 31.JUL 2018 09:18:15

Report No.: SZEM180700654901 66 of 90 Page:

Date: 31.JUL 2018 09:16:12

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, This document is issued by the Company subject to this observed printed overlear, available on request or accessible at <u>http://www.sgs.com/en/ terms-and-contions.aspx</u> and, for electronic format documents, subject to Terms and Conditions. for electronic Documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/ terms-and-conditions/Terms-and-Condi</u>

Report No.: SZEM180700654901 Page: 67 of 90

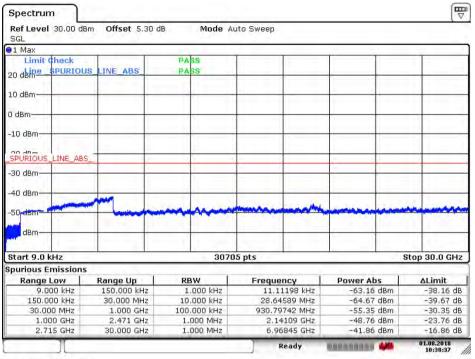

6 Spurious Emission at Antenna Terminal

NOTE1: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

NOTE2: only the worst case data displayed in this report.

6.1 For LTE_CA_41C

6.1.1 Test Band = Bandwidth=100RB+25RB



Date: 1.AUG.2018 10:37:33

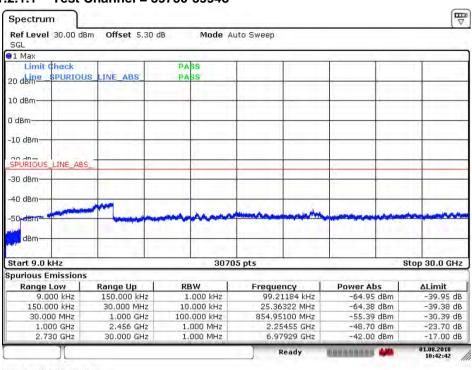
Report No.: SZEM180700654901 Page: 68 of 90

6.1.1.1.2 Test Channel = 40595-40712

Date: 1.AUG.2018 10:38:37

6.1.1.1.3 Test Channel = 41440-41557

Spectrum							E		
Ref Level 30.00 dBm Offset 5.30 dB Mode Auto Sweep SGL									
1 Max									
Limit Check 20 dbm	OUS_LINE_ABS_	PASS PASS					1		
10 dBm					-		-		
0 dBm			1						
-10 dBm	_				1				
SPURIOUS_LINE_A	BS				1				
-30 dBm						-			
-40 dBm									
-50 d8m-	and the second s	manne	the state of the s	-	-		-		
dBm-					-				
Start 9.0 kHz		3070	5 pts		-	S	top 30.0 GHz		
purious Emissio	าร								
Range Low	Range Up	RBW	Frequency		Power Abs		∆Limit		
9.000 kHz	150,000 kHz	1.000 kHz	86.94223 kHz		-64.02 dBm		-39.02 de		
150.000 kHz	30.000 MHz	10.000 kHz	168.65159 kHz		-63.38 dBm		-38.38 dB		
30.000 MHz	1.000 GHz	100.000 kHz	977.93471 MHz		-55.28 dBm		-30.28 dB		
1.000 GHz	2.471 GHz	1.000 MHz		700 GHz	-48.79		-23.79 dB		
2.715 GHz	30,000 GHz	1.000 MHz	6.87	205 GHz	-42.02	aBm	-17.02 dB		
			A	leady		444	01.08.2018 10:39:19		


Date: 1.AUG.2018 10:39:19

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180700654901 Page: 69 of 90

6.1.2 Test Band = Bandwidth=100RB+100RB

6.1.2.1.1 Test Channel = 39750-39948

Date: 1.AUG.2018 10:42:42

6.1.2.1.2 Test Channel = 40521-40719

Spectrum	Bm Offset 5.30 c	Mode A	uto Sweep		
SGL	bin Onset 3.30 t	ID HOUE AC	aro aweeb		_
1 Max					
Limit Check	and the second	PASS			
20 dbm SPURIO	IS LINE ABS	PASS		+	
10 dBm					
0 dBm					
-10 dBm	_				
SPURIOUS_LINE_AB	s_			1	
-30 dBm				1	
-40 dBm					
-50 d8m-		man	March Carlo March March March March March Carlo Strate Str		
dBm					
Start 9.0 kHz		3070	5 pts		stop 30.0 GHz
purious Emission	5				
Range Low	Range Up	RBW	Frequency	Power Abs	∆Limit
9.000 kHz	150,000 kHz	1.000 kHz	121.94080 kHz	-63.48 dBm	-38.48 dB
150.000 kHz	30.000 MHz	10.000 kHz	161.19095 kHz	-61.13 dBm	-36.13 dB
30.000 MHz	1.000 GHz	100.000 kHz	964.93801 MHz	-55.07 dBm	-30.07 dB
1.000 GHz	2.456 GHz	1.000 MHz	2.16000 GHz	-48.71 dBm	-23.71 dB
2.730 GHz	30,000 GHz	1.000 MHz	6.96111 GHz	-41.80 dBm	-16.80 dB
			Ready		01.08.2018 10:43:18

Date: 1.AUG.2018 10:43:18

Report No.: SZEM180700654901 Page: 70 of 90

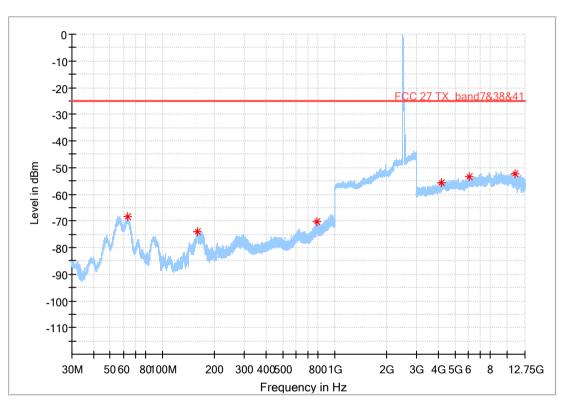
6.1.2.1.3 Test Channel = 41292-41490

Spectrum									[₩ V
Ref Level 30 SGL	0.00 dBm	Offset 5.30	dB	Mode Au	ito Sweep				
1 Max									
Limit Ch	eck		PA	SS					
20 dbine sp	URIOUS	LINE_ABS	PA	88					
10 dBm			-				-	_	
) dBm	-		_	· · · · · · · · · · · · · · · · · · ·					
-10 dBm								_	
SPURIOUS_LI	NE_ABS_		_				1		
-30 dBm						-			
-40 dBm	_			-			-	_	_
-50, d8m-			ma	Anno	-	Marca Art	سيمنحسن	A Report	
				n an an					
dBm									
Start 9.0 kHz	z	LL	-	3070	5 pts			8	Stop 30.0 GHz
purious Emi	ssions								
Range Los	w I	Range Up	R	BW	Frequency		Power Abs		∆Limit
9.000 kHz		150,000 kHz	1	.000 kHz	60.39158 kHz		-63.55 dBm		-38.55 dB
150.000 kHz		30.000 MHz	10	.000 kHz	22.60278 MHz		-64.02 dBm		-39.02 dB
30.000 MHz		1.000 GHz	100.000 kHz		968.23568 MHz		-55.54 dBm		-30.54 dB
1.000 GHz		2.456 GHz	1.000 MHz		2.14836 GHz		-48.73 dBm		-23,73 dB
2.730	GHz	30.000 GHz	1.	.000 MHz	6.88	8476 GHz	-41.86	dBm	-16.86 dB
)[i	leady		444	01.08.2018 10:44:01

Date: 1.AUG.2018 10:44:02

Report No.: SZEM180700654901 Page: 71 of 90

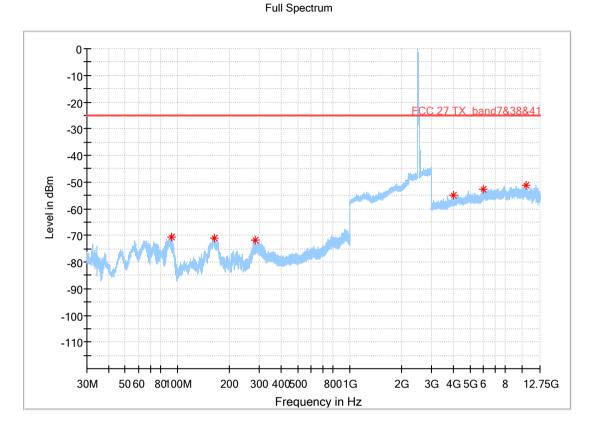
7 Field Strength of Spurious Radiation


7.1 For LTE

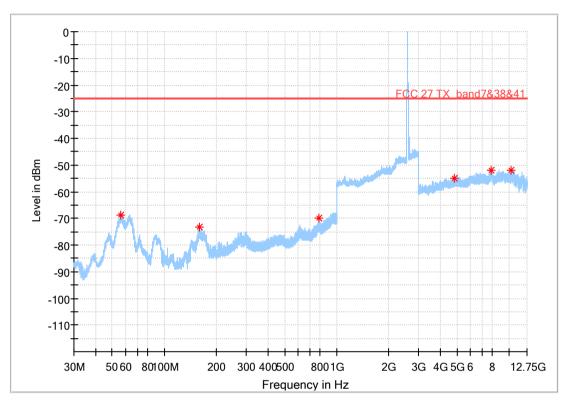
7.1.1 Test Band = LTE Band CA_41C_Main Antenna

7.1.1.1 Test Mode =LTE/TM1 100RB+100RB

7.1.1.1.1 Test Channel = 39750-39948_H

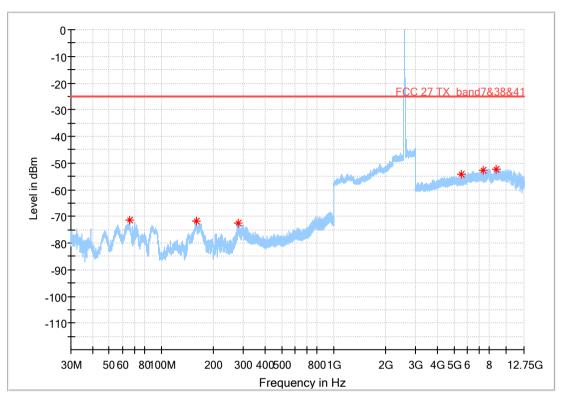

Full Spectrum

Report No.: SZEM180700654901 Page: 72 of 90

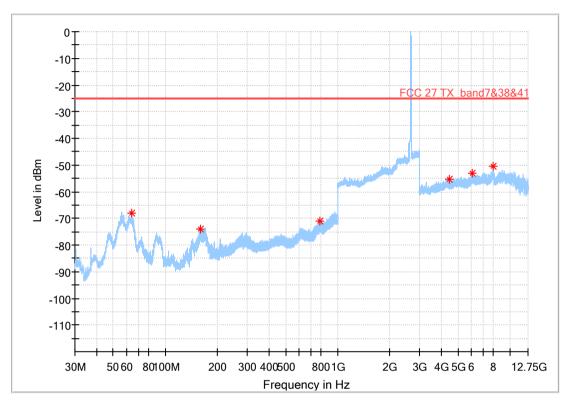


Report No.: SZEM180700654901 Page: 73 of 90

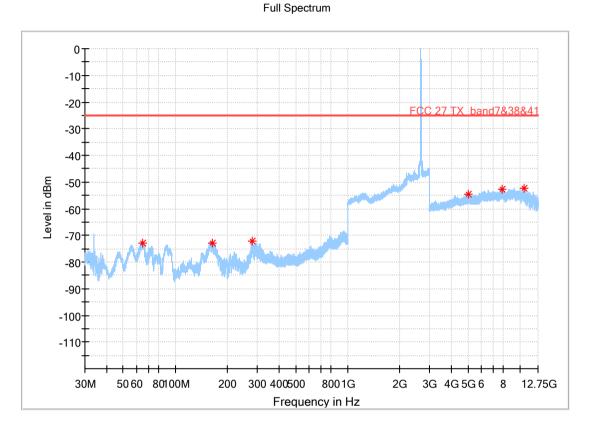
Full Spectrum



Report No.: SZEM180700654901 Page: 74 of 90

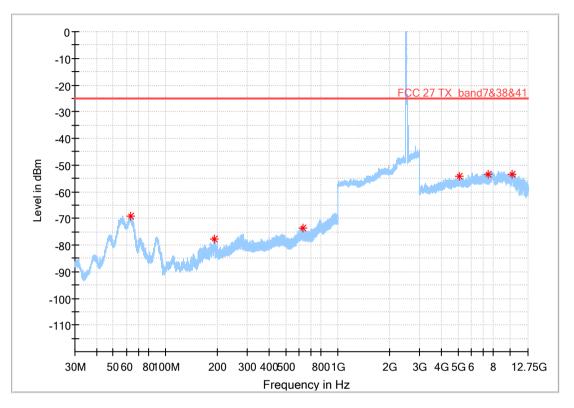


Report No.: SZEM180700654901 Page: 75 of 90

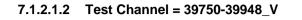

Full Spectrum

Report No.: SZEM180700654901 Page: 76 of 90

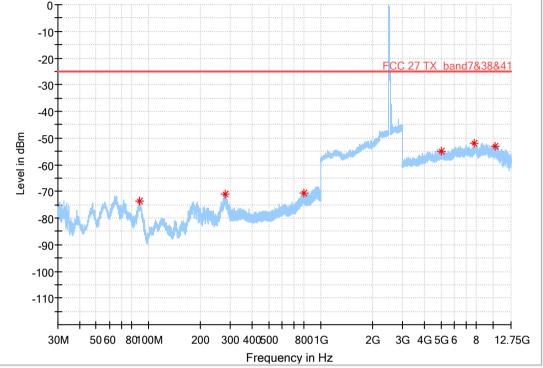
7.1.2 Test Band = LTE Band CA_41C_Secondary Antenna


7.1.2.1 Test Mode =LTE/TM1 100RB+100RB

Report No.: SZEM180700654901 Page: 77 of 90

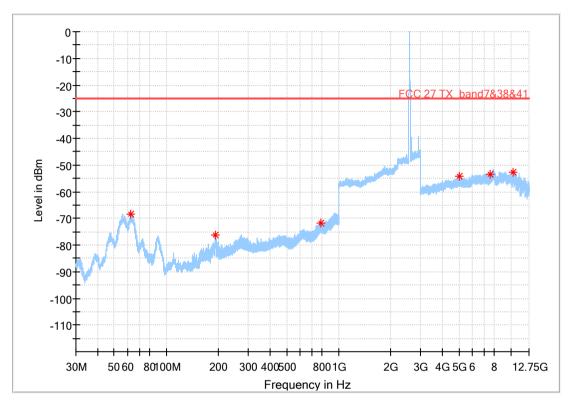


Full Spectrum



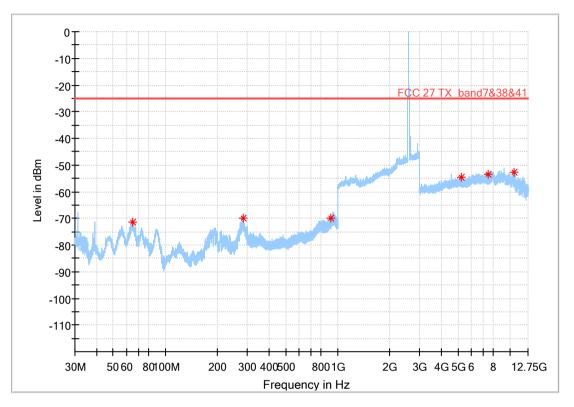
Report No.: SZEM180700654901 Page: 78 of 90

Full Spectrum

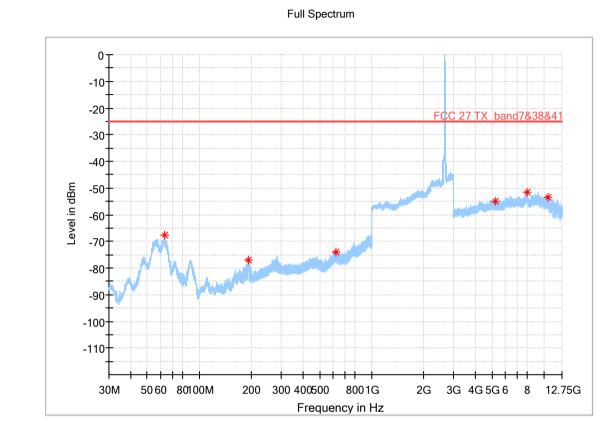


Report No.: SZEM180700654901 Page: 79 of 90

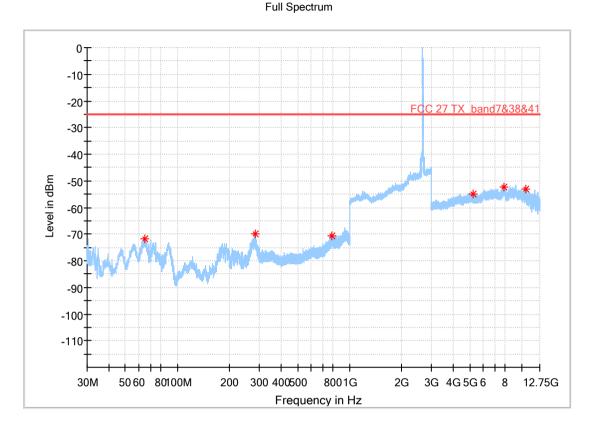
Full Spectrum



Report No.: SZEM180700654901 Page: 80 of 90


Full Spectrum

Report No.: SZEM180700654901 Page: 81 of 90


7.1.2.1.5 Test Channel = 41292-41490_H

Report No.: SZEM180700654901 Page: 82 of 90

NOTE:

- 1) The disturbance above 12.75GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the worst case had been displayed.
- 2) We have tested all combinations and all modulations, but only the worst case data presented in this report.

Report No.: SZEM180700654901 Page: 83 of 90

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	-9.47	-0.00371	PASS
		39750-39867	TN	VN	1.56	0.00061	PASS
				VH	-8.67	-0.00339	PASS
				VL	2.57	0.00099	PASS
	LTE/TM1 100RB+25RB	40595-40712	TN	VN	5.99	0.00230	PASS
	TOURDIZORD			VH	-6.83	-0.00263 P -0.00208 P -0.00095 P -0.00294 P -0.00010 P 0.00300 P 0.00291 P -0.00006 P 0.00331 P -0.00217 P	PASS
				VL	-5.49	-0.00208	PASS
		41440-41557	TN	VN	-2.51	-0.00095	PASS
				VH	-7.77	-0.00294	PASS
			TN	VL	-0.25	-0.00010	PASS
		39750-39867		VN	7.68	0.00300	PASS
				VH	7.43	0.00291	PASS
	LTE/TM2 100RB+25RB	40595-40712	TN	VL	-0.14	-0.00006	PASS
CA_41C				VN	8.61	0.00331	PASS
				VH	-5.64	-0.00217	PASS
		41440-41557	TN	VL	9.66	0.00366	PASS
				VN	-0.87	-0.00033	PASS
				VH	0.98	0.00037	PASS
			TN	VL	-5.80	-0.00227	PASS
		39750-39867		VN	-6.95	-0.00272	PASS
				VH	-7.15	-0.00280	PASS
				VL	4.60	0.00177	PASS
	LTE/TM3 100RB+25RB	40595-40712	TN	VN	-4.04	-0.00155	PASS
				VH	-4.65	-0.00179	PASS
				VL	3.97	0.00150	PASS
		41440-41557	TN	VN	-1.19	-0.00045	PASS
				VH	-9.10	-0.00345	PASS

Report No.: SZEM180700654901 Page: 84 of 90

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	0.07	0.00003	PASS
		39750-39948	TN	VN	-4.95	-0.00194	PASS
				VH	-0.92	-0.00036	PASS
				VL	-1.42	-0.00055	PASS
	LTE/TM1 100RB+100RB	40521-40719	TN	VN	-5.03	-0.00194	PASS
	TOURBETOURB			VH	-6.71	-0.00259	PASS
				VL	6.98	0.00266	PASS
		41292-41490	TN	VN	9.04	0.00344	PASS
				VH	2.91	0.00111	PASS
			TN	VL	-4.84	-0.00189	PASS
	LTE/TM2 100RB+100RB	39750-39948		VN	-1.03	-0.00040	PASS
				VH	-3.87	-0.00151	PASS
		40521-40719	TN	VL	7.66	0.00296	PASS
CA_41C				VN	-5.06	-0.00196	PASS
				VH	-9.94	-0.00384	PASS
		41292-41490	TN	VL	-5.52	-0.00210	PASS
				VN	9.82	0.00374	PASS
				VH	-4.94	-0.00188	PASS
			TN	VL	-4.89	-0.00191	PASS
		39750-39948		VN	-8.14	-0.00319	PASS
				VH	4.00	0.00157	PASS
				VL	5.04	0.00194	PASS
	LTE/TM3 100RB+100RB	40521-40719	TN	VN	7.77	0.00300	PASS
				VH	2.41	0.00093	PASS
				VL	5.87	0.00223	PASS
		41292-41490	TN	VN	0.34	0.00013	PASS
				VH	5.00	0.00190	PASS

Report No.: SZEM180700654901 Page: 85 of 90

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	3.66	0.00143	PASS
				-20	5.68	0.00222	PASS
				-10	-8.10	-0.00317	PASS
				0	5.67	0.00222	PASS
		39750-39867	VN	10	-5.49	-0.00215	PASS
				20	4.05	0.00159	PASS
				30	8.12	0.00318	PASS
				40	3.61	0.00141	PASS
				50	-0.89	-0.00035	PASS
				-30	-3.41	-0.00131	PASS
				-20	6.28	0.00242	PASS
		40595-40712		-10	-7.01	-0.00270	PASS
				0	4.64	0.00179	PASS PASS PASS PASS PASS PASS PASS PASS
CA_41C	LTE/TM1 100RB+25RB		0595-40712 VN	10	-6.67	-0.00257	
	100112-20112			20	-2.97	-0.00114	PASS
				30	5.70	0.00219	PASS
			-	40	-5.69	-0.00219	PASS
				50	-9.08	-0.00349	PASS
				-30	1.26	0.00048	PASS
				-20	9.46	0.00358	PASS
				-10	4.32	0.00164	PASS
				0	9.91	0.00375	PASS
		41440-41557	VN	10	-5.17	-0.00196	PASS
				20	-1.77	-0.00067	PASS
				30	2.95	0.00112	PASS
				40	-9.15	-0.00346	PASS
				50	-2.43	-0.00092	PASS

Report No.: SZEM180700654901 Page: 86 of 90

						86 01 90	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-4.24	-0.00166	PASS
				-20	-9.83	-0.00385	PASS
				-10	-1.14	-0.00045	PASS
				0	0.94	0.00037	PASS
		39750-39867	VN	10	-0.03	-0.00001	PASS
				20	-7.03	-0.00275	PASS
				30	3.04	0.00119	PASS
				40	-0.40	-0.00016	PASS
				50	-7.83	-0.00307	PASS
				-30	-9.70	-0.00373	PASS
				-20	-9.69	-0.00373	PASS PASS PASS PASS PASS PASS PASS PASS
				-10	-0.80	-0.00031	PASS
				0	3.20	0.00123	PASS
CA_41C	LTE/TM2 100RB+25RB	40595-40712	VN	10	3.48	0.00134	PASS
				20	6.95	0.00268	PASS
				30	-3.41	-0.00131	PASS
				40	-5.71	-0.00220	PASS
				50	9.22	0.00355	PASS
				-30	2.36	0.00089	PASS
				-20	-6.27	-0.00237	PASS
				-10	9.52	0.00361	PASS
				0	7.93	0.00300	PASS
		41440-41557	VN	10	0.91	0.00034	PASS
				20	-5.83	-0.00221	PASS
				30	-3.87	-0.00146	PASS
				40	-0.78	-0.00029	PASS
				50	-9.38	-0.00355	PASS

Report No.: SZEM180700654901 Page: 87 of 90

						87 of 90	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	6.50	0.00255	PASS
				-20	-9.74	-0.00381	PASS
				-10	-1.77	-0.00069	PASS
				0	-2.04	-0.00080	PASS
		39750-39867	VN	10	-3.07	-0.00120	PASS
				20	-9.39	-0.00367	PASS
				30	-8.54	-0.00334	PASS
				40	6.19	0.00242	PASS
				50	1.22	0.00048	PASS
				-30	0.19	0.00007	PASS
				-20	-7.96	-0.00307	PASS
				-10	2.56	0.00098	PASS
				0	-0.59	-0.00023	PASS
CA_41C	LTE/TM3 100RB+25RB	40595-40712	VN	10	-5.09	-0.00196	PASS
				20	-0.10	-0.00004	PASS
				30	-8.24	-0.00317	PASS
				40	9.91	0.00382	PASS
				50	-7.96	-0.00306	PASS
				-30	2.55	0.00097	PASS
				-20	-3.60	-0.00136	PASS
				-10	-9.59	-0.00363	PASS
				0	6.87	0.00260	PASS
		41440-41557	VN	10	3.51	0.00133	PASS
				20	8.11	0.00307	PASS
			-	30	1.90	0.00072	PASS
				40	-1.20	-0.00045	PASS
				50	1.96	0.00074	PASS

Report No.: SZEM180700654901 Page: 88 of 90

			Page:	88 01 90			
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-4.06	-0.00159	PASS
				-20	8.05	0.00315	PASS
				-10	-0.16	-0.00006	PASS
				0	6.92	0.00271	PASS
		39750-39948	VN	10	2.31	0.00090	PASS
				20	8.91	0.00349	PASS
				30	0.89	0.00035	PASS
				40	8.99	0.00352	PASS
				50	-5.24	-0.00205	PASS
				-30	0.71	0.00027	PASS
				-20	-0.55	-0.00021	PASS
				-10	9.36	0.00361	PASS
				0	-2.11	-0.00081	PASS PASS PASS PASS PASS PASS PASS PASS
CA_41C	LTE/TM1 100RB+100RB	40521-40719	VN	10	-9.32	-0.00360	PASS
			-	20	-5.89	-0.00227	PASS
				30	4.82	0.00186	PASS
				40	-5.68	-0.00219	PASS
				50	2.38	0.00092	PASS
				-30	-9.80	-0.00373	PASS
				-20	-2.42	-0.00092	PASS
				-10	6.77	0.00258	PASS
				0	1.31	0.00050	PASS
		41292-41490	VN	10	2.09	0.00080	PASS
				20	-4.84	-0.00184	PASS
				30	-1.87	-0.00071	PASS
				40	5.07	0.00193	PASS
				50	-5.64	-0.00215	PASS

Report No.: SZEM180700654901 Page: 89 of 90

			Page:	89 01 90			
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-8.68	-0.00340	PASS
				-20	-4.90	-0.00192	PASS
				-10	2.04	0.00080	PASS
				0	3.86	0.00151	PASS
		39750-39948	VN	10	-4.83	-0.00189	PASS
				20	-5.33	-0.00209	PASS
				30	7.27	0.00284	PASS
				40	1.37	0.00054	PASS
				50	-5.51	-0.00216	PASS
			-	-30	5.49	0.00212	PASS
				-20	-7.75	-0.00299	PASS
				-10	-9.08	-0.00351	PASS
				0	7.19	0.00277	PASS PASS PASS PASS PASS PASS PASS PASS
CA_41C	LTE/TM2 100RB+100RB	40521-40719	VN	10	-0.06	-0.00002	PASS
	TOOLD TOOLD		-	20	5.99	0.00231	PASS
				30	-8.17	-0.00315	PASS
				40	7.46	0.00288	PASS
				50	-9.06	-0.00350	PASS
				-30	9.99	0.00381	PASS
				-20	8.71	0.00332	PASS
				-10	-4.69	-0.00179	PASS
				0	1.73	0.00066	PASS
		41292-41490	VN	10	-6.96	-0.00265	PASS
				20	1.80	0.00069	PASS
				30	0.03	0.00001	PASS
				40	5.74	0.00218	PASS
				50	-3.04	-0.00116	PASS

Report No.: SZEM180700654901 Page: 90 of 90

						90 of 90	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-6.63	-0.00260	PASS
				-20	8.29	0.00325	PASS
				-10	-4.72	-0.00185	PASS
				0	-6.53	-0.00255	PASS
		39750-39948	VN	10	-2.07	-0.00081	PASS
				20	-5.62	-0.00220	PASS
				30	7.08	0.00277	PASS
				40	-6.49	-0.00254	PASS
				50	-3.27	-0.00128	PASS
				-30	-2.26	-0.00087	PASS
				-20	-6.43	-0.00248	PASS
		40521-40719	VN	-10	-0.55	-0.00021	PASS
				0	-4.98	-0.00192	PASS
CA_41C	LTE/TM3 100RB+100RB			10	6.44	0.00249	PASS
	TOOLD TOOLD			20	6.99	0.00270	PASS
				30	6.86	0.00265	PASS
				40	-4.27	-0.00165	PASS
				50	5.72	0.00221	PASS
				-30	0.31	0.00012	PASS
				-20	7.42	0.00283	PASS
				-10	-1.12	-0.00043	PASS
				0	6.31	0.00240	PASS
		41292-41490	VN	10	-4.24	-0.00162	PASS
				20	3.45	0.00132	PASS
				30	-4.00	-0.00152	PASS
				40	-1.64	-0.00062	PASS
				50	-3.49	-0.00133	PASS

The End