

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

Date of R	locointi	Wireless Devices 2018-07-10
Test Met	hod	KDB 789033 D02 General UNII Test Procedures New Rules v02 FCC KDB 558074 D01 DTS Meas Guidance v04 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10-2013, American National Standard for Testing Unlicensed
Standard	s:	47 CFR FCC Part 2, Subpart J 47 CFR FCC Part 15, Subpart C 47 CFR FCC Part 15, Subpart E
FCC ID:		QISHMA-LX9
Trade Ma	ark::	HUAWEI
Model No	o.(EUT):	HMA-L29, HMA-L09
Product I	Name:	Smart Phone
Address	of Manufacturer	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C
Manufact	turer:	Huawei Technologies Co., Ltd.
Applican Address	t: of Applicant	Huawei Technologies Co., Ltd. Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C
Applicati		SZEM1807006549RG
		FCC TEST REPORT
Email:	ee.shenzhen@sgs.com	5
Fax:	+86 (0) 755 2601 2053 +86 (0) 755 2671 0594	Report No.: SZEM180700654903

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derde yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

2 Version

	Revision Record				
Version	Chapter	Date	Modifier	Remark	
01		2018-09-03		Original	

Authorized for issue by:		
Tested By	Mike Mu	2018-09-03
	(Mike Hu) /Project Engineer	Date
Checked By	David Chen	2018-09-03
	(David Chen) /Reviewer	Date

Authorized Signature:

Derete yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180700654903 Page: 3 of 783

Contents

		Page
1	COVER PAGEFCC TEST REPORT	1
2	VERSION	2
3	TEST SUMMARY	4
4	GENERAL INFORMATION	7
-		
	4.1 CLIENT INFORMATION4.2 GENERAL DESCRIPTION OF EUT	7 7
	4.3 TEST ENVIRONMENT AND MODE	9
	4.4 DESCRIPTION OF SUPPORT UNITS	10
	4.5 TEST LOCATION	10
	4.6 TEST FACILITY	10
	4.7 DEVIATION FROM STANDARDS	10
	4.8 ABNORMALITIES FROM STANDARD CONDITIONS	10
	4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	10
5	TEST RESULTS AND MEASUREMENT DATA	11
	5.1 ANTENNA REQUIREMENT	11
	5.2 CONDUCTED EMISSIONS	11
	5.3 CONDUCTED OUTPUT POWER	15
	5.4 EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	20
	5.4.1 Measurement Data:	21
	5.4.2 Plots for 26dB Emission Bandwidth & 99% Occupied Bandwidth	26
	5.5 6DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	189
	5.5.1 Plots for 6dB Emission Bandwidth & 99% Occupied Bandwidth	192
	5.6 POWER SPECTRAL DENSITY	242
	5.7 RADIATED SPURIOUS EMISSIONS	362
	5.7.1 Radiated emission below 1GHz	364
	5.7.2 Transmitter emission above 1GHz 5.8 Restricted bands around fundamental frequency	366 539
	5.8.1 Test plot for SISO as follows:	541
	5.8.1 Test plot for MIMO as follows:	607
	5.9 FREQUENCIES STABILITY	761
	5.10 (DFS: CHANNEL MOVE TIME; DFS: CHANNEL CLOSING TRANSMISSION TIME)	763
	5.10.1 DFS: Non-occupancy period	763
	5.10.2 DFS: Channel Move Time	766
	5.10.3 DFS: Channel Closing Transmission Time	769
	5.10.4 Test plots as follows:	772
	5.11 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	780
	5.12 EQUIPMENT LIST	781
6	PHOTOGRAPHS - EUT TEST SETUP DETAILS	783

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condi

Report No.: SZEM180700654903 Page: 4 of 783

3 Test Summary

Test Item	Band	FCC Rule	Requirements	Test Result	Verdic t
	5150-5250	15.403(i) 15.407(a)(1)			
Emission	5250-5350	15.403(i) 15.407(a)(2)	2) No limit.		Pass
Bandwidth	5470-5725	15.403(i) 15.407(a)(2)		Clause 5.4	1 400
	5725-5850	15.403(i) 15.407(e)	≥ 500 kHz.	Clause 5.5	
	5150-5250				
Occupied	5250-5350	KDB 789033	No limit.		Pass
Bandwidth	5470-5725 5725-5850	D02§ D			
Duty Cycle	5150-5850		No limit.		
Duty Cycle		15.407(a)(1)	FCC < 250mW		
	5150-5250	15.407(a)(4)	(avg during transmission)		
			<min{250mw,11dbm+10*lg(< td=""><td></td><td></td></min{250mw,11dbm+10*lg(<>		
Movimum	5250-5350	15.407(a)(2)	EBW) (avg during		
Maximum Conducted		15.407(a)(4)	transmission)	Clause 5.3	
Output Power		15.407(a)(2) 15.407(a)(4)	<min{250mw,11dbm+10*lg(< td=""><td></td><td></td></min{250mw,11dbm+10*lg(<>		
output i owor	5470-5725		EBW)} (avg during		Pass
			transmission)	-	
	5725-5850 15	15.407(a)(3)	< 1W		
		15.407(a)(1)	(avg during transmission) <11dBm/MHz		
	5150-5250	15.407(a)(1)	(avg during transmission)		
maximum		15.407(a)(2)	<11dBm/MHz	-	
Power	5250-5350	15.407(a)(4)	(avg during transmission)		
Spectral	E470 E70E	15.407(a)(2)	<11dBm/MHz	Clause 5.6	
Density	5470-5725	15.407(a)(4)	(avg during transmission)		
	5725-5850	15.407(a)(3)	<30dBm/500KHz		
	0120 0000	15.407(a)(4)	(avg during transmission)		
Unwanted Emissions that fall Outside of the	5150-5250	15.407(b)(1) 15.407(b)(6) 15.407(b)(7) 15.209	 F<1GHz: §15.209/§7.2.5 limit (QP). F≥1GHz & out-restricted: <-27dBm/MHz PK e.i.r.p. (exl. 5.15-5.35 GHz). F≥1GHz & in-restricted: §15.209/§7.2.5 limit (AV&PK). 	Clause 5.7	Pass
Restricted Bands(Radiat ed)	5250-5350	15.407(b)(2) 15.407(b)(6) 15.407(b)(7) 15.209	 F<1GHz: §15.209/§7.2.5 limit (QP). F≥1GHz & out-restricted: <-27dBm/MHz PK e.i.r.p. (exl. 5.25-5.35 GHz). F≥1GHz & in-restricted: §15.209/§7.2.5 limit (AV&PK). 		

Report No.: SZEM180700654903 Page: 5 of 783

Test Item	Band	FCC Rule	Requirements	Test Result	Verdic t
	5470-5750	15.407(b)(3) 15.407(b)(6) 15.407(b)(7) 15.209	 F<1GHz: §15.209/§7.2.5 limit (QP). F≥1GHz & out-restricted: <-27dBm/MHz PK e.i.r.p. (exl. 5.47-5.725 GHz). F≥1GHz & in-restricted: §15.209/§7.2.5 limit (AV&PK). 		
	5725-5850	15.407(b)(4) 15.407(b)(6) 15.407(b)(7) 15.209	 F<1GHz: §15.209/§7.2.5 limit (QP) F≥1GHz &out- restricted:(QP) a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges; b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges; c) 10 dBm/MHz at 25 MHz above or below the band edges; c) 10 dBm/MHz at 25 MHz above or below the band edges; c) 10 dBm/MHz at 75 MHz above or below the band edges; and d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges. F≥1GHz & in-restricted: §15.209/§7.2.5 limit (AV&PK). 		
Unwanted Emissions in the Restricted Bands (Radiated)	5150-5250 5250-5350 5470-5725 5725-5850	15.209	FCC: Part 15.209	Clause 5.8	Pass
AC Power Line Conducted Emissions	5150-5250 5250-5350 5470-5725 5725-5850	15.207	FCC:Part 15.207 conducted limit;	Clause 5.2	Pass
Frequency Stability	5150-5250 5250-5350 5470-5725 5725-5850	15.407(g)	FCC Part 15.407(g)	Clause 5.9	Pass
DFS: Non- occupancy period	5250-5350 5470-5725	47 CFR Part 15, Subpart E 15.407	Minimum 30 minutes	Clause 5.10	Pass

Report No.: SZEM180700654903 Page: 6 of 783

Test Item	Band	FCC Rule	Requirements	Test Result	Verdic t
DFS: Channel Move Time		47 CFR Part 15, Subpart E 15.407	10 seconds		Pass
DFS: Channel Closing Transmission Time		47 CFR Part 15, Subpart E 15.407	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.		Pass

Remark:

According to the declaration from the applicant, the differences between HMA-L29 and HMA-L09 are identical except for HMA-L09 support single SIM card which deleted by software. Therefore we only test HMA-L29 in this report

Report No.: SZEM180700654903 Page: 7 of 783

4 General Information

4.1 Client Information

Applicant:	Huawei Technologies Co., Ltd.
Address of Applicant:	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C
Manufacturer:	Huawei Technologies Co., Ltd.
Address of Manufacturer:	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

4.2 General Description of EUT

Product Name:	Smart Phone	
Model No.:	HMA-L29, HMA-L09	
Trade Mark:	HUAWEI	
Hardware Version:	HL1HIMAM	
Software Version:	9.0.0.46(C432E55R1P7log)	
Operation Frequency:	IEEE 802.11a/ n(HT20/40)/ ac(HT20/40/80/160): 5150MHz to 5250MHz IEEE 802.11a/ n(HT20/40)/ ac(HT20/40/80/160): 5250MHz to 5350MHz IEEE 802.11a/ n(HT20/40)/ ac(HT20/40/80/160): 5470MHz to 5725MHz IEEE 802.11a/ n(HT20/40)/ ac(HT20/40/80): 5725MHz to 5850MHz	
	* The 5580-5650MHz can not be used.	
Type of Modulation:	IEEE 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM) IEEE 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM) IEEE 802.11ac: OFDM(BPSK/QPSK/16QAM/64QAM/256QAM)	
DFS mode:	Slave without radar detection	
Sample Type:	Portable Device	
Antenna Type:	PIFA	
Antenna Gain:	1dBi(ANT1);-4.5dBi(ANT2)	
EUT Power Supply:	Battery Model: HB436486ECW Rated capacity: 3900mAh Nominal Voltage: +3.82V	
	Charging Voltage: +4.40V	
AC adaptor:	Model: HW-050450B00 Manufacturer: Huawei Technologies Co., Ltd. Input: 100V-240V~50/60Hz, 0.75A	
	Output: 5V === 2A OR4.5V === 5A OR 5V === 4.5A Model: HW-050450E00 Manufacturer: Huawei Technologies Co., Ltd. Input: 100V-240V~50/60Hz, 0.75A	
	Output: 5V === 2A OR4.5V === 5A OR 5V === 4.5A	

Report No.: SZEM180700654903 Page: 8 of 783

Model: HW-050450U00 Manufacturer: Huawei Technologies Co., Ltd. Input: 100V-240V~50/60Hz, 0.75A
Output: 5V === 2A OR4.5V === 5A OR 5V === 4.5A Model: HW-050450A00 Manufacturer: Huawei Technologies Co., Ltd. Input: 100V-240V~50/60Hz, 0.75A
Output: 5V === 2A OR4.5V === 5A OR 5V === 4.5A Model: HW-050450E01 Manufacturer: Huawei Technologies Co., Ltd. Input: 100V-240V~50/60Hz, 0.75A
Output: 5V === 2A OR 9V === 2A

Note:

In FCC 15.31, for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table, and the selected channel to perform the test as below:

Frequency Range of Operation Operating Frequency Range (in each Band)	Number of Measurement Frequencies Required	Location of Measurement Frequency in Band of Operation
1 MHz or less	1	centre
1 MHz to 10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near centre

For UNII Band I:

Mode	Channel	Frequency(MHz)
	The Lowest channel	5180
IEEE 802.11a/n/ac 20MHz	The Middle channel	5200
	The Highest channel	5240
IEEE 802.11n/ac 40MHz	The Lowest channel	5190
	The Highest channel	5230
IEEE 802.11ac 80MHz	The Middle channel	5210

For UNII Band II-A:

Mode	Channel	Frequency(MHz)		
	The Lowest channel	5260		
IEEE 802.11a/n/ac 20MHz	The Middle channel	5280		
	The Highest channel	5320		
IEEE 802.11n/ac 40MHz	The Lowest channel	5270		
IEEE 802.11n/ac 40MHz	The Highest channel	5310		
IEEE 802.11ac 80MHz	The Middle channel	5290		
IEEE 802.11ac 160MHz	The Lowest channel	5250		

Report No.: SZEM180700654903 Page: 9 of 783

For UNII Band II-C:

Mode	Channel	Frequency(MHz)		
	The Lowest channel	5500		
IEEE 802.11a/n/ac 20MHz	The Middle channel	5600		
	The Highest channel	5720		
	The Lowest channel	5510		
IEEE 802.11n/ac 40MHz	The Middle channel	5670		
	The Highest channel	5710		
	The Lowest channel	5530		
IEEE 802.11ac 80MHz	The Highest channel	5690		
IEEE 802.11ac 160MHz	The Highest channel	5570		

For UNII Band III:

Mode	Channel	Frequency(MHz)		
	The Lowest channel	5745		
IEEE 802.11a/n/ac 20MHz	The Middle channel	5785		
	The Highest channel	5825		
	The Lowest channel	5755		
IEEE 802.11n/ac 40MHz	The Highest channel	5795		
IEEE 802.11ac 80MHz	The Middle channel	5775		

4.3 Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	55 % RH
Atmospheric Pressure:	101.32 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Report No.: SZEM180700654903 Page: 10 of 783

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM180700654903 Page: 11 of 783

5 Test results and Measurement Data

5.1 Antenna Requirement

Test Requirement:47 CFR Part 15 Section 15.203The antenna is integrated antenna and no consideration of replacement. The best case gain of the antenna is
1dBi(ANT1);-4.5dBi(ANT2)

5.2 Conducted Emissions

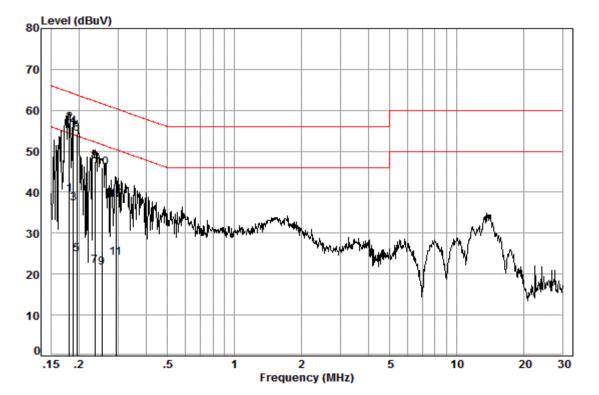
Test Requirement:	47 CFR Part 15 Section 15.407(b)				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:		Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test Procedure:	 The mains terminal disturbution The EUT was connected to Impedance Stabilization Nation impedance. The power call connected to a second LIS plane in the same way as a multiple socket outlet stript single LISN provided the rational structure plane on the horizontal ground reference plane. An placed on the horizontal gradient of the EUT shall be 0.4 mm vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated explained on the maximum equipment and all of the im ANSI C63.10: 2013 on correct on the closest points of the closest points of the closest points and all of the im ANSI C63.10: 2013 on correct on the closest points on the closest points of the closest points of the closest points and all of the im ANSI C63.10: 2013 on correct on the closest points on the closest points on the closest points of the closest points on the closest points and all of the im ANSI C63.10: 2013 on correct on the closest points the clos	b AC power source thro etwork) which provides oles of all other units of N 2, which was bonded the LISN 1 for the unit k was used to connect m ating of the LISN was n ced upon a non-metallion of for floor-standing and ound reference plane, th a vertical ground reference plane was bonded to the 1 was placed 0.8 m fro 1 to a ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 im emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω linear the EUT were d to the ground reference being measured. A nultiple power cables to a ot exceeded. table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of		

Report No.: SZEM180700654903 Page: 12 of 783

Test Setup:	Shielding Room Test Receiver FUT AF AC Mans USN2 + AC Mans Ground Reference Plane
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate of 802.11a at lowest channel is the worst case.Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data

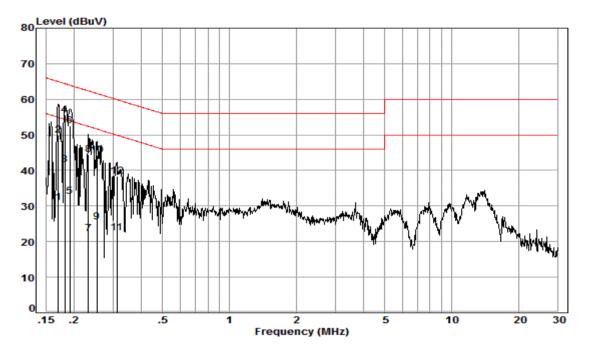
An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Mode e=5G WiFi Conducted Emission

Report No.: SZEM180700654903 Page: 13 of 783

Live Line:


Site :	Shielding Room
Condition:	Line
Job No. :	06549RG
Test mode:	e

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.03	9.51	29.92	39.46	54.46	-15.00	Average
2	0.18	0.03	9.51	47.28	56.82	64.46	-7.64	QP
3	0.19	0.03	9.51	27.64	37.18	54.11	-16.93	Average
4	0.19	0.03	9.51	46.49	56.03	64.11	-8.08	QP
5	0.20	0.03	9.50	15.42	24.95	53.80	-28.85	Average
6	0.20	0.03	9.50	44.72	54.25	63.80	-9.55	QP
7	0.24	0.03	9.51	12.54	22.08	52.26	-30.18	Average
8	0.24	0.03	9.51	37.89	47.43	62.26	-14.83	QP
9	0.25	0.03	9.51	12.11	21.65	51.64	-29.99	Average
10	0.25	0.03	9.51	36.45	45.99	61.64	-15.65	QP
11	0.29	0.03	9.51	14.54	24.08	50.46	-26.38	Average
12	0.29	0.03	9.51	28.68	38.22	60.46	-22.24	QP

Report No.: SZEM180700654903 Page: 14 of 783

Neutral Line:

Site : Shielding Room Condition: Neutral Job No. : 06549RG Test mode: e

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17	0.02	9.59	21.36	30.97	54.94	-23.97	Average
2	0.17	0.02	9.59	40.21	49.82	64.94	-15.12	QP
3	0.18	0.03	9.58	31.95	41.56	54.42	-12.86	Average
4	0.18	0.03	9.58	46.06	55.67	64.42	-8.75	QP
5	0.19	0.03	9.58	22.99	32.60	53.98	-21.38	Average
6	0.19	0.03	9.58	42.83	52.44	63.98	-11.54	QP
7	0.23	0.03	9.58	12.62	22.23	52.39	-30.16	Average
8	0.23	0.03	9.58	34.90	44.51	62.39	-17.88	QP
9	0.25	0.03	9.58	15.80	25.41	51.64	-26.23	Average
10	0.25	0.03	9.58	34.62	44.23	61.64	-17.41	QP
11	0.31	0.03	9.58	12.85	22.46	49.93	-27.47	Average
12	0.31	0.03	9.58	28.75	38.36	59.93	-21.57	QP

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM180700654903 Page: 15 of 783

5.3 Conducted Output Power

Test Requirement:	47 CFR Part 15 Sect	ion 15.407(a)		
Test Method:	ANSI C63.10: 2013			
Test Setup:		lyzer E.U.T on-Conducted Table		
Test Instruments:	Refer to section 5.10 for details			
Exploratory Test Mode:	Transmitting with all k	ind of modulations, data rates		
Final Test Mode:	MCS0 of rate is the w case of 802.11n(HT40 MCS0 of rate is the w case of 802.11ac(HT8	d the 6Mbps of rate is the worst case of 802.11a; orst case of 802.11n(HT20); MCS0 of rate is the worst 0); MCS0 of rate is the worst case of 802.11ac(HT20); orst case of 802.11ac(HT40); MCS0 of rate is the worst 80), MCS0 of rate is the worst case of ly the worst case is recorded in the report.		
Limit:	Frequency Band	Limit		
	5150-5250MHz	Not exceed 250mW(24dBm)		
	5250-5350MHz	The lesser of 250mW(24dBm) or 11+ 10logB		
	5470-5725MHz	The lesser of 250mW(24dBm) or 11+ 10logB		
	5725-5850MHz	Not exceed 1W(30dBm)		
	*Where B is the 26dB	emission bandwidth in MHz		
Test Results:	Pass			

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condi

Report No.: SZEM180700654903 Page: 16 of 783

Measurement Data: Test Frequency Antenna Meas. Level Meas. Level Verdict Test Mode Channel [MHz] Port Cond.) [dBm] (EIRP) [dBm] 10.93 5180 ANT 1 PASS 36 9.93 40 5200 ANT 1 17.02 18.02 PASS 17.98 48 5240 ANT 1 16.98 PASS 17.96 52 5260 ANT 1 16.96 PASS 56 5280 ANT 1 16.85 17.85 PASS 10.61 PASS 64 5320 ANT 1 9.61 11A20 SISO 100 5500 ANT 1 10.86 PASS 9.86 18.43 120 5600 ANT 1 17.43 PASS 11.21 140 5700 ANT 1 10.21 PASS 12.69 149 5745 ANT 1 11.69 PASS 12.97 157 5785 ANT 1 11.97 PASS 12.27 13.27 165 5825 ANT 1 PASS 36 5180 ANT 1 9.87 10.87 PASS 40 17.45 5200 ANT 1 16.45 PASS 48 5240 ANT 1 16.31 17.31 PASS 17.26 52 5260 ANT 1 16.26 PASS 56 5280 ANT 1 16.24 17.24 PASS ANT 1 9.52 10.52 PASS 64 5320 11N20 SISO ANT 1 10.81 100 5500 9.81 PASS 17.95 120 5600 ANT 1 16.95 PASS 11.29 140 5700 ANT 1 10.29 PASS 12.17 149 5745 ANT 1 11.17 PASS 157 12.54 PASS 5785 ANT 1 11.54 ANT 1 11.77 12.77 PASS 165 5825 9.29 38 5190 ANT 1 8.29 PASS 46 5230 ANT 1 15.24 16.24 PASS 16.09 54 5270 ANT 1 15.09 PASS 62 5310 ANT 1 7.83 8.83 PASS 9.08 11N40 SISO 102 5510 ANT 1 8.08 PASS 142 5710 ANT 1 14.89 15.89 PASS 15.62 134 5670 ANT 1 14.62 PASS 11.27 151 5755 ANT 1 10.27 PASS 159 5795 ANT 1 10.57 11.57 PASS ANT 1 10.87 PASS 36 5180 9.87 17.42 5200 ANT 1 16.42 PASS 40 17.28 48 5240 ANT 1 16.28 PASS 52 5260 ANT 1 16.31 17.31 PASS 56 5280 ANT 1 16.21 17.21 PASS 10.56 64 5320 ANT 1 9.56 PASS 11AC20 SISO 10.77 100 5500 ANT 1 9.77 PASS 17.99 120 5600 ANT 1 16.99 PASS 10.26 11.26 140 5700 ANT 1 PASS 149 5745 ANT 1 11.23 12.23 PASS 12.85 157 5785 ANT 1 11.85 PASS 12.74 165 5825 ANT 1 11.74 PASS 9.29 11AC40 SISO 38 5190 ANT 1 8.29 PASS

Report No.: SZEM180700654903 Page: 17 of 783

	46	5230	ANT 1	15.23	16.23	PASS
	54	5270	ANT 1	15.06	16.06	PASS
	62	5310	ANT 1	7.92	8.92	PASS
	102	5510	ANT 1	8.11	9.11	PASS
	142	5710	ANT 1	14.87	15.87	PASS
	134	5670	ANT 1	14.59	15.59	PASS
	151	5755	ANT 1	10.36	11.36	PASS
	159	5795	ANT 1	10.72	11.72	PASS
	42	5210	ANT 1	8.03	9.03	PASS
	58	5290	ANT 1	7.74	8.74	PASS
11AC80_SISO	106	5530	ANT 1	7.83	8.83	PASS
	138	5690	ANT 1	13.44	14.44	PASS
	155	5775	ANT 1	9.57	10.57	PASS
1140160 8180	50	5250	ANT 1	10.89	11.89	PASS
11AC160_SISO	114	5570	ANT 1	11.09	12.09	PASS

Test Mode	Test Channel	Frequency [MHz]	Antenna Port	Meas. Level (Cond.) [dBm]	Meas. Level (EIRP) [dBm]	Verdict
	36	5180	ANT 2	10.87	6.37	PASS
	40	5200	ANT 2	15.56	11.06	PASS
	48	5240	ANT 2	15.75	11.25	PASS
	52	5260	ANT 2	15.80	11.30	PASS
	56	5280	ANT 2	15.85	11.35	PASS
11400 000	64	5320	ANT 2	11.43	6.93	PASS
11A20_SISO	100	5500	ANT 2	11.48	6.98	PASS
	120	5600	ANT 2	15.77	11.27	PASS
	140	5700	ANT 2	11.49	6.99	PASS
	149	5745	ANT 2	12.03	7.53	PASS
	157	5785	ANT 2	12.06	7.56	PASS
	165	5825	ANT 2	12.03	7.53	PASS
	36	5180	ANT 2	10.83	6.33	PASS
	40	5200	ANT 2	15.47	10.97	PASS
	48	5240	ANT 2	15.70	11.20	PASS
	52	5260	ANT 2	15.73	11.23	PASS
	56	5280	ANT 2	15.77	11.27	PASS
11100 8180	64	5320	ANT 2	11.36	6.86	PASS
11N20_SISO	100	5500	ANT 2	11.45	6.95	PASS
	120	5600	ANT 2	15.52	11.02	PASS
	140	5700	ANT 2	11.46	6.96	PASS
	149	5745	ANT 2	11.96	7.46	PASS
	157	5785	ANT 2	11.93	7.43	PASS
	165	5825	ANT 2	11.97	7.47	PASS
	38	5190	ANT 2	8.82	4.32	PASS
	46	5230	ANT 2	13.86	9.36	PASS
11N40 SISO	54	5270	ANT 2	14.04	9.54	PASS
11140_0100	62	5310	ANT 2	9.23	4.73	PASS
	102	5510	ANT 2	9.47	4.97	PASS
	142	5710	ANT 2	15.09	10.59	PASS

Report No.: SZEM180700654903 Page: 18 of 783

134 5670 ANT 2 15.14 10.64 PASS 151 5755 ANT 2 10.91 6.41 PASS 159 5795 ANT 2 10.83 6.33 PASS 36 5180 ANT 2 11.16 6.66 PASS 40 5200 ANT 2 15.76 11.17 PASS 48 5240 ANT 2 15.67 11.17 PASS 52 5260 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.46 6.98 PASS 100 5500 ANT 2 11.46 6.96 PASS 114C20_SISO ANT 2 11.46 6.96 PASS 100 5500 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 12.06 7.56 PASS 149 5745 ANT 2 12.07 7.57 PASS 157 5785 ANT 2							
159 5795 ANT 2 10.83 6.33 PASS 36 5180 ANT 2 11.16 6.66 PASS 40 5200 ANT 2 15.48 10.98 PASS 440 5200 ANT 2 15.67 11.17 PASS 52 5260 ANT 2 15.71 11.21 PASS 56 5280 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.48 6.98 PASS 100 5500 ANT 2 11.46 6.96 PASS 1100 5500 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 12.06 7.56 PASS 1410 5700 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT		134	5670	ANT 2	15.14	10.64	PASS
36 5180 ANT 2 11.16 6.66 PASS 40 5200 ANT 2 15.48 10.98 PASS 48 5240 ANT 2 15.67 11.17 PASS 52 5260 ANT 2 15.71 11.21 PASS 56 5280 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.48 6.98 PASS 100 5500 ANT 2 11.46 6.96 PASS 1100 5500 ANT 2 11.46 6.96 PASS 1140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 12.06 7.56 PASS 149 5745 ANT 2 12.07 7.57 PASS 157 5785 ANT 2 13.88 9.38 PASS 165 5825 ANT 2 13.88 9.38 PASS 164 5230 ANT		151	5755	ANT 2	10.91	6.41	PASS
40 5200 ANT 2 15.48 10.98 PASS 48 5240 ANT 2 15.67 11.17 PASS 52 5260 ANT 2 15.71 11.21 PASS 56 5280 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.48 6.98 PASS 100 5500 ANT 2 11.48 6.98 PASS 120 5600 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 15.68 11.18 PASS 140 5700 ANT 2 12.06 7.56 PASS 149 5745 ANT 2 12.07 7.57 PASS 157 5785 ANT 2 11.97 7.47 PASS 165 5825 ANT 2 13.88 9.38 PASS 164 5230 ANT 2 13.07 7.47 PASS 11AC40_SISO 102 <		159	5795	ANT 2	10.83	6.33	PASS
48 5240 ANT 2 15.67 11.17 PASS 52 5260 ANT 2 15.71 11.21 PASS 56 5280 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.48 6.98 PASS 100 5500 ANT 2 11.46 6.96 PASS 120 5600 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 19.97 7.47 PASS 165 5825 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 </td <td></td> <td>36</td> <td>5180</td> <td>ANT 2</td> <td>11.16</td> <td>6.66</td> <td>PASS</td>		36	5180	ANT 2	11.16	6.66	PASS
52 5260 ANT 2 15.71 11.21 PASS 56 5280 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.48 6.98 PASS 100 5500 ANT 2 11.48 6.96 PASS 100 5500 ANT 2 11.46 6.96 PASS 120 5600 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 9.86 4.46 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5310 ANT 2		40	5200	ANT 2	15.48	10.98	PASS
56 5280 ANT 2 15.75 11.25 PASS 64 5320 ANT 2 11.48 6.98 PASS 100 5500 ANT 2 11.48 6.96 PASS 120 5600 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 15.68 11.18 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 8.96 4.46 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5310 ANT 2 9.47 4.97 PASS 114C40_SISO 102 551		48	5240	ANT 2	15.67	11.17	PASS
11AC20_SISO 64 5320 ANT 2 11.48 6.98 PASS 1100 5500 ANT 2 11.46 6.96 PASS 120 5600 ANT 2 15.68 11.18 PASS 140 5700 ANT 2 15.68 11.18 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 1142		52	5260	ANT 2	15.71	11.21	PASS
11AC20_SISO 100 5500 ANT 2 11.46 6.96 PASS 120 5600 ANT 2 15.68 11.18 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 46 5230 ANT 2 8.96 4.46 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5310 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 10.82 6.32 PASS 159 57		56	5280	ANT 2	15.75	11.25	PASS
100 5500 ANT 2 11.46 6.96 PASS 120 5600 ANT 2 15.68 11.18 PASS 140 5700 ANT 2 11.46 6.96 PASS 140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 165 5825 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.47 4.97 PASS 11AC40_SISO 102 5510 ANT 2 10.55 10.55 PASS 11AC40_SISO 151 5755 ANT 2 10.82 6.32 PASS	114000 0100	64	5320	ANT 2	11.48	6.98	PASS
140 5700 ANT 2 11.46 6.96 PASS 149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 11AC40_SISO 102 5510 ANT 2 9.47 4.97 PASS 11AC40_SISO 102 5510 ANT 2 15.05 10.55 PASS 11AC40_SISO 102 5510 ANT 2 10.82 6.32 PASS 11AC40_SISO 102 5755 ANT 2 10.81 6.31 PASS 11AC40_SISO 106 57530 ANT 2	TIAC20_5150	100	5500	ANT 2	11.46	6.96	PASS
149 5745 ANT 2 12.06 7.56 PASS 157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 11AC40_SISO 102 5510 ANT 2 15.05 10.55 PASS 114C40_SISO 102 5510 ANT 2 15.05 10.55 PASS 114C40_SISO 102 5510 ANT 2 15.05 10.55 PASS 11AC40_SISO 102 5510 ANT 2 15.05 10.55 PASS 1142 5710 ANT 2 10.82 6.32 PASS 151 5755 ANT 2 10.81		120	5600	ANT 2	15.68	11.18	PASS
157 5785 ANT 2 12.07 7.57 PASS 165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5510 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 58 5290 ANT 2 9.64 5.14 PASS 58 5290 ANT 2 9.61 5.11 PASS 138 5690 ANT 2		140	5700	ANT 2	11.46	6.96	PASS
165 5825 ANT 2 11.97 7.47 PASS 38 5190 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5510 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 11AC80_SISO 106 5530 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS		149	5745	ANT 2	12.06	7.56	PASS
38 5190 ANT 2 8.96 4.46 PASS 46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5310 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 11AC80_SISO 106 5530 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS		157	5785	ANT 2	12.07	7.57	PASS
46 5230 ANT 2 13.88 9.38 PASS 54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 62 5310 ANT 2 9.23 4.73 PASS 11AC40_SISO 102 5510 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.05 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 142 5210 ANT 2 8.88 4.38 PASS 159 5795 ANT 2 9.64 5.14 PASS 138 5690 ANT 2 9.61 5.11 PASS 138 5690		165	5825	ANT 2	11.97	7.47	PASS
54 5270 ANT 2 14.03 9.53 PASS 62 5310 ANT 2 9.23 4.73 PASS 11AC40_SISO 102 5510 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS		38	5190	ANT 2	8.96	4.46	PASS
62 5310 ANT 2 9.23 4.73 PASS 11AC40_SISO 102 5510 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 144C160_SISO 50 5250 ANT 2 11.28 6.78 PASS<		46	5230	ANT 2	13.88	9.38	PASS
11AC40_SISO 102 5510 ANT 2 9.47 4.97 PASS 142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 138 5690 ANT 2 10.32 5.82 PASS 155 5775 ANT 2 10.32 5.82 PASS 1400160 S150 5250 ANT 2 11.28 6.78 PASS <td></td> <td>54</td> <td>5270</td> <td>ANT 2</td> <td>14.03</td> <td>9.53</td> <td>PASS</td>		54	5270	ANT 2	14.03	9.53	PASS
142 5710 ANT 2 15.05 10.55 PASS 134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		62	5310	ANT 2	9.23	4.73	PASS
134 5670 ANT 2 15.18 10.68 PASS 151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS	11AC40_SISO	102	5510	ANT 2	9.47	4.97	PASS
151 5755 ANT 2 10.82 6.32 PASS 159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		142	5710	ANT 2	15.05	10.55	PASS
159 5795 ANT 2 10.81 6.31 PASS 42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		134	5670	ANT 2	15.18	10.68	PASS
42 5210 ANT 2 8.88 4.38 PASS 58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		151	5755	ANT 2	10.82	6.32	PASS
58 5290 ANT 2 9.64 5.14 PASS 11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		159	5795	ANT 2	10.81	6.31	PASS
11AC80_SISO 106 5530 ANT 2 9.61 5.11 PASS 138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		42	5210	ANT 2	8.88	4.38	PASS
138 5690 ANT 2 14.52 10.02 PASS 155 5775 ANT 2 10.32 5.82 PASS 11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		58	5290	ANT 2	9.64	5.14	PASS
155 5775 ANT 2 10.32 5.82 PASS 11AC 160 SISO 50 5250 ANT 2 11.28 6.78 PASS	11AC80_SISO	106	5530	ANT 2	9.61	5.11	PASS
11AC160_SISO 50 5250 ANT 2 11.28 6.78 PASS		138	5690	ANT 2	14.52	10.02	PASS
		155	5775	ANT 2		5.82	PASS
114 5570 ANT 2 11.70 7.20 PASS	1140160 5150		5250		11.28		
	11/0100_000	114	5570	ANT 2	11.70	7.20	PASS

Test Mode	Test Chann el	Freque ncy [MHz]	Antenn a Port	Meas. Level (Cond.) [dBm]	Anten na Port	Meas. Level (Cond.) [dBm]	MIMO (Cond.) [dBm]	MIMO (EIRP) [dBm]	Verdi ct
	36	5180	ANT 1	10.51	ANT 2	10.18	13.36	12.52	PASS
	48	5240	ANT 1	16.71	ANT 2	15.59	19.20	18.57	PASS
	52	5260	ANT 1	16.64	ANT 2	15.63	19.17	18.52	PASS
11100	64	5320	ANT 1	10.13	ANT 2	10.58	13.37	12.31	PASS
11A20_ CDD	100	5500	ANT 1	10.16	ANT 2	10.28	13.23	12.27	PASS
CDD	140	5700	ANT 1	10.91	ANT 2	10.71	13.82	12.95	PASS
	149	5745	ANT 1	11.81	ANT 2	11.78	14.81	13.88	PASS
	157	5785	ANT 1	12.29	ANT 2	11.92	15.12	14.29	PASS
	165	5825	ANT 1	12.26	ANT 2	12.21	15.25	14.33	PASS
	36	5180	ANT 1	9.47	ANT 2	10.00	12.75	11.67	PASS
11N20_	48	5240	ANT 1	15.90	ANT 2	15.56	18.74	17.91	PASS
MIMO	52	5260	ANT 1	15.50	ANT 2	15.45	18.49	17.57	PASS
	64	5320	ANT 1	10.02	ANT 2	10.02	13.03	12.10	PASS

Report No.: SZEM180700654903 Page: 19 of 783

100 5500 ANT 1 11.37 ANT 2 9.44 13.52 13.09 PASS 140 5700 ANT 1 10.71 ANT 2 9.33 13.08 12.52 PASS 149 5745 ANT 1 11.69 ANT 2 11.22 14.47 13.67 PASS 157 5785 ANT 1 11.69 ANT 2 11.42 14.58 13.73 PASS 165 5825 ANT 1 11.65 ANT 2 11.47 14.57 13.69 PASS 38 5190 ANT 1 7.99 ANT 2 7.82 10.92 10.03 PASS 46 5230 ANT 1 14.64 ANT 2 13.95 17.32 16.58 PASS 54 5270 ANT 1 14.73 ANT 2 7.25 11.12 10.60 PASS 54 5270 ANT 1 8.82 ANT 2 7.93 11.82 11.31 PASS
149 5745 ANT 1 11.69 ANT 2 11.22 14.47 13.67 PASS 157 5785 ANT 1 11.72 ANT 2 11.42 14.58 13.73 PASS 165 5825 ANT 1 11.65 ANT 2 11.47 14.57 13.69 PASS 38 5190 ANT 1 7.99 ANT 2 7.82 10.92 10.03 PASS 46 5230 ANT 1 14.64 ANT 2 13.95 17.32 16.58 PASS 54 5270 ANT 1 14.73 ANT 2 13.82 17.31 16.62 PASS 11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
157 5785 ANT 1 11.72 ANT 2 11.42 14.58 13.73 PASS 165 5825 ANT 1 11.65 ANT 2 11.47 14.57 13.69 PASS 38 5190 ANT 1 7.99 ANT 2 7.82 10.92 10.03 PASS 46 5230 ANT 1 14.64 ANT 2 13.95 17.32 16.58 PASS 54 5270 ANT 1 14.73 ANT 2 13.82 17.31 16.62 PASS 11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
165 5825 ANT 1 11.65 ANT 2 11.47 14.57 13.69 PASS 38 5190 ANT 1 7.99 ANT 2 7.82 10.92 10.03 PASS 46 5230 ANT 1 14.64 ANT 2 13.95 17.32 16.58 PASS 54 5270 ANT 1 14.73 ANT 2 13.82 17.31 16.62 PASS 11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
38 5190 ANT 1 7.99 ANT 2 7.82 10.92 10.03 PASS 46 5230 ANT 1 14.64 ANT 2 13.95 17.32 16.58 PASS 54 5270 ANT 1 14.73 ANT 2 13.82 17.31 16.62 PASS 11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
46 5230 ANT 1 14.64 ANT 2 13.95 17.32 16.58 PASS 54 5270 ANT 1 14.73 ANT 2 13.82 17.31 16.62 PASS 11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
54 5270 ANT 1 14.73 ANT 2 13.82 17.31 16.62 PASS 11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
11N40_ 62 5310 ANT 1 8.82 ANT 2 7.25 11.12 10.60 PASS
MIMO 102 5510 ANT 1 9.54 ANT 2 7.93 11.82 11.31 PAS
134 5670 ANT 1 14.56 ANT 2 13.82 17.22 16.49 PASS
151 5755 ANT 1 10.51 ANT 2 10.15 13.34 12.51 PASS
159 5795 ANT 1 10.57 ANT 2 10.31 13.45 12.59 PASS
36 5180 ANT 1 9.03 ANT 2 9.55 12.31 11.23 PASS
48 5240 ANT 1 15.88 ANT 2 15.44 18.68 17.87 PAS
52 5260 ANT 1 15.74 ANT 2 15.34 18.55 17.73 PASS
64 5320 ANT 1 9.52 ANT 2 9.63 12.59 11.62 PAS
11AC20_ MIMO 100 5500 ANT 1 10.67 ANT 2 9.45 13.11 12.51 PASS
140 5700 ANT 1 10.74 ANT 2 9.41 13.14 12.56 PAS
149 5745 ANT 1 11.65 ANT 2 11.14 14.41 13.62 PASS
157 5785 ANT 1 11.71 ANT 2 11.39 14.56 13.72 PASS
165 5825 ANT 1 11.67 ANT 2 11.48 14.59 13.71 PASS
38 5190 ANT 1 7.53 ANT 2 7.37 10.46 9.57 PAS
46 5230 ANT 1 14.73 ANT 2 13.95 17.37 16.65 PASS
54 5270 ANT 1 14.87 ANT 2 13.94 17.44 16.76 PASS
11AC40_ 62 5310 ANT 1 7.75 ANT 2 7.39 10.58 9.75 PASS
MIMO 102 5510 ANT 1 9.26 ANT 2 7.02 11.29 10.94 PASS
134 5670 ANT 1 14.88 ANT 2 13.71 17.34 16.73 PASS
151 5755 ANT 1 10.66 ANT 2 10.08 13.39 12.62 PASS
159 5795 ANT 1 10.63 ANT 2 10.23 13.44 12.62 PASS
42 5210 ANT 1 7.13 ANT 2 7.09 10.12 9.20 PASS
58 5290 ANT 1 7.45 ANT 2 7.29 10.38 9.49 PAS
11AC80_ MIMO1065530ANT_18.76ANT_26.4410.7610.42PAS5
138 5690 ANT 1 14.12 ANT 2 13.18 16.69 16.01 PASS
155 5775 ANT 1 9.42 ANT 2 9.38 12.41 11.49 PASS
11AC160 50 5250 ANT 1 9.05 ANT 2 9.19 12.13 11.16 PASS
_MIMO 114 5570 ANT 1 9.06 ANT 2 9.09 12.09 11.14 PASS

Report No.: SZEM180700654903 Page: 20 of 783

Test Requirement:	47 CFR Part 15 Section 15.407(a)
Test Method:	ANSI C63.10: 2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 5.10 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11a; MCS0 of rate is the worst case of 802.11n(HT20); MCS0 of rate is the worst case of 802.11n(HT40); MCS0 of rate is the worst case of 802.11ac(HT20); MCS0 of rate is the worst case of 802.11ac(HT40); MCS0 of rate is the worst case of 802.11ac(HT80), MCS0 of rate is the worst case of 802.11ac(HT160). Only the worst case is recorded in the report.
Limit:	No restriction limits
Test Results:	Pass

5.4 Emission Bandwidth and 99% Occupied Bandwidth

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condi

Report No.: SZEM180700654903 Page: 21 of 783

<u>5.4.1</u> N	leasureme	ent Data:				
Test Mode	Test Channel	Frequency [MHz]	Antenna Port	26dB Emission Bandwidth [MHz]	Occupied Bandwidth [MHz]	Verdict
	36	5180	ANT 1	20.90	17.02	PASS
	40	5200	ANT 1	21.34	16.98	PASS
	48	5240	ANT 1	21.06	16.82	PASS
	52	5260	ANT 1	20.58	16.90	PASS
11A20_SISO	56	5280	ANT 1	20.86	16.94	PASS
	64	5320	ANT 1	20.90	16.90	PASS
	100	5500	ANT 1	20.78	16.82	PASS
	120	5600	ANT 1	20.74	16.98	PASS
	140	5700	ANT 1	20.30	16.78	PASS
	36	5180	ANT 1	21.14	17.86	PASS
	40	5200	ANT 1	21.22	17.90	PASS
	48	5240	ANT 1	20.86	17.86	PASS
	52	5260	ANT 1	21.30	17.90	PASS
11N20_SISO	56	5280	ANT 1	21.22	17.86	PASS
	64	5320	ANT 1	20.90	17.86	PASS
	100	5500	ANT 1	20.94	17.70	PASS
	120	5600	ANT 1	21.14	17.90	PASS
	140	5700	ANT 1	21.14	17.74	PASS
	38	5190	ANT 1	42.12	36.44	PASS
	46	5230	ANT 1	42.28	36.44	PASS
11N40_SISO	54	5270	ANT 1	42.28	36.36	PASS
11140_3130	62	5310	ANT 1	42.04	36.36	PASS
	102	5510	ANT 1	41.80	36.28	PASS
	134	5670	ANT 1	42.04	36.44	PASS
	36	5180	ANT 1	21.70	17.94	PASS
	40	5200	ANT 1	21.46	17.90	PASS
	48	5240	ANT 1	21.22	17.86	PASS
11AC20_SISO	52	5260	ANT 1	21.10	17.86	PASS
114020_0100	56	5280	ANT 1	21.18	17.86	PASS
	64	5320	ANT 1	21.30	17.82	PASS
	100	5500	ANT 1	21.22	17.74	PASS
	120	5600	ANT 1	21.50	17.94	PASS

5.4.1 Measurement Data:

Report No.: SZEM180700654903 Page: 22 of 783

	140	5700	ANT 1	20.98	17.74	PASS
	38	5190	ANT 1	42.36	36.44	PASS
	46	5230	ANT 1	41.96	36.36	PASS
11AC40_SISO	54	5270	ANT 1	42.36	36.52	PASS
11AC40_5150	62	5310	ANT 1	42.36	36.44	PASS
	102	5510	ANT 1	41.88	36.36	PASS
	134	5670	ANT 1	41.80	36.44	PASS
	42	5210	ANT 1	84.08	75.28	PASS
11AC80 SISO	58	5290	ANT 1	84.72	75.44	PASS
11AC60_5150	106	5530	ANT 1	85.03	75.12	PASS
	138	5690	ANT 1	84.40	75.28	PASS
	50	5250	ANT 1	173.59	155.36	PASS
11AC160_SISO	114	5570	ANT 1	174.23	154.73	PASS

Test Mode	Test Channel	Frequency [MHz]	Antenna Port	26dB Emission Bandwidth [MHz]	Occupied Bandwidth [MHz]	Verdict
	36	5180	ANT 2	20.78	16.86	PASS
	40	5200	ANT 2	20.50	16.82	PASS
	48	5240	ANT 2	20.74	16.82	PASS
	52	5260	ANT 2	20.54	16.86	PASS
11A20_SISO	56	5280	ANT 2	20.78	16.86	PASS
	64	5320	ANT 2	20.74	16.86	PASS
	100	5500	ANT 2	20.58	16.82	PASS
	120	5600	ANT 2	20.66	16.86	PASS
	140	5700	ANT 2	20.42	16.82	PASS
	36	5180	ANT 2	21.10	17.78	PASS
	40	5200	ANT 2	21.02	17.78	PASS
	48	5240	ANT 2	21.10	17.78	PASS
	52	5260	ANT 2	21.10	17.78	PASS
11N20_SISO	56	5280	ANT 2	21.18	17.82	PASS
	64	5320	ANT 2	21.14	17.82	PASS
	100	5500	ANT 2	21.10	17.74	PASS
	120	5600	ANT 2	21.02	17.78	PASS
	140	5700	ANT 2	21.02	17.70	PASS
11N40_SISO	38	5190	ANT 2	42.28	36.28	PASS

Report No.: SZEM180700654903 Page: 23 of 783

					1	
	46	5230	ANT 2	42.60	36.36	PASS
	54	5270	ANT 2	42.12	36.36	PASS
	62	5310	ANT 2	41.80	36.28	PASS
	102	5510	ANT 2	42.04	36.28	PASS
	134	5670	ANT 2	42.44	36.36	PASS
	36	5180	ANT 2	21.02	17.74	PASS
	40	5200	ANT 2	21.18	17.78	PASS
	48	5240	ANT 2	21.14	17.78	PASS
	52	5260	ANT 2	20.98	17.78	PASS
11AC20_SISO	56	5280	ANT 2	21.10	17.82	PASS
	64	5320	ANT 2	21.22	17.78	PASS
	100	5500	ANT 2	21.02	17.78	PASS
	120	5600	ANT 2	21.02	17.78	PASS
	140	5700	ANT 2	21.10	17.70	PASS
	38	5190	ANT 2	41.88	36.36	PASS
	46	5230	ANT 2	42.36	36,36	PASS
11AC40_SISO	54	5270	ANT 2	42.04	36.28	PASS
11AC40_3130	62	5310	ANT 2	41.48	36.28	PASS
	102	5510	ANT 2	42.12	36.28	PASS
	134	5670	ANT 2	41.96	36.44	PASS
	42	5210	ANT 2	85.35	75.28	PASS
11AC80_SISO	58	5290	ANT 2	84.40	75.12	PASS
114000_3130	106	5530	ANT 2	84.72	75.28	PASS
	138	5690	ANT 2	84.72	75.44	PASS
	50	5250	ANT 2	172.31	154.73	PASS
11AC160_SISO	114	5570	ANT 2	173.59	154.73	PASS

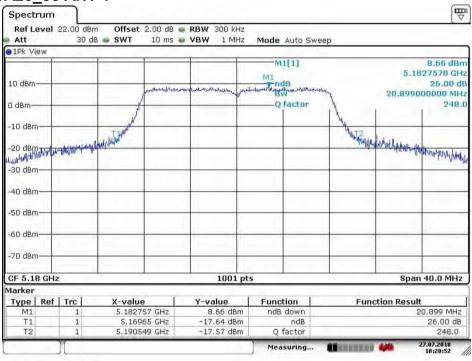
Test Mode	Test Channel	Frequency [MHz]	Antenna Port	26dB Emission Bandwidth [MHz]	Occupied Bandwidth [MHz]	Verdict
	36	5180	ANT 1	20.82	16.78	PASS
	48	5240	ANT 1	21.38	17.02	PASS
11420 CDD	52	5260	ANT 1	21.18	16.94	PASS
11A20_CDD	64	5320	ANT 1	20.70	16.78	PASS
	100	5500	ANT 1	20.62	16.82	PASS
	140	5700	ANT 1	20.78	16.78	PASS

Report No.: SZEM180700654903 Page: 24 of 783

						1
	36	5180	ANT 1	21.10	17.74	PASS
	48	5240	ANT 1	21.02	17.90	PASS
11N20_ MIMO	52	5260	ANT 1	21.46	17.90	PASS
	64	5320	ANT 1	21.06	17.74	PASS
	100	5500	ANT 1	21.14	17.70	PASS
	140	5700	ANT 1	21.18	17.74	PASS
	38	5190	ANT 1	42.12	36.28	PASS
	46	5230	ANT 1	42.12	36.36	PASS
	54	5270	ANT 1	41.56	36.36	PASS
11N40_ MIMO	62	5310	ANT 1	42.36	36,36	PASS
	102	5510	ANT 1	41.64	36,28	PASS
	134	5670	ANT 1	42.20	36,36	PASS
	36	5180	ANT 1	20.90	17.78	PASS
	48	5240	ANT 1	21.34	17.94	PASS
11AC20_	52	5260	ANT 1	22.22	17.90	PASS
MIMO	64	5320	ANT 1	20.86	17.74	PASS
	100	5500	ANT 1	20.90	17.74	PASS
	140	5700	ANT 1	20.90	17.74	PASS
	38	5190	ANT 1	42.60	36.28	PASS
	46	5230	ANT 1	42.04	36.44	PASS
11AC40_	54	5270	ANT 1	42.52	36.44	PASS
MIMO	62	5310	ANT 1	41.96	36.28	PASS
	102	5510	ANT 1	42.04	36.28	PASS
	134	5670	ANT 1	42.20	36.44	PASS
	42	5210	ANT 1	84.40	75.28	PASS
11AC80_ MIMO	58	5290	ANT 1	83.76	75.12	PASS
	106	5530	ANT 1	84.24	75.12	PASS
	138	5690	ANT 1	85.51	75.28	PASS
11AC160_	50	5250	ANT 1	175.18	155.36	PASS
MIMO	114	5570	ANT 1	175.18	154.73	PASS

Report No.: SZEM180700654903 Page: 25 of 783

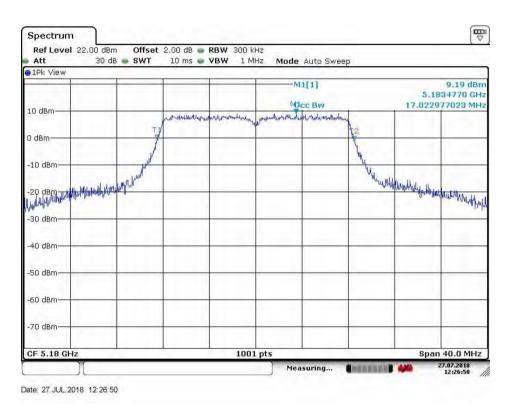
Test Mode	Test Channel	Frequency [MHz]	Antenna Port	26dB Emission Bandwidth [MHz]	Occupied Bandwidth [MHz]	Verdict
	36	5180	ANT 2	20.26	16.66	PASS
	48	5240	ANT 2	20.46	16.74	PASS
11A20_ CDD	52	5260	ANT 2	20.30	16.74	PASS
TIAZO_ CDD	64	5320	ANT 2	20.46	16.62	PASS
	100	5500	ANT 2	20.26	16.62	PASS
	140	5700	ANT 2	20.26	16.66	PASS
	36	5180	ANT 2	20.82	17.66	PASS
	48	5240	ANT 2	20.78	17.66	PASS
11N20 MIMO	52	5260	ANT 2	20.74	17.70	PASS
11N20_ MIMO	64	5320	ANT 2	20.70	17.66	PASS
	100	5500	ANT 2	20.74	17.66	PASS
	140	5700	ANT 2	20.86	17.66	PASS
	38	5190	ANT 2	40.92	36.12	PASS
	46	5230	ANT 2	40.92	36.12	PASS
111140 141140	54	5270	ANT 2	40.84	36.12	PASS
11N40_ MIMO	62	5310	ANT 2	41.08	36.12	PASS
	102	5510	ANT 2	41.00	36.12	PASS
	134	5670	ANT 2	41.24	36.12	PASS
	36	5180	ANT 2	20.78	17.66	PASS
	48	5240	ANT 2	21.18	17.70	PASS
110.000 MINO	52	5260	ANT 2	21.02	17.74	PASS
11AC20_MIMO	64	5320	ANT 2	20.58	17.66	PASS
	100	5500	ANT 2	20.80	17.66	PASS
	140	5700	ANT 2	20.74	17.66	PASS
	38	5190	ANT 2	40.92	36.20	PASS
	46	5230	ANT 2	41.24	36.20	PASS
	54	5270	ANT 2	41.16	36.20	PASS
11AC40_MIMO	62	5310	ANT 2	41.16	36.12	PASS
	102	5510	ANT 2	41.16	36.12	PASS
	134	5670	ANT 2	41.48	36.28	PASS
114000 141140	42	5210	ANT 2	83.12	75.12	PASS
11AC80_MIMO	58	5290	ANT 2	82.96	75.12	PASS



Report No.: SZEM180700654903 Page: 26 of 783

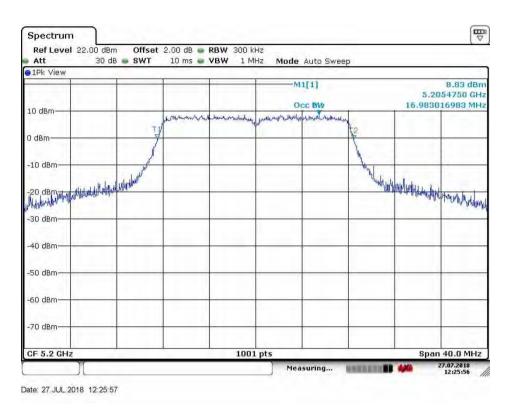
	106	5530	ANT 2	83.60	75.28	PASS
	138	5690	ANT 2	83.60	75.28	PASS
	50	5250	ANT 2	172.95	154.41	PASS
11AC160_MIMO	114	5570	ANT 2	171.99	154.73	PASS

5.4.2 Plots for 26dB Emission Bandwidth & 99% Occupied Bandwidth 5.4.2.1 SISO ANT 1

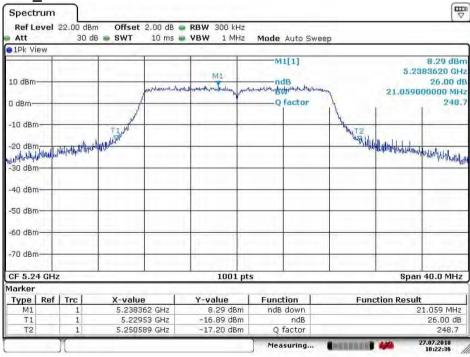

5.4.2.1.1 11A20_36 ANT 1

Date: 27.JUL.2018 10:20:53

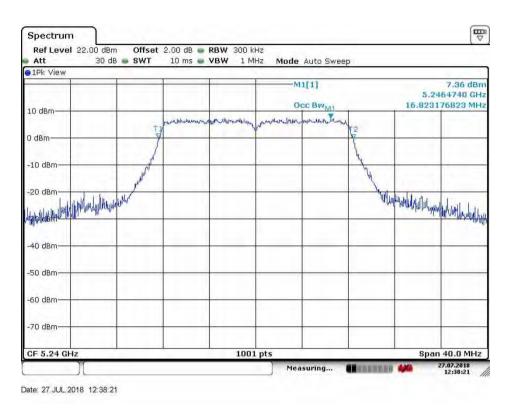
Report No.: SZEM180700654903 Page: 27 of 783

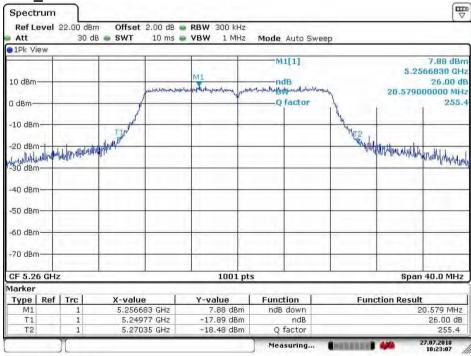

5.4.2.1.2 11A20_40 ANT 1

Spect		22.00 dB	m Offcot	9 00 de	• RBW 300 kH	7				7	
Att			B SWT		VBW 1 MH		Auto Sw	еер			
1Pk Vi	ЭW	1.15								1.11	
10 dBm·					MI		M1[1]		8,66 dBr 5,1977220 GH 26,00 d 21,339000000 MH		
0 dBm—			1	1		Q	factor	1	1	243.	
-10 dBm	-	2.0	. To Boursel					Whate.			
-39. AR	With the	of the phase of the	- Herold The Descent					annua anna anna anna anna anna anna ann	10194-willian Marshipping	onthetallermanual	
-30 dBm											
-40 dBm			-						-	-	
-50 dBm		_	-						-	-	
-60 dBm	-		2	-	-	-	-	-	-		
-70 dBm	-			-				-	-		
CF 5.2	GHz				1001	ots	J		Spa	n 40.0 MHz	
Marker			12 10-120		100.000	1		200	Carlos actua		
Type M1	Ref	Trc 1	X-value		Y-value 8.66 dBm	Func	down	Function Result 21.339 MHz			
T1	-	1	5.197722 GHz 5.189411 GHz		-17.45 dBr		ndB	21.339 MHz 26.00 dB			
T2		1	5,210749 GHz		-17.42 dBm		factor	243.6			
		I				Mea	suring		440	27.07.2018 10:22:00	

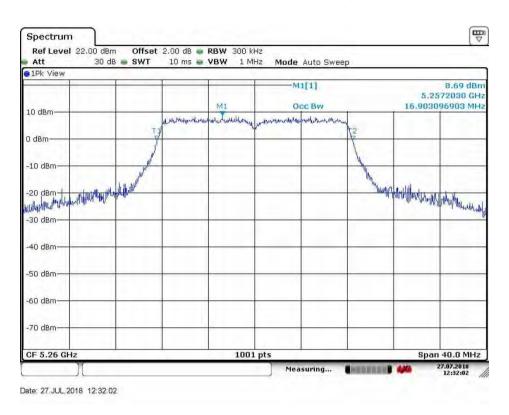

Date: 27.JUL.2018 10:22:01

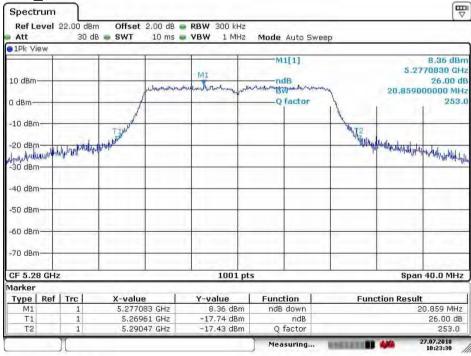
Report No.: SZEM180700654903 Page: 28 of 783


5.4.2.1.3 11A20_48 ANT 1

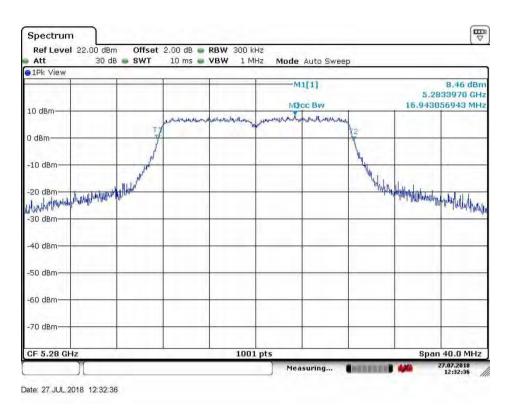

Date: 27 JUL 2018 10:22:36

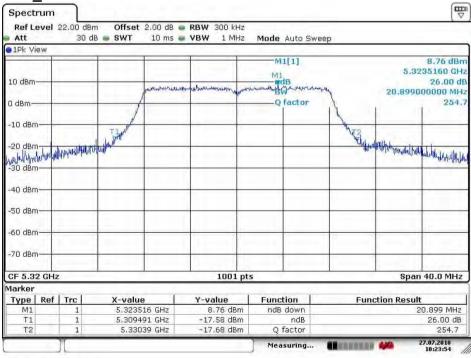
Report No.: SZEM180700654903 Page: 29 of 783


5.4.2.1.4 11A20_52 ANT 1

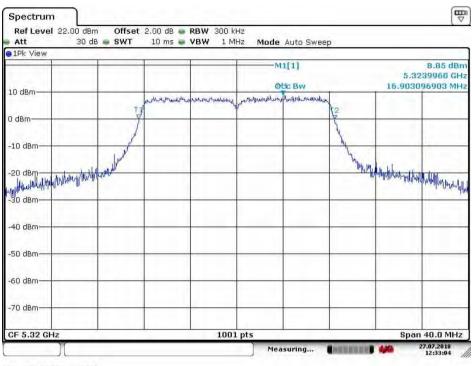

Date: 27 JUL 2018 10:23:07

Report No.: SZEM180700654903 Page: 30 of 783


5.4.2.1.5 11A20_56 ANT 1


Date: 27 JUL 2018 10:23:30

Report No.: SZEM180700654903 Page: 31 of 783


5.4.2.1.6 11A20_64 ANT 1

Date: 27 JUL 2018 10:23:55

Report No.: SZEM180700654903 Page: 32 of 783

Date: 27 JUL 2018 12:33:04

5.4.2.1.7 11A20_100 ANT 1

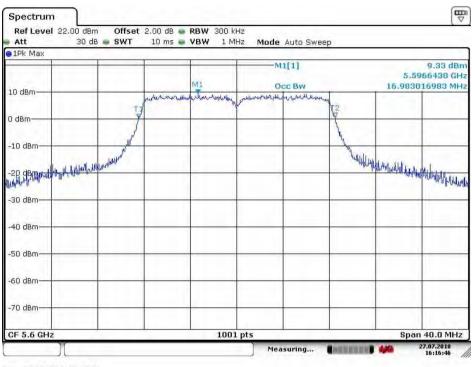
Att	SVCI 2	22.00 dB 30	dB . SWT		RBW 300 k VBW 1 M		Mode /	Auto Sw	еер			
1Pk Vi	ЭW	1.1										
10 dBm					M1[1] ndB Bw M1 by M					2.32 dBr 5.5071530 GH 26.00 dt 20.779000000 MH 265.		
-10 dBm	-		1			-			1	-	-	
~20 dBm			Tank		-				WE3	-	-	
-30 dBm			1 Hort W		-	_			1	Y.		
haqlebr	haddellen	anthrough				-		_	-	Michael	alephilanturia	
-50 dBm		-	-		-	-		_	-	-		
-60 dBm	-	-	*	-	-	-			-	-		
-70 dBm	-		-		-	-		_	-	-		
CF 5.5	GHz	-	-		1001	pts	1			Sp	an 40.0 MHz	
Marker		1				-						
Type	Ref	Trc	X-value		Y-value		Function		Function Result			
M1		1	5.507153 GHz		2.32 dBm		ndB down		20,779 MHz			
Τ1	-	1	5.48957 GHz		-23.71 dBm		ndB		26.00 dB			
T2		1	5.510	35 GHz	-23.89 dB	m	Q fa	actor			265.0	
	-	11				-	Meas	uring	ACCESSION OF		27.07.2018 16:40:13	

Date: 27 JUL 2018 16:40:14

Report No.: SZEM180700654903 Page: 33 of 783

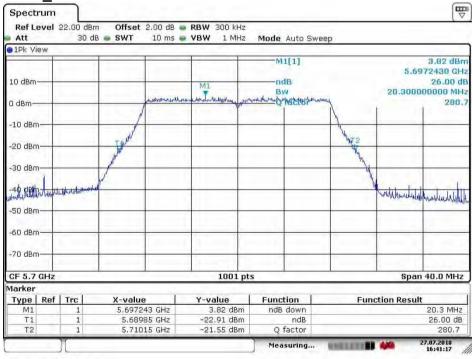
Date: 27 JUL.2018 16:16:00

5.4.2.1.8 11A20_120 ANT 1


Spectru								E C	
Ref Lev Att	el 22.00 d 30	IBm Offset dB = SWT	2.00 dB	RBW 300 kHz		Sween			
1Pk View					Hous Auto t	SHOOP			
10 dBm				M1[1] M1 water water and the second state of the second			8,99 dBr 5,6060340 GH 26,00 d 20,739000000 MH		
0 dBm		,			Q factor	1	1	270.	
-10 dBm—		- July where	-			WWWW	11	-	
-20 dBm	ut abathaphterity	Humphuran					- Hand Arter And and	animeter of the state of the st	
-30 dBm-			-	-					
-40 dBm—		-		-			-		
-50 dBm—		-	-	-		_	-		
-60 dBm—	-	-	-	-			-		
-70 dBm—						-	-		
CF 5.6 GH	-lz			1001 p	ts		Sp	an 40.0 MHz	
Marker			-						
Type R	ef Trc	X-value		Y-value	Function	F	Function Result		
M1	1	5.606034 GHz		8.99 dBm	ndB down		20,739 MHz		
T1	1	5.58953 GHz		-17.08 dBm	ndB		26.00 dB		
T2	1	5.610	27 GHz	-17.31 dBm	Q factor			270.3	
	1				Measuring		an 100	27.07.2018 16:40:55	

Date: 27 JUL 2018 16:40:55

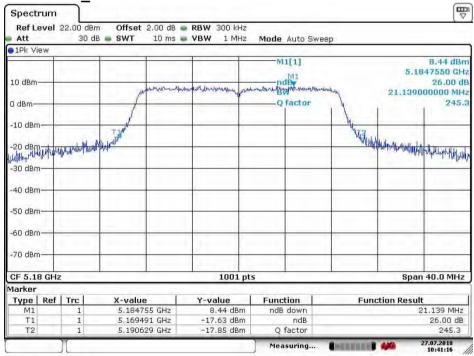
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Condi



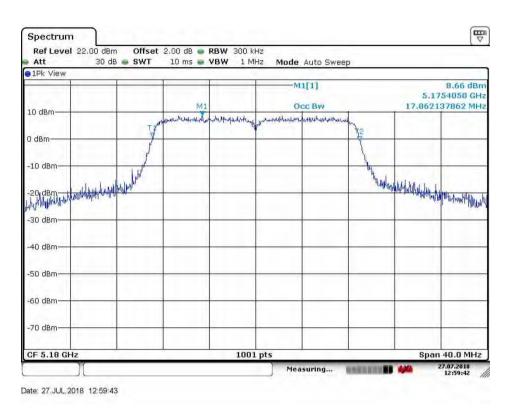
Report No.: SZEM180700654903 Page: 34 of 783

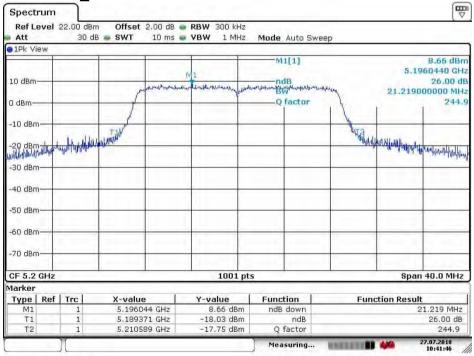
Date: 27 JUL 2018 16:16:46

5.4.2.1.9 11A20_140 ANT 1

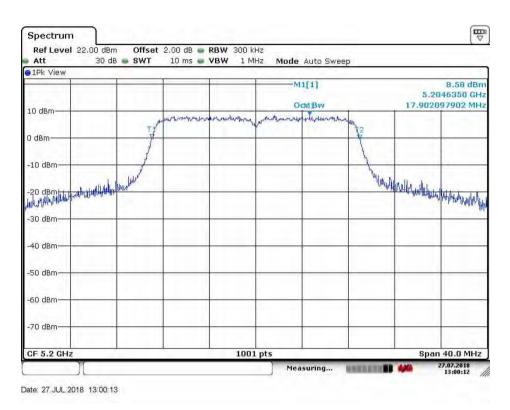

Date: 27.JUL.2018 16:41:18

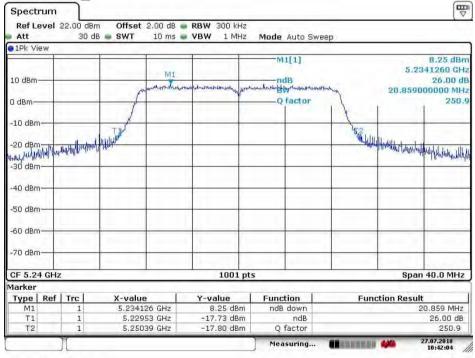
Report No.: SZEM180700654903 Page: 35 of 783



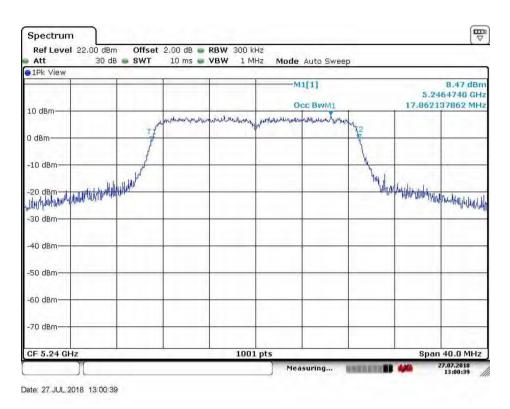

Date: 27 JUL 2018 10:41:17

Report No.: SZEM180700654903 Page: 36 of 783



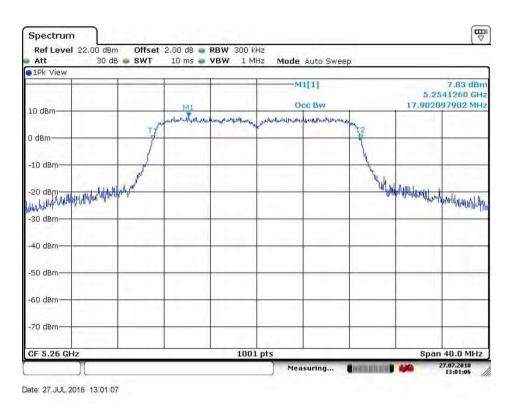

Date: 27.JUL.2018 10:41:46

Report No.: SZEM180700654903 Page: 37 of 783

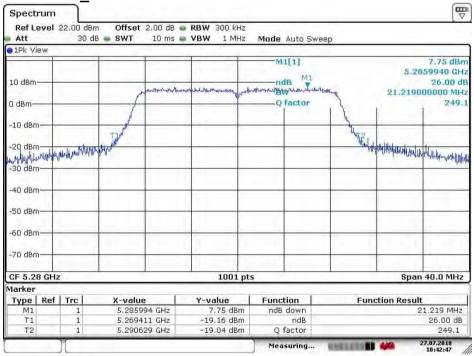


Date: 27.JUL.2018 10:42:04

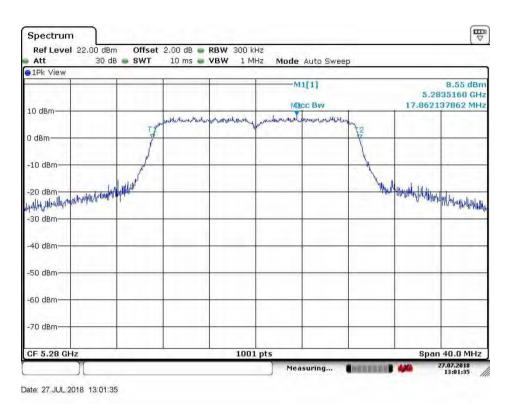
Report No.: SZEM180700654903 Page: 38 of 783


5.4.2.1.13 11N20_52 ANT 1

1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		provensor,	MI	M1[1] ndB Q factor	1	21.29900	7.91 dBn 56430 GH 26.00 di 00000 MH 246.
0 dBm		TIM	V	ndB muthingtonuturent	1	21.29900	56430 GH 26,00 d 10000 MH
-10 dBm—		Land Tand		Q factor	1	1	240.
-20 dBm-	Launderhalter	1. Jacolitation			1		
-20 dBm-	Lawnahan an than the	1 Junit			NT2		
-30 ubiii-		w.l.mt.			Vor Turk du	ethiltheory that it may	and monthly from
-40 dBm—					_		-
-50 dBm—		-				-	-
-60 dBm—	1				-		
-70 dBm—					-		
CF 5.26 0	GHz		1001 pt	s		Span	40.0 MHz
Marker							
	Ref Trc	X-value	Y-value	Function	Function Result		
M1	1	5.256643 GHz	7.91 dBm	ndB down	21.299 MHz		
T1 T2	1	5.249331 GHz 5.270629 GHz	-18.67 dBm -17.73 dBm	ndB Q factor			26.00 dB 246.8

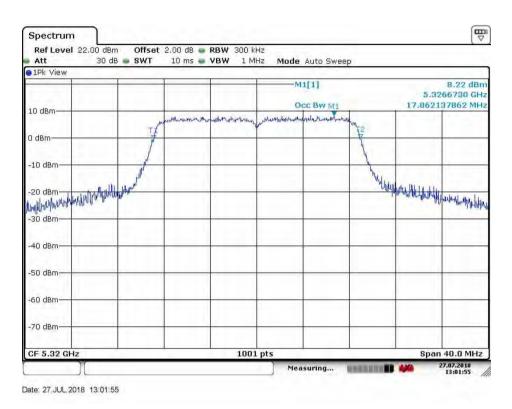

Date: 27.JUL.2018 10:42:27

Report No.: SZEM180700654903 Page: 39 of 783

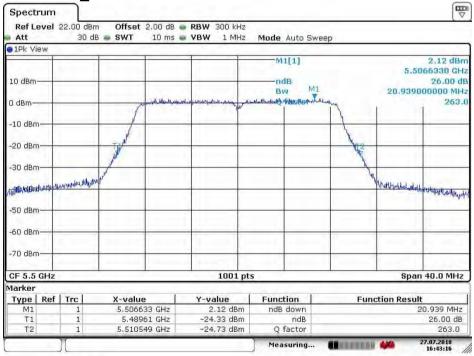


Date: 27 JUL 2018 10:42:46

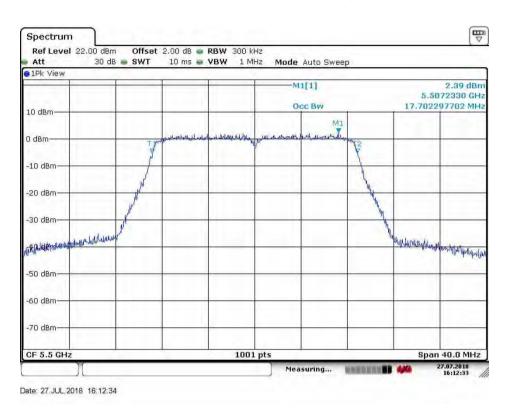
Report No.: SZEM180700654903 Page: 40 of 783

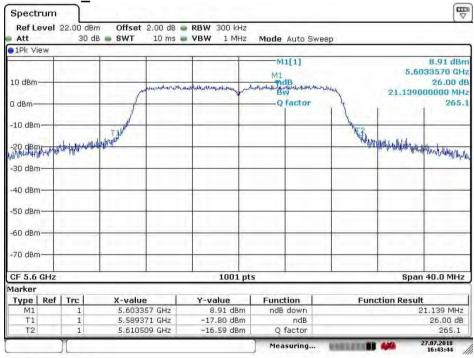

5.4.2.1.15 11N20_64 ANT 1

Att		30 0	ib 👼 SWT	10 ms	VBW 1N	1Hz	Mode	Auto Swe	eep			
1Pk Vie	BW											
10 dBm				weekement	y when we	nd				8.57 dBr 5.3136060 GH 26.00 d 20.899000000 MH		
0 dBm—	-		1			1	Q	factor	. }		254.	
-10 dBm	-					+			NT2	1		
-20 dBm	HUMAN	itanuaikar	douted w			1			Vi	talia of the Murie	Antohing war and we read	
-30 dBm												
-40 dBm	-				-	-			-	-		
-50 dBm	-		-			-				-		
-60 dBm	-	_			-	-		_	-			
-70 dBm	-	_	-	_	-	-		_		-		
CF 5.32	2 GHz		1		100	1 pts				S	pan 40.0 MHz	
Marker				-	100	- pres						
	Ref	Trc	c X-value		Y-value		Function		Function Result			
M1		1	5.313606 GHz		8.57 dBm		ndB down		20.899 MHz			
T1	-	1	5,3096		-17.08 d			ndB			26.00 dB	
T2		1	5.33050	9 GHz	-17.11 d	Bm	Of	actor			254.3	

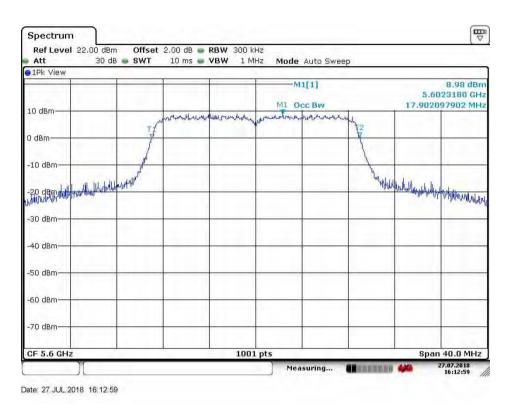

Date: 27 JUL 2018 10:43:05

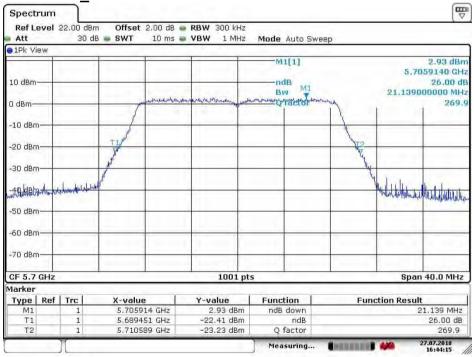
Report No.: SZEM180700654903 Page: 41 of 783


5.4.2.1.16 11N20_100 ANT 1

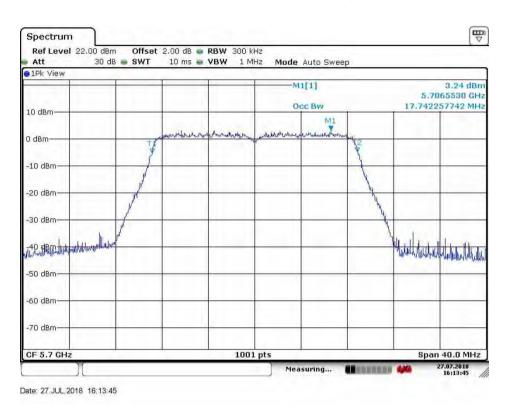

Date: 27.JUL.2018 16:43:16

Report No.: SZEM180700654903 Page: 42 of 783

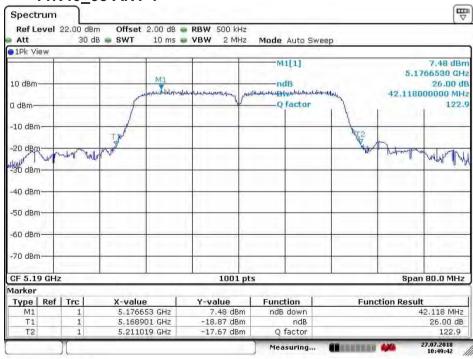

5.4.2.1.17 11N20_120 ANT 1


Date: 27.JUL.2018 16:43:44

Report No.: SZEM180700654903 Page: 43 of 783

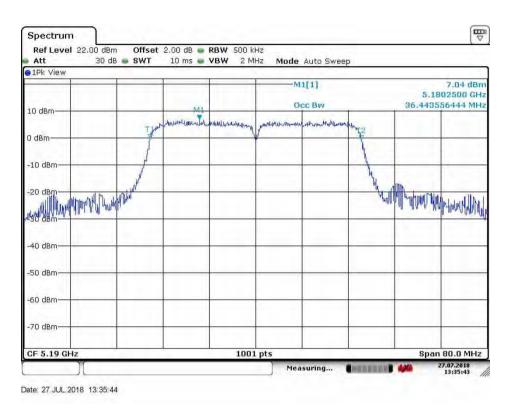

5.4.2.1.18 11N20_140 ANT 1

Date: 27 JUL 2018 16:44:15

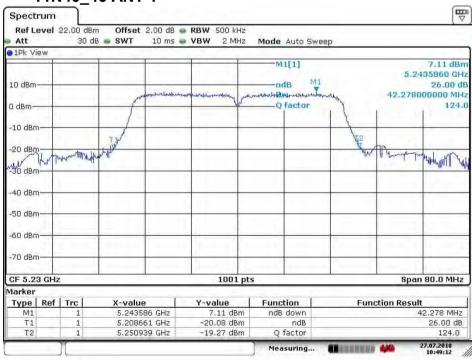


Report No.: SZEM180700654903 Page: 44 of 783

5.4.2.1.19

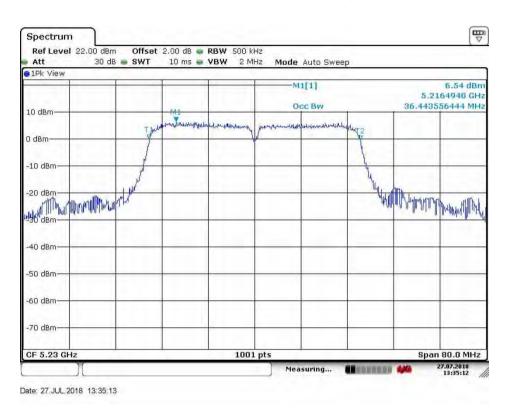

11N40_38 ANT 1

Date: 27. JUL 2018 10:49:42

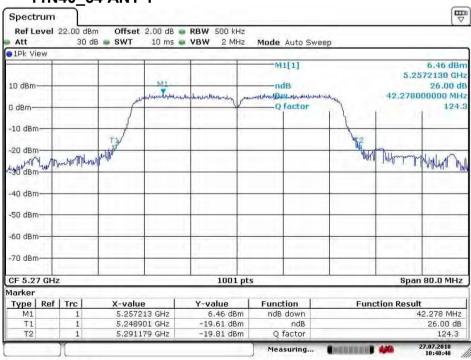


Report No.: SZEM180700654903 Page: 45 of 783

5.4.2.1.20

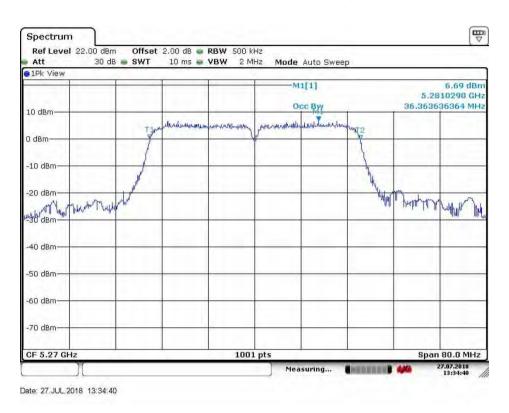

11N40 46 ANT 1

Date: 27 JUL 2018 10:49:12

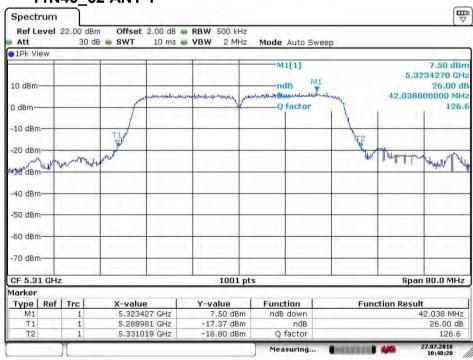


Report No.: SZEM180700654903 Page: 46 of 783

5.4.2.1.21

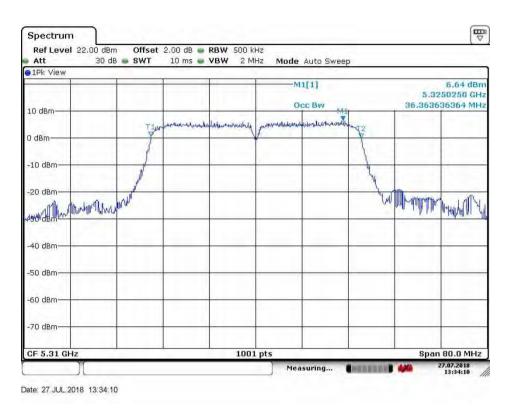

11N40 54 ANT 1

Date: 27 JUL 2018 10:48:47

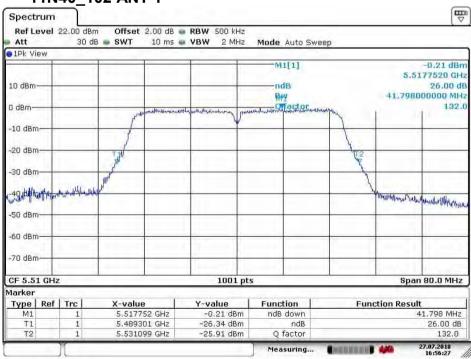


Report No.: SZEM180700654903 Page: 47 of 783

5.4.2.1.22

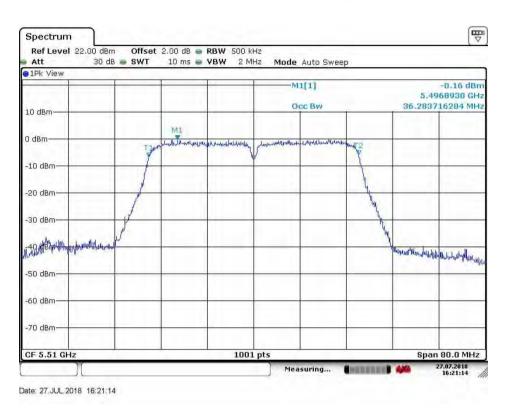

11N40 62 ANT 1

Date: 27.JUL.2018 10:48:21

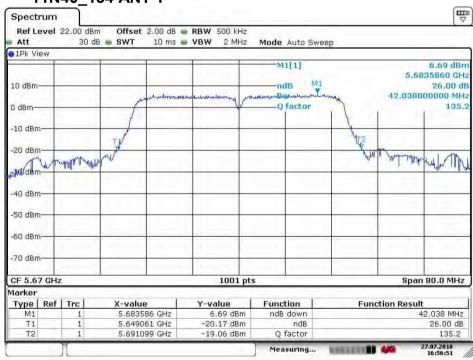


Report No.: SZEM180700654903 Page: 48 of 783

5.4.2.1.23

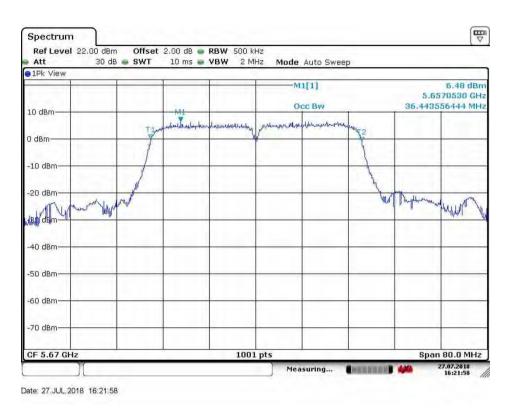

11N40 102 ANT 1

Date: 27.JUL.2018 16:56:27

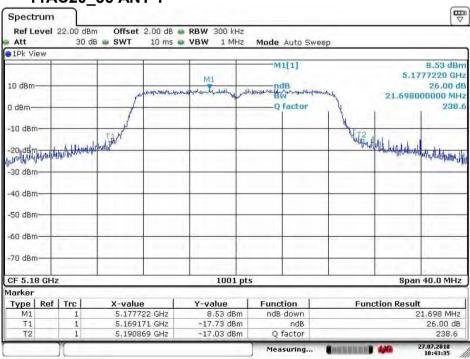


Report No.: SZEM180700654903 Page: 49 of 783

5.4.2.1.24

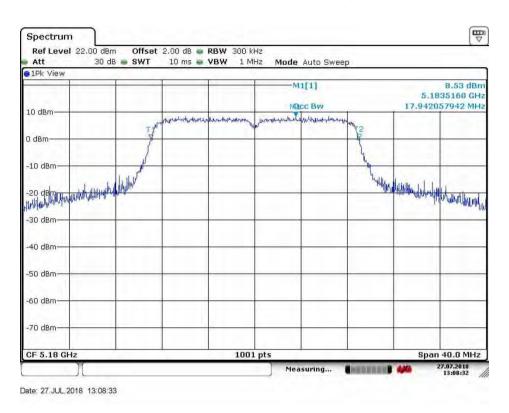

11N40 134 ANT 1

Date: 27.JUL.2018 16:56:52

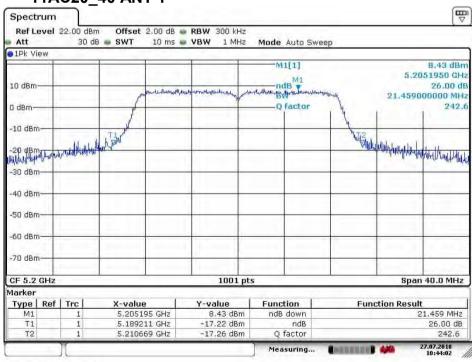


Report No.: SZEM180700654903 Page: 50 of 783

5.4.2.1.25

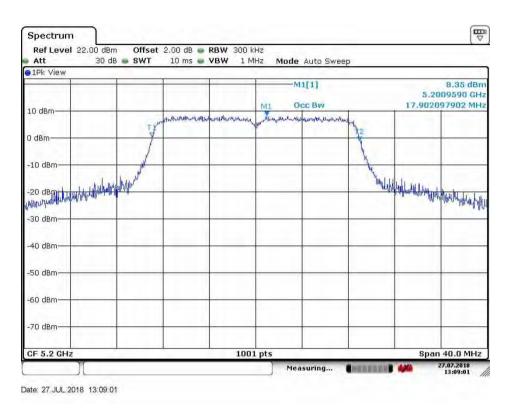

11AC20_36 ANT 1

Date: 27 JUL 2018 10:43:36

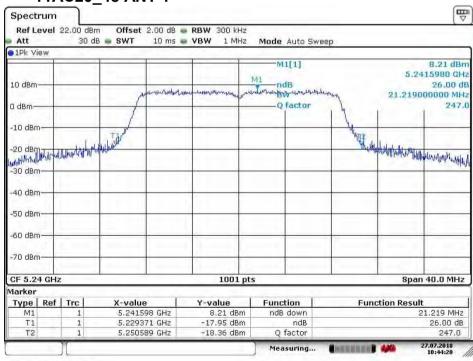


Report No.: SZEM180700654903 Page: 51 of 783

5.4.2.1.26

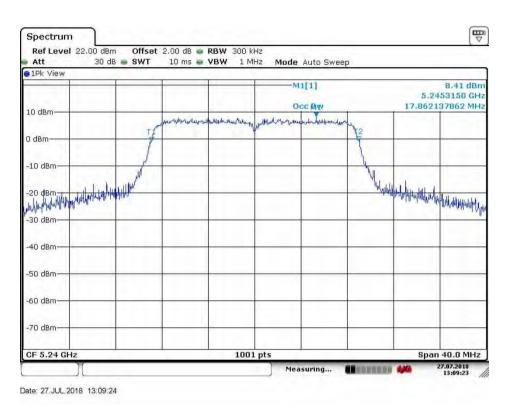

11AC20_40 ANT 1

Date: 27 JUL 2018 10:44:02

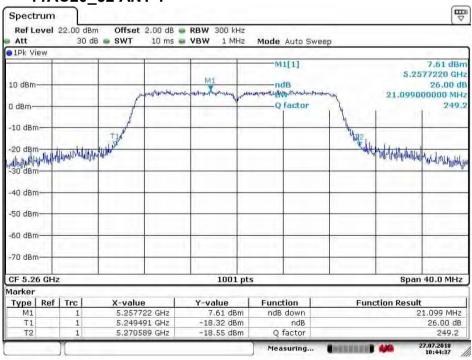


Report No.: SZEM180700654903 Page: 52 of 783

5.4.2.1.27

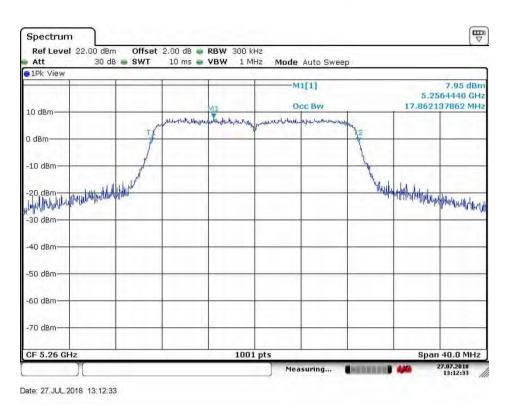

11AC20_48 ANT 1

Date: 27.JUL.2018 10:44:21

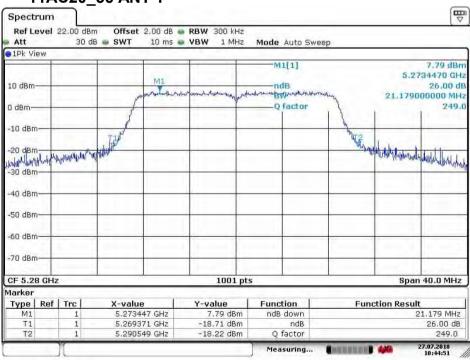


Report No.: SZEM180700654903 Page: 53 of 783

5.4.2.1.28

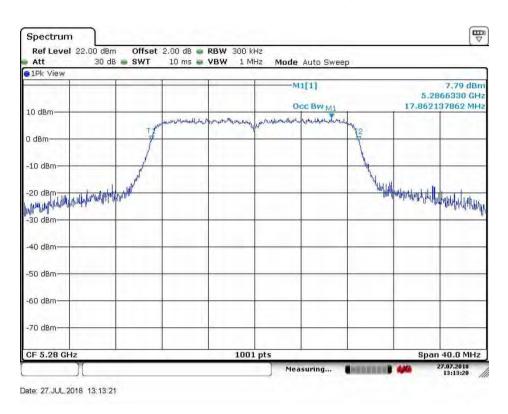

11AC20_52 ANT 1

Date: 27 JUL 2018 10:44:38

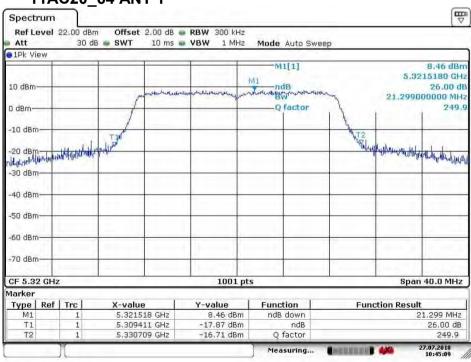


Report No.: SZEM180700654903 Page: 54 of 783

5.4.2.1.29

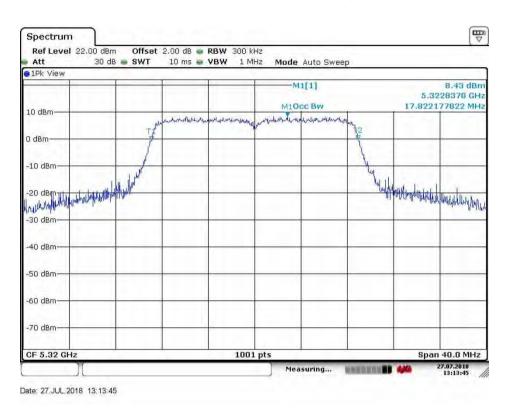

11AC20_56 ANT 1

Date: 27 JUL 2018 10:44:51

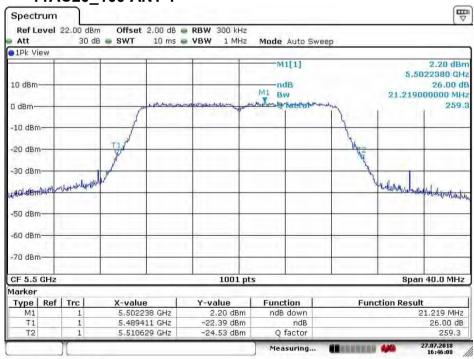


Report No.: SZEM180700654903 Page: 55 of 783

5.4.2.1.30

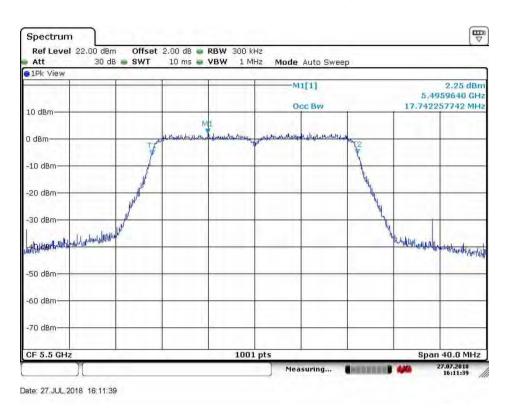

11AC20_64 ANT 1

Date: 27 JUL 2018 10:45:09

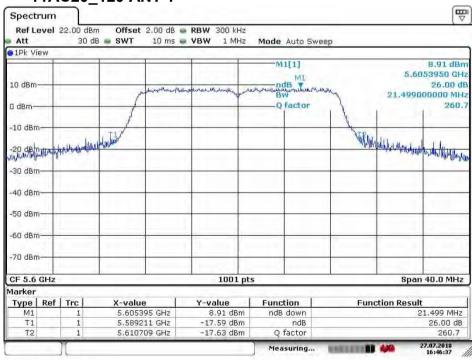


Report No.: SZEM180700654903 Page: 56 of 783

5.4.2.1.31

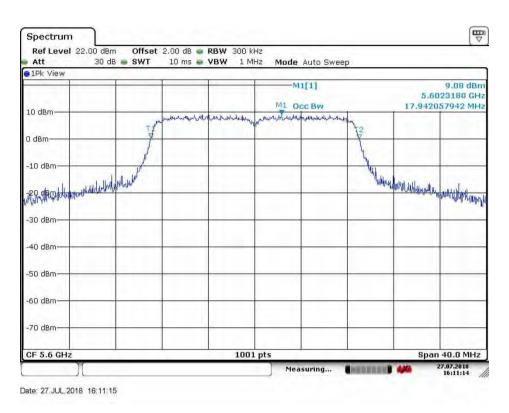

11AC20_100 ANT 1

Date: 27.JUL.2018 16:46:09

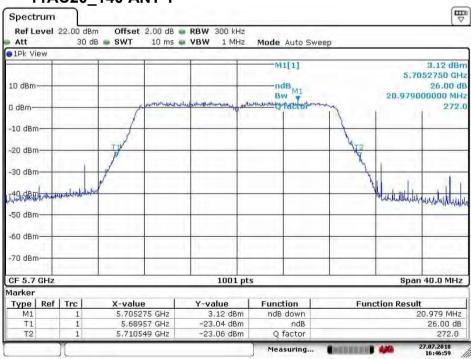


Report No.: SZEM180700654903 Page: 57 of 783

5.4.2.1.32

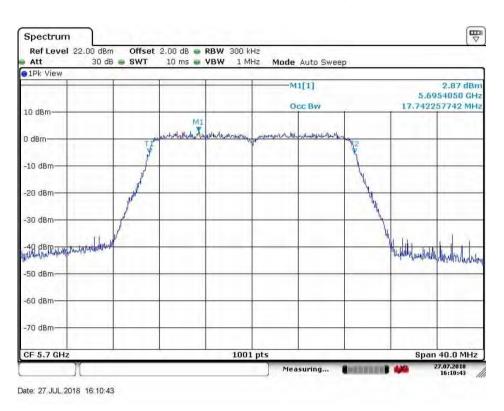

11AC20_120 ANT 1

Date: 27.JUL.2018 16:46:37

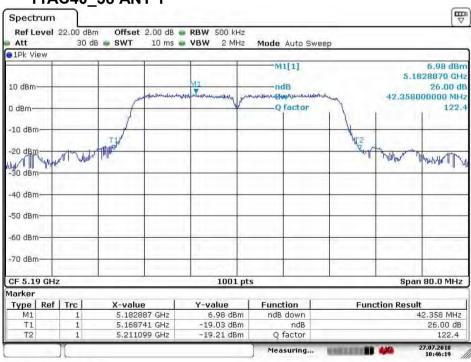


Report No.: SZEM180700654903 Page: 58 of 783

5.4.2.1.33

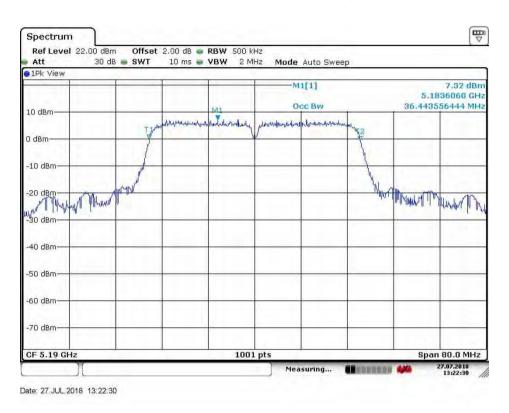

11AC20_140 ANT 1

Date: 27.JUL.2018 16:46:59

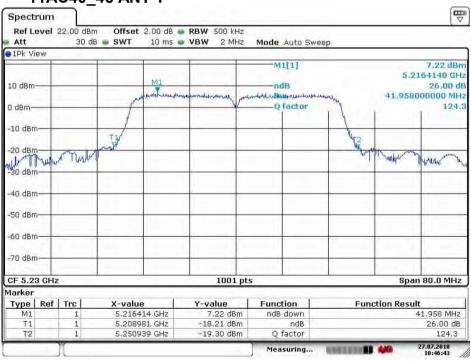


Report No.: SZEM180700654903 Page: 59 of 783

5.4.2.1.34

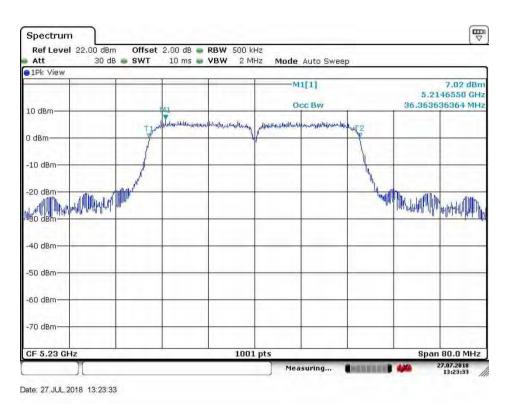

11AC40_38 ANT 1

Date: 27 JUL 2018 10:46:19



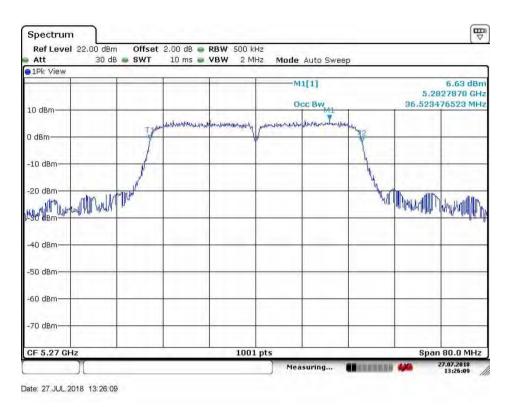
Report No.: SZEM180700654903 Page: 60 of 783

5.4.2.1.35

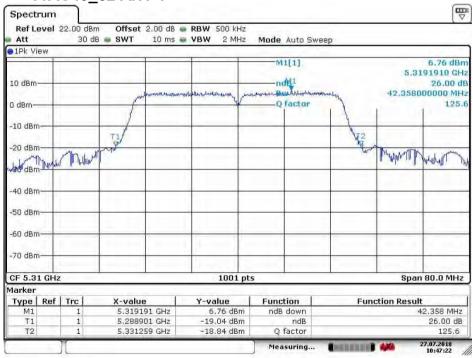

11AC40_46 ANT 1

Date: 27 JUL 2018 10:46:43

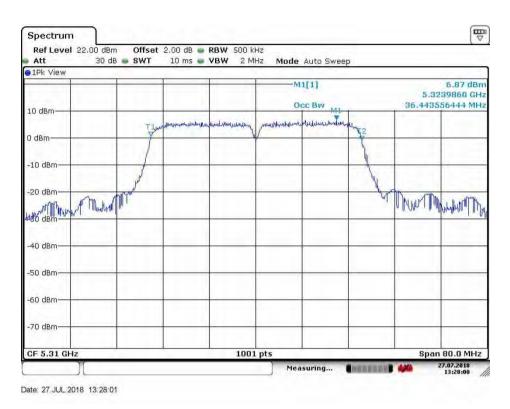
Report No.: SZEM180700654903 Page: 61 of 783

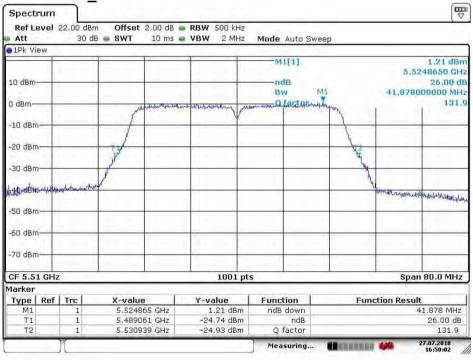

5.4.2.1.36 11AC40_54 ANT 1

Ref Level	2012 0.115			RBW 500 kHz							
Att 1Pk View	30 0	ib 👼 SWT	10 ms .	VBW 2 MHz	Mode A	uto Sw	eep		-		
10 dBm			an deliverter where the	whattheresting	M1	3	nursendance	6.63 dBr 5.2776720 GH 26.00 d 42.358000000 MH 124.			
0 dBm				1		actor	1	-	124.		
-20 dBm	ur Mundr	Til					122	Water 1	Julion		
-40 dBm			-				-				
-50 dBm	-	1							-		
-60 dBm		-	-	-	-	-			-		
-70 dBm						_	-				
CF 5.27 GH	łz	4	1	1001 p	ots			Spa	n 80.0 MHz		
Marker											
Type Re	f Trc	X-value		Y-value	Functi	Function		Function Result			
M1	1	5.277672 GHz		6.63 dBm		ndB down		42.358 MHz			
T1 T2	1	5.248741 GHz 5.291099 GHz		-19.19 dBm -19.17 dBm		ndB ictor	26.00 dB 124.6				
	Yr				Meas	uring		144	27.07.2018 10:47:04		

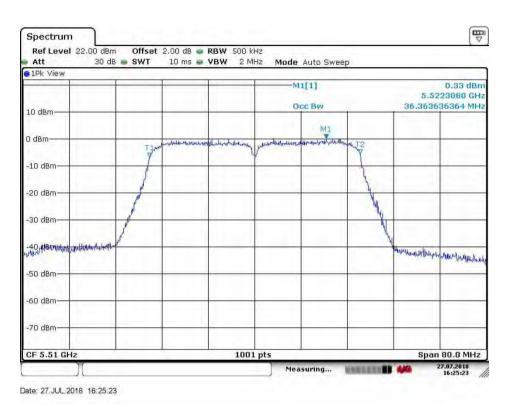

Date: 27.JUL.2018 10:47:04

Report No.: SZEM180700654903 Page: 62 of 783


5.4.2.1.37 11AC40 62 ANT 1


Date: 27.JUL.2018 10:47:23

Report No.: SZEM180700654903 Page: 63 of 783


5.4.2.1.38 11AC40_102 ANT 1

Date: 27 JUL 2018 16:50:02

Report No.: SZEM180700654903 Page: 64 of 783

5.4.2.1.39 11AC40_134 ANT 1

Spectrum Ref Level	22.00 dB		2.00 dB	• RBW 500 kH:	z					
Att	30 d	B 🛢 SWT	10 ms 🕯	VBW 2 MH	z Mode A	uto Swi	eep			
1Pk View	-									
10 dBm					-M1[7.16 dB 5.6791910 GF 26.00 c		
			and the marked in the	wardomantice.	where and Bare	Contraction	havenue	41.798	1000000 MH	
0 dBm		en en		V		octor	N		135.	
		1					1	1		
-10 dBm-		1		-			1	-		
		TIM					Was			
-20 dBm		Y.						11111		
ma alla	AMALIA	AT THE		-			(and	Man	The Lat with m	
OBA ALLAN	for the Marchi			1				the down it	A RHOLD A	
WHICE IT							1.1			
-40 dBm				~						
is abili										
-50 dBm-		-		_						
-60 dBm		-					-			
				()			·			
-70 dBm-	-			1					1.	
ability of the second sec		_			2		-		1.1.1.1.1.1.1	
CF 5.67 GH	Iz	4	1	1001	ots		1	Spa	an 80.0 MHz	
Marker										
Type Rei	Trc	X-value		Y-value	Functio	Function		Function Result		
M1	1	5.679191 GHz		7.16 dBm	ndB di	ndB down		41.798 MHz		
T1	1	5.6492	21 GHz	-18.84 dBm	1	ndB		26.00 dB		
T2	1	5.6910	19 GHz	-18.99 dBm	n Q fai	Q factor		135.9		
	T				Measu	win a	VARIATION	4.40	27.07.2018	

Date: 27.JUL.2018 16:50:43