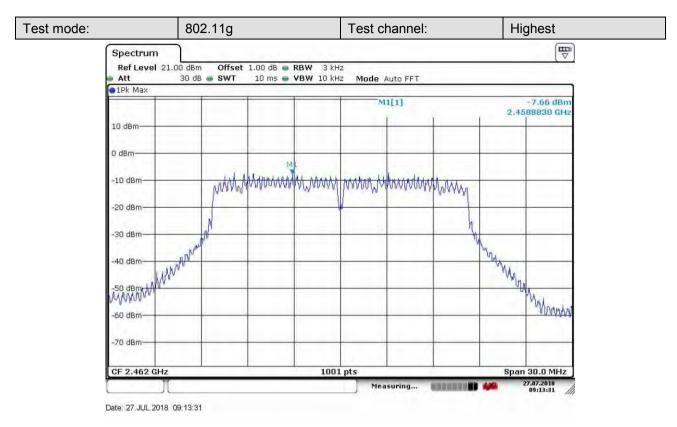
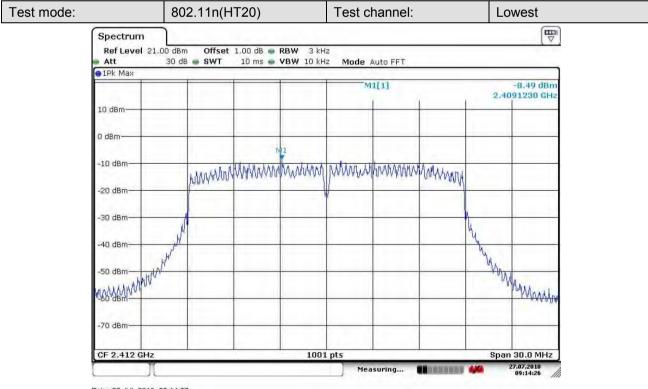
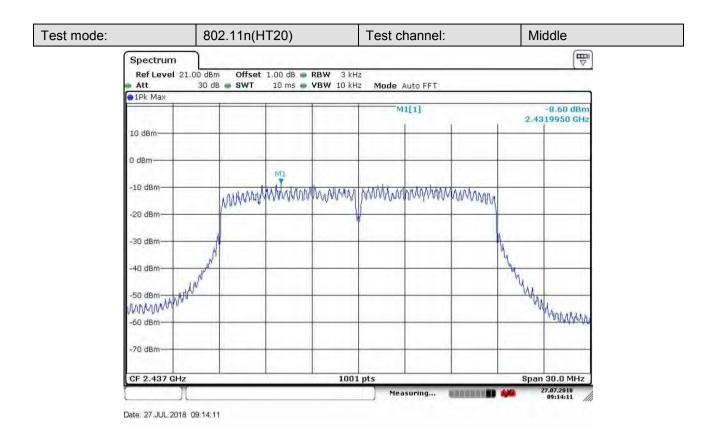


Report No.: SZEM180700654904 Page: 76 of 182

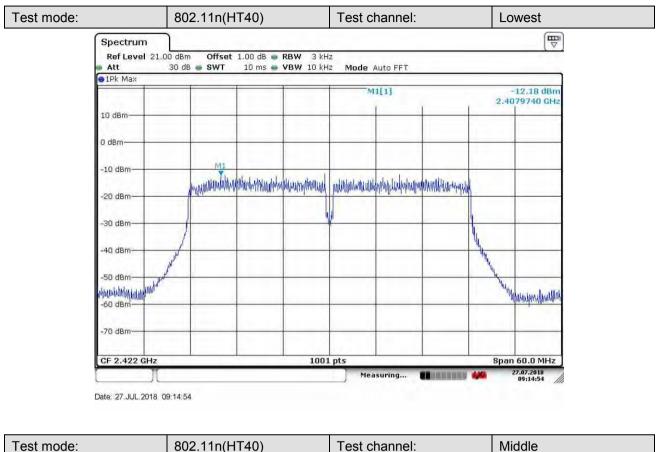

CDD_ANT2



Report No.: SZEM180700654904 Page: 77 of 182

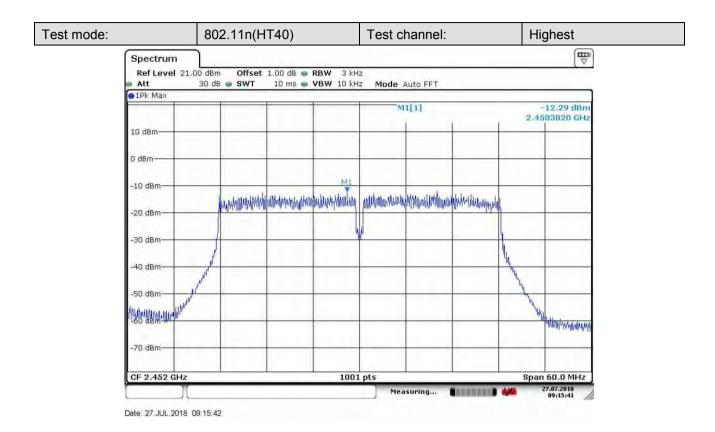

MIMO_ANT2

Date: 27.JUL.2018 09:14.27


Report No.: SZEM180700654904 Page: 78 of 182

mode:	802.11n(HT20)	Test channel:	Highest			
Spectrum						
Ref Level 2	21.00 dBm Offset 1.00 dB RBW 3 kHz 30 dB SWT 10 ms VBW 10 kHz Mode Auto FFT					
1Pk Max						
		M1[1]	-8.80 d8m 2.4566950 GHz			
10 dBm						
0 dBm						
-10 dBm	MI					
-10 000	MANNAMMAN	aland have made and an and the second	ł			
-20 dBm						
-30 dBm			A			
-40 dBm	A A A A A A A A A A A A A A A A A A A		My			
	Mrs.		Maria			
-50 dBm WWWWWWW			What when			
-60 dBm			Mananto			
-70 dBm						
CF 2.462 GH	2	1001 pts	Span 30.0 MHz			

Report No.: SZEM180700654904 Page: 79 of 182

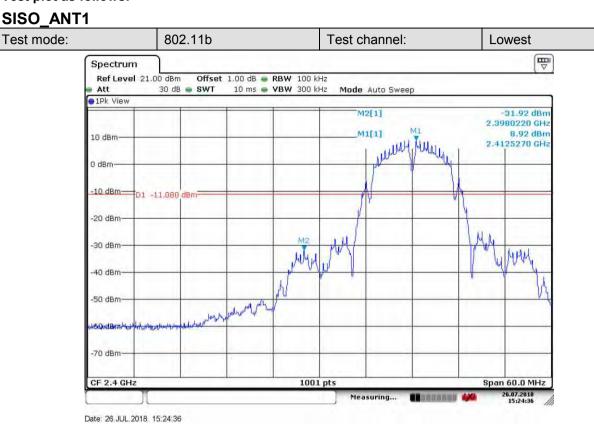


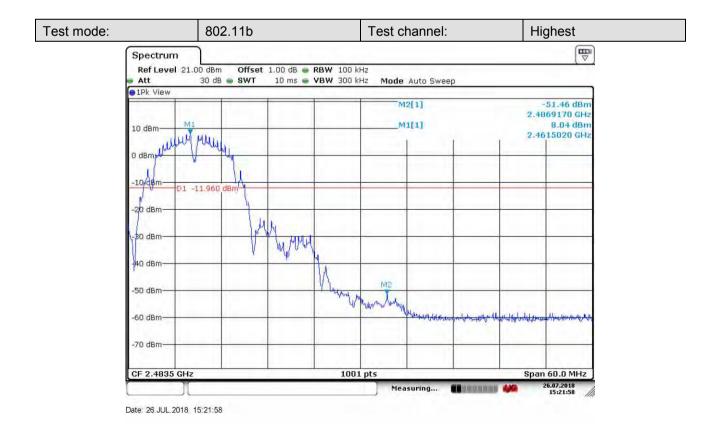
				MILIT	_		-11.62 dBm
				M1[1]	4		59910 GHz
10 dBm	-	-				-	
0 dBm		-				-	
-10 dBm				M	1		
-10 0BM	. h. Andlikte	underly May potents	hide distance of	antermediantermetical	and an and a second second	with.	
-20 dBm	a Alah mara anti		wwt.radac/DWWDW _ 10	Will as a bill sea shirt is a cook.	dir of a start	840	
-30 dBm			k)				
-30 060	ł					1	
-40 dBm	A land	-				1	
-50 dBm						4 ye	
M444dahahahahahahahahah						No.	
		-				7	in the production of the second second
-60 dBm							
-60 dBm					- L	100	

Date: 27.JUL 2018 09:15:24

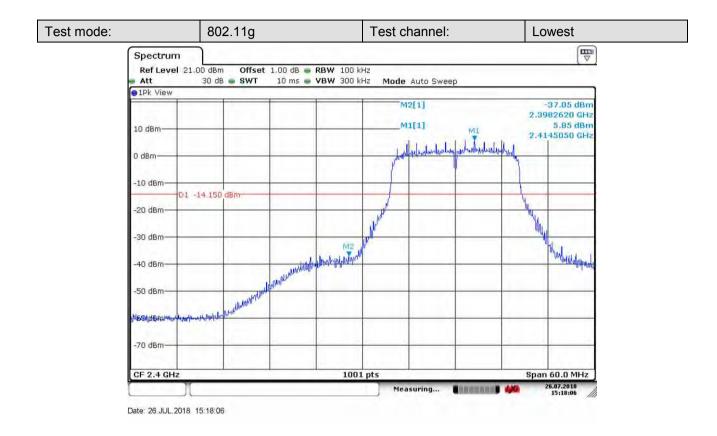
Report No.: SZEM180700654904 Page: 80 of 182

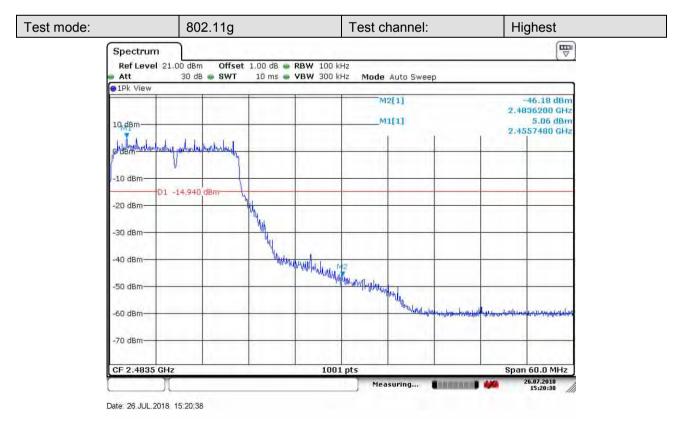
Report No.: SZEM180700654904 Page: 81 of 182

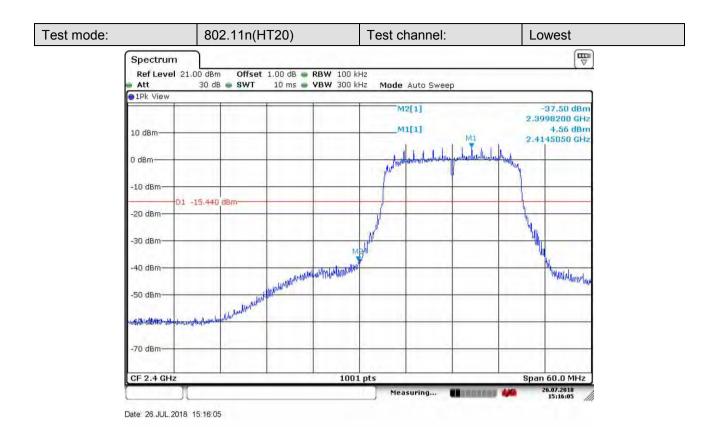

5.7 Band-edge for RF Conducted Emissions

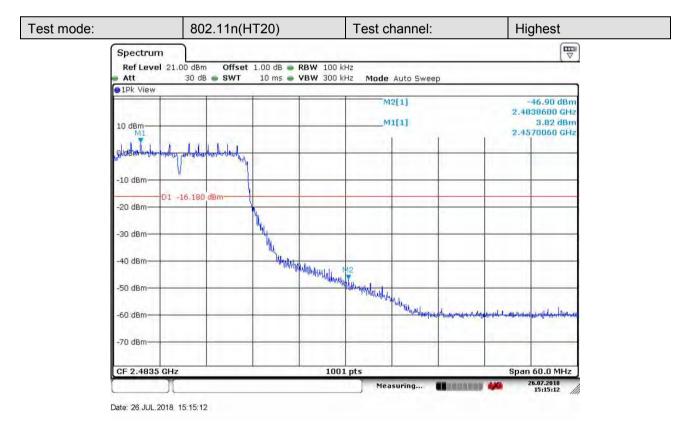

Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10: 2013 Section 11.13				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40).				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

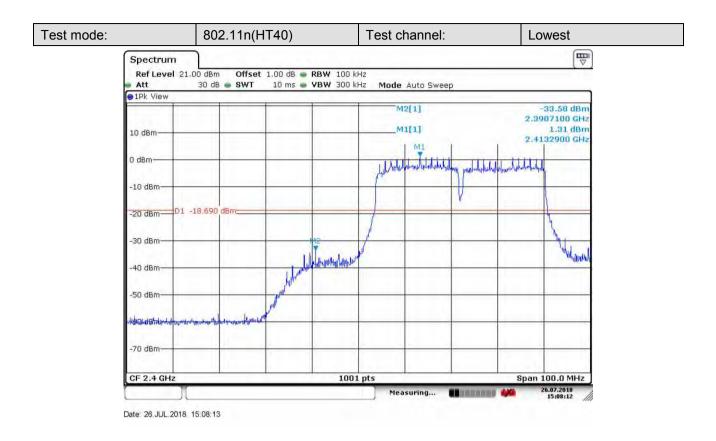
Report No.: SZEM180700654904 Page: 82 of 182

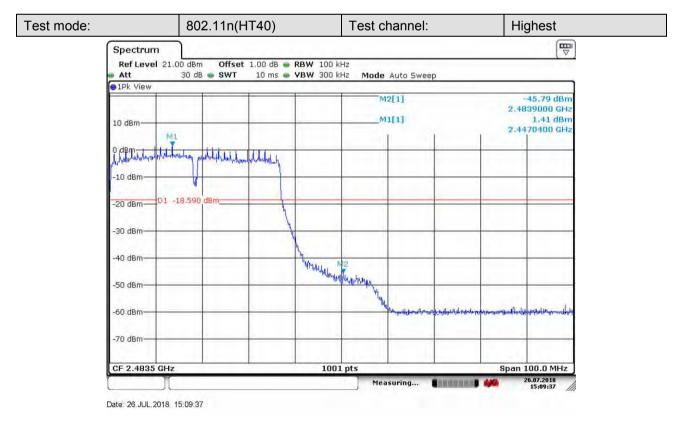

Test plot as follows:



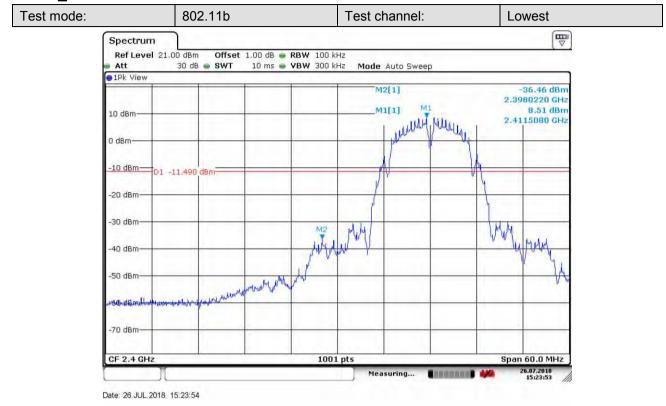

Report No.: SZEM180700654904 Page: 83 of 182

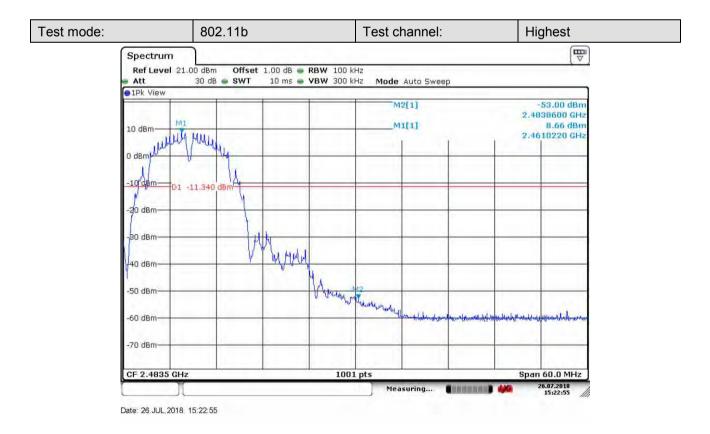



Report No.: SZEM180700654904 Page: 84 of 182

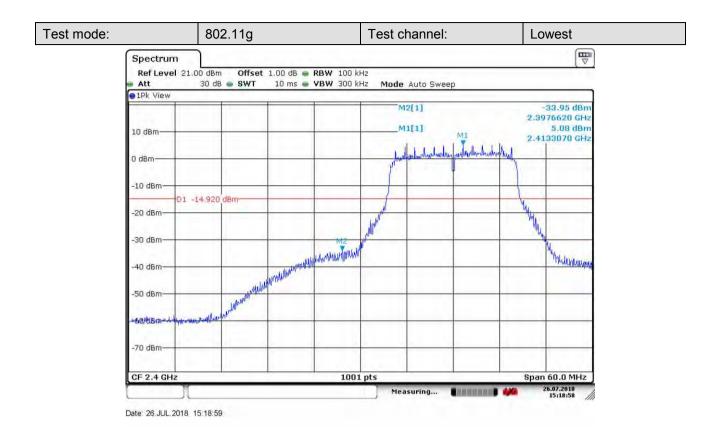


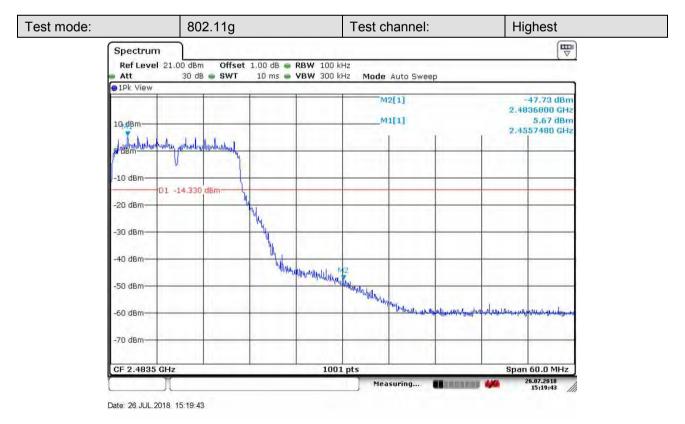
Report No.: SZEM180700654904 Page: 85 of 182

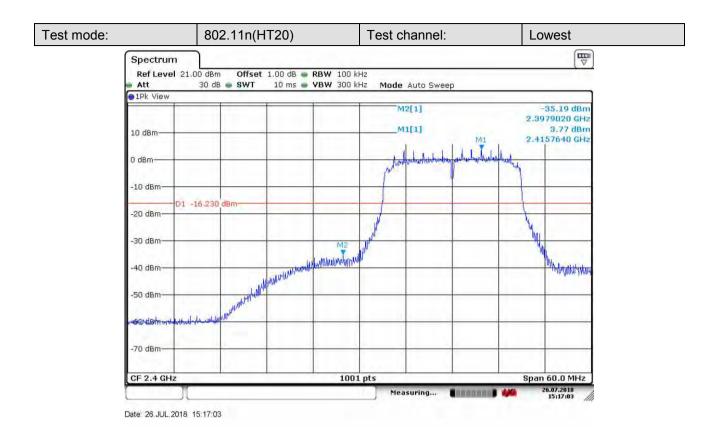


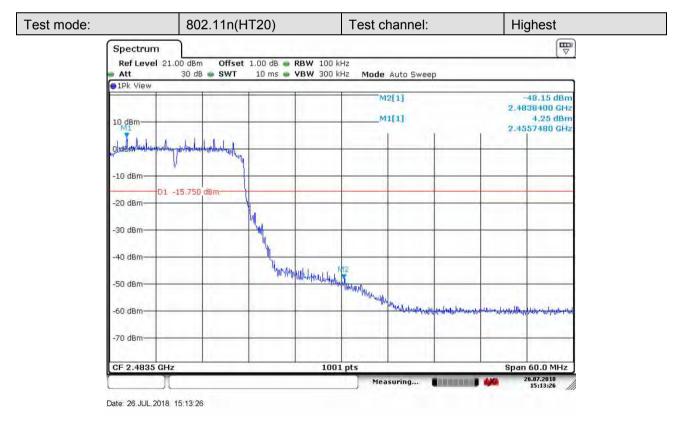


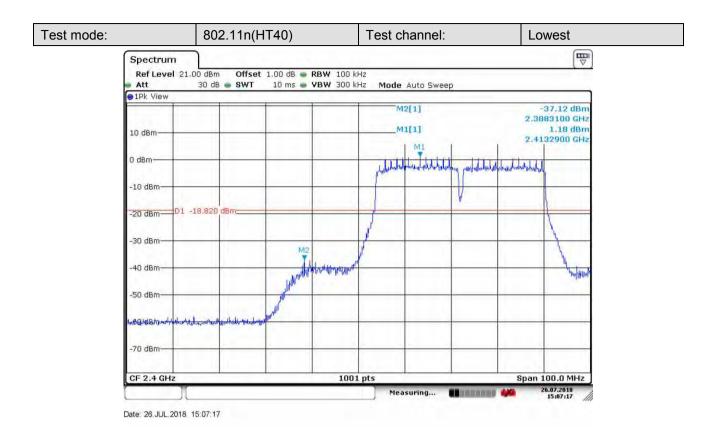
Report No.: SZEM180700654904 Page: 86 of 182

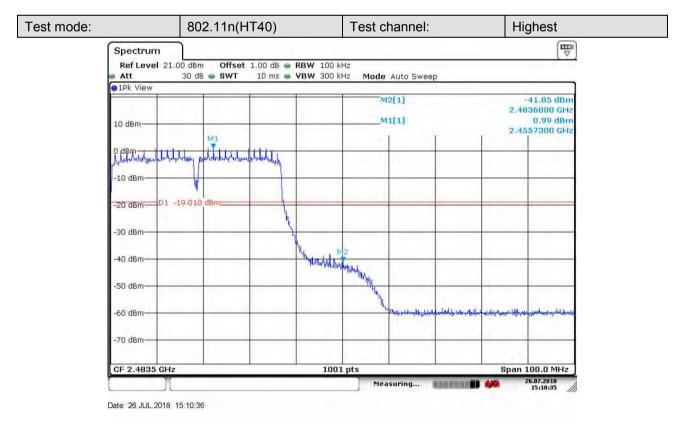

SISO ANT2



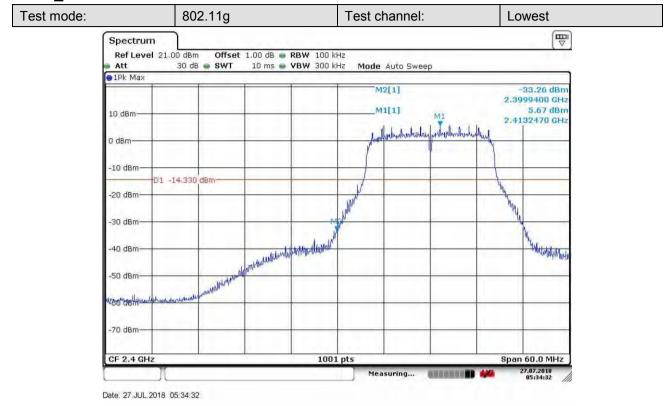

Report No.: SZEM180700654904 Page: 87 of 182

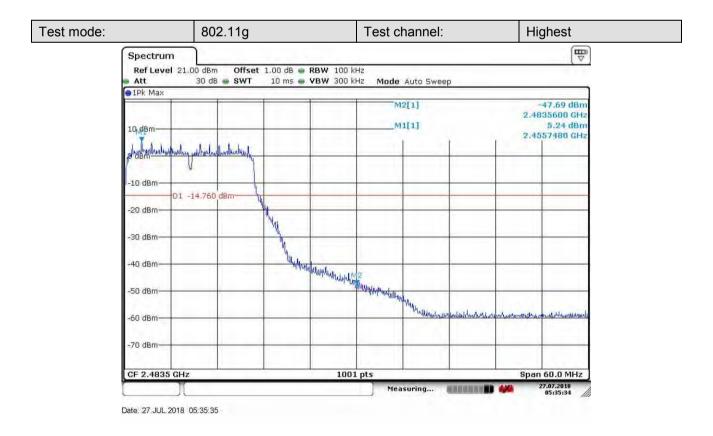



Report No.: SZEM180700654904 Page: 88 of 182



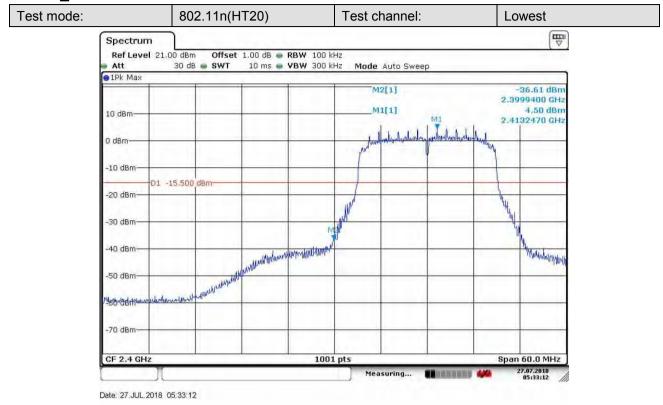
Report No.: SZEM180700654904 Page: 89 of 182

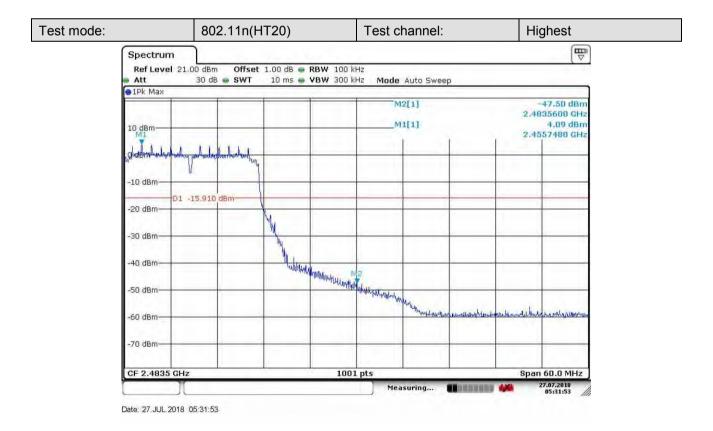




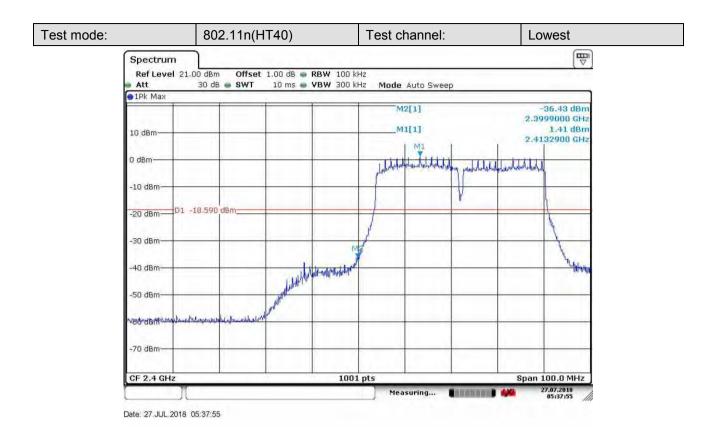
Report No.: SZEM180700654904 Page: 90 of 182

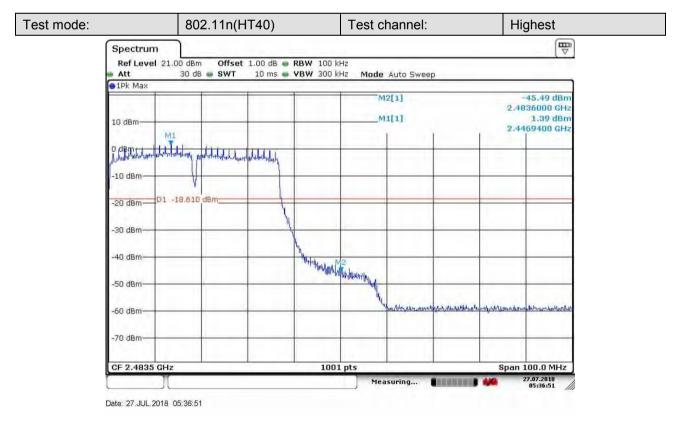
CDD ANT1



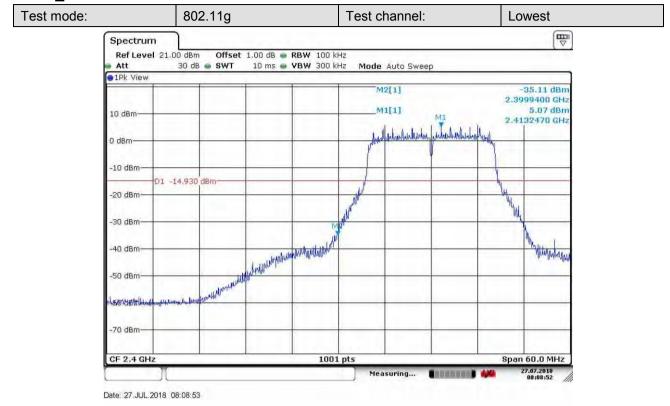


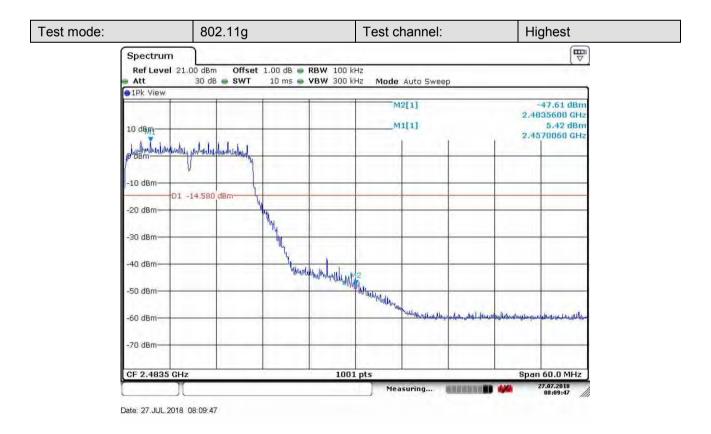
Report No.: SZEM180700654904 Page: 91 of 182


MIMO_ANT1



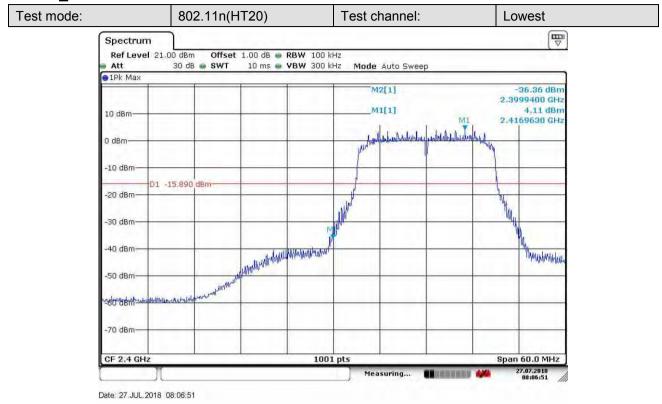
Report No.: SZEM180700654904 Page: 92 of 182

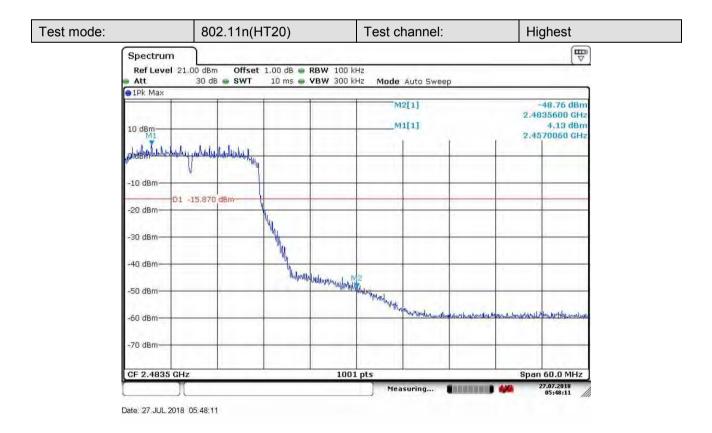




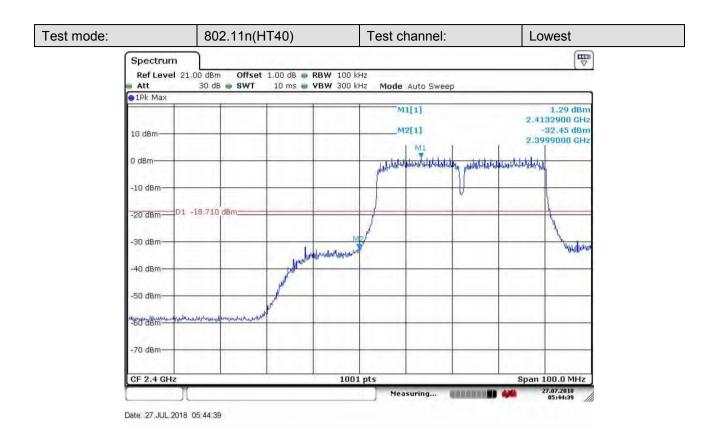
Report No.: SZEM180700654904 Page: 93 of 182

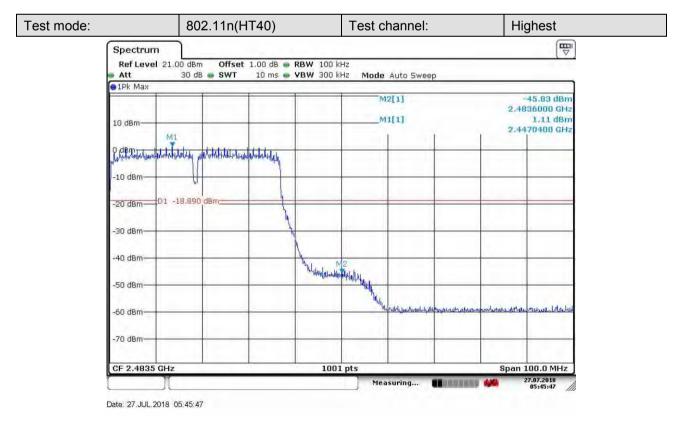
CDD ANT2





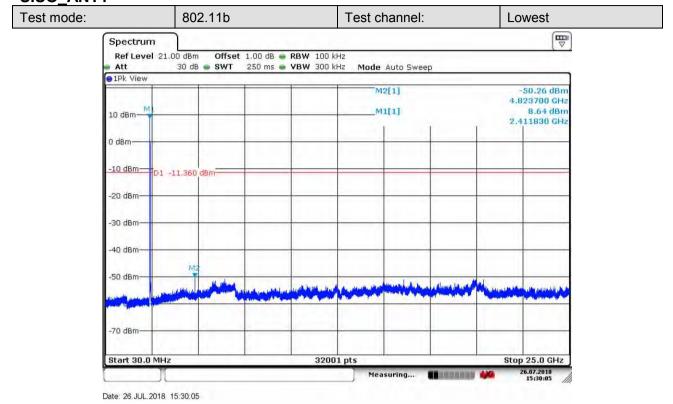
Report No.: SZEM180700654904 Page: 94 of 182

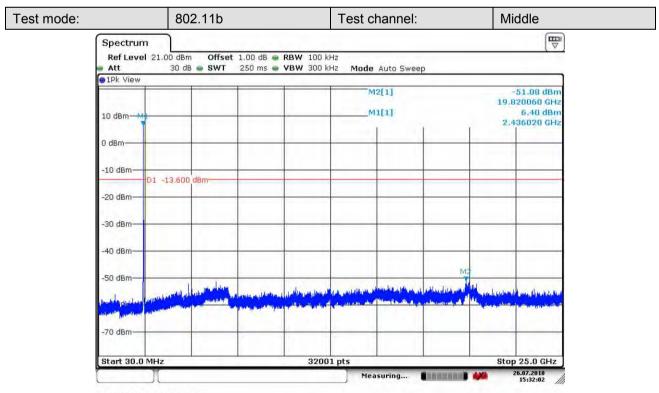

MIMO ANT2



Report No.: SZEM180700654904 Page: 95 of 182

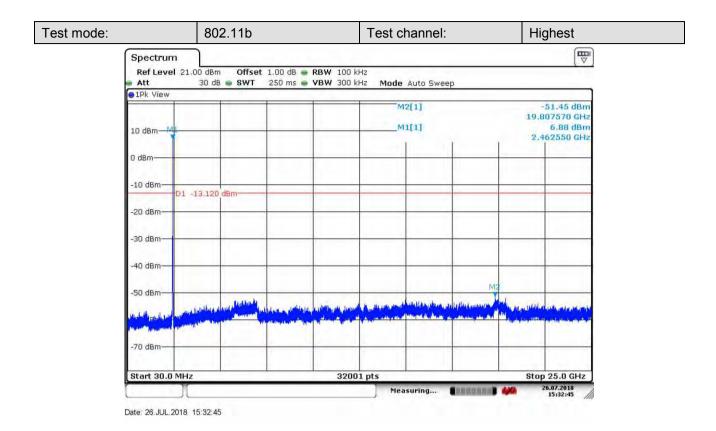
Report No.: SZEM180700654904 Page: 96 of 182

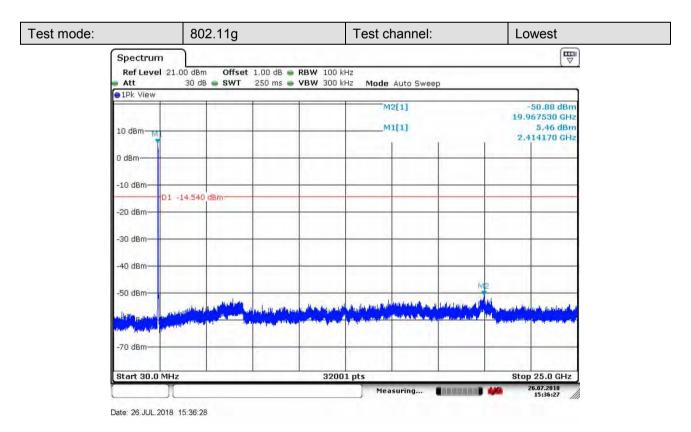

5.8 **RF Conducted Spurious Emissions**


Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013 Section 11.11			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

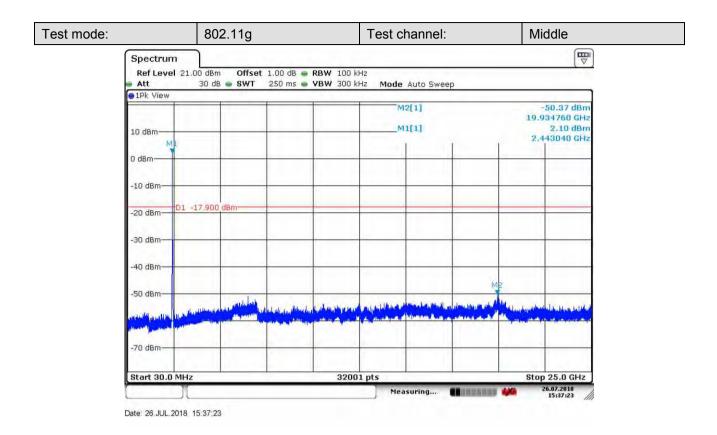
Report No.: SZEM180700654904 Page: 97 of 182

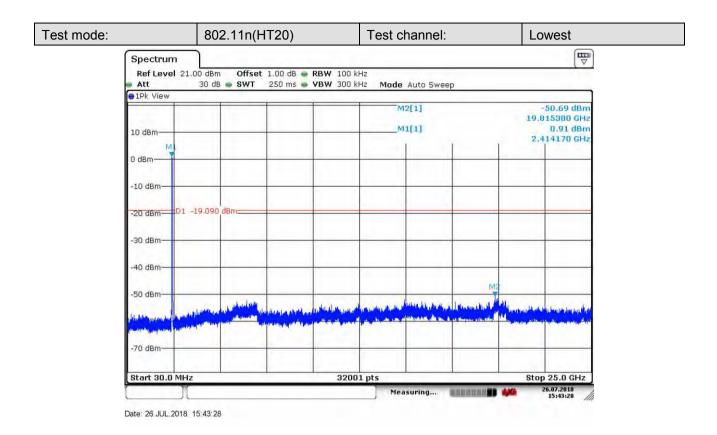
Test plot as follows: SISO ANT1



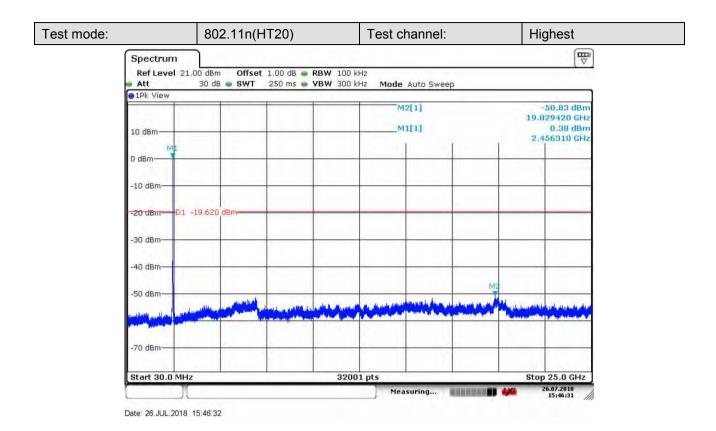


Date: 26 JUL 2018 15:32:02

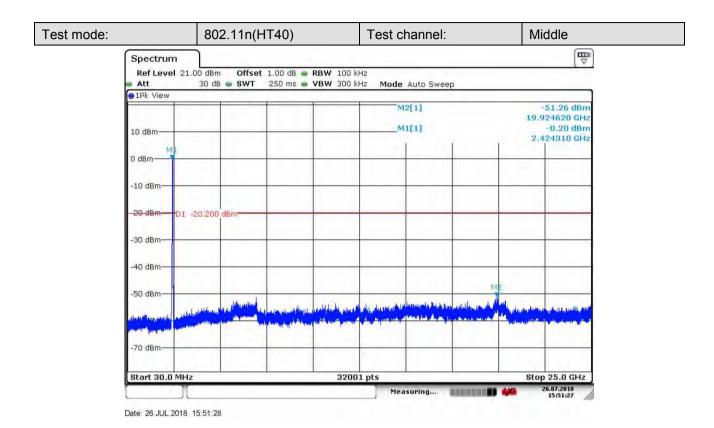

Report No.: SZEM180700654904 Page: 98 of 182


Report No.: SZEM180700654904 Page: 99 of 182

Test mode:		802.11g	Τe	est channel:	Hig	ghest
-				Mode Auto Sweep		
Ē	10 dBm			M2[1] M1[1]	19.9	51.55 dBm 64410 GHz 3.43 dBm 68010 GHz
	0 dBm	6.570 dBm				
	-30 dBm					
	50 dBm	Alticles of the second s				ing ang pang pang pang pang pang pang pan
	70 dBm		32001 pts			25.0 GHz
[ate: 26.JUL.2018 1	5:38:20		Measuring 🔳	IRDANEV 🊧	26.07.2018 15:38:19

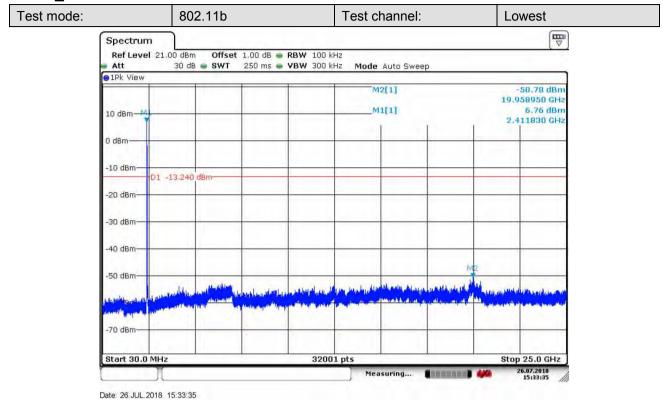

Report No.: SZEM180700654904 Page: 100 of 182

est mode:	802.11n(HT20)	Test channel:	Middle
👄 Att	el 21.00 dBm Offset 1.00 dB - RB 30 dB - SWT 250 ms - VB		
● 1Pk View 10 dBm		M2[1]	-51.57 dBm 19.824740 GHz 1.06 dBm 2.434460 GHz
0 dBm	4		
-20 dBm-	D1 -18,940 dBm		
-30 dBm-			
-50 dBm	and the second sec	ana shi waxa ku shi ka shi	Mg Mg May allo, da da an an an an an an an
-70 dBm-			
Start 30.	0 MHz	32001 pts Measuring	Stop 25.0 GHz


Report No.: SZEM180700654904 Page: 101 of 182

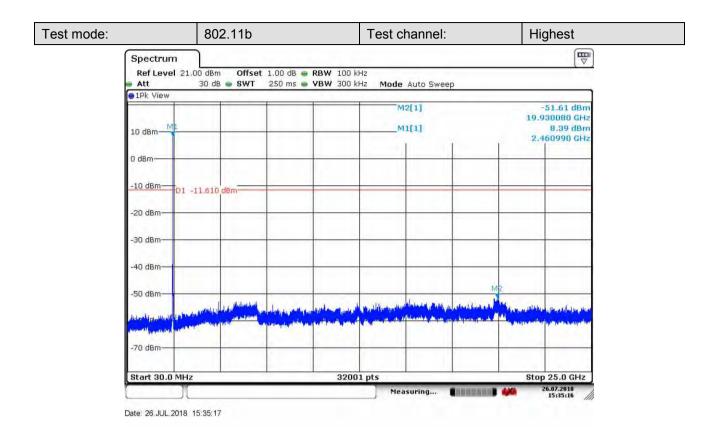
Test mode: 802.11n(HT40) Test channel: Lowest E → Spectrum Offset 1.00 dB 👄 RBW 100 kHz Ref Level 21.00 dBm Att 30 dB 💿 SWT 250 ms 🖝 VBW 300 kHz Mode Auto Sweep 91Pk View -51.30 dBm M2[1] 19.803670 GHz -2.41 dBm M1[1] 10 dBm 2.417290 GH 0 dBm--10 dBm -20 dBm-D1 -22,410 dBm--30 dBm 40 dBm -50 dBm -70 dBm 32001 pts Stop 25.0 GHz Start 30.0 MHz 26.07.2018 15:50:41 Measuring... THE REPORT OF Date: 26 JUL 2018 15:50:41

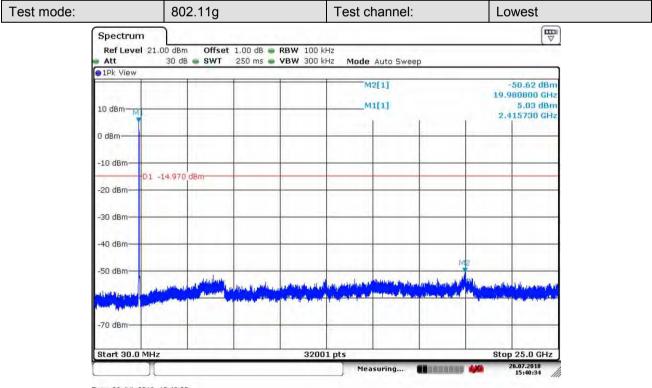
Report No.: SZEM180700654904 Page: 102 of 182


t mode:	802.11n(HT40)	Test channel:	Highest
	21.00 dBm Offset 1.00 dB 🖷 R		
Att Place Att Att Att Att Att Att Att Att Att At	30 dB 📦 SWT 250 ms 🖶 V	BW 300 kHz Mode Auto Sweep	
10 dBm		M2[1] M1[1]	-50.98 dBm 19.934760 GHz -0.19 dBm 2.467230 GHz
0 dBm			2,407230 GHZ
-10 dBm			
1.5.5.4	D1 -20.190 dBm		
-30 dBm			
-50 dBm	and stand		MP.
and the state of the	a state of the sta		
-70 dBm			
Start 30.0	MHz	32001 pts	Stop 25.0 GHz

Date: 26 JUL 2018 15:55:51

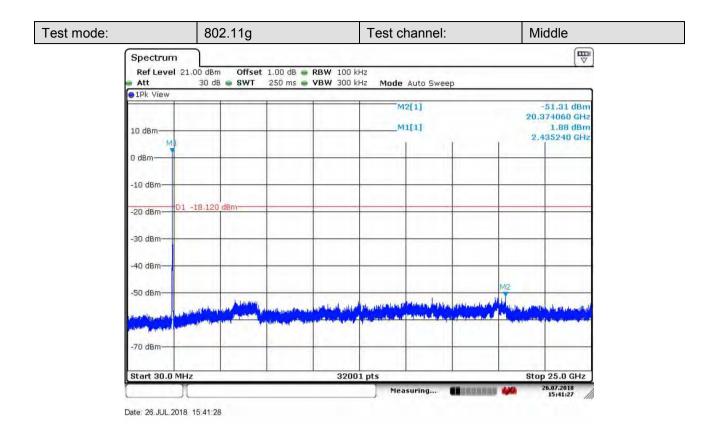
Report No.: SZEM180700654904 Page: 103 of 182


SISO_ANT2

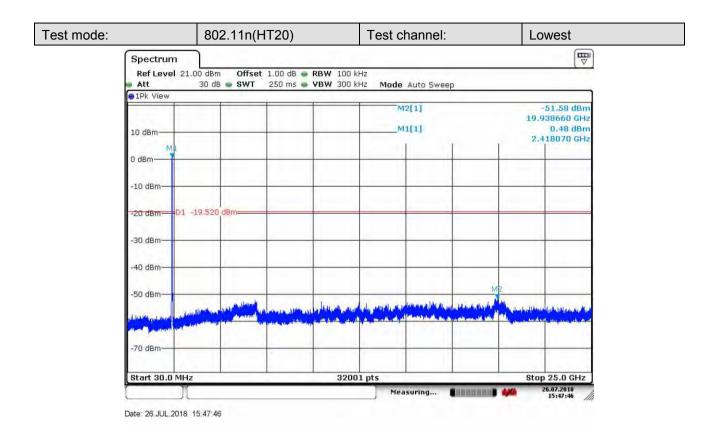


Test mode:		802.11b	Т	est channel:		Middle
	Spectrum Ref Level 21.0 Att			Mode Auto Sweep)	
	10 dBm			M2[1]		-50.29 dBm 19.932420 GHz 8.38 dBm 2.436800 GHz
	0 dBm	1.620 dBm				
	-20 dBm					
	-40 dBm	and the state of t	and a state of the		M2	
	-70 dBm	in a construction of the second se	Hard and the second			
	Start 30.0 MHz	5:34:31	32001 pt		Monoanay 🦇	Stop 25.0 GHz 26.07.2018 15:34:31

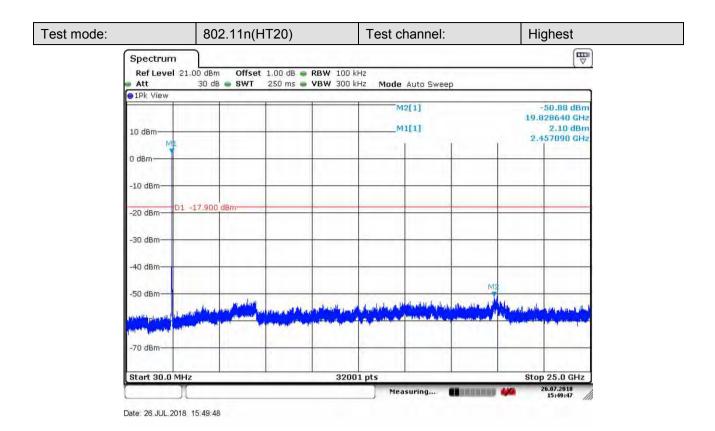
Report No.: SZEM180700654904 Page: 104 of 182



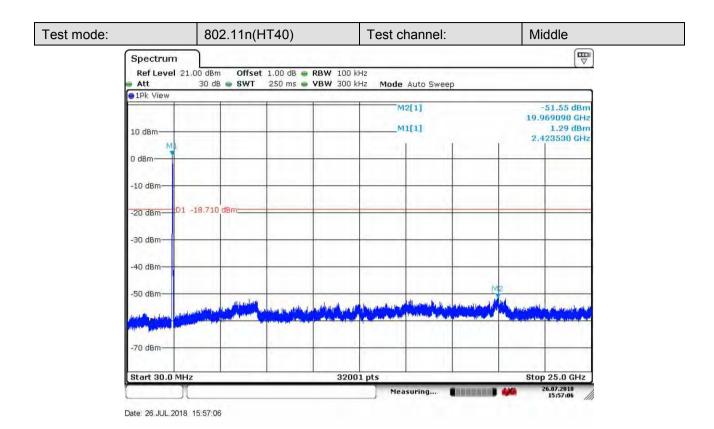
Date: 26 JUL 2018 15:40:35


Report No.: SZEM180700654904 Page: 105 of 182

Test mode:		802.11g	Tes	t channel:	Hig	hest
	Spectrum Ref Level 21.0 Att			ode Auto Sweep		
	10 dBm M1			_M2[1] _M1[1]	19.96	1.35 dBm 0510 GHz 5.05 dBm 7230 GHz
	the second second second	14.950 dBm-				
	-20 dBm -30 dBm -40 dBm					
	-50 dBm	en stille en en stille stille de server die s	en e	a se alla se a Se alla se alla		alize an
	-70 dBm Start 30.0 MHz		32001 pts		Stop :	25.0 GHz
	Date: 26.JUL.2018 1	5.42.24]	Measuring 📲		.07.2018 15:42:24

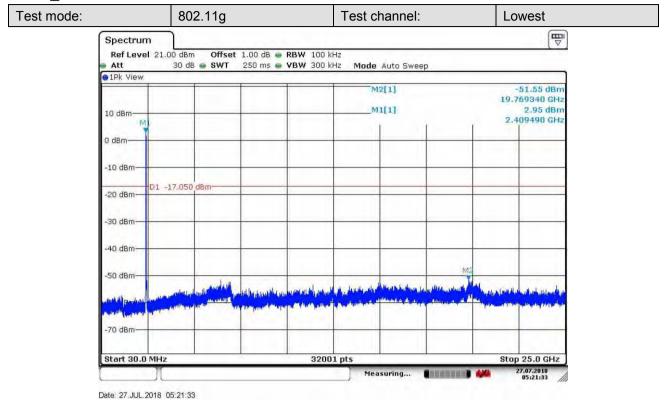

Report No.: SZEM180700654904 Page: 106 of 182

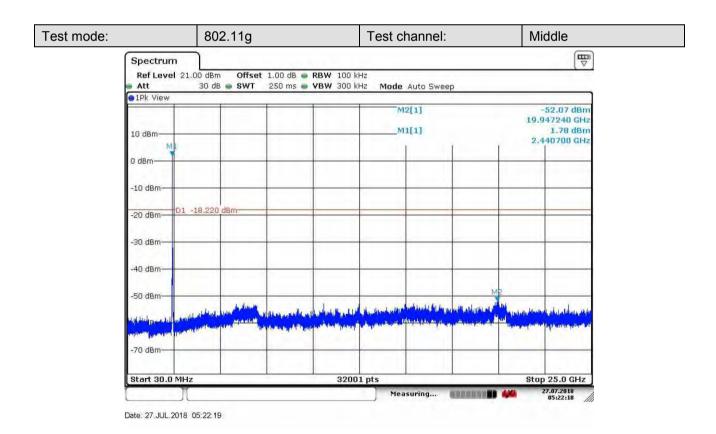
est mode:	802.11n(HT20)) Test chan	nel: N	liddle
🖷 Att	evel 21.00 dBm Offset 1.00 d 30 dB 🖷 SWT 250 m	IB e RBW 100 kHz Is e VBW 300 kHz Mode Auto	Sweep	
● 1Pk Vi 10 dBm·		M2[1]		-51.11 dBm 912910 GHz 3.69 dBm 430560 GHz
0 dBm				
-20 dBm -30 dBm				
-40 dBm	n		ME	
-50 dBm	and the state of the			t i den antidez, de antidez de la dela del 19 de la compositiva de la dela dela dela dela dela dela de
-70 dBm Start 3	0.0 MHz	32001 pts	Sto	p 25.0 GHz
Cate: 26.1	UL.2018 15:48:54	Measuring	(26.07.2018 15:48:53


Report No.: SZEM180700654904 Page: 107 of 182

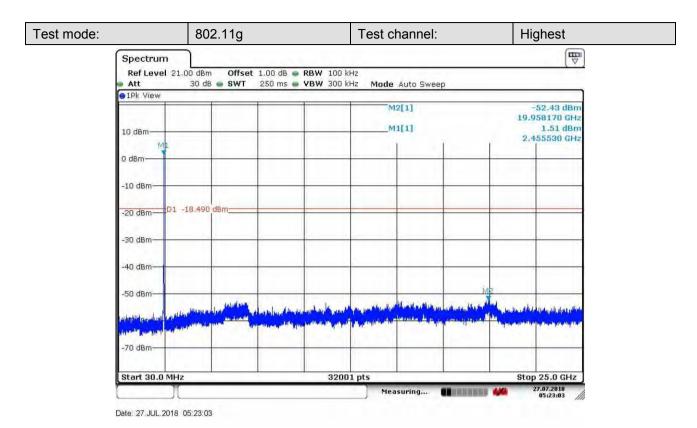
Test mode: 802.11n(HT40) Test channel: Lowest E → Spectrum Offset 1.00 dB 👄 RBW 100 kHz Ref Level 21.00 dBm Att 30 dB 💿 SWT 250 ms 🖝 VBW 300 kHz Mode Auto Sweep 91Pk View -51.62 dBm M2[1] 19.477510 GHz M1[1] 0.58 dBm 10 dBm 2.407150 GH 0 dBm--10 dBm D1 -19,420 -20 dBm--30 dBm 40 dBm -50 dBm 1.101 4 -70 dBm 32001 pts Stop 25.0 GHz Start 30.0 MHz 26.07.2018 15:54:35 Measuring... THE R. P. LEWIS CO., No. of Concession, Name Date: 26 JUL 2018 15:54:35

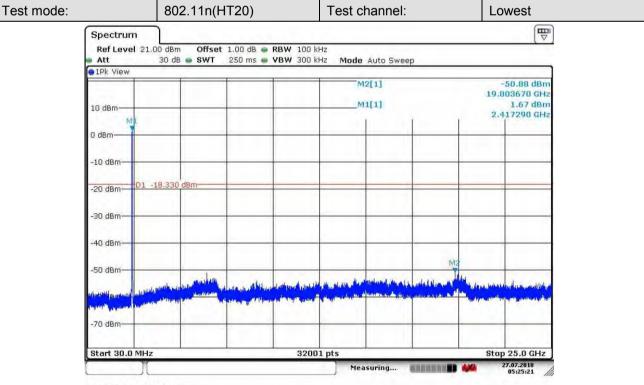
Report No.: SZEM180700654904 Page: 108 of 182


st mode:	802.11n(HT40)	Test channel:	Highest
	1 21.00 dBm Offset 1.00 dB - R		
Att 1Pk View	30 dB 🖷 SWT 250 ms 🖶 V	BW 300 kHz Mode Auto Sweep	
10 dBm		M2[1]	-51.64 dBm 19.959730 GHz 1.44 dBm 2.457090 GHz
0 dBm	1		
-10 dBm			
-20 dBm	D1 -18.560 dBm		
-30 dBm			
-40 dBm			
-50 dBm	and the second	In Section Association and Associatio and Association and Association and Association and Asso	2 La de la delles compte des sons adas dansi, there
-70 dBm		and the second	and the second sec
Start 30.0	MHz	32001 pts	Stop 25.0 GHz
Latart 30.0		Measuring	

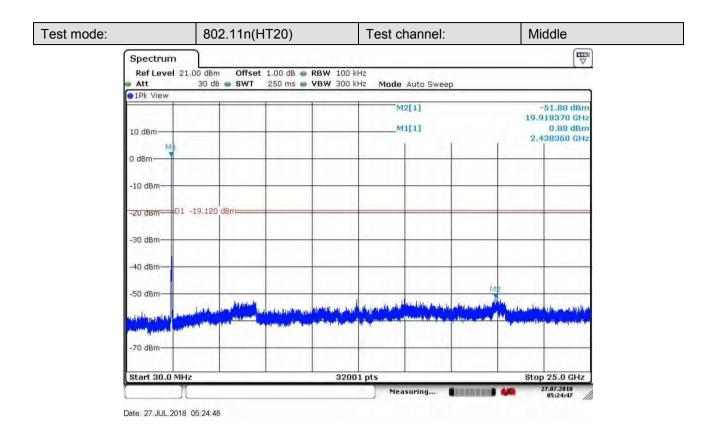

Date: 26.JUL 2018 15:57:57

Report No.: SZEM180700654904 Page: 109 of 182

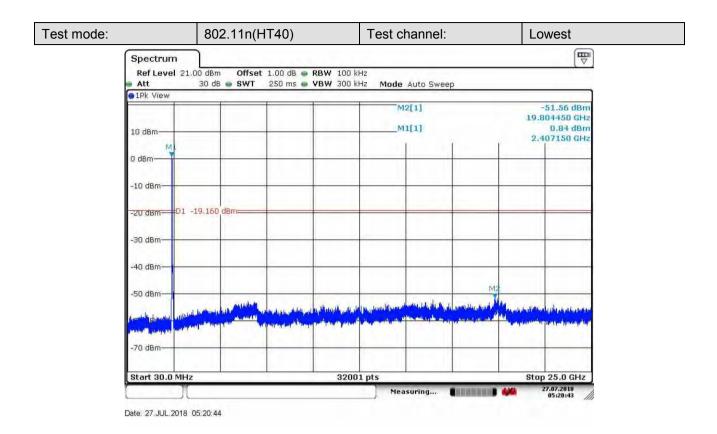

CDD_ANT1



Report No.: SZEM180700654904 Page: 110 of 182


MIMO_ANT1

Date: 27.JUL.2018 05:25:21


Report No.: SZEM180700654904 Page: 111 of 182

Test mode:	802.11n(HT20)	Test channel:	: Highest
Spectr Ref Le	vel 21.00 dBm Offset 1.00 dB	• RBW 100 kHz • VBW 300 kHz Mode Auto Swe	eo
9 1Pk Vie			
10.dBm-	ма	M2[1] M1[1]	-50.99 dBm 19.825520 GHz 3.02 dBm 2.463330 GHz
0 dBm—			
-10 dBm			
-20 dBm-	D1 -16.980 dBm		
-30 dBm·			
-40 dBm-			
-50 dBm·		بالروار بالانتقاب المرارية بالدور والديمين المرابع	
salaan daribu ya dara	and a fear from the second state of the second		
-70 dBm			
Start 30	J.0 MHz	32001 pts	Stop 25.0 GHz
	Л	Measuring	27.07.2018 05:23:55

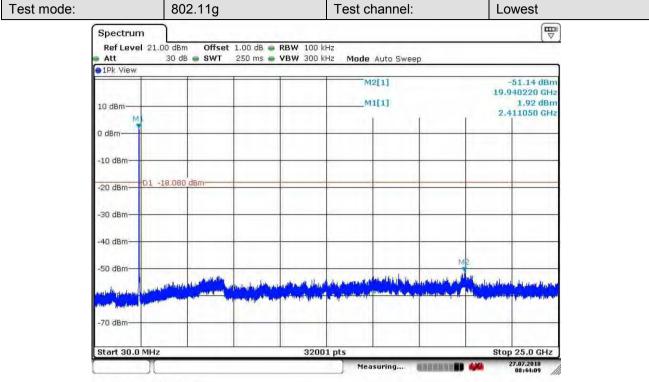
Report No.: SZEM180700654904 Page: 112 of 182



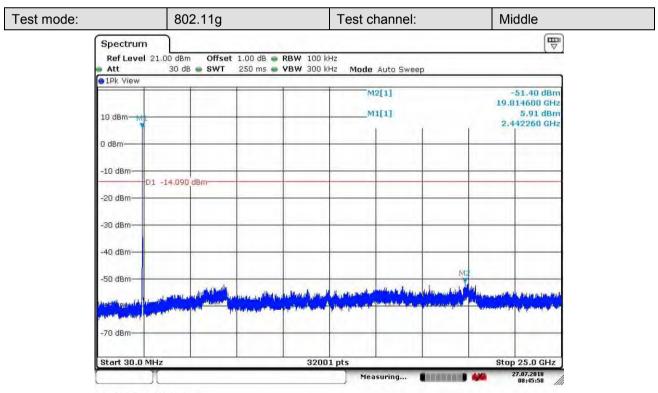
Test mode:	802.11n(HT40)	Test channel:	Middle
👄 Att	vel 21.00 dBm Offset 1.00 dB - Ri 30 dB - SWT 250 ms - Vi		
● 1Pk Viev 10 dBm	×	M2[1] M1[1]	-50.20 dBm 19.808350 GHz 0.12 dBm 2.444600 GHz
0 dBm			
- -20 dBm- -30 dBm-	01 -19,880 dBm		
-40 dBm-		N N	13 Winter to do Jona de Allandes (contral)
-70 dBm-			A leng to a second of the particular second s
Start 30.	0 MHz	32001 pts Measuring	Stop 25.0 GHz

Date: 27.JUL 2018 05:19:52

Report No.: SZEM180700654904 Page: 113 of 182

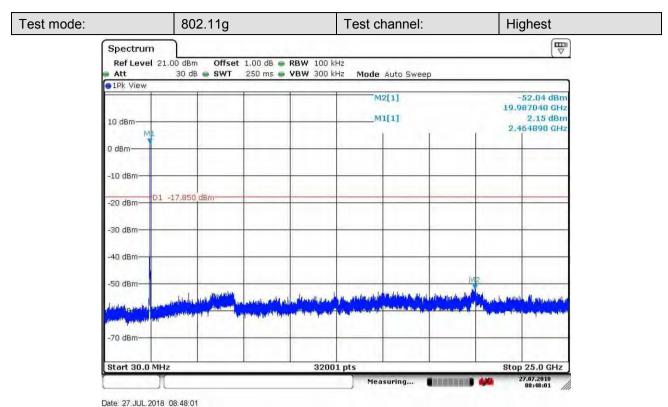


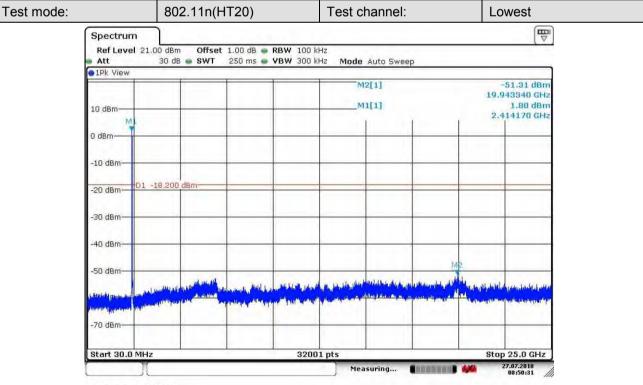
Date: 27.JUL 2018 05:19:05



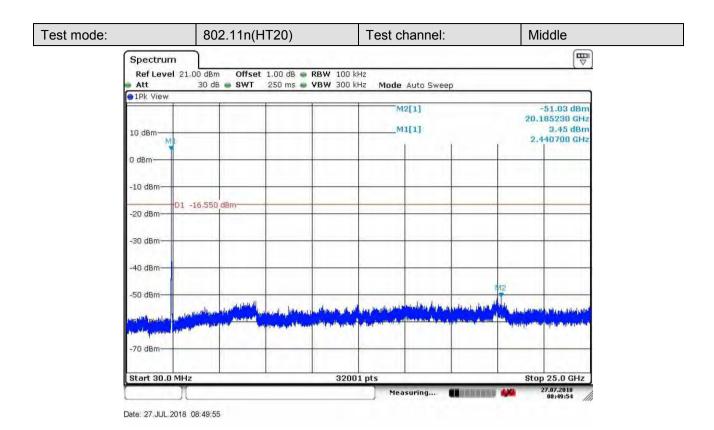
Report No.: SZEM180700654904 Page: 114 of 182

CDD_ANT2


Date: 27.JUL 2018 08:44:09

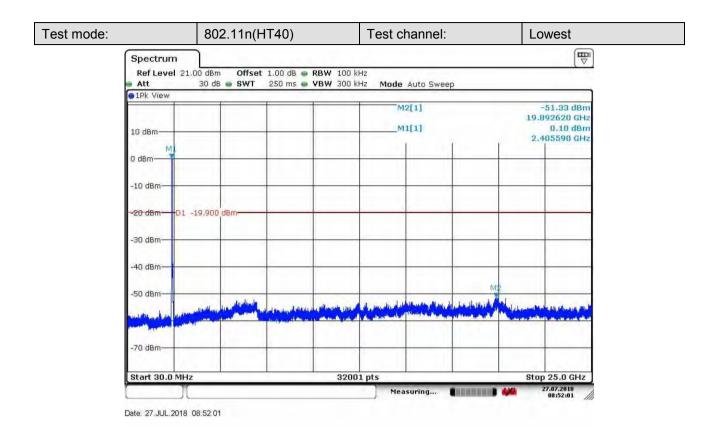

Date: 27.JUL.2018 08:45:58

Report No.: SZEM180700654904 Page: 115 of 182


MIMO_ANT2

Date: 27.JUL.2018 08:50:31

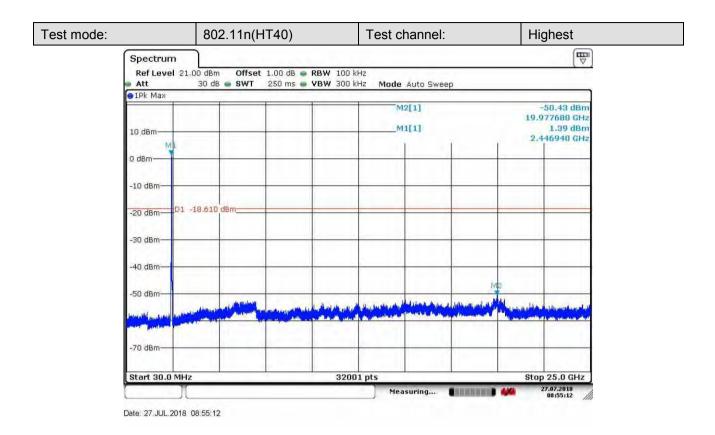
Report No.: SZEM180700654904 Page: 116 of 182



node:	802.11n(HT20)	Test cha	annel:	Highest
Spectrum Ref Level 2 Att			uto Sweep	
9 1Pk View		nous a		
10 dBm Mji		M2[M1[-51.70 dBm 19.957390 GHz 4.16 dBm 2.467230 GHz
0 dBm				
-10 dBm				
-20 dBm-	-15,840 dBm			
-30 dBm				
-40 dBm				
-50 dBm	an and		M2	la constant or south a l
Jamatik mare and dat	and Salah Alita addition of provide Alarman, by the state	and a first state of the state	and the state of t	
-70 dBm				
Start 30.0 Mi	47	32001 pts		Stop 25.0 GHz

Date: 27 JUL 2018 08:49:01

Report No.: SZEM180700654904 Page: 117 of 182



Test mode:		802.11n(HT40)		Test channel:		Middle
	Spectrum Ref Level 21.		RBW 100 kH		20	
	91Pk View					
	10 dBm			M2[1]		-52.14 dBm 19.905110 GHz -1.93 dBm 2.451620 GHz
	0 dBm M1					
	-10 dBm		-		-	
	-20 dBm	21.930 dBm-				
	-30 dBm			-		
	-40 dBm				+	
	-50 dBm	Again the			M2	
	Barrates abili method	have not see a shall be the second	Angeler Andread	and the second	and the second se	and a first and a second s
	-70 dBm					
	Start 30.0 MHz		32001	l pts	<u> </u>	Stop 25.0 GHz
		200 Y		Measuring		27.07.2018 08:52:45

Date: 27.JUL.2018 08:52:45

Report No.: SZEM180700654904 Page: 118 of 182

Remark:

Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM180700654904 Page: 119 of 182

5.9 Radiated Spurious Emissions

Test Requirement:							
Test Method:	ANSI C63.10 :2013 Section 11.12						
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)						
	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
Dessiver Cature	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak		
		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz	Average		
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3		
Linnt.	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 15.35(b), Unless	otherwise specified	l, the limit on pea	k radio freque	ncy		
	emissions is 20dB abov	ve the maximum pe	ermitted average	emission limit			
	applicable to the equipr level radiated by the de		is peak limit appl	ies to the total	peak emissior		

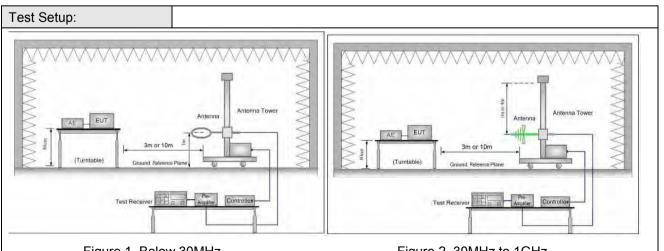


Figure 1. Below 30MHz

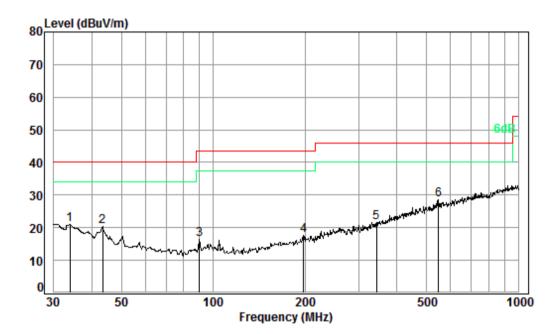
Figure 2. 30MHz to 1GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180700654904 Page: 120 of 182

	Image: With the second seco
Task Dress i	-
Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

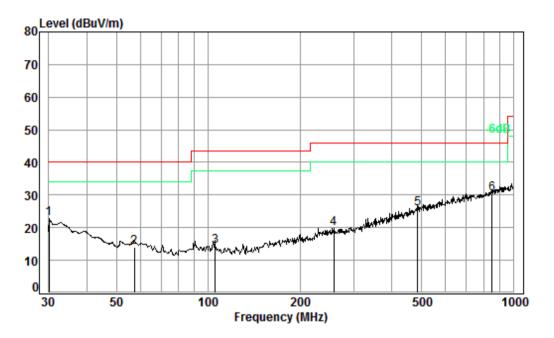
Note1: Mode d= WiFi 2.4G RSE from 30MHz-1GHz


This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180700654904 Page: 121 of 182

5.9.1 Radiated emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical


Condition: 3m VERTICAL Job No. : 06549RG Test mode: d

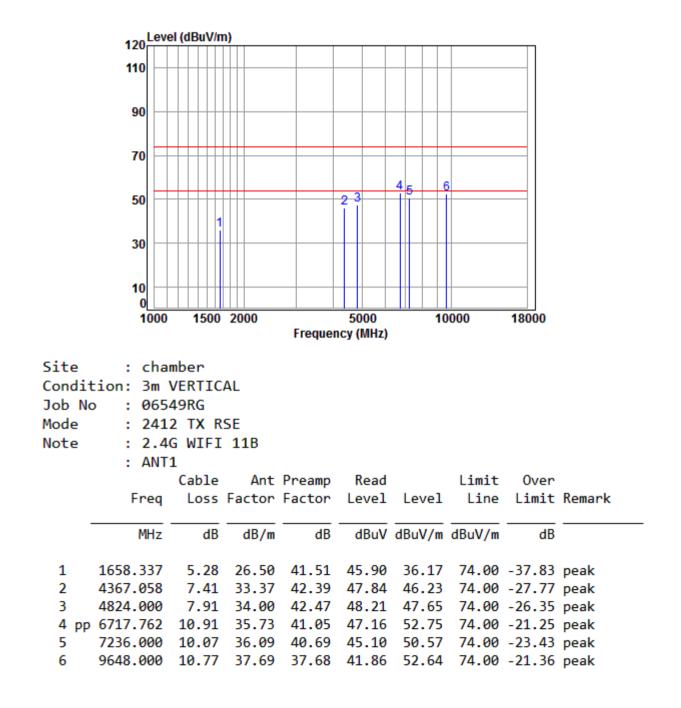
	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	33.92 43.35	0.60 0.67	16.31	27.44	30.77	20.33	40.00	-19.67
3 4 5 6 pp	90.22 197.89 343.18 547.10		16.44	27.36 26.91 26.89 27.78	26.75 25.52	17.68 21.58	43.50	-25.82 -24.42

Report No.: SZEM180700654904 Page: 122 of 182

Test mode:	Charge + Transmitting	Horizontal

Condition:	3m HORIZONTAL
Job No. :	06549RG
Test mode:	d

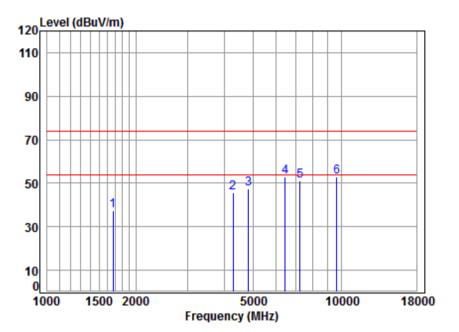
				Preamp				0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.11	0.60	22.44	27.45	27.18	22.77	40.00	-17.23
2	57.19	0.80	13.46	27.40	27.26	14.12	40.00	-25.88
3	105.27	1.22	13.75	27.32	26.54	14.19	43.50	-29.31
4	258.33	1.71	19.08	26.74	25.78	19.83	46.00	-26.17
5	485.61	2.55	24.31	27.55	26.69	26.00	46.00	-20.00
6 pp	851.04	3.41	29.18	27.33	25.20	30.46	46.00	-15.54



Report No.: SZEM180700654904 Page: 123 of 182

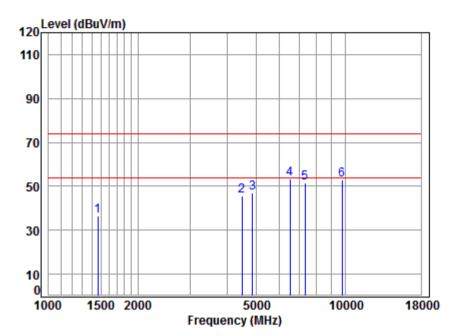
Peak

Vertical


5.9.2	Transmitter ei	mission above	1GHz	
Test mode:	802.11b	Test channel:	Lowest	Remark:

Report No.: SZEM180700654904 Page: 124 of 182

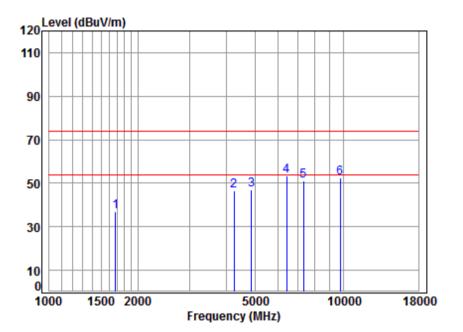
Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------



Job No	Condition: 3m HORIZONTAL Job No : 06549RG Mode : 2412 TX RSE Note : 2.4G WIFI 11B : ANT1											
		Cable	Ant	Preamp	Read		Limit	0ver				
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark			
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB				
1	1672.779	5.26	26.56	41.52	46.99	37.29	74.00	-36.71	peak			
2	4279.589	7.31	33.22	42.38	47.55	45.70	74.00	-28.30	peak			
3	4824.000	7.91	34.00	42.47	47.79	47.23	74.00	-26.77	peak			
4	6451.353	11.45	35.55	41.25	47.04	52.79	74.00	-21.21	peak			
5	7236.000	10.07	36.09	40.69	45.59	51.06	74.00	-22.94	peak			
6 pp	9648.000	10.77	37.69	37.68	42.03	52.81	74.00	-21.19	peak			

Report No.: SZEM180700654904 Page: 125 of 182

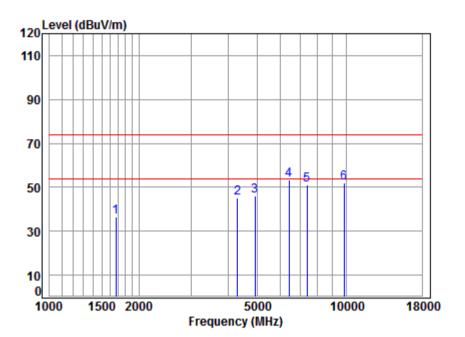
Test mode: 802.11b	Test channel:	Middle	Remark:	Peak	Vertical
--------------------	---------------	--------	---------	------	----------



Site	: cha	mber							
Condit	tion: 3m	VERTIC	AL						
Job No	b : 0654	49RG							
Mode	: 243	7 TX R	SE						
Note	: 2.4	G WIFI	11B						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1464.522	5.37	25.67	41.38	46.65	36.31	74.00	-37.69	peak
2	4482.150	7.54	33.57	42.41	47.13	45.83	74.00	-28.17	peak
3	4874.000	7.96	34.05	42.48	47.47	47.00	74.00	-27.00	peak
4 pp	6526.373	11.46	35.62	41.20	47.71	53.59	74.00	-20.41	peak
5	7311.000	10.05	36.15	40.64	45.97	51.53	74.00	-22.47	peak
6	9748.000	10.82	37.75	37.54	41.76	52.79	74.00	-21.21	peak

Report No.: SZEM180700654904 Page: 126 of 182

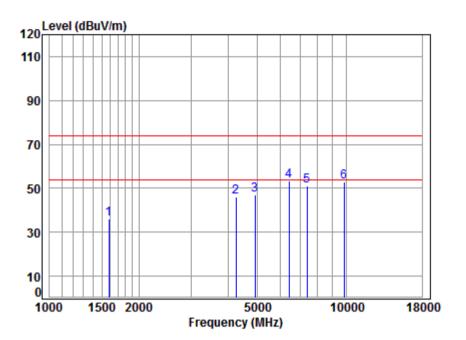
Test mode: 8	802.11b	Test channel:	Middle	Remark:	Peak	Horizontal
--------------	---------	---------------	--------	---------	------	------------



	Condition: 3m HORIZONTAL Job No : 06549RG Mode : 2437 TX RSE										
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
-											
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	1677.621	5.25	26.58	41.52	46.81	37.12	74.00	-36.88	peak		
2	4242.641	7.27	33.15	42.37	48.27	46.32	74.00	-27.68	peak		
3	4874.000	7.96	34.05	42.48	47.61	47.14	74.00	-26.86	peak		
4 pp	6414.167	11.38	35.52	41.28	47.83	53.45	74.00	-20.55	peak		
5	7311.000	10.05	36.15	40.64	45.33	50.89	74.00	-23.11	peak		
6	9748.000	10.82	37.75	37.54	41.34	52.37	74.00	-21.63	peak		

Report No.: SZEM180700654904 Page: 127 of 182

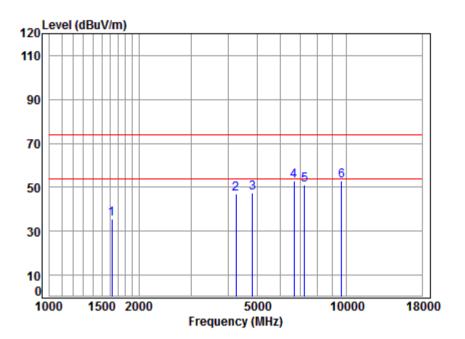
Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Vertical
------------	---------	---------------	---------	---------	------	----------



Job No		VERTIC 49RG							
Mode		2 TX R							
Note	: 2.4	G WIFI	11B						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1672.779	5.26	26.56	41.52	45.99	36.29	74.00	-37.71	peak
2	4304.400	7.34	33.26	42.38	47.02	45.24	74.00	-28.76	peak
3	4924.000	8.01	34.11	42.49	46.64	46.27	74.00	-27.73	peak
4 pp	6414.167	11.38	35.52	41.28	47.75	53.37	74.00	-20.63	peak
5	7386.000	10.03	36.21	40.59	45.32	50.97	74.00	-23.03	peak
6	9848.000	10.87	37.81	37.41	40.93	52.20	74.00	-21.80	peak

Report No.: SZEM180700654904 Page: 128 of 182

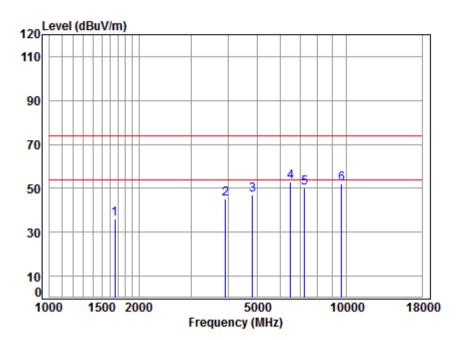
Test mode: 802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------	---------------	---------	---------	------	------------



Site	: cha	mber							
Condit	tion: 3m H	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 246	2 TX R	SE						
Note	: 2.4	G WIFI	11B						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
		dB	dB/m			-			
1	MHz 1587.975	dB 5.37	dB/m 26.20	dB 41.46		-		dB -37.84	peak
1 2					46.05	36.16		-37.84	•
	1587.975	5.37	26.20	41.46 42.37	46.05 47.95	36.16 46.03	74.00	-37.84 -27.97	peak
2	1587.975 4254.921 4924.000	5.37 7.28 8.01	26.20 33.17 34.11	41.46 42.37	46.05 47.95 47.52	36.16 46.03 47.15	74.00 74.00	-37.84 -27.97 -26.85	peak peak
2 3	1587.975 4254.921 4924.000	5.37 7.28 8.01 11.38	26.20 33.17 34.11 35.52	41.46 42.37 42.49	46.05 47.95 47.52 47.75	36.16 46.03 47.15 53.37	74.00 74.00 74.00 74.00	-37.84 -27.97 -26.85 -20.63	peak peak peak
2 3 4 pp	1587.975 4254.921 4924.000 6414.167	5.37 7.28 8.01 11.38	26.20 33.17 34.11 35.52	41.46 42.37 42.49 41.28	46.05 47.95 47.52 47.75 45.50	36.16 46.03 47.15 53.37	74.00 74.00 74.00 74.00 74.00	-37.84 -27.97 -26.85 -20.63	peak peak peak peak

Report No.: SZEM180700654904 Page: 129 of 182

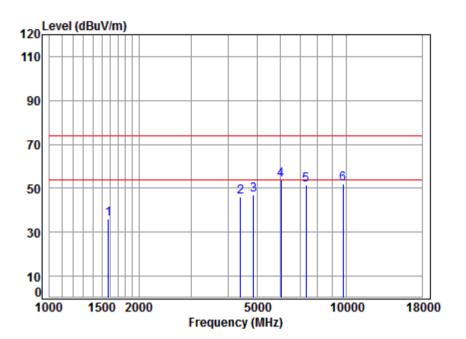
Test mode:	802.11g_CDD	Test channel:	Lowest	Remark:	Peak	Vertical
------------	-------------	---------------	--------	---------	------	----------



Site	: char	mber							
Condit	tion: 3m \	VERTIC	AL						
Job No	o : 0654	49RG							
Mode	: 2412	2 TX R	SE						
Note	: 2.40	G WIFI	11G						
	: CDD								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHz	dB	dB/m		dBuV	dBuV/m			
1	MHz	dB 5.32	dB/m 26.36	dB 41.49	dBuV			dB	peak
1 2						35.76		-38.24	•
	1625.121	5.32	26.36	41.49	45.57 48.83	35.76 46.88	74.00	-38.24 -27.12	peak
2	1625.121 4242.641	5.32 7.27	26.36 33.15	41.49 42.37 42.47	45.57 48.83 48.15	35.76 46.88 47.59	74.00 74.00	-38.24 -27.12 -26.41	peak peak
2 3	1625.121 4242.641 4824.000	5.32 7.27 7.91	26.36 33.15 34.00	41.49 42.37 42.47 41.08	45.57 48.83 48.15 47.05	35.76 46.88 47.59 52.70	74.00 74.00 74.00	-38.24 -27.12 -26.41 -21.30	peak peak peak
2 3 4	1625.121 4242.641 4824.000 6679.040 7236.000	5.32 7.27 7.91 11.02	26.36 33.15 34.00 35.71	41.49 42.37 42.47 41.08	45.57 48.83 48.15 47.05	35.76 46.88 47.59 52.70	74.00 74.00 74.00 74.00 74.00	-38.24 -27.12 -26.41 -21.30	peak peak peak peak

Report No.: SZEM180700654904 Page: 130 of 182

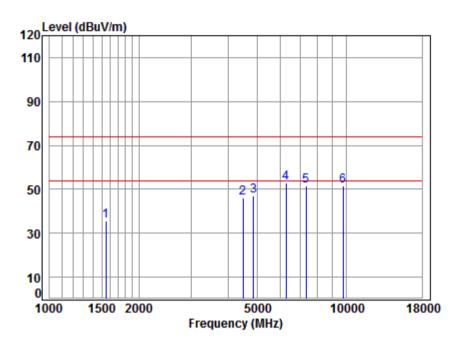
Test mode:	802.11g_CDD	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	-------------	---------------	--------	---------	------	------------



Site	: cha	mber							
Condit	tion: 3m H	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 241	2 TX R	SE						
Note	: 2.40	G WIFI	11G						
	: CDD								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1663.137	5.27	26.52	41.51	45.70	35.98	74.00	-38.02	peak
2	3924.135	6.91	32.56	42.31	48.23	45.39	74.00	-28.61	peak
3	4824.000	7.91	34.00	42.47			74.00		•
З 4 рр			34.00 35.59	42.47	47.75	47.19		-26.81	peak
_				42.47 41.22	47.75 47.18	47.19 53.07	74.00	-26.81 -20.93	peak peak

Report No.: SZEM180700654904 Page: 131 of 182

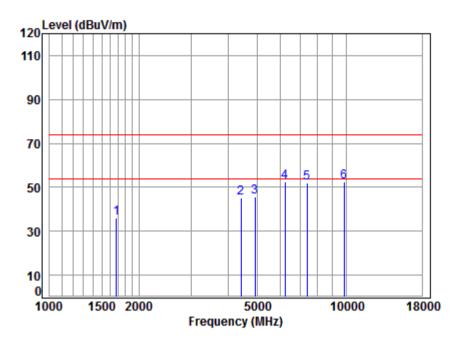
Test mode: 802.11g_CDD Test channel	el: Middle Remark	k: Peak Vertical
-------------------------------------	-------------------	------------------



Site	: cha	mber							
Condit	tion: 3m	VERTIC	AL						
Job No	b : 0654	49RG							
Mode	: 243	7 TX R	SE						
Note	: 2.4	G WIFI	11G						
	: CDD								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1578.822	5.38	26.16	41.46	46.09	36.17	74.00	-37.83	peak
2	4405.090	7.46	33.44	42.40	47.60	46.10	74.00	-27.90	peak
3	4874.000	7.96	34.05	42.48	47.66	47.19	74.00	-26.81	peak
4 pp	6036.421	10.64	35.14	41.58	49.49	53.69	74.00	-20.31	peak
5	7311.000	10.05	36.15	40.64	46.11	51.67	74.00	-22.33	peak
6	9748.000	10.82	37.75	37.54	40.87	51.90	74.00	-22.10	peak
									•

Report No.: SZEM180700654904 Page: 132 of 182

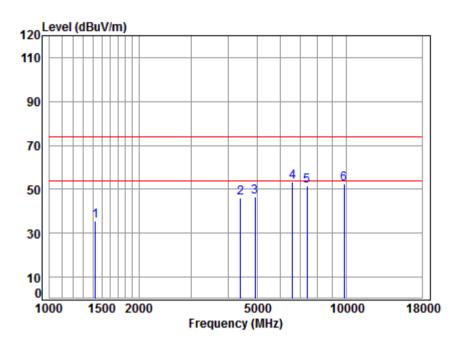
Test mode:	802.11g_CDD	Test channel:	Middle	Remark:	Peak	Horizontal



Site	: cha	nber							
Condit	tion: 3m H	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 243	7 TX R	SE						
Note	: 2.40	G WIFI	11G						
	: CDD								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4547 400				45 70		74.00		
1	1547.199	5.42	26.02	41.44	45 /9	35 /9	11 44	-38 21	neak
					42.72				•
2	4482.150	7.54	33.57				74.00		•
2 3		7.54 7.96	33.57		47.27	45.97	74.00	-28.03	peak
3		7.96	33.57 34.05	42.41	47.27 47.67	45.97 47.20	74.00 74.00	-28.03 -26.80	peak peak
3	4874.000	7.96	33.57 34.05 35.37	42.41 42.48	47.27 47.67 47.67	45.97 47.20 52.75	74.00 74.00 74.00	-28.03 -26.80 -21.25	peak peak peak

Report No.: SZEM180700654904 Page: 133 of 182

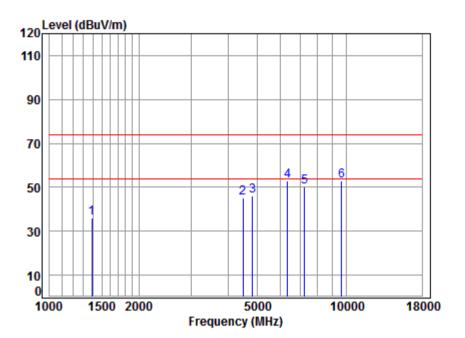
Test mode: 802.11g_CDD	Test channel:	Highest	Remark:	Peak	Vertical
------------------------	---------------	---------	---------	------	----------



Site	: chai	mber							
Condit	tion: 3m	VERTIC	AL						
Job No	b : 0654	49RG							
Mode	: 246	2 TX R	SE						
Note	: 2.4	G WIFI	11G						
	: CDD								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1682.477	5.25	26.60	41.52	45.66	35.99	74.00	-38.01	peak
1 2	1682.477 4417.841	5.25 7.47	26.60 33.46	41.52 42.40	45.66 46.45		74.00 74.00		•
				42.40	46.45	44.98		-29.02	peak
2	4417.841 4924.000	7.47 8.01	33.46	42.40 42.49	46.45 46.20	44.98 45.83	74.00	-29.02 -28.17	peak peak
2 3	4417.841 4924.000	7.47 8.01	33.46 34.11	42.40 42.49 41.44	46.45 46.20 47.65	44.98 45.83 52.52	74.00 74.00	-29.02 -28.17 -21.48	, peak peak peak

Report No.: SZEM180700654904 Page: 134 of 182

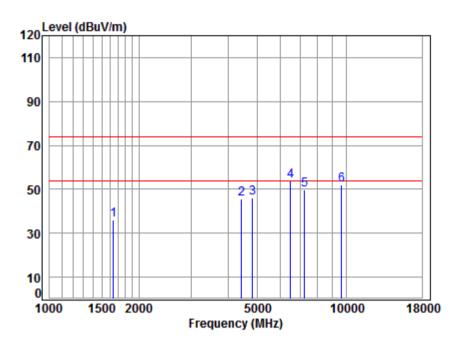
Test mode:	802.11g_CDD	Test channel:	Highest	Remark:	Peak	Horizontal
	<u> </u>		•			



Site	: cha	mber							
Condit	tion: 3m	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 246	2 TX R	SE						
Note	: 2.4	G WIFI	11G						
	: CDD								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4496 946	5.04		44.36		75.45	74.00	20.55	
1	1426.916	5.24	25.53	41.36			74.00		•
2	4405.090	7.46	33.44	42.40	47.42	45.92	74.00	-28.08	peak
3	4924.000	8.01	34.11	42.49	46.95	46.58	74.00	-27.42	peak
4 pp	6583.209	11.30	35.65	41.15	47.66	53.46	74.00	-20.54	peak
5	7386.000	10.03	36.21	40.59	46.06	51.71	74.00	-22.29	peak
6	9848.000	10.87	37.81	37.41	41.12	52.39	74.00	-21.61	peak

Report No.: SZEM180700654904 Page: 135 of 182

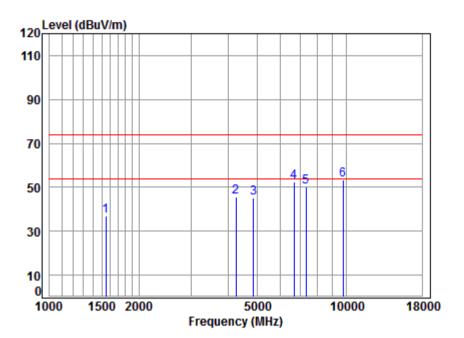
	Test mode:	802.11n(HT20)_MIMO	Test channel:	Lowest	Remark:	Peak	Vertical
--	------------	--------------------	---------------	--------	---------	------	----------



Condition: 3m VERTICAL Job No : 06549RG Mode : 2412 TX RSE	
Mode : 2412 TX RSE	
Note : 2.4G WIFI 11N 20	
: MIMO	
Cable Ant Preamp Read Limit Over	
Freq Loss Factor Factor Level Level Line Limit Remark	
MHz dB dB/m dB dBuVdBuV/mdBuV/m dB	
1 1390.276 5.12 25.39 41.33 46.88 36.06 74.00 -37.94 peak	
2 4495.125 7.55 33.59 42.42 46.28 45.00 74.00 -29.00 peak	
3 4824.000 7.91 34.00 42.47 46.83 46.27 74.00 -27.73 peak	
4 6340.436 11.24 35.44 41.34 47.69 53.03 74.00 -20.97 peak	
5 7236.000 10.07 36.09 40.69 44.87 50.34 74.00 -23.66 peak	
6 pp 9648.000 10.77 37.69 37.68 42.27 53.05 74.00 -20.95 peak	

Report No.: SZEM180700654904 Page: 136 of 182

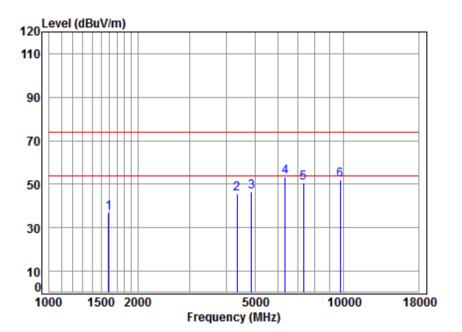
Test mode: 802.12	1n(HT20)_MIMO Te	est channel:	Lowest	Remark:	Peak	Horizontal
-------------------	------------------	--------------	--------	---------	------	------------



Site Condit Job No Mode		HORIZO							
Note			11N 20	9					
	: MIMO			-					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1639.274	5.30	26.42	41.49	45.59	35.82	74.00	-38.18	peak
2	4430.628	7.48	33.48	42.41	47.22	45.77	74.00	-28.23	peak
3	4824.000	7.91	34.00	42.47	46.46	45.90	74.00	-28.10	peak
4 pp	6488.754	11.52	35.59	41.22	47.73	53.62	74.00	-20.38	peak
5	7236.000	10.07	36.09	40.69	44.47	49.94	74.00	-24.06	peak
6	9648,000	10.77	37.69	37.68	41.32	52.10	74.00	04 00	

Report No.: SZEM180700654904 Page: 137 of 182

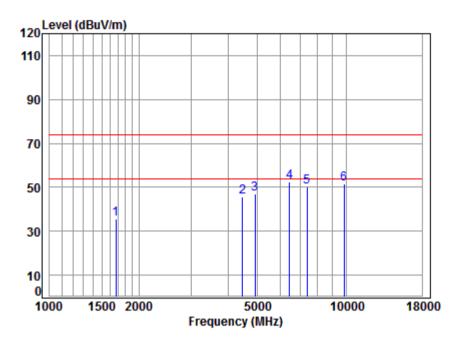
Test mode:	802.11n(HT20) MIMO	Test channel:	Middle	Remark:	Peak	Vertical



Site	: char	nber							
Condit	ion: 3m \	VERTIC	AL						
Job No	: 0654	49RG							
Mode	: 243	7 TX R	SE						
Note	: 2.40	G WIFI	11N 20	9					
	: MIMO	D							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1547.199	5.42	26.02	41.44	47.00	37.00	74.00	-37.00	peak
2	4242.641	7.27	33.15	42.37	47.50	45.55	74.00	-28.45	peak
3	4874.000	7.96	34.05	42.48	45.53	45.06	74.00	-28.94	peak
4	6679.040	11.02	35.71	41.08	46.93	52.58	74.00	-21.42	peak
5	7311.000	10.05	36.15	40.64	44.80	50.36	74.00	-23.64	peak
6 pp	9748.000	10.82	37.75	37.54	42.43	53.46	74.00	-20.54	peak
1 2 3 4 5	: MIM0 Freq MHz 1547.199 4242.641 4874.000 6679.040 7311.000	Cable Loss dB 5.42 7.27 7.96 11.02 10.05	Ant Factor dB/m 26.02 33.15 34.05 35.71 36.15	Preamp Factor dB 41.44 42.37 42.48 41.08 40.64	Level dBuV 47.00 47.50 45.53 46.93 44.80	dBuV/m 37.00 45.55 45.06 52.58 50.36	Line dBuV/m 74.00 74.00 74.00 74.00 74.00	Limit dB -37.00 -28.45 -28.94 -21.42 -23.64	peak peak peak peak peak

Report No.: SZEM180700654904 Page: 138 of 182

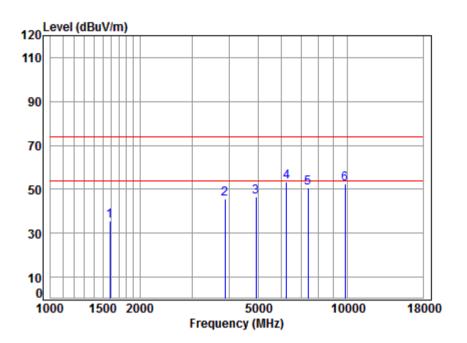
	Test mode:	802.11n(HT20)_MIMO	Test channel:	Middle	Remark:	Peak	Horizontal
--	------------	--------------------	---------------	--------	---------	------	------------



Site Condit Job No Mode Note	: 243	HORIZO 49RG 7 TX R G WIFI		9					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss		Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1592.571	5.36	26.22	41.47	47.00	37.11	74.00	-36.89	peak
2	4354.454	7.40	33.35	42.39	47.29	45.65	74.00	-28.35	peak
3	4874.000	7.96	34.05	42.48	46.85	46.38	74.00	-27.62	peak
4 pp	6340.436	11.24	35.44	41.34	47.83	53.17	74.00	-20.83	peak
5	7311.000	10.05	36.15	40.64	45.13	50.69	74.00	-23.31	peak
6	9748.000	10.82	37.75	37.54	40.81	51.84	74.00	-22.16	peak

Report No.: SZEM180700654904 Page: 139 of 182

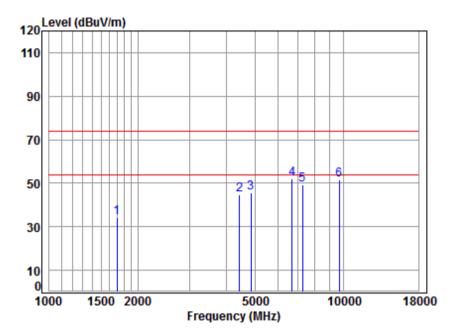
Test mode:	802.11n(HT20) MIMO	Test channel:	Highest	Remark:	Peak	Vertical
	· /_		0			



Site	: cha	nber							
Condit	ion: 3m	VERTIC	AL						
Job No	o : 0654	49RG							
Mode	: 246	2 TX R	SE						
Note	: 2.40	G WIFI	11N 20	9					
	: MIM	D							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	AAL I.	10							
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	мнz 1672.779	ав 5.26	dB/m 26.56						peak
1 2				41.52	45.30	35.60		-38.40	•
	1672.779	5.26 7.53	26.56	41.52	45.30 46.89	35.60 45.56	74.00	-38.40 -28.44	peak
2	1672.779 4469.214 4924.000	5.26 7.53 8.01	26.56 33.55 34.11	41.52 42.41 42.49	45.30 46.89 47.18	35.60 45.56 46.81	74.00 74.00 74.00	-38.40 -28.44 -27.19	peak peak
2 3	1672.779 4469.214 4924.000	5.26 7.53 8.01 11.45	26.56 33.55 34.11	41.52 42.41 42.49 41.25	45.30 46.89 47.18 46.80	35.60 45.56 46.81 52.55	74.00 74.00 74.00	-38.40 -28.44 -27.19 -21.45	peak peak peak
2 3 4 pp	1672.779 4469.214 4924.000 6451.353	5.26 7.53 8.01 11.45	26.56 33.55 34.11 35.55	41.52 42.41 42.49 41.25	45.30 46.89 47.18 46.80 44.73	35.60 45.56 46.81 52.55	74.00 74.00 74.00 74.00 74.00	-38.40 -28.44 -27.19 -21.45	peak peak peak peak

Report No.: SZEM180700654904 Page: 140 of 182

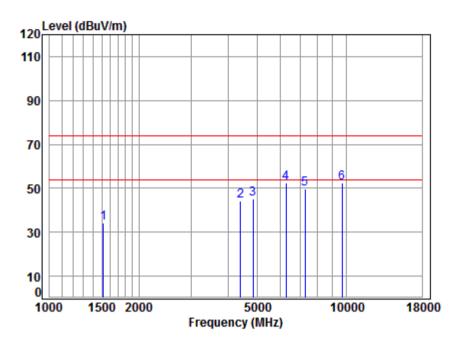
Test mode: 8	802.11n(HT20)_MIMO	Test channel:	Highest	Remark:	Peak	Horizontal
--------------	--------------------	---------------	---------	---------	------	------------



Site	: chai	mber							
Condit	tion: 3m H	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 246	2 TX R	SE						
Note	: 2.40	G WIFI	11N 20	3					
	: MIM	D							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1583.392	5.37	26.18	41.46	45.43	35.52	74.00	-38.48	peak
2	3867.831	6.85	32.45	42.30	48.81	45.81	74.00	-28.19	peak
3	4924.000	8.01	34.11	42.49	46.83	46.46	74.00	-27.54	peak
4 pp	6249.464	11.06	35.35	41.41	48.52	53.52	74.00	-20.48	peak
5	7386.000	10.03	36.21	40.59	44.99	50.64	74.00	-23.36	peak
6	9848.000	10.87	37.81	37.41	41.40	52.67	74.00	-21.33	peak

Report No.: SZEM180700654904 Page: 141 of 182

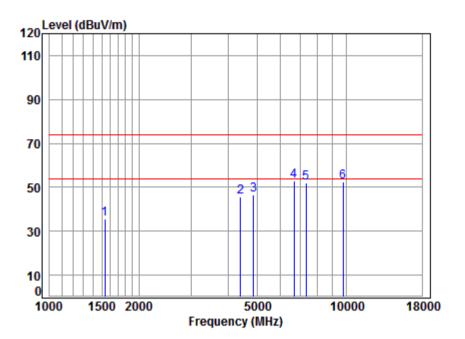
Test mode: 802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Vertical
--------------------------	---------------	--------	---------	------	----------



Site Condit Job No Mode Note	: 2422	VERTIC 49RG 2 TX S G WiFi							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1702.042	5.23	26.68	41.53	43.72	34.10	74.00	-39.90	peak
2	4430.628	7.48	33.48	42.41	46.25	44.80	74.00	-29.20	peak
3	4844.000	7.93	34.02	42.48	46.24	45.71	74.00	-28.29	peak
4 pp	6698.373	10.97	35.72	41.07	46.33	51.95	74.00	-22.05	peak
5	7266.000	10.06	36.12	40.67	43.62	49.13	74.00	-24.87	peak
6	9688.000	10.79	37.71	37.63	40.54	51.41	74.00	-22.59	peak

Report No.: SZEM180700654904 Page: 142 of 182

Test mode:	802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Horizontal
	```'					

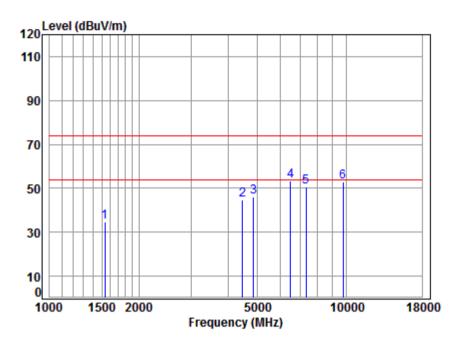



Site	: cha	mber							
Condit	tion: 3m H	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 242	2 TX S	E						
Note	: 2.4	G WiFi	11N40						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
-	MHz	dB							
1	MHz	dB 5.45		dB 41.42					peak
1 2			25.89		44.25	34.17		-39.83	•
	1520.598	5.45	25.89	41.42 42.40	44.25 45.95	34.17 44.45	74.00	-39.83 -29.55	peak
2	1520.598 4405.090 4844.000	5.45 7.46 7.93	25.89 33.44	41.42 42.40 42.48	44.25 45.95 45.81	34.17 44.45 45.28	74.00 74.00	-39.83 -29.55 -28.72	peak peak
2 3	1520.598 4405.090 4844.000	5.45 7.46 7.93	25.89 33.44 34.02	41.42 42.40 42.48 41.39	44.25 45.95 45.81 47.48	34.17 44.45 45.28 52.56	74.00 74.00 74.00	-39.83 -29.55 -28.72 -21.44	, peak peak peak
2 3 4 pp	1520.598 4405.090 4844.000 6267.553	5.45 7.46 7.93 11.10	25.89 33.44 34.02 35.37	41.42 42.40 42.48 41.39	44.25 45.95 45.81 47.48	34.17 44.45 45.28 52.56 49.79	74.00 74.00 74.00 74.00	-39.83 -29.55 -28.72 -21.44 -24.21	peak peak peak peak



Report No.: SZEM180700654904 Page: 143 of 182

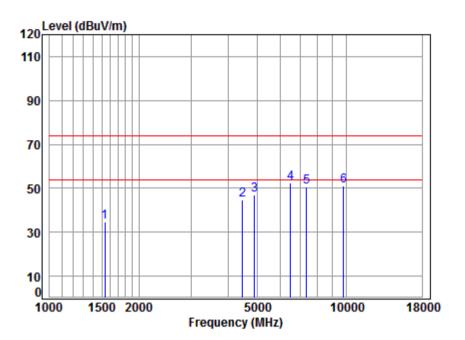
Test mode:	802.11n(HT40)	Test channel:	Middle	Remark:	Peak	Vertical
	```					



Site	: cha	mber							
Condit	tion: 3m \	VERTIC	AL						
Job No	b : 0654	49RG							
Mode	: 243	7 TX S	E						
Note	: 2.40	G WiFi	11N40						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1									neak
1	1538.281	5.43	25.98	41.43	45.65	35.63	74.00	-38.37	•
1 2 3	1538.281 4405.090	5.43 7.46	25.98 33.44	41.43 42.40	45.65 47.34	35.63 45.84	74.00 74.00	-38.37 -28.16	peak
2 3	1538.281 4405.090 4874.000	5.43 7.46 7.96	25.98 33.44 34.05	41.43 42.40 42.48	45.65 47.34 47.16	35.63 45.84 46.69	74.00 74.00 74.00	-38.37 -28.16 -27.31	peak peak
2	1538.281 4405.090 4874.000	5.43 7.46 7.96	25.98 33.44 34.05	41.43 42.40 42.48 41.08	45.65 47.34 47.16 47.25	35.63 45.84 46.69 52.90	74.00 74.00 74.00 74.00	-38.37 -28.16 -27.31 -21.10	peak peak peak
2 3 4 pp	1538.281 4405.090 4874.000 6679.040	5.43 7.46 7.96 11.02	25.98 33.44 34.05 35.71	41.43 42.40 42.48 41.08	45.65 47.34 47.16 47.25 46.52	35.63 45.84 46.69 52.90	74.00 74.00 74.00 74.00 74.00	-38.37 -28.16 -27.31 -21.10	peak peak peak peak

Report No.: SZEM180700654904 Page: 144 of 182

Test mode:	802.11n(HT40)	Test channel:	Middle	Remark:	Peak	Horizontal
	```					

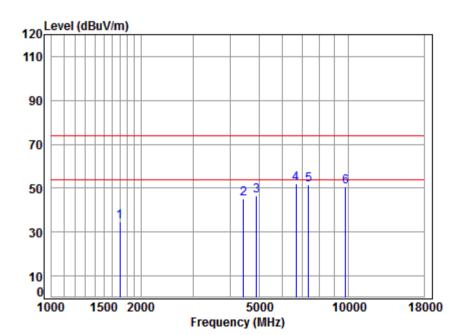



Site	: cha								
Condit	tion: 3m H	HORIZO	NTAL						
Job No	b : 0654	49RG							
Mode	: 243	7 TX S	E						
Note	: 2.40	G WiFi	11N40						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1538,281	5.43	25.98	41.43	11 61	34 62	74.00	- 39 38	neak
-									•
2	4469.214	7.53	33.55	42.41			74.00		•
3	4874.000	7.96	34.05	42.48	46.52	46.05	74.00	-27.95	peak
4 pp	6488.754	11.52	35.59	41.22	47.62	53.51	74.00	-20.49	peak
					45 40	F0 70	74 00		· ·
5	7311.000	10.05	36.15	40.64	45.16	50.72	74.00	-23.28	peak
5 6	7311.000 9748.000	10.05 10.82	36.15 37.75		45.16		74.00 74.00		•



Report No.: SZEM180700654904 Page: 145 of 182

Test mode: 802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Vertical
--------------------------	---------------	---------	---------	------	----------




Site	: cha	mber							
Condit	tion: 3m	VERTIC	AL						
Job No	b : 0654	49RG							
Mode	: 245	2 TX S	E						
Note	: 2.40	G WiFi	11N40						
	: ANT:	1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1538.281	5.43	25.98	41.43	44.64	34.62	74.00	-39.38	peak
1 2	1538.281 4469.214	5.43 7.53	25.98 33.55				74.00 74.00		•
		7.53		42.41	46.08	44.75		-29.25	peak
2	4469.214 4904.000	7.53 7.99	33.55 34.09	42.41 42.48	46.08 47.29	44.75 46.89	74.00	-29.25 -27.11	peak peak
2 3	4469.214 4904.000	7.53 7.99 11.52	33.55 34.09 35.59	42.41 42.48	46.08 47.29 46.62	44.75 46.89 52.51	74.00 74.00 74.00	-29.25 -27.11 -21.49	peak peak peak
2 3 4 pp	4469.214 4904.000 6488.754	7.53 7.99 11.52	33.55 34.09 35.59	42.41 42.48 41.22	46.08 47.29 46.62 45.10	44.75 46.89 52.51 50.72	74.00 74.00 74.00 74.00	-29.25 -27.11 -21.49	peak peak peak peak



Report No.: SZEM180700654904 Page: 146 of 182

Test mode: 802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------------	---------------	---------	---------	------	------------



Site Condit Job No Mode Note	: 245	HORIZO 49RG 2 TX S G WiFi							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1702.042	5.23	26.68	41.53	44.31	34.69	74.00	-39.31	peak
2	4430.628	7.48	33.48	42.41	46.61	45.16	74.00	-28.84	peak
3	4904.000	7.99	34.09	42.48	46.93	46.53	74.00	-27.47	peak
4 pp	6659.763	11.08	35.70	41.10	46.55	52.23	74.00	-21.77	peak
5	7356.000	10.04	36.19	40.61	45.99	51.61	74.00	-22.39	peak
6	9808.000	10.85	37.79	37.46	39.46	50.64	74.00	-23.36	peak



Report No.: SZEM180700654904 Page: 147 of 182

#### Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. So only the worst case data is recorded in the report.

- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 4) All Modes have been tested, but only the worst case data displayed in this report.