

FCC Test Report

Product Name: GSM Mobile Phone

Model Number: HUAWEI G6600

Report No: SYBHZ(R)E007092009EB-3
FCC ID: QISG6600

Reliability Laboratory of Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

1. The laboratory has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L0310.
2. The laboratory has obtained the accreditation of THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION (A2LA), and Accreditation Council Certificate Number: 2174.01.
3. The laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 97456.
4. The laboratory has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 6369A-1.
5. The laboratory also has been listed by the VCCI to perform EMC measurements. The accreditation number is R2364, C2583, and T256.
6. The test report is invalid if not marked with "exclusive stamp for the test report".
7. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
8. The test report is invalid if there is any evidence of erasure and/or falsification.
9. If there is any dissidence for the test report, please file objection to the test centre within 15 days from the date of receiving the test report.
10. Normally, the test report is only responsible for the samples that have undergone the test.
11. Context of the test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the laboratory.

REPORT ON

FCC Test of HUAWEI GSM Mobile Phone

M/N: HUAWEI G6600

Report No: SYBHZ(R)E007092009EB-3

FCC ID: QISG6600

REGULATION

FCC CFR47 Part 2: Subpart J;

FCC CFR47 Part 24: Subpart E;

CONCLUSION

PASS

General Manager

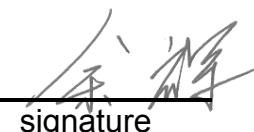
2009.09.17

张兴海

Date

Name

Technical Responsibility


For Area of Testing

2009.09.15

余 辉

Date

Name

Test Lab Engineer

2009.09.11

胡 俊

Date

Name

胡俊

Contents

1	<u>Summary</u>	5
2	<u>Product Description</u>	6
2.1	PRODUCTION INFORMATION	6
2.2	MODIFICATION INFORMATION.....	6
3	<u>Test Site Description</u>	7
3.1	TESTING PERIOD	7
3.2	GENERAL SET UP DESCRIPTION	7
4	<u>Product Description</u>	8
4.1	TECHNICAL CHARACTERISTICS	8
4.2	EUT IDENTIFICATION LIST	10
5	<u>Main Test Instruments</u>	11
6	<u>Transmitter Measurements</u>	12
6.1	EFFECTIVE ISOTROPIC RADIATED POWER OF TRANSMITTER (EIRP).....	12
6.2	CONDUCTED POWER OF TRANSMITTER.....	15
6.3	MODULATION CHARACTERISTICS	17
6.4	OCCUPIED BANDWIDTH.....	19
6.5	BAND EDGES COMPLIANCE	21
6.6	SPURIOUS EMISSION AT ANTENNA TERMINAL	23
6.7	FREQUENCY STABILITY	25
7	<u>System Measurement Uncertainty</u>	28
8	<u>Appendices</u>	29

1 Summary

The table below summarizes the measurements and results for the HUAWEI GSM/GPRS Mobile Phone HUAWEI G6600. Detailed results and descriptions are shown in the following pages.

Table 1 Summary of results

FCC Measurement Specification	FCC Limits Part(s)	Description	Result
2.1046	24.232	Effective Radiated Power of Transmitter	PASS
2.1046	24.232	Conducted Power of Transmitter	PASS
2.1047	/	Modulation Characteristics	PASS
2.1049	/	Occupied Bandwidth	PASS
2.1051	24.238	Band Edges Compliance	PASS
2.1053	24.238	Spurious Emissions at Antenna Terminal	PASS
2.1055	24.235	Frequency Stability	PASS

Note: The Radiated Spurious Emissions' test results are shown in the EMC report.

2 Product Description

2.1 Production Information

2.1.1 General Description

Huawei GSM/GPRS Mobile Phone HUAWEI G6600 is subscriber equipment in the GSM/GPRS system. The frequency band is PCS 1900 .The Mobile Phone implements such functions as RF signal receiving /Transmitting, GSM/ GPRS protocol processing, voice and MMS service etc.

2.1.2 Support function and Service

The Mobile Phone HUAWEI G6600 support the function and service as follows:

Table 2 Service and Test mode List

Service Name	Characteristic	Corresponding Test Mode	Note
Voice and MMS	Modulation: GMSK	TM1*	GSM/GPRS

Note: * The specified GSM/GPRS test conditions & settings are defined in 3GPP TS51.010 V6.1.0

2.2 Modification Information

For original equipment, following table is not application.

Table 3 Modification Information

Model Number	Board/Module	Original Version	New Version	Modify Information
Not applicable				

3 Test Site Description

The test site of:

***Huawei Technologies Co. Ltd.
P.O. Box 518129
Huawei base, bantian,
Longgang District, Shenzhen, China***

3.1 Testing Period

The test have been performed during the period of

September.8.2009—September.10.2009

3.2 General Set up Description

Huawei GSM/GPRS Mobile Phone HUAWEI G6600 is subscriber equipment in the GSM/GPRS system. The frequency band is PCS 1900

TM1: GSM/GPRS Mode with GMSK Modulation

4 Product Description

4.1 Technical Characteristics

4.1.1 Frequency Range

Table 4 Frequency Range

Uplink band:	1850 to 1910 MHz
Downlink band:	1930 to 1990 MHz

4.1.2 Channel Spacing / Separation

Table 5 Channel Spacing / Separation

Channel spacing	200 kHz
Channel separation:	200 kHz

4.1.3 Type of Emission

Table 6 Type of Emission

Emission Designation:	300kGXW
-----------------------	---------

According to CFR 47 (FCC) part 2, subpart C, section 2.201 and 2.202

4.1.4 Environmental Requirements

Table 7 Environmental Requirements

Minimum temperature:	- 10 °C
Maximum temperature:	+ 55 °C
Relative Humidity:	5%-95%RH

4.1.5 Power Source

Table 8 Power Source

AC voltage nominal:	~120V
AC voltage range	~100V-~240V
AC current maximal:	400mA

4.1.6 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033 (9).

Please reference the document Tune-up Procedure in TCF.

4.1.7 Applied DC Voltages and Currents

According to CFR (FCC) part 2, subpart 2, section 2.1033 (8).

The voltage and current in the final RF stage is:

Table 9 Applied RF module DC Voltages and Currents

Voltage:	— +3.7VDC
Current:	120mA According to CFR (FCC) part 2, subpart 2, section 2.1033 (8)

4.2 EUT Identification List

4.2.1 Board Information

Table 10 Board Information

HUAWEI GSM/GPRS Mobile Phone		
HUAWEI G6600		
Board and Module		
Equipment Designation / Description	Serial Number	Remarks
-Main board	0304594C98000137	HG1G6600M VER.C RF
-LCD	1904084501011D	WD-F3224XQ-6FLWb
-Battery	BAA9819XB3212020	HB4H1

4.2.2 Adapter Technical Data

AC/DC Adapter Model:	HS-050040E5	HS-050040U6
Manufacturer:	Huawei Technologies Co., Ltd.	Huawei Technologies Co., Ltd.
Rated Voltage	~ 120V, 60Hz	~ 120V, 60Hz
Input Voltage:	~ 100-240V 50/60Hz	~ 100-240V 50/60Hz
Output Voltage:	— 5.0V	— 5.0V
Rated Power:	2W	2W
S/N:	BYA970816120	BYA951905623

4.2.3 Battery Technical Data

Battery Model:	HB4H1
Rated capacity:	1000mAh
Nominal Voltage:	— +3.7V
Charging Voltage:	— +4.2V

4.2.3 FCC Identification

Grantee Code: QIS
Product Code: G6600
FCC Identification: QISG6600

5 Main Test Instruments

Table 11 Main Test Equipments

Equipment Description	Manufacturer	Model	Serial Number	Calibrated until (yyyy.MM.dd)
Receiver	R&S	ESIB 26	100318	2010.04.21
Loop Antenna	Schwarzbeck	FMZB1516	1516115	2010.03.10
BiLog Antenna	Schaffner	CBL 6112B	2941	2010.03.17
BiLog Antenna	Schaffner	CBL 6112B	2747	2009.11.09
Horn Antenna	ETS-Lindgren	3117	00062553	2010.08.15
Dipole	Schwarzbeck	D69250-UHAP/D69250-VHAP	979/917	2009.10.11
Signal Generator	R&S	SMT06	830264/009	2010.05.11
Signal Generator	R&S	SMR 40	100325	2010.05.11
Signal Generator	R&S	SMU200A	103235	2010.04.10
Power Supply	Agilent	66319	MY43003185	2010.08.06
Climate Chamber	WEISS	ACS-1	3604040034	2010.06.05
Universal Radio Communication Tester	R&S	CMU200	114634	2009.12.24
Spectrum Analyzer	Agilent	PSA E4440A	MY46187665	2010.08.31

6 Transmitter Measurements

6.1 Effective Isotropic Radiated Power of Transmitter (EIRP)

6.1.1 Test Conditions

Table 12 Test Conditions

Preconditioning:	1 hour
Measured at:	enclosure
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1 at frequency B, M, T

6.1.2 Test Specifications and Limits

6.1.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 24.232

6.1.2.2 Supporting Standards

Table 13 Supporting Standards:

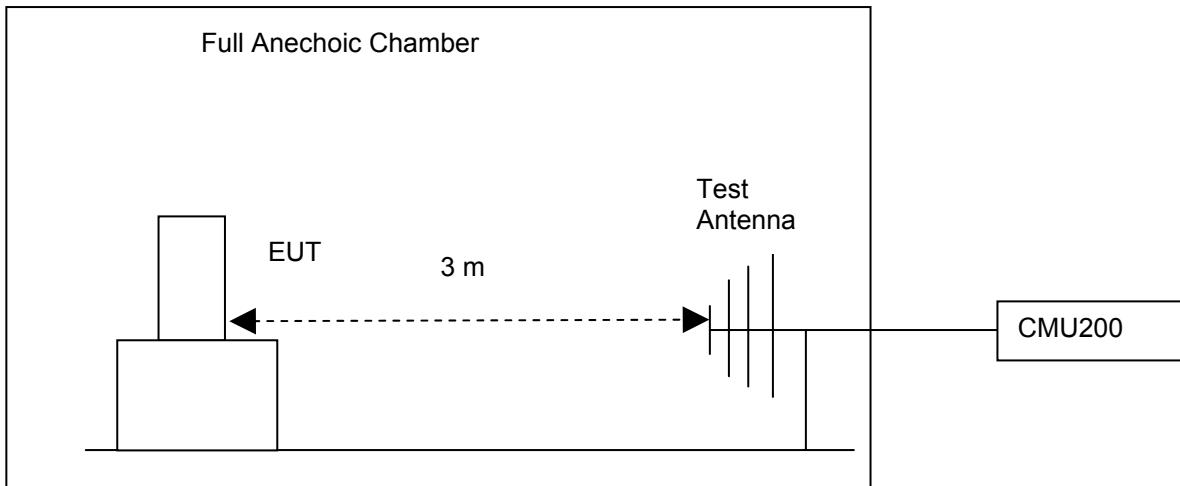
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.1.2.3 Limits

Compliance with part 24.232, in no any case may the peak power of a mobile Phone transmitter exceed 2 W. And calculate longitude EIRP by following formula: $EIRP(dBm) = 10 * \log (EIRP_{in} \text{ mwatts})$.
 $EIRP(dBm) = ERP(dBm) + 2.15 \text{ dB}$.

Table 14 Limits

Maximum Output Power (Watts)	< 2 Watts
Maximum Output Power (dBm)	< 33 dBm


6.1.3 Test Method and Setup

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, EIRP shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Mobile Phone to the wireless communication tester CMU200 via the air interface. The band is set as PCS band.
- (b) Test the Radiated maximum output power by the CMU200 received from test antenna.
- (c) Use substitution method to verify the maximum output power. The EUT is substituted by a horn antenna. The dipole is connected to a signal generator. And then adjust the output level of the signal generator to get the same received power recorded in step (b) on CMU200, and record the

power level of Signal Generator. Of course, the cable loss at the test frequency should be compensated.

Test setup

Step 1: Pre-test

Step 2: Substitution method to verify the maximum ERP

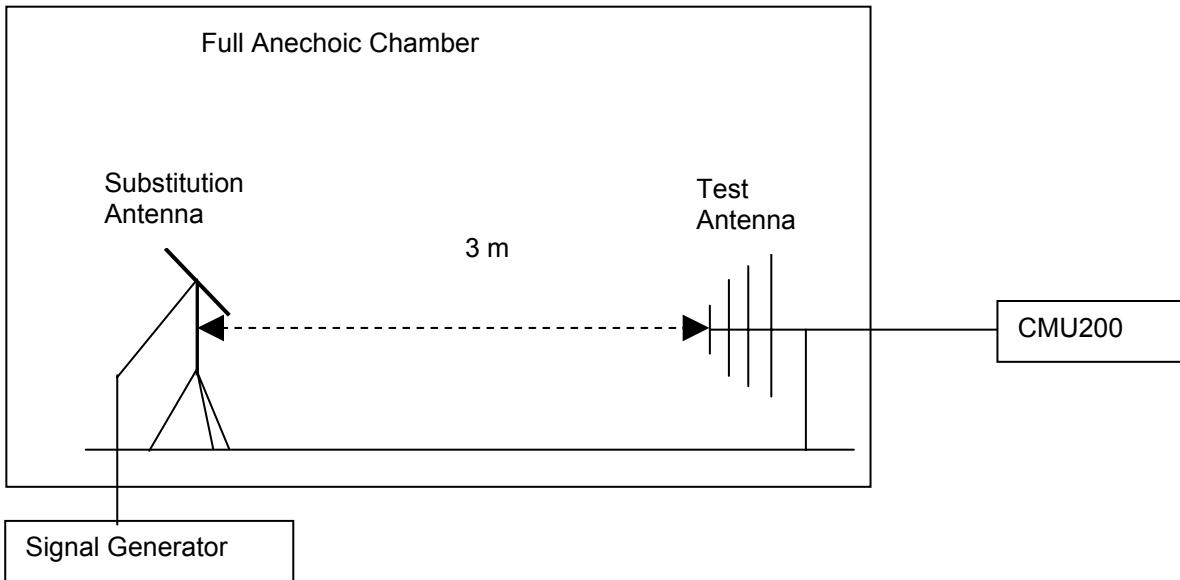


Figure 1. Test Set-up

NOTE: Effective Isotropic radiated power (EIRP) refers to the radiation power output of the EUT, assuming all emissions are radiated from Horn antennas.

6.1.4 Measurement Results

6.1.4.1 Pre-test Results

Table 15 Measurement Results

		RF Output Power (EIRP)					
TEST CONDITIONS		Channel 512(B) 1850.2MHz		Channel 661(M) 1880.00MHz		Channel 810(T) 1909.8MHz	
		dBm		dBm		dBm	
		Measured	Limit	Measured	Limit	Measured	Limit
TM1	T_{nom} (25 °C) V_{nom} (3.7V)	30.16	33	30.22	33	30.17	33

6.1.4.2 Substitution Results

Table 16 Substitution Results

Test Mode	Freq. [MHz]	Meas. Level [dBm]	Substitution Antenna Type	SGP [dBm]	Substitution Gain [dBi]	Cable Loss [dB]	Substitution Level (EIRP) [dBm]	Limit [dBm]	Result
TM1	1850.2	30.16	Horn Ant.	25.96	5.18	1.0	30.13	33	Pass
TM1	1880.0	30.22	Horn Ant.	25.70	5.46	1.0	30.17	33	Pass
TM1	1909.8	30.17	Horn Ant.	25.38	5.77	1.0	30.10	33	Pass

Note: a, For get the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should take to calculate it,

$$EIRP [dBm] = SGP [dBm] - \text{Cable Loss} [dB] + \text{Gain} [dBi]$$

SGP: Signal Generator Level

b, A GSM/GPRS signal with bandwidth of 200kHz are created by the vector generator R&S SMU200A.

c, RBW=10kHz, VBW=300kHz, and integrated by the instrument to 200kHz for TM1.

6.1.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.2 Conducted Power of Transmitter

6.2.1 Test Conditions

Table 17 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1 at frequency B, M, T

6.2.2 Test Specifications and Limits

6.2.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 24.232

6.2.2.2 Supporting Standards

Table 18 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.2.2.3 Limits

Compliance with part 24.232, in no any case may the peak power of a mobile Phone transmitter exceed 2 W. The calculated longitude EIRP by following formula:

$$EIRP(dBm) = 10 * \log (EIRP_{in\ mwatts}).$$

And for conducted power, we can use Antenna Gain to calculate the limit. So the conducted power:

$$P_{cod.}(dBm) = EIRP(dBm) - Gain(dBi).$$

$$\text{and } Gain(dBi) = Gain(dBd) + 2.15dB$$

Table 19 Limits

Maximum Output Power (Watts)	< 2 Watts=33 dBm
Antenna Gain(dBi):	1 dBi
Maximum Conducted Output Power (dBm)	< 32dBm

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.2.3 Test Method and Setup

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, Conducted maximum power shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Mobile Phone to the wireless communication tester CMU200 via the antenna connector. The band class is set as PCS band.

(b) The mobile was set up for the max output power with pseudo random data modulation. The power was measured with Agilent E4440A (peak and average)

Test setup

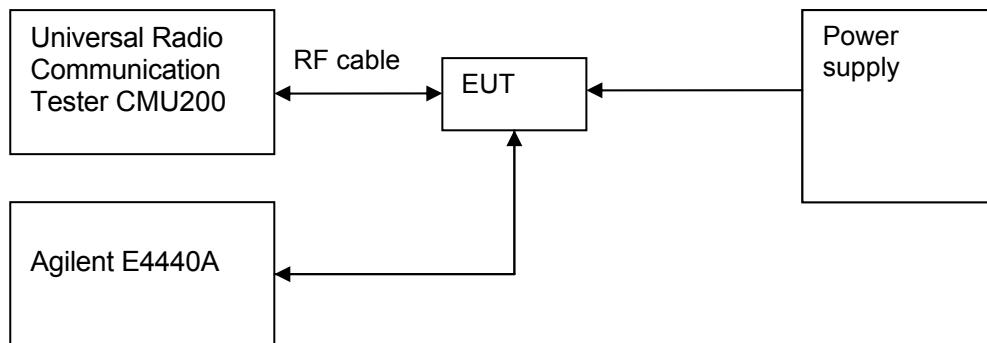


Figure 2. Test Set-up

6.2.4 Measurement Results

Table 20 Measurement Results

		RF Output Power (Conducted)					
TEST CONDITIONS		Channel 512(B) 1850.2MHz		Channel 661(M) 1880.0MHz		Channel 810(T) 1909.8MHz	
T _{nom} (25 °C)	V _{nom} (3.7V)	Measured	Limit	Measured	Limit	Measured	Limit
TM1(dBm)	dBm	29.21	32	29.18	32	29.25	32
Peak-to-Average Ratio	dB	0.22	13	0.24	13	0.21	13

6.2.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.3 Modulation Characteristics

6.3.1 Test Conditions

Table 21 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1 at frequency M

6.3.2 Test Specifications and Limits

6.3.2.1 Specification

CFR 47 (FCC) part 2.1047 and part 24 Subpart E

6.3.2.2 Supporting Standards

Table 22 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.3.2.3 Limits

No specific modulation characteristics requirement limits in part 2.1047 and part 24 Subpart E.

Table 23 Limits

Limits	Not applicable
--------	----------------

6.3.3 Test Method and Setup

Connect the Mobile Phone to Wireless Communication Test Set R&S CMU200 via the antenna connector. The band class is set as PCS 1900; the Mobile Phone's output is matched with 50Ω loads, test method was according to 3GPP TS 51.010. The phase Error and Frequency Error of the Mobile Phone was tested.

Test setup

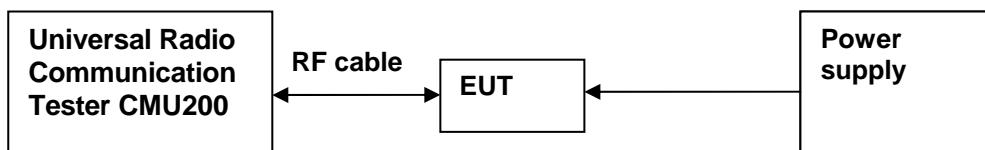


Figure 3. Test Set-up

6.3.4 Measurement Results

Table 24 Measurement Results

		Modulation Characteristic
TEST CONDITIONS		Channel 661(M) 1880MHz
		Measured
T_{nom} (25 °C)	V_{nom} (3.7V)	Refer to Appendix A

6.3.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix A.

6.4 Occupied Bandwidth

6.4.1 Test Conditions

Table 25 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1 at frequency B, M, T

6.4.2 Test Specifications and Limits

6.4.2.1 Specification

CFR 47 (FCC) part 2.1049 and part 24 Subpart E.

6.4.2.2 Supporting Standards

Table 26 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.4.2.3 Limits

No specific occupied bandwidth requirement in part 24 Subpart E, but the occupied bandwidth was defined in part 2.1049: the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Table 27 Limits

Upper /lower frequency limits	0.5% of the mean power
-------------------------------	------------------------

6.4.3 Test Method and Setup

Mobile Phone was connected to the wireless communication test set CMU200 and the Spectrum Analyzer E4440A via the divider. The band class is set as PCS band; Mobile Phone was controlled to transmit maximum power. Measure and record the occupied bandwidth of the Mobile Phone by the Agilent E4440A.

The OBW, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

Refer to 47CFR part2.1049 section (g)&(h).

(g) Transmitter in which the modulating base band comprises not more than three independent channels - when modulated by the full complement of signals for which the transmitter is rated. The level of modulation for each channel should be set to that prescribed in rule parts applicable to the

services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudorandom generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at discretion of the user.

Measurement bandwidth (RBW): 3 kHz (Resolution bandwidth)

Video bandwidth (VBW): 10 kHz

Test Set-up

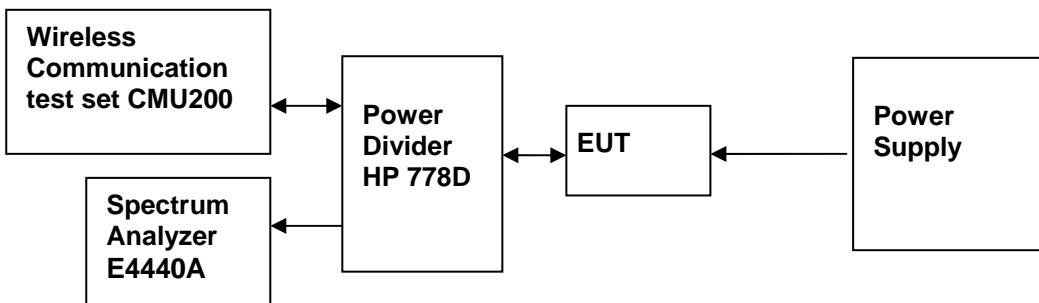


Figure 4. Test Set-up

6.4.4 Measurement Results

Table 28 Measurement Results

TEST CONDITIONS		Occupied Bandwidth		
		Channel 512 (B) 1850.2MHz	Channel 661 (M) 1880MHz	Channel 810 (T) 1909.8MHz
		Measured (kHz)	Measured (kHz)	Measured (kHz)
T_{nom} (25 °C)	99%	246.22	245.84	245.33
	-26dB	323.85	315.56	306.07

6.4.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix B.

6.5 Band Edges Compliance

6.5.1 Test Conditions

Table 29 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	TM1 at frequency B, T

6.5.2 Test Specifications and Limits

6.5.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 24.238

6.5.2.2 Supporting Standards

Table 30 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.5.2.3 Limits

Compliance with part 24.238, all spurious emission must be attenuated below the transmitter power by at least $43 + 10 \log_{10} P$ (W) . (Whereas P is the rated power of the EUT in Watt).

Table 31 Limits

Rated Power:	30 dBm
Required attenuation:	$43 + 10 \log 1 = 43$, 30 dBm - 43 dB
Absolute level	- 13 dBm

6.5.3 Test Method and Setup

Mobile Phone was connected to the wireless communication test set CMU200 and the Spectrum Analyzer E4440A via the divider, the band class is set as PCS band. Mobile Phone was controlled to transmit maximum power. Measure and record band edges compliance of the Mobile Phone by the Agilent E4440A.

Measurement bandwidth (RBW): 3 kHz (Resolution bandwidth)
Video bandwidth (VBW): 10 kHz

Test Set-up

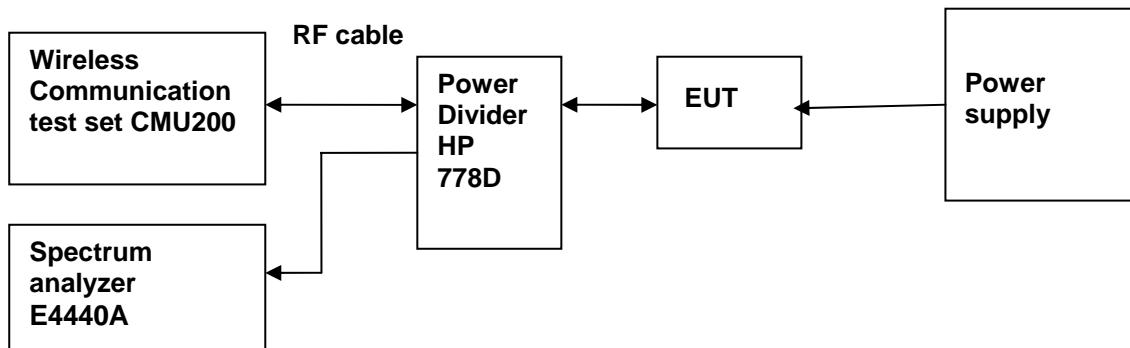


Figure 5. Test Set-up

6.5.4 Measurement Results

Table 32 Measurement Results outside Band Edges-- Single Carrier

Band	Frequency of Band edges [MHz]	Channel Number	Test Mode	Spurious Level measured [dBm]	FCC limit	Result
PCS	T_{nom} (25 °C), V_{nom} (3.7V)					
	1850.2	512	TM1	<-13(See appendix C)	- 13 dBm	Pass
	1909.8	810	TM1	<-13(See appendix C)	- 13 dBm	Pass

6.5.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix C.

6.6 Spurious Emission at Antenna Terminal

6.6.1 Test Conditions

Table 33 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	TM1 at frequency B, M, T

6.6.2 Test Specifications and Limits

6.6.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 24.238

6.6.2.2 Supporting Standards

Table 34 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.6.2.3 Limits

Compliance with part 24.238, all spurious emission must be attenuated below the transmitter power by at least $43 + 10 \log_{10} P$. (Whereas P is the rated power of the EUT in Watt).

Table 35 Limits

Rated Power:	30dBm
Required attenuation:	$43 + 10 \log_{10} 1 = 43$, 30 dBm - 43 dB
Absolute level	- 13 dBm

6.6.3 Test Method and Setup

Mobile Phone was connected to the wireless communication test set Agilent CMU200 and the Spectrum Analyzer E4440A via the divider, the band class is set as PCS band. Mobile Phone was controlled to transmit maximum power. Measure and record the Conducted Spurious Emission of the Mobile Phone by the Spectrum Analyzer E4440A.

According to part 24.238, the defined measurement bandwidth as following:

24.238 (b) Measurement procedure: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

Measurement bandwidth (RBW) for 9 kHz up to 150 kHz: 1 kHz;
Measurement bandwidth (RBW) for 150 kHz up to 30 MHz: 10 kHz;
Measurement bandwidth (RBW) for 30 MHz up to 3 GHz: 1MHz;
Measurement bandwidth (RBW) for 3 GHz up to 20 GHz: 1MHz;

Test Set-up

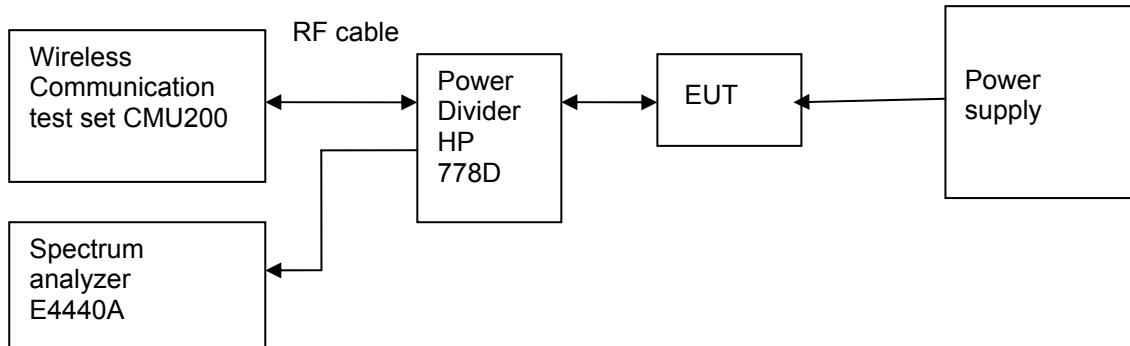


Figure 6. Test Set-up

6.6.4 Measurement Results

Table 36 Measurement Results

Channel Number	Test Range (Frequency)	Output Power [dBm]	Spurious Level measured [dBm] (See appendix D)	FCC limit	Result
Channel 512(B)	9 kHz~20GHz	29.21	< 13 dBm (See appendix D)	- 13 dBm	Pass
Channel 661(M)	9 kHz~20GHz	29.18	< 13 dBm (See appendix D)	- 13 dBm	Pass
Channel 810(T)	9 kHz~20GHz	29.25	< 13 dBm (See appendix D)	- 13 dBm	Pass

6.6.5 Conclusion

The equipment **PASSED** the requirement of this clause.
For the measurement results refer to appendix D.

6.7 Frequency Stability

6.7.1 Test Conditions

Table 37 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	See below
Relative humidity:	55 % at 25 °C
Test Configurations:	TM1 at frequency M

6.7.2 Test Specifications and Limits

6.7.2.1 Specification

CFR 47 (FCC) part 2.1055 and part 24.235

6.7.2.2 Supporting Standards

Table 38 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;

6.7.2.3 Limits

No specific frequency stability requirement in part 2.1055 and part 24.235.

6.7.3 Test Method and Setup

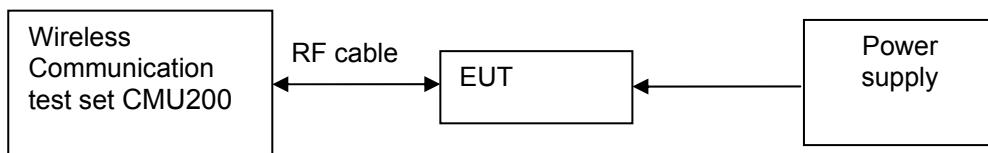
The frequency stability shall be measured with variation of ambient temperature as follows:

(1) From -30 ° to +50 ° centigrade for all equipment except that specified in subparagraphs (2) and (3) of paragraph 2.1055

(a) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

(b) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
(2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point, which shall be specified by the manufacturer.
(3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter


keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

(c) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

The EUT can only work in such extreme voltage 3.5V and 4.2V, so here the EUT is tested in the 3.5V and 4.2V.

Test Set up

Connect the Mobile Phone to the Wireless Communication test CMU200 via the connector. Then measure the frequency error by the Wireless Communication test CMU200. The Mobile Phone's output is matched with a 50 Ω load.

Figure 7. Test Set up

6.7.4 Measurement Results

6.7.4.1 Measurement Results vs. Variation of Temperature

- TM1, 3.7V DC Channel No.661(1880.0MHz)

Table 39 Measurement Results vs. Variation of Temperature

Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	29	1880	-32	Pass
-20 °C	29	1880	-27	Pass
-10 °C	29	1880	24	Pass
0 °C	29	1880	31	Pass
+10 °C	29	1880	12	Pass
+20 °C	29	1880	8	Pass
+30 °C	29	1880	-19	Pass
+40 °C	29	1880	20	Pass
+50 °C	29	1880	-16	Pass

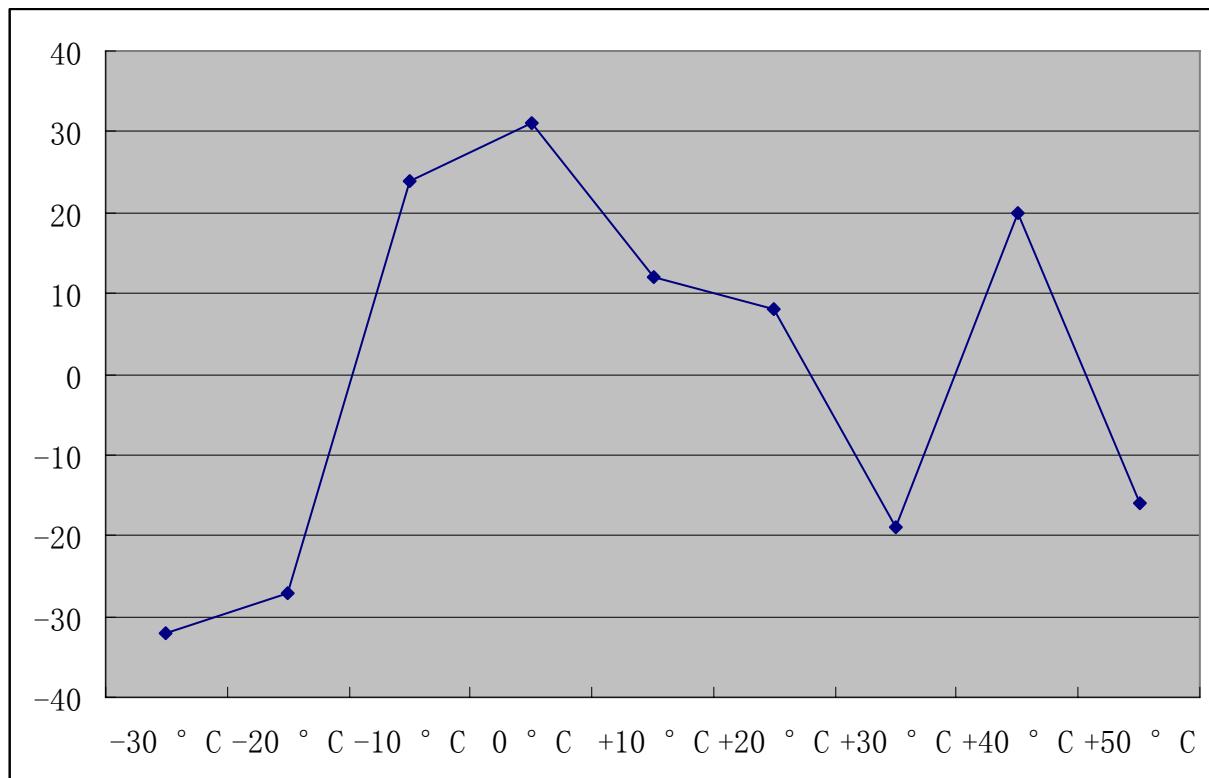


Figure 8. TM1 Test Graph°C

6.7.4.2 Measurement Results vs. Variation of Voltage

- PCS, TM1, 25 °C ,Channel No. 661(1880MHz)

Table 40 Measurement Results vs. Variation of Voltage—TM1

Voltage	Conducted Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.5	29	1880	29	Pass
3.7	29	1880	-16	Pass
4.2	29	1880	11	Pass

6.7.5 Conclusion

The equipment **PASSED** the requirement of this clause.

7 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 41 System Measurement Uncertainty

Items		Extended Uncertainty
Effective Isotropic Radiated Power of Transmitter	EIRP (dBm)	$U=2.2\text{dB}; k=2$
Band Width	Magnitude (%)	$U=0.2\%; k=2$
Band Edge Compliance	Disturbance Power (dBm)	$U=2.0\text{dB}; k=2$
Conducted Spurious Emission at Antenna Terminal	Disturbance Power (dBm)	$U=2.0\text{dB}; k=2$
Frequency Stability	Frequency Accuracy(ppm)	$U=0.21\text{ppm}; k=2$
Conducted Output Power	Power(dBm)	$U=0.39\text{dB}; k=2$

8 Appendices

Appendix A	Measurement Results Modulation Characteristics	2 pages
Appendix B	Measurement Results Occupied Bandwidth	4 pages
Appendix C	Measurement Results Band Edges	3 pages
Appendix D	Measurement Results Spurious Emission at Antenna Terminal	13 pages