

FCC&IC RF Test Report

Product Name: Mobile WiFi

Model Number: UMG587/E587u-5

Report No: SYBH(Z-RF)022092011-2001

FCC ID: QISE587U-5 IC ID: 6369A-E587U5

Reliability Laboratory of Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L0310.
- 2. The laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 97456.
- 3. The laboratory has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 6369A-2.
- 4. The test report is invalid if not marked with "exclusive stamp for the test report".
- 5. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
- 6. The test report is invalid if there is any evidence of erasure and/or falsification.
- 7. If there is any dissidence for the test report, please file objection to the test centre within 15 days from the date of receiving the test report.
- 8. Normally, the test report is only responsible for the samples that have undergone the test.
- 9. Context of the test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the laboratory.

Notice 2

Modification Information:

Table 1	Modification	Information
---------	--------------	-------------

	1	
	2	
	3	Mass Alaman Mass
Modification Information	4	Wass Juliana acades
	5	
	6	
	7	

REGULATION	FCC CFR47 Part 2: Subpart J;
	FCC CFR47 Part 22: Subpart H;
	IC RSS-Gen Issue 3
	IC RSS-132 Issue 2
START OF TEST	Sep.16, 2011
END OF TEST	Sep.18, 2011
Final Judgement:	Pass

Approved By	<u>Sep.22, 2011</u> Date	<u>Dai Linjun</u> Name	Duilbu Jun Signature
Reviewed By	<u>Sep.22, 2011</u> Date	Cousy Xu Name	Cousy XU Signature
Operator	Sep.22, 2011 Date	Huang Qiuliang Name	Luang Queliang Signature

Contents

1 <u>Sı</u>	<u>ummary</u>	6
2 <u>Pr</u>	roduct Description	7
2.1 2.2	PRODUCTION INFORMATION	7
3 <u>Te</u>	est Site Description	8
3.1 3.2	TESTING PERIOD	
4 <u>Pr</u>	roduct Description	9
4.1 4.2	TECHNICAL CHARACTERISTICSEUT IDENTIFICATION LIST	
5 <u>M</u> a	ain Test Instruments	12
6 <u>Tr</u>	ransmitter Measurements	13
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	EFFECTIVE RADIATED POWER OF TRANSMITTER (ERP). CONDUCTED POWER OF TRANSMITTER. MODULATION CHARACTERISTICS. OCCUPIED BANDWIDTH. BAND EDGES COMPLIANCE. SPURIOUS EMISSION AT ANTENNA TERMINAL. RADIATED SPURIOUS EMISSIONS. RECEIVER SPURIOUS EMISSIONS FREQUENCY STABILITY.	
7 <u>S</u> y	ystem Measurement Uncertainty	40
o A.	nnandiaas	44

1 **Summary**

The table below summarizes the measurements and results for the EUT. Detailed results and descriptions are shown in the following pages.

Table 2 Summary of results

	16	ible Z	summary of re	Suits	
FCC Measurement Specification	Measurement Specification Part(s)	FCC Limits Part(s)	RSS-132 Limits Part(s)	Description	Result
2.1046	RSS-Gen 4.8	22.913	4.4	Effective Radiated Power of Transmitter	PASS
2.1046	RSS-Gen 4.8	22.913	4.4	Conducted Power of Transmitter	PASS
2.1047	1	/	4.2	Modulation Characteristics	PASS
2.1049	RSS-Gen 4.6	/	1	Occupied Bandwidth	PASS
2.1051	1	22.917	4.5	Band Edges compliance	PASS
2.1051	RSS-Gen 4.9	22.917	4.5	Spurious Emission at Antenna Terminal	PASS
2.1053	RSS-Gen 4.9	22.917	4.5	Field Strength of Spurious Emissions	PASS
1	RSS-Gen 4.10	/	4.6	Receiver Spurious Emissions	PASS
2.1055	RSS-Gen 4.7	22.355	4.3	Frequency Stability	PASS

2 Product Description

2.1 Production Information

2.1.1 General Description

UMG587/E587u-5 is a UMTS/GSM Mobile WiFi It can be used as a WiFi Access Point, Max to 5 WiFi stations can be associating with UMG587/E587u-5 simultaneity. It also can be used as a USB modem by connecting with PC via USB cable. It supports wireless internet accessing function. The data service rate is HSUPA 5.75Mbps, and HSDPA 42Mbps. The WCDMA frequency is BAND I, BAND II, BAND V and AWS. The GPRS/EDGE frequency is 850/900/1800/1900 MHz, but only BAND V and GSM850 test data included in this report. The WiFi frequency is 2.4G.

2.1.2 Support function and Service

The EUT support the function and service as follows:

Table 3 Service and Test mode List

Service Name	Characteristic	Corresponding Test Mode	Note
Data	Modulation: GMSK	TM1	GPRS/GSM
Data	Modulation: 8PSK	TM2	EDGE
Data	Modulation: QPSK	TM3	WCDMA
Data	Modulation: QPSK	TM4	HSDPA
Data	Modulation: QPSK	TM5	HSUPA

Note: * The specified GPRS test conditions & settings are defined in 3GPP TS51.010 V5.4.0 and the EDGE test conditions & settings are defined in 3GPP TS51.010 V5.4.0. The WCDMA test condition & settings are defined in 3GPP TS 34.121 V8.7.0:2009.

2.2 Modification Information

For original equipment, following table is not application.

Table 4 Modification Information

Model Number	Board/Module	Original Version	New Version	Modify Information
			501011	
)	

3 Test Site Description

The test site of:

Huawei Technologies Co. Ltd. P.O. Box 518129 Huawei base, Bantian, Longgang District, Shenzhen, China

3.1 Testing Period

The test have been performed during the period of

Sep.16, 2011 - Sep.18, 2011

3.2 General Set up Description

TM1: GPRS/GSM Mode with GMSK Modulation
TM2: EDGE Mode with 8PSK Modulation
TM3: WCDMA Mode with QPSK Modulation
TM4: HSDPA Mode with QPSK Modulation
TM5: HSUPA Mode with QPSK Modulation

4 Product Description

4.1 Technical Characteristics

4.1.1 Frequency Range

Table 5 Frequency Range

Uplink band:	824 to 849 MHz
Downlink band:	869 to 894 MHz

4.1.2 Channel Spacing / Separation

Table 6 Channel Spacing / Separation

	rabio o Chamior Opacing / Copar	
	EDGE/GPRS/GSM	WCDMA/HSPA
Channel raster	200k Hz	200k Hz
Channel spacing:	200k Hz	5MHz

4.1.3 Type of Emission

Table 7 Type of Emission

	EDGE	GPRS/GSM	WCDMA/HSPA
Emission Designation:	300KG7W	300KGXW	5M00F9W

According to CFR 47 (FCC) part 2, subpart C, section 2.201 and 2.202

4.1.4 Environmental Requirements

Table 8	Environmental Requirements

Minimum temperature:	- 10 °C
Maximum temperature:	+ 55 °C
Relative Humidity:	5%-95%RH

4.1.5 Power Source

	Table 9 Power Source
AC voltage nominal:	∼ 120 V
AC voltage range	~ 100 V to ~ 240 V
AC current maximal:	0.2A

4.1.6 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (9).

Please reference the document Tune-up Procedure in TCF.

4.1.7 Applied DC Voltages and Currents

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (8).

The voltage and current in the final RF stage is:

Table 10 Applied RF module DC Voltages and Currents

Voltage:	=== +3.7V
Current:	100mA According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (8)

4.2 EUT Identification List

4.2.1 Board Information

Table 11	Roard	Information
Table II	Duaru	mnomnation

Table 11	Board Information		
Mobile WiFi			
UMC	UMG587/E587u-5		
Board and Module			
Description	Hardware Version		
Main board	CP1E587M		

4.2.2 Adapter Technical Data

Name	Manufacture	Description
Adapter	Huawei Technologies Co., Ltd.	Adapter Model: HW-050100U1W voltage nominal: ~230V Input Voltage :100-240V ~50/60Hz, 0.2A Output Voltage: ==== 5.0V 1.0A

4.2.3 Battery Technical Data

Name	Manufacture	Description
Rechargeable Li-ion	Huawei Technologies Co., Ltd.	Battery Model: HB5A5P2 Rated capacity: 2200mAh Nominal Voltage: +3.7V Charging Voltage: +4.2V

4.2.4 FCC Identification

Grantee Code: QIS
Product Code: E587u-5
FCC Identification: QIS587U-5

4.2.5 IC Identification

IC Identification: 6369A-E587U5

5 Main Test Instruments

Table 12 Main Test Equipments

Equipment Description Manufacturer Model Serial Number Calibrated until Power supply KEITHLEY 2303 1288003 Sep.27,2011 Universal Radio Communication Tester R&S CMU200 105822 Oct.24,2011 Tester Wireless Communication Tests est Agilent N4010A MY49081592 Dec.14,2011 Universal Radio Communication Tester Agilent E5515C MY50260239 Aug.04,2012 Signal Analyzer R&S FSQ31 200021 Sep.27,2011 Temperature Chamber WEISS WKL64 24600294 Jan.25,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Horn Antenna R &	Table 12 Main Test Equipments				
Universal Radio Communication Tester R&S CMU200 105822 Oct.24,2011 Tester Wireless Communication Test set Agilent N4010A MY49081592 Dec.14,2011 Universal Radio Communication Tester Agilent E5515C MY50260239 Aug.04,2012 Signal Analyzer Chamber R&S FSQ31 200021 Sep.27,2011 Temperature Chamber WEISS WKL64 24600294 Jan.25,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906		Manufacturer	Model	Serial Number	Calibrated until
Communication Tester R&S CMU200 105822 Oct.24,2011 Tester Wireless Agilent N4010A MY49081592 Dec.14,2011 Test set Universal Radio Communication Tester Agilent E5515C MY50260239 Aug.04,2012 Tester Signal Analyzer R&S FSQ31 200021 Sep.27,2011 Temperature Chamber WEISS WKL64 24600294 Jan.25,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal R&S SMU200A 104162 Sep.07,2012 Generator R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S ESU26 36090302083 Jun.23,2012 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906	Power supply	KEITHLEY	2303	1288003	Sep.27,2011
Communication Test set Agilent N4010A MY49081592 Dec.14,2011 Universal Radio Communication Tester Agilent E5515C MY50260239 Aug.04,2012 Signal Analyzer R&S FSQ31 200021 Sep.27,2011 Temperature Chamber WEISS WKL64 24600294 Jan.25,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna SCHAFFNER CBL 6112B 2536 S	Communication Tester	R&S	CMU200	105822	Oct.24,2011
Communication Tester Agilent Tester E5515C MY50260239 Aug.04,2012 Signal Analyzer R&S FSQ31 200021 Sep.27,2011 Temperature Chamber WEISS WKL64 24600294 Jan.25,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28	Communication Test set	Agilent	N4010A	MY49081592	Dec.14,2011
Temperature Chamber WEISS WKL64 24600294 Jan.25,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck D69250- UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Communication	Agilent	E5515C	MY50260239	Aug.04,2012
Chamber WEISS WRL64 Z4600294 Jail.23,2012 Signal generator Agilent E8257D MY49281095 Jul.09,2012 Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Signal Analyzer	R&S	FSQ31	200021	Sep.27,2011
Vector Signal Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012		WEISS	WKL64	24600294	Jan.25,2012
Generator R&S SMU200A 104162 Sep.07,2012 Test receiver R&S ESU26 36090302083 Jun.24,2012 EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck D69250- UHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Signal generator	Agilent	E8257D	MY49281095	Jul.09,2012
EMI Test receiver R&S FSQ43 100048 Jun.23,2012 Tunable Dipole Schwarzbeck D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012		R&S	SMU200A	104162	Sep.07,2012
Tunable Dipole Schwarzbeck D69250- VHAP/D69250- VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck D69250- UHAP/D69250- VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Test receiver	R&S	ESU26	36090302083	Jun.24,2012
Tunable Dipole Schwarzbeck UHAP/D69250-VHAP 919/1009 Dec.13,2011 Tunable Dipole Schwarzbeck D69250-UHAP/D69250-VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	EMI Test receiver	R&S	FSQ43	100048	Jun.23,2012
Tunable Dipole Schwarzbeck UHAP/D69250-VHAP 979/917 Dec.13,2011 Horn Antenna R & S HF906 359287/005 May.07, 2012 Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Tunable Dipole	Schwarzbeck	UHAP/D69250-	919/1009	Dec.13,2011
Horn Antenna R & S HF906 359287/006 Apr.27, 2012 Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Tunable Dipole	Schwarzbeck	UHAP/D69250-	979/917	Dec.13,2011
Horn Antenna R & S HF906 100684 Jun.28,2012 Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Horn Antenna	R&S	HF906	359287/005	May.07, 2012
Broadband Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Horn Antenna	R&S	HF906	359287/006	Apr.27, 2012
Antenna SCHAFFNER CBL 6112B 2536 Sep.21, 2012 Broadband Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Horn Antenna	R&S	HF906	100684	Jun.28,2012
Antenna SCHAFFNER CBL 6112B 2941 Jun.20, 2012 Broadband Antenna SCHAFFNER VULB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012	Antenna	SCHAFFNER	CBL 6112B	2536	Sep.21, 2012
Antenna SCHAFFNER VOLB 9163 9163-357 Sep.28,2011 Horn Antenna ETS-LINDGREN 3160 60008 Sep.20,2012		SCHAFFNER	CBL 6112B	2941	Jun.20, 2012
		SCHAFFNER	VULB 9163	9163-357	Sep.28,2011
Horn Antenna ETS-LINDGREN 3160 91989 Sep.28,2011	Horn Antenna	ETS-LINDGREN	3160	60008	Sep.20,2012
	Horn Antenna	ETS-LINDGREN	3160	91989	Sep.28,2011

6 Transmitter Measurements

6.1 Effective Radiated Power of Transmitter (ERP)

6.1.1 Test Conditions

Preconditioning:	0.5 hour
Measured at:	enclosure
Ambient temperature:	25 °C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3 at frequency B, M, T

6.1.2 Test Specifications and Limits

6.1.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 22.913

6.1.2.2 Supporting Standards

Table 14 Supporting Standards:

Table 11 Capporting Clandards.		
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement	
	and Performance Standards	
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS)	
	conformance specification;	
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User	
	Equipment (UE) conformance specification; Radio transmission and	
	reception (FDD);	

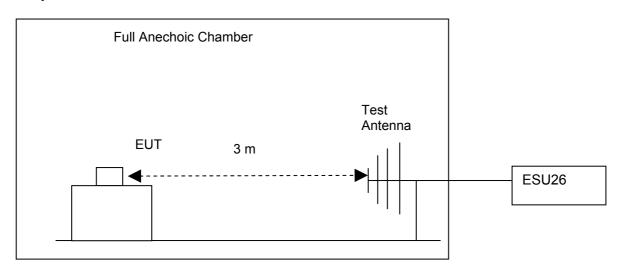
6.1.2.3 Limits

Compliance with part 22.913, mobile/portable stations are limited to 7 watts ERP peak power. The calculated longitude ERP by following formula: ERP(dBm)= 10*log (ERP_{in mwatts}).

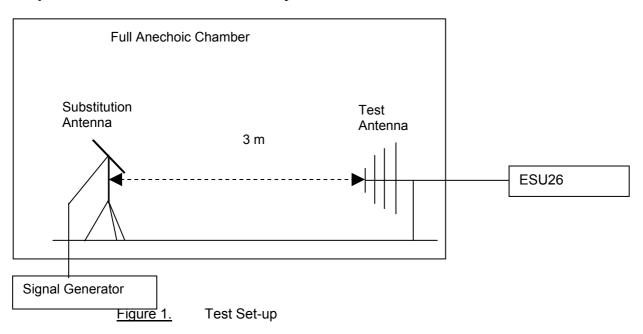
Table 15 Limits

Maximum Output Power (Watts)	< 7 Watts
Maximum Output Power (dBm)	< 38.5 dBm

6.1.3 Test Method and Setup


- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, ERP shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the EUT to the wireless communication tester CMU200 via the air interface. The band class is set as GSM850M.
- (b) Test the Radiated maximum output power by the CMU200 received from test antenna.

FCC Test Report of UMG587/E587u-5 FCC ID: QISE587U-5 IC ID: 6369A-E587U5


(c) Use substitution method to verify the maximum output power. The EUT is substituted by a dipole antenna. The dipole is connected to a signal generator. And then adjust the output level of the signal generator to get the same received power recorded in step (b) on CMU200, and record the power level of Signal Generator. Of course, the cable loss at the test frequency should be compensated.

Test setup

Step 1: Pre-test

Step 2: Substitution method to verify the maximum ERP

NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

ERP was measured using 1 host.

BenQ Joy book S72

6.1.4 Measurement Results

6.1.4.1 Pre-test Results

	RF Output Power (ERP)					
TEST CONDITIONS	Channel '	128(B)	Channel	192(M)	Channel 251(T)	
	824.2N	ИHz	837.0	MHz	848.8MHz	
	dBr	n	dBi	m	dBm	
Tnom (25 °C)/ Vnom (3.7V)	Measured Limit		Measured	Limit	Measured	Limit
TM1	26.02 38.5		26.15	38.5	26.02	38.5
TM2	20.03 38.5		20.14	38.5	20.21	38.5
TEST CONDITIONS	Channel 4132(B)		Channel 4182(M)		Channel 4233(T)	
	826.4MHz		836.4MHz		846.6MHz	
	dBr	n	dBi	dBm		ı
Tnom (25 °C)/ Vnom (3.7V)	Measured	Limit	Measured	Limit	Measured	Limit
TM3	15.61	38.5	15.64	38.5	15.64	38.5

6.1.4.2 Substitution Results

Table 16 Substitution Results

Test Mode	Freq. [MHz]	Meas. Level [dBm]	Substitution Antenna Type	SGP [dBm]	Substitution Gain [dBd]	Cable Loss [dB]	Substituti on Level (ERP) [dBm]	Limit [dBm]	Result
TM1	824.2	26.02	Dipole Ant.	28.97	-2.75	0.6	25.62	38.5	Pass
TM1	837.0	26.15	Dipole Ant.	29.04	-2.87	0.6	25.57	38.5	Pass
TM1	848.8	26.02	Dipole Ant.	29.04	-2.85	0.6	25.59	38.5	Pass
TM2	824.2	20.03	Dipole Ant.	24.07	-2.75	0.6	20.72	38.5	Pass
TM2	837.0	20.14	Dipole Ant.	24.15	-2.87	0.6	20.68	38.5	Pass
TM2	848.8	20.21	Dipole Ant.	23.88	-2.85	0.6	20.43	38.5	Pass
TM3	826.4	15.61	Dipole Ant.	19.01	-2.75	0.6	15.66	38.5	Pass
TM3	836.4	15.64	Dipole Ant.	19.05	-2.87	0.6	15.58	38.5	Pass
TM3	846.6	15.64	Dipole Ant.	18.72	-2.85	0.6	15.27	38.5	Pass

Note: a, For get the ERP (Efficient Radiated Power) in substitution method, the following formula should take to calculate it,

Security Level: Public

ERP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd]

NOTE: SGP- Signal Generator Level

b, Measurement the ERP with RMS detector.

c, RBW=10kHz, VBW=300kHz, and integrated by the instrument to 250kHz for TM1 and TM2 and 5M for TM3.

6.1.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.2 Conducted Power of Transmitter

6.2.1 Test Conditions

Table 17 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3/TM4/TM5 at frequency B, M, T

6.2.2 Test Specifications and Limits

6.2.2.1 Specification

CFR 47 (FCC) part 2.1047 and part 22 subpart H

6.2.2.2 Supporting Standards

Table 18 Supporting Standards:

	Table 10 Supporting Standards.
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User Equipment (UE) conformance specification; Radio transmission and reception (FDD);

6.2.2.3 Limits

Compliance with part 22.913, in no any case may the peak power of a mobile station transmitter exceed 7 W. The calculated longitude ERP by following formula:

 $ERP(dBm) = 10*log (ERP_{in mwatts}).$

And for conducted power, we can use Antenna Gain to calculate the limit. So the conducted power:

 P_{cod} .(dBm)=ERP(dBm)- Gain(dBd). and Gain (dBd)= Gain(dBi)- 2.15dB

٠	imits	- 1	10	Table
	imits		19	i anie

Maximum Output Power (Watts)	< 7 Watts(38.5dBm)
Antenna Gain(dBi):	-4.29
Antenna Gain(dBd):	-6.44
Maximum Conducted Output Power (dBm)	< 44.94

Security Level: Public

For HSDPA test mode, there are 4 sub-tests for different configuration.

Table 20 HSDPA conducted max power pre-scar

Sub-test	С	d	d (SF)	c/d	HS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0	0
2	12/15	15/15	64	12/15	24/15	1	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

For HSUPA test mode, there are 5 sub-tests for different configuration.

Table 21 HSUPA conducted max power pre-scan

Sub- test	β _c	β_d	β _d (SF)	β_c/β_d	β _{HS} (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E-TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/22 5	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed} 1: 47/15 eta_{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, $_{hs}/_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the $_{c}/_{d}$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by
- setting the signalled gain factors for the reference TFC (TF1, TF1) to $_{\rm c}$ = 10/15 and $_{\rm d}$ = 15/15. Note 4: For subtest 5 the $_{\rm c}/_{\rm d}$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $_c$ = 14/15 and $_d$ = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1q.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

6.2.3 Test Method and Setup

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, Conducted maximum power shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the EUT to the wireless communication tester CMU200 via the antenna connector. The band class is set as GSM850M.

(b)Test the Conducted maximum output power by the CMU200.

Test setup

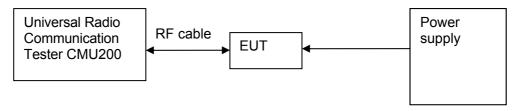


Figure 2. Test Set-up

6.2.4 Measurement Results

Table 22 Measurement Results

			ted)					
TEST CONDITIONS		Channel	128(B)	G(B) Channel 192(M)		Channel 251(T)		
		824.2	MHz	837.01	MHz	848.8	MHz	
		dB	m	dBr	m	dB	m	
Tnom (25 °C)/ Vnom (3.7V)		Measured	Limit	Measured	Limit	Measured	Limit	
7	ΓM1	32.46	44.94	32.59	44.94	32.46	44.94	
7	ΓM2	26.47	44.94	26.58	44.94	26.65	44.94	
		-						
TEST CONDIT	TONS	Channel	4132(B)) Channel 4182(M		Channel 4233(T)		
		826.4MHz		836.4MHz		846.6MHz		
		dBm		dBm		dBm		
Tnom (25 °C)/ Vnom (3.7V)		Measured	Limit	Measured	Limit	Measured	Limit	
TM3		22.05	44.94	22.08	44.94	22.08	44.94	
	Case1	21.29	44.94	21.24	44.94	21.35	44.94	
T1.4.4	Case2	21.06	44.94	21.09	44.94	21.11	44.94	
TM4	Case3	20.71	44.94	20.81	44.94	20.8	44.94	
	Case4	20.68	44.94	20.78	44.94	20.75	44.94	
	Case1	21.23	44.94	21.48	44.94	21.36	44.94	
TM5	Case2	20.12	44.94	20.18	44.94	20.06	44.94	
	Case3	19.85	44.94	19.96	44.94	19.48	44.94	
	Case4	20.06	44.94	20.10	44.94	20.16	44.94	
	Case5	21.14	44.94	21.10	44.94	20.98	44.94	

Note: Measurement the Conducted output power with RMS detector.

Security Level: Public

6.2.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.3 Modulation Characteristics

6.3.1 Test Conditions

Table 23 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3 at frequency M

6.3.2 Test Specifications and Limits

6.3.2.1 Specification

CFR 47 (FCC) part 2.1047 and part 22 subpart H

6.3.2.2 Supporting Standards

Table 24 Supporting Standards:

	Table 24 Capporting Claridates.
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User Equipment (UE) conformance specification; Radio transmission and reception (FDD);

6.3.2.3 Limits

No specific modulation characteristics requirement limits in part 2.1047 and part 22 subpart H.

Table 25	Limits
Table 20	

Limits	Not applicable
--------	----------------

6.3.3 Test Method and Setup

Connect the EUT to Wireless Communication Test Set R&S CMU200 via the antenna connector. The band class is set as GSM850M; the EUT's output is matched with 50 Ω loads, test method was according to 3GPP TS 51.010. The waveform quality and constellation of the EUT was tested.

Test setup

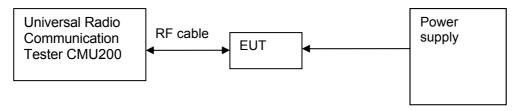


Figure 3. Test Set-up

6.3.4 Measurement Results

Table 26 Measurement Results Modulation Characteristic Channel 192(M) **TEST CONDITIONS** Measured TM2 TM1 T_{nom} (25 °C) V_{nom} (3.7V) Refer to Appendix A Refer to Appendix A Modulation Characteristic Channel 4182(M) 836.4MHz **TEST CONDITIONS** Measured TM3 Tnom (25 °C) Vnom (3.7V) Refer to Appendix A

6.3.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix A.

6.4 Occupied Bandwidth

6.4.1 Test Conditions

Table 27	Test Conditions
	1631 601101110113

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3 at frequency B, M, T

6.4.2 Test Specifications and Limits

6.4.2.1 Specification

CFR 47 (FCC) part 2.1049 and part 22 subpart H.

6.4.2.2 Supporting Standards

Table 28 Supporting Standards:

ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS) conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User Equipment (UE) conformance specification; Radio transmission and reception (FDD);

6.4.2.3 Limits

No specific occupied bandwidth requirement in part 22 subpart H, but the occupied bandwidth was defined in part 2.1049: the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

	rable 29	Limits	
Upper /lower frequency limits	0.5% of the me	an power	

6.4.3 Test Method and Setup

The EUT was connected to the wireless signal analyzer R&S FSQ31 via the one RF connector. The band class is set as GSM850M; The EUT was controlled to transmit maximum power. Measure and record the occupied bandwidth of the EUT by the R&S FSQ31.

The OBW, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

Refer to 47CFR part2.1049 section (g) & (h).

FCC ID: QISE587U-5 IC ID: 6369A-E587U5

- (g) Transmitter in which the modulating base band comprises not more than three independent channels - when modulated by the full complement of signals for which the transmitter is rated. The level of modulation for each channel should be set to that prescribed in rule parts applicable to the services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.
- (h) Transmitters employing digital modulation techniques when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudorandom generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at discretion of the user.

For TM1/TM2 following RBW and VBW are employed:

Measurement bandwidth (RBW): 3 kHz (Resolution bandwidth)

Video bandwidth (VBW): 10 kHz

For TM3 following RBW and VBW are employed:

Measurement bandwidth (RBW): 50 kHz (Resolution bandwidth)

Video bandwidth (VBW): 500 kHz

Test Set-up

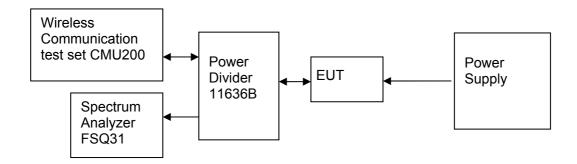


Figure 4. Test Set-up

6.4.4 Measurement Results

Table 30 Measurement Results

		Channel 4132(B)		Channel 4182(M)		Channel 4233(T)	
Tnom (25 °C)/ Vnom (3.7V)	99%	245.19	237.18	240.38	232.37	246.79	232.37
		TM1	TM2	TM1	TM2	TM1	TM2
		(kHz)		(kHz)		(kHz)	
Measured		Measured		Measured			
Center Frequence	СУ	824.2MHz		837.0MHz		848.8MHz	
		Channel 128(B)		Channel 192(M)		Channel 251(T)	
TEST CONDITION	ONS	Occupied Bandwidth					

CID: 6369A-E587U5 Security Level: Public

Center Frequence	СУ	826.4MHz	836.4MHz	846.6MHz
		Measured	Measured	Measured
		(MHz)	(MHz)	(MHz)
		TM3	TM3	TM3
Tnom (25 °C)/ Vnom (3.7V)	99%	4.15	4.15	4.15

6.4.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix B.

6.5 Band Edges Compliance

6.5.1 Test Conditions

Table 31	Test Conditions
Iable 31	1 CSL COHUILIONS

	Table 51 Test conditions
Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3 at frequency B, T

6.5.2 Test Specifications and Limits

6.5.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.5.2.2 Supporting Standards

Table 32 Supporting Standards:

ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement
	and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS)
	conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio transmission and
	reception (FDD);

6.5.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 \log_{10} P(W). (Whereas P is the rated power of the EUT in Watt).

Table 33	Limits
----------	--------

	TM1	TM2	TM3
Rated Power:	33 dBm	27 dBm	24 dBm
Required attenuation:	43+10log (2) = 46 , 33 dBm - 46 dB	43+10log (0.5) = 40 , 27 dBm - 40 dB	43+10log (0.25) = 37 , 24dBm - 37 dB
Absolute level	- 13 dBm	- 13 dBm	- 13 dBm

6.5.3 Test Method and Setup

The EUT was connected to the wireless signal analyzer R&S FSQ31 via the one RF connector, the band class is set as GSM850M. The EUT was controlled to transmit maximum power. Measure and record band edges compliance of the EUT by the R&S FSQ31.

The limit is -13dBm.

For TM1/TM2 following RBW and VBW are employed:

Measurement bandwidth (RBW): 3 kHz (Resolution bandwidth)

Video bandwidth (VBW): 10 kHz

For TM3 following RBW and VBW are employed:

Measurement bandwidth (RBW): 50 kHz (Resolution bandwidth)

Video bandwidth (VBW): 200 kHz

Test Set-up

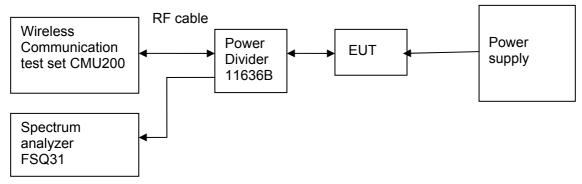


Figure 5. Test Set-up

6.5.4 Measurement Results

Table 34 Measurement Results outside Band Edges

Table 34 Measurement Results outside Band Edges						
Band	Frequency of Band edges [MHz]	Channel Number	Test Mode	Spurious Level measured [dBm]	FCC limit	Result
		T _{nom} (2	25 °C), V _{nom} (3	.7V)		
	824.2	128	TM1	<-13(See appendix C)	- 13 dBm	Pass
0.11.1	848.8	251	TM1	<-13(See appendix C)	- 13 dBm	Pass
Cellular	824.2	128	TM2	<-13(See appendix C)	- 13 dBm	Pass
	848.8	251	TM2	<-13(See appendix C)	- 13 dBm	Pass
	826.4	4132	TM3	<-13(See appendix C)	- 13 dBm	Pass
	846.6	4233	TM3	<-13(See appendix C)	- 13 dBm	Pass

6.5.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix C.

6.6 Spurious Emission at Antenna Terminal

6.6.1 Test Conditions

Table 35	Test Conditions
----------	-----------------

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3 at frequency B, M, T

6.6.2 Test Specifications and Limits

6.6.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.6.2.2 Supporting Standards

Table 36	Supporting Standards:
----------	-----------------------

ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement
	and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS)
	conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio transmission and
	reception (FDD);

6.6.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 \log_{10} P. (Whereas P is the rated power of the EUT in Watt).

Table 37 Limits

Table 37 Little					
	TM1	TM2	TM3		
Rated Power:	33 dBm	27 dBm	24 dBm		
Required attenuation:	43+10log (2) = 46 , 33 dBm - 46 dB	43+10log (0.5) = 40 , 27 dBm - 40 dB	43+10log (0.25) = 37 , 24dBm - 37 dB		
Absolute level	- 13 dBm	- 13 dBm	- 13 dBm		

6.6.3 Test Method and Setup

The EUT was connected to the wireless signal analyzer R&S FSQ31 via the one RF connector, the band class is set as GSM850M. The EUT was controlled to transmit maximum power. Measure and record the Conducted Spurious Emission of the EUT by the R&S FSQ31.

According to part 22.917, the defined measurement bandwidth as following:

22.917 (b) Measurement procedure: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

Measurement bandwidth (RBW) for 9 kHz up to 150 kHz: 1 kHz; Measurement bandwidth (RBW) for 150 kHz up to 30 MHz: 10 kHz; Measurement bandwidth (RBW) for 30 MHz up to 1 GHz: 100 kHz; Measurement bandwidth (RBW) for 1 GHz up to 12.75 GHz: 1 MHz;

Test Set-up

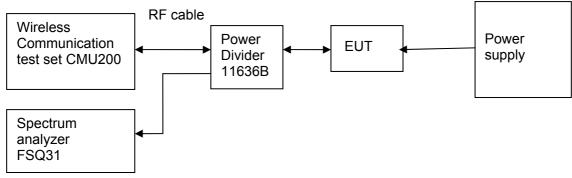


Figure 6. Test Set-up

6.6.4 Measurement Results

Table 20	Magaziramant Dagulta
Table 38	Measurement Results

Channel Number	Test Mode	Test Range (Frequency)	Output Power [dBm]	Spurious Level measured [dBm]	FCC limit	Result
Channel	TM1	9 kHz ~12.75GHz	33	<- 13 dBm (See appendix D)	- 13 dBm	Pass
128(B)	TM2	9 kHz ~12.75GHz	27	<- 13 dBm (See appendix D)	- 13 dBm	Pass
Channel 4132(B)	TM3	9 kHz ~12.75GHz	24	<- 13 dBm (See appendix D)	- 13 dBm	Pass
Channel	TM1	9 kHz ~12.75GHz	33	<- 13 dBm (See appendix D)	- 13 dBm	Pass
192(M)	TM2	9 kHz ~12.75GHz	27	<- 13 dBm (See appendix D)	- 13 dBm	Pass
Channel 4182(M)	TM3	9 kHz ~12.75GHz	24	<- 13 dBm (See appendix D)	- 13 dBm	Pass

C ID: QISE587U-5
ID: 6369A-E587U5
Security Level: Public

Channel	TM1	9 kHz ~12.75GHz	33	<- 13 dBm (See appendix D)	- 13 dBm	Pass
251(T)	TM2	9 kHz ~12.75GHz	27	<- 13 dBm (See appendix D)	- 13 dBm	Pass
Channel 4233(T)	TM3	9 kHz ~12.75GHz	24	<- 13 dBm (See appendix D)	- 13 dBm	Pass

6.6.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix D.

6.7 Radiated Spurious Emissions

6.7.1 Test Conditions

Table 39	Test Conditions
I able 39	1 CSL COHUILIONS

Table 66 Test Certations				
Preconditioning:	0.5 hour			
Measured at:	enclosure			
Ambient temperature:	25°C			
Relative humidity:	55%			
Test Configurations:	TM1/TM2/TM3/TM4/TM5 at frequency M			

6.7.2 Test Specifications and Limits

6.7.2.1 Specification

CFR 47 (FCC) part 2.1053 and part 22.917

6.7.2.2 Supporting Standards

Table 40 Supporting Standards:

	and the complete ming of tames and tames a
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station (MS)
	conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio transmission
	and reception (FDD);

6.7.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 log₁₀ P. (Whereas P is the rated power of the EUT).

Table 41	imits

Absolute level	- 13 dBm	
----------------	----------	--

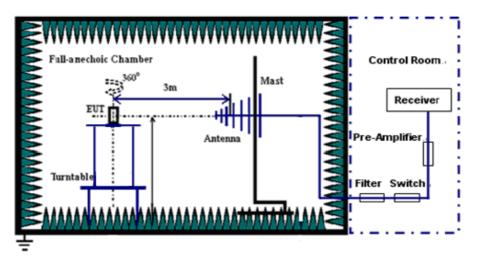
6.7.3 Test Method and Setup

A test site fulfilling the requirements of ITU-R Recommendation SM329-11 was used. The EUT was placed on a non-conducting support in the anechoic chamber and was operated from a power source via an RF filter to avoid radiation from the power leads.

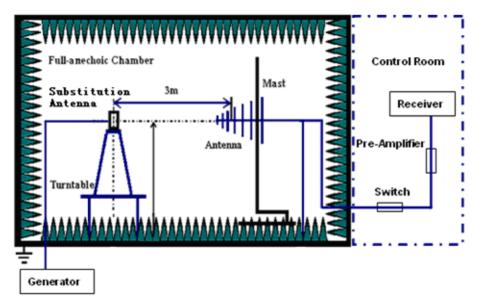
According to part 22.917, the defined measurement bandwidth as following:

22.917 (b) Measurement procedure: Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

Measurement bandwidth (RBW) for 9 kHz up to 150 kHz: 1 kHz; Measurement bandwidth (RBW) for 150 kHz up to 30 MHz: 10 kHz; Measurement bandwidth (RBW) for 30MHz up to 1GHz: 100k Hz;


Measurement bandwidth (RBW) for 1GHz up to 18GHz: 1MHz;

Test Set-up


Step 1:

For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, EIRP shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the EUT to the BTS simulator via the air interface.

Test the Radiated maximum output power by the Test Receiver from test antenna.

Step 2: Use substitution method to verify the maximum output power. The EUT is substituted by a dipole antenna. The dipole is connected to a signal generator. And then adjust the output level of the signal generator to get the same received power recorded in step1 on Test Receiver, and record the power level of Signal Generator. Of course, the cable loss at the test frequency should be compensated.

Test should be performed in normal voltage condition.

No peak found in pre- test. All frequency points' margin is bigger than 20dB, so the substitution method

Security Level: Public

isn't used.

Calculation Sample:

Table 42	Substitution	Results
I UDIC TE	Oubsiliation	i (Couito

Freq. [MHz]	Measure ment Value [dBm]	Substitution Antenna Type	Gain [dBd]	Cable Loss [dB]	Signal Generator Level [dBm]	Substitution Level [dBm]	FCC limit [dBm]	Result

Note: For get the E.R.P. (Efficient Radiated Power) in substitution method, the following formula should take to calculate it,

E.R.P. [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd] NOTE: SGP- Signal Generator Level

6.7.4 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix E

6.8 Receiver Spurious Emissions

6.8.1 Test Conditions

Table 43 Test Conditions

Preconditioning:	0.5 hour		
Measured at:	enclosure		
Ambient temperature:	25 °C		
Relative humidity:	55 %		
Test Configurations:	TM1/TM2/TM3 /TM4/TM5 at frequency M		

6.8.2 Test Specifications and Limits

6.8.2.1 Specification

IC RSS-Gen 4.10 and RSS-132 4.6

6.8.2.2 Supporting Standards

Table 44 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
3GPP TS51.010 V5.4.0.0:2005	Digital cellular telecommunications system Mobile Station
	(MS) conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio
	transmission and reception (FDD);

6.8.2.3 Limits

Compliance with RSS-132 4.6, Receiver Spurious Emission must meet the requirement of following table.

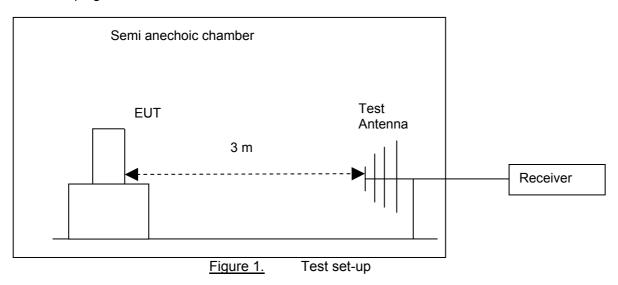
Table 45 Test Limits

		1 OOL EIITIILO	
Frequency of Emission		Radiated Limit	
(MHz)	Unit(µv/m)	Unit(dBµV/m)	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	500	74	PK

6.8.3 Test Method and Setup

The EUT was connected to the Spectrum Analyzer or equivalent via one RF RX diversity connector, and other RF connectors were connected to match loads. The EUT was controlled to transmit maximum power and to be operated in the normal receive mode by Console Computer. Measure and record the Receiver Out-band Spurious Emissions of the EUT by the Spectrum Analyzer or equivalent.

According to IC RSS-Gen clause 4.10, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local


oscillator frequency, whichever is the higher, without exceeding 40 GHz.

A preliminary scan and a final scan of the emissions were made from 30 MHz to18 GHz by using test script of software; the emissions were measured using Quasi-Peak Detector (30MHz~1GHz) and AV detector (above 1GHz). The maximal emission value was acquired by adjusting the antenna height, polarisation and turntable azimuth in accordance with the software setup. Normally, the height range of antenna was 1m to 4m, the azimuth range of turntable was 0°to 360°, The receive antenna has two polarizations V and H.

EUT was configured in idle mode and the test performed at worst emission state.

Measurement bandwidth: 30 MHz – 1000 MHz: 120 k Hz Measurement bandwidth: 1GHz – 18GHz: 1MHz

Test set up figure:

The EUT has met the requirements for Radiated Emission of enclosure port.

6.8.4 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix F

6.9 Frequency Stability

6.9.1 Test Conditions

Table 46 Test Conditions			
Preconditioning:	0.5 hour		
Measured at:	Antenna connector		
Ambient temperature:	See below		
Relative humidity:	55 %		
Test Configurations:	TM1/TM2/TM3 at frequency M		

6.9.2 Test Specifications and Limits

6.9.2.1 Specification

CFR 47 (FCC) part 2.1055 and part 22.355

6.9.2.2 Supporting Standards

Table 47 Supporting Standards:

ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement
	and Performance Standards
3GPP TS51.010 V5.4.0	Digital cellular telecommunications system;
	Mobile Station (MS) conformance specification;
3GPP TS 34.121 V8.7.0:2009	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio transmission
	and reception (FDD);

6.9.2.3 Limits

According to part 22.355, from 821MHz to 896MHz, for mobile device, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances 2.5ppm.

6.9.3 Test Method and Setup

The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) From -30 ° to +50 ° centigrade for all equipment except that specified in subparagraphs
- (2) and (3) of paragraph 2.1055
- (a) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (b) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery

operating end point, which shall be specified by the manufacturer.

- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (c) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

The EUT can only work in such extreme voltage 3.6V and 4.2V, so here the EUT is tested in the 3.6V and 4.2V.

Test Set up

Connect the EUT to the Wireless Communication test set CMU200 via the connector. Then measure the frequency error by the Wireless Communication test set CMU200. The EUT's output is matched with a $50~\Omega$ load.

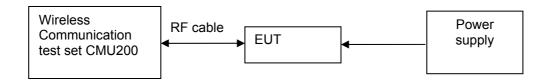


Figure 7. Test Set-up

6.9.4 Measurement Results

6.9.4.1 Measurement Results vs. Variation of Temperature

TM1,3.7V DC Channel No.192(837.0MHz)

Table 48 Measurement Results vs. Variation of Temperature - TM1

Temperature	Nominal Frequency	Measured Frequency Error(Hz)	Result
	(MHz)		
-30 °C	837.0	-25	Pass
-20 °C	837.0	-15	Pass
-10 °C	837.0	11	Pass
0 °C	837.0	14	Pass
+10 °C	837.0	-10	Pass
+20 °C	837.0	-12	Pass
+30 °C	837.0	8	Pass
+40 °C	837.0	-11	Pass

CID: 6369A-E587U5 Security Level: Public

+50 °C	837.0	-18	Pass	
				11

• TM2,3.7V DC Channel No.192(837.0MHz)

Table 49 Measurement Results vs. Variation of Temperature - TM2

Temperature	Nominal Frequency	Measured Frequency Error(Hz)	Result
	(MHz)		
-30 °C	837.0	-16	Pass
-20 °C	837.0	-2	Pass
-10 °C	837.0	11	Pass
0 °C	837.0	-12	Pass
+10 °C	837.0	15	Pass
+20 °C	837.0	-11	Pass
+30 °C	837.0	-14	Pass
+40 °C	837.0	12	Pass
+50 °C	837.0	8	Pass

• TM3,3.7V DC Channel No.4182(836.4MHz)

Table 50 Measurement Results vs. Variation of Temperature - TM3

Temperature	Nominal Frequency	Measured Frequency Error(Hz)	Result
	(MHz)		
-30 °C	836.4	-25	Pass
-20 °C	836.4	8	Pass
-10 °C	836.4	14	Pass
0 °C	836.4	-12	Pass
+10 °C	836.4	-11	Pass
+20 °C	836.4	13	Pass
+30 °C	836.4	-10	Pass
+40 °C	836.4	-11	Pass
+50 °C	836.4	-19	Pass

6.9.4.2 Measurement Results vs. Variation of Voltage

• TM1, 25 °C ,Channel No. 192(837.0MHz)

Table 51 Measurement Results vs. Variation of Voltage - TM1

Voltage	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
+4.2V	837.0	-21	Pass
+3.7V	837.0	-26	Pass
+3.6V	837.0	-23	Pass

• TM2, 25 °C ,Channel No. 192(837.0MHz)

Table 52 Measurement Results vs. Variation of Voltage - TM2

Voltage	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
+4.2V	837.0	-32	Pass
+3.7V	837.0	-35	Pass
+3.6V	837.0	-28	Pass

• TM3, 25 °C ,Channel No. 4182(836.4MHz)

Table 53 Measurement Results vs. Variation of Voltage - TM3

Voltage	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
+4.2V	836.4	5	Pass
+3.7V	836.4	-12	Pass
+3.6V	836.4	-7	Pass

6.9.5 Conclusion

The equipment **PASSED** the requirement of this clause.

7 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 54 System Measurement Uncertainty

Table 51 Gystem measurement sheatainty		
Items		Extended Uncertainty
Effective Radiated Power of	ERP (dBm)	U=3dB; k=2
Transmitter		
Band Width	Magnitude (%)	U=0.2%; k=2
Band Edge Compliance	Disturbance Power(dBm)	U=2.0dB; k=2
Conducted Spurious Emission at	Disturbance Power(dBm)	U=2.0dB; k=2
Antenna Terminal		
Frequency Stability	Frequency Accuracy(ppm)	U=0.21ppm; k=2
Field Strength of Spurious Radiation	ERP(dBm)	U=2.2dB; k=2

8 Appendices

Appendix A	Measurement Results Modulation Characteristics
Appendix B	Measurement Results Occupied Bandwidth
Appendix C	Measurement Results Band Edges
Appendix D	Measurement Results Spurious Emission at Antenna Terminal
Appendix E	Measurement Results Radiated Spurious Emissions
Appendix F	Measurement Results Receiver Spurious Emissions
Appendix G	Photos of Radiated Spurious Emissions

(END OF REPORT)