Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Huawei (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d143_Sep11

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d143

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 26, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
RF generator R&S SMT-06 Network Analyzer HP 8753E	100005 US37390585 S4206	18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Kalja Pokovic	Technical Manager	22110

Issued: September 26, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d143_Sep11

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage C

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

 Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version		
Extrapolation	DASY5	V52.6,2
	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL		
Zoom Scan Resolution	10 mm	with Spacer
requency	dx, dy, dz = 5 mm	
requency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Naminator	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C		
Measured Head TSL parameters		40.0	1.40 mho/m
	(22.0 ± 0.2) °C	39.6 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured		
	250 mW input power	10.3 mW / g 40.6 mW /g ± 17.0 % (k=2)
SAR for nominal Head TSL parameters	normalized to 1W	

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	(unuon	
	250 mW input power	5.36 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

Maminut B. J. was	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	
Body TSL temperature change during test	< 0.5 °C	04.2 I 0 76	1.59 mho/m ± 6 %

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured		
	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured		
SAR for pominal Rest. To:	250 mW input power	5.53 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point		
Return Loss	$53.5 \Omega + 5.8 j\Omega$	
	- 23.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	7/2/30/07/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
Return Loss	48.4 Ω + 6.1 jΩ
	- 23.9 dB

General Antenna Parameters and Design

Electrical Data at	
Electrical Delay (one direction)	1 105
	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		
Manufactured on	SPEAG	
The state of the s	March 11, 2011	

DASY5 Validation Report for Head TSL

Date: 26.09.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d143

Communication System: CW; Frequency: 1900 MHz

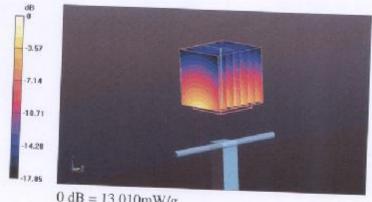
Medium parameters used: f = 1900 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 39.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

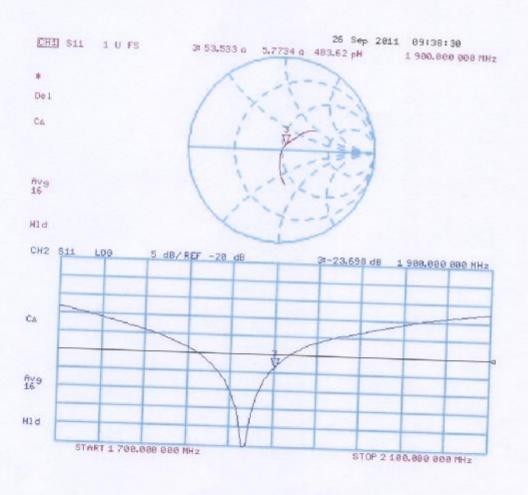
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04,2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.084 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 18.735 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.36 mW/g

Maximum value of SAR (measured) = 13.013 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.09.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d143

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

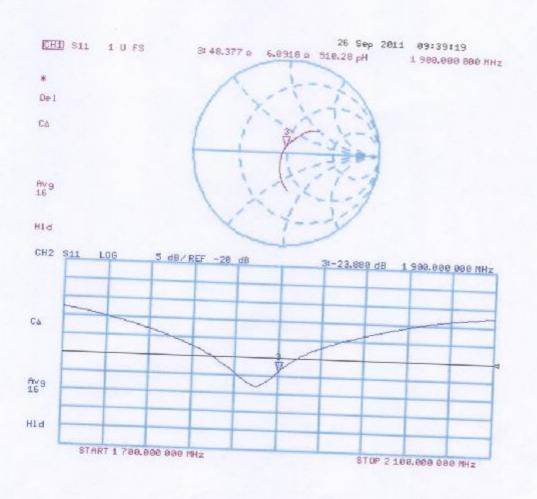
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.063 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 18.849 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.53 mW/g

Maximum value of SAR (measured) = 13.361 mW/g

Impedance Measurement Plot for Body TSL

Justification of the extended calibration of Dipole D1900V2 SN:5d143

Referred to 450824 D02 Dipole SAR Validation Verification v01, Published on Nov 17 2009, Otherwise, according to the IEEE Standard 1528a-2005 recommended annual calibration is expected, when happened as below the following:

- 1) When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification;
- 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement.

at least annually, deviates by more than 5 Ω from the previous measurement.			
Target Value	Measured Value	Difference	
53.5Ω+5.8jΩ	50.8Ω+8.57jΩ	R=-2.7Ω, X=2.77Ω	
- 23.7dB	-24.16dB	-1.94%	
Target Value	Measured Value	Difference	
48.4Ω+6.1jΩ	45.78Ω+3.17jΩ	R=-2.62Ω, X=-2.93Ω	
-23.9dB	-25.3dB	-5.86%	
2011-09-26	2012-09-13		
	Return Loss Test-Head		
Format Smith (R+jX) Log Mag Phase Group Delay Smith R+jX Polar Lin Mag SWR Real Imaginary	1 Active Ch/Trace 2 Response 3 Stimulus 4 Mir/Analysis 5 Instr Sta Tral St1 Leg Mag 10.0088/ Ref = 20.0048 [F1] 30.00	Format Log Mag Log Mag Phase Group Delay Smith Polar Lin Mag SWR Real Imaginary	
Impedance Test-Body Return Loss Test-Body			
Format Smith (R+)X) Log Mag Phase Group Delay Smith R +)X Polar Lin Mag SWR	1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr Ste First Still Log Mag 5:000db/ Ref = 20:00db [Fi]	System Print Abort Printing Printer Setup Invert Image ON Dump Screen Image Multiport Test Set, Setup Misc Setup	
	Target Value 53.5Ω+5.8jΩ - 23.7dB Target Value 48.4Ω+6.1jΩ -23.9dB 2011-09-26 Format Smith (R+)X) Polar Lin Mag Format SwR Real Imaginary Log Mag Phase Group Delay Smith R+X Polar Lin Mag Format Lin Mag Log Mag Phase Group Delay Smith R+X Polar Lin Mag Log Mag Phase Group Delay Log Mag Phase Group Delay Smith R+X Polar Lin Mag	Target Value 53.5Ω+5.8jΩ - 23.7dB - 24.16dB Target Value 48.4Ω+6.1jΩ -23.9dB -25.3dB 2011-09-26 2012-09-13 Return Loss Te 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 2 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 2 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 2 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 2 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 2 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 3 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 3 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active Ch/Trace 2 Response 3 Stimulus 4 Mar/Analysis 5 Instr St. 4 Active	