

Report No.: SZEM180100021804 Page: 1 of 190

Appendix B

E-UTRA Band26 (814-824)

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180100021804 Page: 2 of 190

Page

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	14
	2.1 FOR LTE	
	2.1.1 Test Band = LTE band26	
3	MODULATION CHARACTERISTICS	17
	3.1 FOR LTE	
	3.1.1 Test Band = LTE band26	
4	BANDWIDTH	20
	4.1 FOR LTE	
	4.1.1 Test Band = LTE band26	
5	BAND EDGES COMPLIANCE	51
	5.1 FOR LTE	
	5.1.1 Test Band = LTE band26	
6	EMISSION MASK	95
	6.1 FOR LTE	
	6.1.1 Test Band = LTE band26	
7	SPURIOUS EMISSION AT ANTENNA TERMINAL	
	7.1 FOR LTE	
8	FIELD STRENGTH OF SPURIOUS RADIATION	
	8.1 For LTE	
	8.1.1 Test Band = LTE band26	
9	FREQUENCY STABILITY	
	9.1 FREQUENCY ERROR VS. VOLTAGE	
	9.2 FREQUENCY ERROR VS. TEMPERATURE	

Report No.: SZEM180100021804 Page: 3 of 190

1 Effective (Isotropic) Radiated Power Output Data

Effect	ive Radiated	d Power of Trar	nsmitter (El	RP) for LTE	BAND 26			
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.08	20.99	38.45	PASS
				RB1#2	22.85	20.76	38.45	PASS
				RB1#5	23.17	21.08	38.45	PASS
			LCH	RB3#0	23.07	20.98	38.45	PASS
				RB3#2	23.05	20.96	38.45	PASS
				RB3#3	23.05	20.96	38.45	PASS
				RB6#0	22.03	19.94	38.45	PASS
				RB1#0	23.04	20.95	38.45	PASS
				RB1#2	22.93	20.84	38.45	PASS
				RB1#5	23.18	21.09	38.45	PASS
BAND26	LTE/TM1	1.4M	MCH	RB3#0	23.01	20.92	38.45	PASS
				RB3#2	23.10	21.01	38.45	PASS
				RB3#3	22.99	20.9	38.45	PASS
				RB6#0	22.15	20.06	38.45	PASS
				RB1#0	23.03	20.94	38.45	PASS
				RB1#2	23.06	20.97	38.45	PASS
				RB1#5	22.98	20.89	38.45	PASS
			нсн	RB3#0	22.86	20.77	38.45	PASS
				RB3#2	23.01	20.92	38.45	PASS
				RB3#3	22.97	20.88	38.45	PASS
				RB6#0	21.95	19.86	38.45	PASS

Report No.: SZEM180100021804 Page: 4 of 190

	1	[1		Page:	4 of 19		
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.09	20.00	38.45	PASS
				RB1#2	22.27	20.18	38.45	PASS
				RB1#5	22.19	20.10	38.45	PASS
			LCH	RB3#0	22.18	20.09	38.45	PASS
				RB3#2	22.04	19.95	38.45	PASS
				RB3#3	22.05	19.96	38.45	PASS
				RB6#0	21.05	18.96	38.45	PASS
				RB1#0	22.22	20.13	38.45	PASS
				RB1#2	21.91	19.82	38.45	PASS
				RB1#5	22.02	19.93	38.45	PASS
BAND26	LTE/TM2	1.4M	МСН	RB3#0	22.09	20.00	38.45	PASS
				RB3#2	22.04	19.95	38.45	PASS
				RB3#3	21.96	19.87	38.45	PASS
				RB6#0	20.98	18.89	38.45	PASS
				RB1#0	22.31	20.22	38.45	PASS
				RB1#2	22.07	19.98	38.45	PASS
				RB1#5	22.14	20.05	38.45	PASS
			НСН	RB3#0	22.03	19.94	38.45	PASS
				RB3#2	22.02	19.93	38.45	PASS
				RB3#3	21.97	19.88	38.45	PASS
				RB6#0	21.03	18.94	38.45	PASS

Report No.: SZEM180100021804 Page: 5 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	21.59	19.50	38.45	PASS
				RB1#2	21.22	19.13	38.45	PASS
				RB1#5	21.62	19.53	38.45	PASS
			LCH	RB3#0	21.37	19.28	38.45	PASS
				RB3#2	21.39	19.30	38.45	PASS
				RB3#3	21.44	19.35	38.45	PASS
				RB6#0	20.29	18.20	38.45	PASS
				RB1#0	21.62	19.53	38.45	PASS
				RB1#2	21.32	19.23	38.45	PASS
				RB1#5	21.56	19.47	38.45	PASS
BAND26	LTE/TM3	1.4M	МСН	RB3#0	21.32	19.23	38.45	PASS
				RB3#2	21.29	19.20	38.45	PASS
				RB3#3	21.40	19.31	38.45	PASS
				RB6#0	20.26	18.17	38.45	PASS
				RB1#0	21.58	19.49	38.45	PASS
				RB1#2	21.15	19.06	38.45	PASS
				RB1#5	21.55	19.46	38.45	PASS
			НСН	RB3#0	21.34	19.25	38.45	PASS
				RB3#2	21.27	19.18	38.45	PASS
				RB3#3	21.37	19.28	38.45	PASS
				RB6#0	20.26	18.17	38.45	PASS

Report No.: SZEM180100021804 Page: 6 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.17	21.08	38.45	PASS
				RB1#7	23.03	20.94	38.45	PASS
				RB1#14	23.12	21.03	38.45	PASS
			LCH	RB8#0	22.02	19.93	38.45	PASS
				RB8#4	22.05	19.96	38.45	PASS
				RB8#7	22.04	19.95	38.45	PASS
				RB15#0	22.17	20.08	38.45	PASS
				RB1#0	23.17	21.08	38.45	PASS
				RB1#7	23.13	21.04	38.45	PASS
				RB1#14	23.13	21.04	38.45	PASS
BAND26	LTE/TM1	ЗМ	МСН	RB8#0	22.09	20.00	38.45	PASS
				RB8#4	22.02	19.93	38.45	PASS
				RB8#7	22.03	19.94	38.45	PASS
				RB15#0	22.06	19.97	38.45	PASS
				RB1#0	23.08	20.99	38.45	PASS
				RB1#7	23.12	21.03	38.45	PASS
				RB1#14	23.03	20.94	38.45	PASS
			НСН	RB8#0	22.01	19.92	38.45	PASS
				RB8#4	21.99	19.90	38.45	PASS
				RB8#7	22.06	19.97	38.45	PASS
				RB15#0	22.03	19.94	38.45	PASS

Report No.: SZEM180100021804 Page: 7 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.32	20.23	38.45	PASS
				RB1#7	22.19	20.1	38.45	PASS
				RB1#14	22.13	20.04	38.45	PASS
			LCH	RB8#0	21.18	19.09	38.45	PASS
				RB8#4	21.06	18.97	38.45	PASS
				RB8#7	21.07	18.98	38.45	PASS
				RB15#0	21.11	19.02	38.45	PASS
				RB1#0	22.18	20.09	38.45	PASS
				RB1#7	22.29	20.2	38.45	PASS
				RB1#14	22.24	20.15	38.45	PASS
BAND26	LTE/TM2	ЗМ	МСН	RB8#0	21.13	19.04	38.45	PASS
				RB8#4	21.07	18.98	38.45	PASS
				RB8#7	20.91	18.82	38.45	PASS
				RB15#0	21.06	18.97	38.45	PASS
				RB1#0	22.13	20.04	38.45	PASS
				RB1#7	22.19	20.1	38.45	PASS
				RB1#14	22.08	19.99	38.45	PASS
			НСН	RB8#0	21.02	18.93	38.45	PASS
				RB8#4	21.04	18.95	38.45	PASS
				RB8#7	20.99	18.9	38.45	PASS
				RB15#0	21.01	18.92	38.45	PASS

Report No.: SZEM180100021804 Page: 8 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	21.63	19.54	38.45	PASS
				RB1#7	21.27	19.18	38.45	PASS
				RB1#14	21.57	19.48	38.45	PASS
			LCH	RB8#0	20.32	18.23	38.45	PASS
				RB8#4	20.28	18.19	38.45	PASS
				RB8#7	20.36	18.27	38.45	PASS
				RB15#0	20.32	18.23	38.45	PASS
				RB1#0	21.62	19.53	38.45	PASS
				RB1#7	21.11	19.02	38.45	PASS
				RB1#14	21.52	19.43	38.45	PASS
BAND26	LTE/TM3	ЗМ	MCH	RB8#0	20.34	18.25	38.45	PASS
				RB8#4	20.21	18.12	38.45	PASS
				RB8#7	20.24	18.15	38.45	PASS
				RB15#0	20.27	18.18	38.45	PASS
				RB1#0	21.54	19.45	38.45	PASS
				RB1#7	21.18	19.09	38.45	PASS
				RB1#14	21.58	19.49	38.45	PASS
			НСН	RB8#0	20.32	18.23	38.45	PASS
				RB8#4	20.27	18.18	38.45	PASS
				RB8#7	20.15	18.06	38.45	PASS
				RB15#0	20.28	18.19	38.45	PASS

Report No.: SZEM180100021804 Page: 9 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.16	21.07	38.45	PASS
				RB1#13	23.09	21	38.45	PASS
				RB1#24	23.07	20.98	38.45	PASS
			LCH	RB12#0	22.12	20.03	38.45	PASS
				RB12#6	22.16	20.07	38.45	PASS
				RB12#13	22.11	20.02	38.45	PASS
				RB25#0	22.08	19.99	38.45	PASS
				RB1#0	23.07	20.98	38.45	PASS
				RB1#13	23.02	20.93	38.45	PASS
				RB1#24	23.01	20.92	38.45	PASS
BAND26	LTE/TM1	5M	МСН	RB12#0	22.12	20.03	38.45	PASS
				RB12#6	22.08	19.99	38.45	PASS
				RB12#13	22.13	20.04	38.45	PASS
				RB25#0	22.08	19.99	38.45	PASS
				RB1#0	23.07	20.98	38.45	PASS
				RB1#13	23.06	20.97	38.45	PASS
				RB1#24	23.04	20.95	38.45	PASS
			НСН	RB12#0	22.16	20.07	38.45	PASS
				RB12#6	22.15	20.06	38.45	PASS
				RB12#13	22.13	20.04	38.45	PASS
				RB25#0	22.04	19.95	38.45	PASS

Report No.: SZEM180100021804 Page: 10 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.22	20.13	38.45	PASS
				RB1#13	22.19	20.1	38.45	PASS
				RB1#24	22.16	20.07	38.45	PASS
			LCH	RB12#0	21.03	18.94	38.45	PASS
				RB12#6	21.08	18.99	38.45	PASS
				RB12#13	21.01	18.92	38.45	PASS
				RB25#0	21.02	18.93	38.45	PASS
				RB1#0	22.11	20.02	38.45	PASS
				RB1#13	22.13	20.04	38.45	PASS
				RB1#24	22.09	20	38.45	PASS
BAND26	LTE/TM2	5M	MCH	RB12#0	21.08	18.99	38.45	PASS
				RB12#6	21.12	19.03	38.45	PASS
				RB12#13	21.03	18.94	38.45	PASS
				RB25#0	21.04	18.95	38.45	PASS
				RB1#0	22.09	20	38.45	PASS
				RB1#13	22.08	19.99	38.45	PASS
				RB1#24	22.12	20.03	38.45	PASS
			НСН	RB12#0	21.02	18.93	38.45	PASS
				RB12#6	20.99	18.9	38.45	PASS
				RB12#13	21.03	18.94	38.45	PASS
				RB25#0	20.94	18.85	38.45	PASS

Report No.: SZEM180100021804 Page: 11 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	21.58	19.49	38.45	PASS
				RB1#13	21.56	19.47	38.45	PASS
				RB1#24	21.52	19.43	38.45	PASS
			LCH	RB12#0	20.41	18.32	38.45	PASS
				RB12#6	20.32	18.23	38.45	PASS
				RB12#13	20.34	18.25	38.45	PASS
				RB25#0	20.29	18.2	38.45	PASS
				RB1#0	21.52	19.43	38.45	PASS
				RB1#13	21.53	19.44	38.45	PASS
				RB1#24	21.56	19.47	38.45	PASS
BAND26	LTE/TM3	5M	МСН	RB12#0	20.38	18.29	38.45	PASS
				RB12#6	20.32	18.23	38.45	PASS
				RB12#13	20.35	18.26	38.45	PASS
				RB25#0	20.32	18.23	38.45	PASS
				RB1#0	21.62	19.53	38.45	PASS
				RB1#13	21.55	19.46	38.45	PASS
				RB1#24	21.54	19.45	38.45	PASS
			НСН	RB12#0	20.33	18.24	38.45	PASS
				RB12#6	20.28	18.19	38.45	PASS
				RB12#13	20.31	18.22	38.45	PASS
				RB25#0	20.33	18.24	38.45	PASS

Report No.: SZEM180100021804 Page: 12 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.18	21.09	38.45	PASS
				RB1#25	22.98	20.89	38.45	PASS
				RB1#49	23.04	20.95	38.45	PASS
BAND26	LTE/TM1	10M	LCH MCH HCH	RB25#0	22.14	20.05	38.45	PASS
				RB25#13	22.07	19.98	38.45	PASS
				RB25#25	22.08	19.99	38.45	PASS
				RB50#0	22.10	20.01	38.45	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdic t
				RB1#0	22.27	20.18	38.45	PASS
				RB1#25	21.84	19.75	38.45	PASS
				RB1#49	22.28	20.19	38.45	PASS
BAND26	LTE/TM2	10M	LCH MCH	RB25#0	21.03	18.94	38.45	PASS
			НСН	RB25#13	21.06	18.97	38.45	PASS
				RB25#25	21.04	18.95	38.45	PASS
				RB50#0	20.99	18.9	38.45	PASS

Report No.: SZEM180100021804 Page: 13 of 190

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdic t
		LTE/TM3 10M		RB1#0	21.55	19.46	38.45	PASS
				RB1#25	21.16	19.07	38.45	PASS
			LCH MCH HCH	RB1#49	21.51	19.42	38.45	PASS
BAND26	LTE/TM3			RB25#0	20.33	18.24	38.45	PASS
				RB25#13	20.30	18.21	38.45	PASS
				RB25#25	20.28	18.19	38.45	PASS
				RB50#0	20.33	18.24	38.45	PASS

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

ERP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd]

b: SGP=Signal Generator Level

c: RBW > emission bandwidth, VBW > $3 \times RBW$.

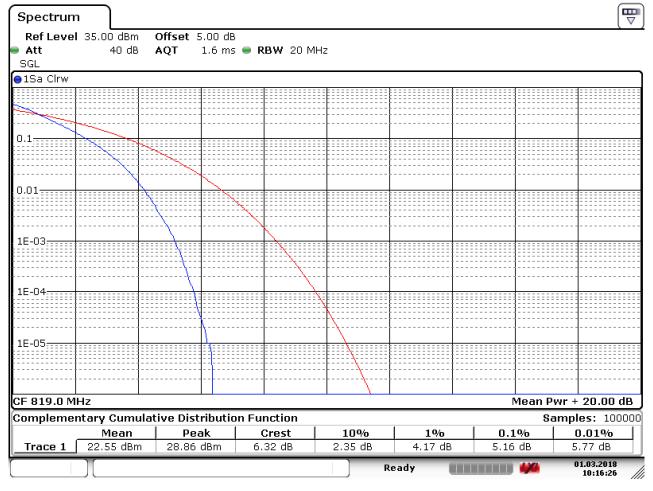
Detector: RMS

Report No.: SZEM180100021804 Page: 14 of 190

2 Peak-to-Average Ratio

Part I - Test Results

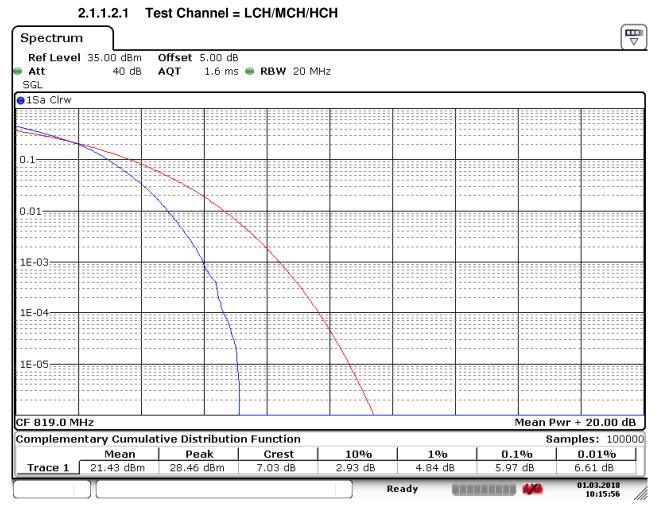
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
	TM1/10M	LCH/MCH/HCH	6.32	13	PASS
Band 26	TM2/10M	LCH/MCH/HCH	7.03	13	PASS
	TM3/10M	LCH/MCH/HCH	7.39	13	PASS


Part II - Test Plots

2.1 For LTE

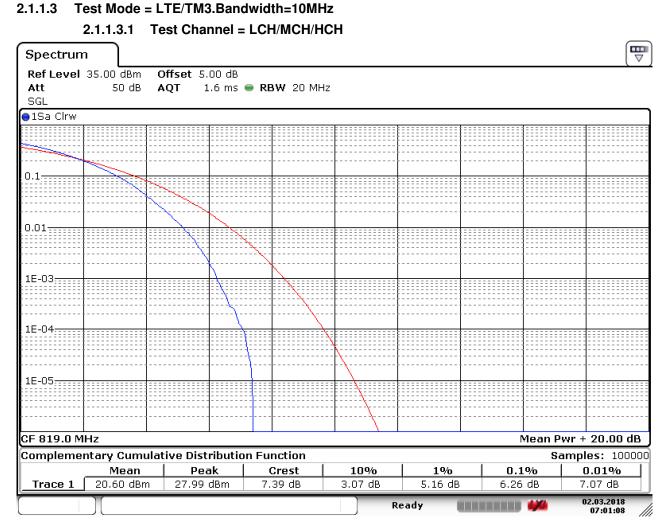
2.1.1 Test Band = LTE band26

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=10MHz



Date: 1.MAR.2018 10:16:27

Report No.: SZEM180100021804 Page: 15 of 190

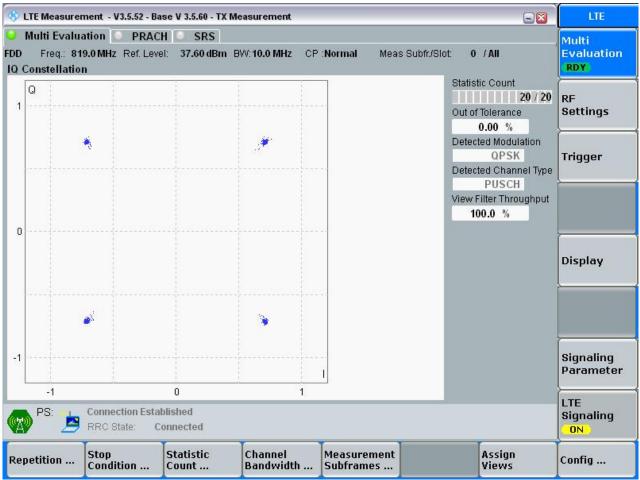

2.1.1.2 Test Mode = LTE/TM2.Bandwidth=10MHz

Date: 1.MAR.2018 10:15:56

Report No.: SZEM180100021804 Page: 16 of 190

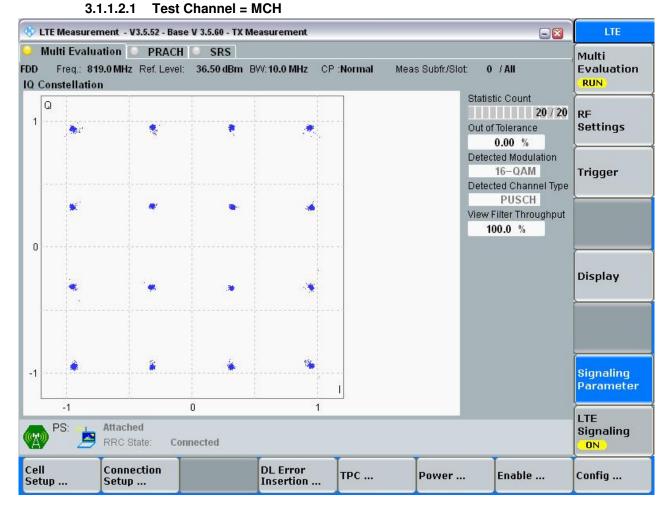
Date: 2.MAR.2018 07:01:08

Report No.: SZEM180100021804 Page: 17 of 190


3 Modulation Characteristics

3.1 For LTE

3.1.1 Test Band = LTE band26


3.1.1.1 Test Mode = LTE /TM1 10MHz

3.1.1.1.1 Test Channel = MCH

Report No.: SZEM180100021804 Page: 18 of 190

3.1.1.2 Test Mode = LTE /TM2 10MHz

Test Mode = LTE /TM3 10MHz

3.1.1.3

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180100021804 Page: 19 of 190

3.1.1.3.1 Test Channel = MCH UL Channel R ULCHAN TPC Pattern Input Level UL Channel 30.0 dBm Channel Bandwidth | Output Level Operation Band \leq -54.8 dBm UE Power : 20.3 dBm Measurement Signaling IP Data Main Screen Fundamental > Constellation Fundamental 59 Symbol I -0.7665 Q 0.7699 1/ Meas. Count : Sub Screen Constellation Number of RB . Starting RB . . Q Interpolation (Constellation Ι Avg. Min. Max. 1.49 1.49 %(rms) 1.49 EVM Peak Vector Error 15.28 15.28 15.28 % Carrier Leakage -54.64 -54.64 -54.64 dBc 99.82 %(I/Q) 99.82 IQ Imbalance 99.82 4 Views

Report No.: SZEM180100021804 Page: 20 of 190

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	1.10	1.24	PASS
	TM1/1.4MHz	MCH	1.10	1.25	PASS
		HCH	1.10	1.25	PASS
		LCH	1.09	1.24	PASS
	TM2/1.4MHz	MCH	1.10	1.24	PASS
		HCH	1.10	1.25	PASS
		LCH	1.09	1.25	PASS
	TM3/1.4MHz	MCH	1.10	1.25	PASS
		HCH	1.10	1.25	PASS
		LCH	2.69	2.94	PASS
	TM1/3MHz	MCH	2.69	2.94	PASS
		HCH	2.69	2.92	PASS
	TM2/3MHz	LCH	2.69	2.94	PASS
		MCH	2.69	2.93	PASS
		HCH	2.69	2.93	PASS
Band 26		LCH	2.68	2.94	PASS
	TM3/3MHz	MCH	2.69	2.95	PASS
		HCH	2.69	2.96	PASS
		LCH	4.48	4.87	PASS
	TM1/5MHz	MCH	4.49	4.92	PASS
		НСН	4.48	4.90	PASS
		LCH	4.49	4.89	PASS
	TM2/5MHz	MCH	4.50	4.91	PASS
		HCH	4.47	4.88	PASS
		LCH	4.47	4.85	PASS
	TM3/5MHz	MCH	4.48	4.88	PASS
		НСН	4.47	4.87	PASS
	TM1/10MHz	LCH/MCH/HCH	8.99	9.81	PASS
-	TM2/10MHz	LCH/MCH/HCH	8.97	9.81	PASS
	TM3/10MHz	LCH/MCH/HCH	8.97	9.64	PASS

Report No.: SZEM180100021804 Page: 21 of 190

Part II –Test Plots

4.1 For LTE

4.1.1 Test Band = LTE band26

4.1.1.1 Test Mode = LTE/TM1 1.4MHz

4.1.1.1.1	Test	Channel	= LCH
-----------	------	---------	-------

Spectrun	ı)								
	30.00 dBm			.BW 30 kH					
Att	40 dB	SWT	30 ms 😑 V	' BW 100 kH	z Mode	Auto Sweep			
⊖1Pk View		1	[
					D	1[1]			-3.98 dB 24080 MHz
20 dBm					0	cc Bw			24080 MHZ 03097 MHz
20 0011	D1 18.180	dBm	- acht mars	wante				1.0505	-5.98 dBm
			Thursday.	when a ward.		what wanter [2		814.	08260 MHz
10 dBm						T T			
			1			1 4			
0 dBm		M				1 9			
		 820 dBm							
-10 dBm—	02 -7.0								
		la surt					June of the	II a r	
-20 dBm 🗔	IN LARD AND AND AND AND AND AND AND AND AND AN	hter all a second the					udrupper	WALL BURGE	Hu
-20 dBm	hrfum	Ť						. w 1~~^	(the prosperite by the second s
-30 dBm									· • •
-40 dBm									
10 0.0111									
-50 dBm									
-JU UDIII									
-60 dBm									
CF 814.7 M	⊥ ∕IHz	I	1	1001	pts	<u> </u>	1	Spa	n 3.0 MHz
					Mea	asuring		W	2.03.2018 10:11:06

Date: 2.MAR.2018 10:11:06

Report No.: SZEM180100021804 Page: 22 of 190

Spectrun	Γ								
	30.00 dBm	Offset 9		RBW 30 kH					
Att	40 dB	SWT	30 ms 😑 \	/BW 100 kH	z Mode /	Auto Sweep			
⊖1Pk View	r	1	1	1					
					D	1[1]			-2.27 dB 24680 MHz
20 dBm					0	cc Bw			24080 MHZ 97103 MHz
20 00111	D1 17.530)	dBm	on Maratha	Myundred				1.1020	-6.78 dBm
			T 1 CO - COUNT	enderme be	, 00 - 40 m - 40	10.00.1 LA		818.	37960 MHz
10 dBm			1			<u>ا</u>			
			1						
0 dBm		Mi	(
							Ri 1		
-10 dBm—	D2 -8,	470 dBm							
L.	And When the series	H. HARKAN					Whitehalling	halana ar t	
1-20 MBN AU	MM MARINE .	oll holl of a					. Antheorem and the	pres balling	with the form the set
MM ALIANCE	1								ատտի
-30 dBm									
-40 dBm									
-50 dBm—									
-60 dBm—									
CF 819.0 N	l /IHz	1	1	1001	. pts		1	l Spa	n 3.0 MHz
						suring		-	2.03.2018
									10:11:46

4.1.1.1.2 Test Channel = MCH

Date: 2.MAR.2018 10:11:46

Report No.: SZEM180100021804 Page: 23 of 190

Spectrum	ı)								
	30.00 dBm		5.00 dB 👄 R	:BW 30 kH:	2				
Att	40 dB	SWT	30 ms 😑 🎙	'BW 100 kH:	2 Mode .	Auto Sweep			
⊖1Pk View									
					D	1[1]			-3.06 dB
								1.	24680 MHz
20 dBm	D1 17.960	dBm				cc Bw		1.0969	03097 MHz
	DI 17.900	l l	T 1 Malola Museu	Annu United Mark	When the second of the second of the second s	allauhurry			-7.22 dBm
10 dBm			L Y			, <u>}</u> ≓	1	822.	67960 MHz
						۱			
0 dBm			/						
	D28	M 040 dBm	4				<u> </u>		
-10 dBm——		t t					4		
-20 dBm Ադի ^{խս} Ալոի	a also ber to	Munholl with					When her berger light	white a	and game and
Why will rule	MM Company of	1 1 1.01						Lo Mei	mal no part and
-30 dBm									
-40 dBm——									
-50 dBm									
-60 dBm									
CF 823.3 M	l /IHz	I		1001	pts	1	1	l Spa	n 3.0 MHz
					Mea	suring (4/4)2.03.2018 10:14:38

4.1.1.1.3 Test Channel = HCH

Date: 2.MAR.2018 10:14:38

Report No.: SZEM180100021804 Page: 24 of 190

	4.1.1.2.1	Test Cha	nnel = LCH	l					
Spectrur	n								l □
Ref Level	l 30.00 dBm	Offset 9	.00 dB 🔵 RI	BW 30 kH:	z				
Att	40 dB	SWT	30 ms 🔵 VI	BW 100 kH:	z Mode	Auto Sweep			
⊖1Pk View									
					D	1[1]			-1.63 dB
00 d0m					0	CC BW			24080 MHz 06094 MHz
20 dBm—	D1 16.590	l dBm						1.0939	-8.78 dBm
			T 2 M Month Marsha	nyahahahahahahah	www.www.lth	WINTER WAR		814.	07960 MHz
10 dBm—			7			1			
			1						
0 dBm			ſ			<u> </u>			
		M							
-10 dBm—	D2 -9.	410 dBm 					A		
		di sun l					N. KLA	e al.	
-20 dBm—	A. L. M. H. M.	-					Warmersen	MAAN	1 1
. It stand	A A A A A A A A A A A A A A A A A A A								MAN AND A
føð dBm—									ar and the state of the
									~ U
-40 dBm—									
-50 dBm—									
-60 dBm—									
00 00									
CF 814.7	MHz			1001	pts			•	n 3.0 MHz
					Mea	suring		4/4 0	2.03.2018 10:10:25

4.1.1.2 Test Mode = LTE/TM2 1.4MHz

Date: 2.MAR.2018 10:10:26

Report No.: SZEM180100021804 Page: 25 of 190

Spectrun	ι								
	30.00 dBm			BW 30 kHz					
Att	40 dB	SWT	30 ms 🔳 V	BW 100 kHz	Mode /	Auto Sweep			
⊖1Pk View									
					D	1[1]			-3.76 dB
20 dBm					0	cc Bw			24080 MHz 03097 MHz
	D1 16.810(dBm	the Anderson	ulliyedineryny	Maria and M	1[1]			-6.67 dBm
10 dBm			T J	man have alone	«ազութագրություն»	t2		818.	38260 MHz
			y .			Ť			
0 dBm			ſ			4			
o abiii		M				1			
-10 dBm	D2 -9.0	190 dBm 					1		
		Í					1		
-20 dBm	- Mittan	Mullimber					WHARMOUT	a da la caracita da car	an yang ang ang ang ang ang ang ang ang ang
-20 abii	AMAAA Provinsi	ld Jillian a					6. 6. 9. 9. 9. 4	an and the second second	ulthatestation in
MM May March									, and MWM
-30 dBm—									ļ
-40 dBm——									
-50 dBm									
-60 dBm									
00 0.0									
CF 819.0 N	/IHz			1001	pts			-	n 3.0 MHz
					Mea	suring		4/4 0	2.03.2018 10:12:50

4.1.1.2.2 Test Channel = MCH

Date: 2.MAR.2018 10:12:51

Report No.: SZEM180100021804 Page: 26 of 190

Spectrum	Γ								
Ref Level	30.00 dBm	Offset	5.00 dB 😑	RBW 30 kH	z				
Att	40 dB	SWT	30 ms 🔵	VBW 100 kH	z Mode /	Auto Sweep			
⊖1Pk View									
					D	1[1]			-2.88 dB
									24080 MHz
20 dBm——	D1 16 700					CC BW		1.0939	06094 MHz
	D1 16.780	asm	- mand	ron Monthean Maria	radianty baland	ALTHING -		000	-8.50 dBm 68260 MHz
10 dBm			↓ ~			 −− \ ²	1	022.	
			y			۱ \			
0 dBm						l 1			
		N	ľ				4		
	<u> </u>	 220 dBm===	ł						
-10 dBm—							4		
-20 dBm							Դի ներերիս էլ հ		
-20 dBm——	NW When he was	Mundalit					- WILLIA MARANA	A MARINA	I. u
A. Martin	att allador. a							ս վերել	MUNAMIN
₩30 dBm—									10,100
'									
-40 dBm									
-40 0011									
-50 dBm									
-60 dBm									
05 000 0				1001					
CF 823.3 N	/IHZ			1001				-	n 3.0 MHz
					Mea	suring		4/4	10:13:54

4.1.1.2.3 Test Channel = HCH

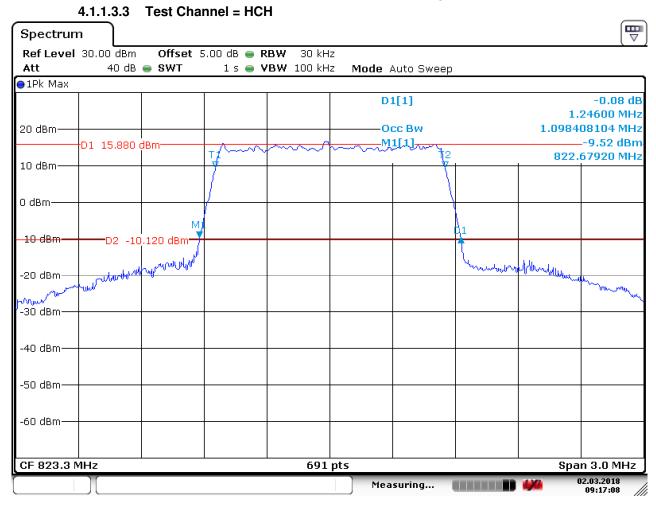
Date: 2.MAR.2018 10:13:55

Report No.: SZEM180100021804 Page: 27 of 190

	4.1.1.3.1	Test Channel = LCH	4				
Spectru	n						
Ref Leve	l 30.00 dBm	Offset 5.00 dB 👄 R	BW 30 kHz				
Att	40 dB	🔵 SWT 1 s 🖷 V	'BW 100 kHz	Mode Auto Sweep			
⊖1Pk Max							
				D1[1]			-1.44 dB
							25040 MHz
20 dBm—				Occ Bw			66570 MHz
	D1 15.630	dBm Tyme	how when	M1[1]			-9.73 dBm 07480 MHz
10 dBm—					1	011.	07 100 1112
0 dBm							
-10 dBm-		M4			A1		
-10 0000	02 -10	D.370 dBm			4		
	LI MAN	www.Withunder			humand.		
-20 dBm—	D2 -10				v~~~	a way have any	10 - I
MAN							
✓-30 dBm—							hu
-40 dBm—							
-50 dBm—							
-30 4511							
-60 dBm—							
CF 814.7	⊥ MHz		691 pt			Spa	n 3.0 MHz
				Measuring		-	2.03.2018
				J			09:14:58

4.1.1.3 Test Mode = LTE/TM3 1.4MHz

Date: 2.MAR.2018 09:14:58


Report No.: SZEM180100021804 Page: 28 of 190

Date: 2.MAR.2018 09:16:03

Report No.: SZEM180100021804 Page: 29 of 190

Date: 2.MAR.2018 09:17:09

Report No.: SZEM180100021804 Page: 30 of 190

	4.1.1.4.1	Test Cha	nnel = LCH	ł					
Spectru	m								
Ref Leve	l 30.00 dBm	Offset 9	5.00 dB 😑 R	BW 30 kH	z				
Att		🔵 SWT	30 ms 😑 V	BW 100 kH	z Mode	Auto Sweep			
<mark>●</mark> 1Pk View	, <u> </u>								
					D	1[1]			-1.68 dB
00 ID					~	D			93710 MHz
20 dBm—						cc Bw 1[1]			14685 MHz 10.67 dBm
	D1 14.250	dBm Thm	hypertheterthyperit	h funderink was	Adula de da	anda a sa a sa	T2 الم		02550 MHz
10 dBm—		Y I	din a m. Tableri	-10-01+> 0+04-1		amparet al al tar	1.4K		
0 dBm——									
		Mit							
-10 dBm—	DO 11	1.750 dBm					<u>d1</u>		
	02 -1.	L.750 UBIII					t t		
-20 dBm—		t tart of							
	Mader	MANN.					644/164	Marthalan	
. Harrillows M	nydwarphadala								warmandully
NAO MDIII									
-40 dBm—									
-40 UBIII—									
-50 dBm—									
-60 dBm—									
CF 815.5	 MHz	1		1001	nts			 Snai	n 6.0 MHz
[suring		-	2.03.2018
	JL				,				10:09:20

4.1.1.4 Test Mode = LTE/TM1 3MHz

Date: 2.MAR.2018 10:09:20

Report No.: SZEM180100021804 Page: 31 of 190

D1[1] -3.51 dB 2.93710 MHz	Spectrun	n								
IPk View D1[1] -3.51 dB 20 dBm Occ Bw 2.691308691 MHz 10 dBm 01 14.160 dBm M1[1] -10.34 dBm 10 dBm 02 -11.840 dBm 817.53750 MHz 817.53750 MHz 0 dBm 02 -11.840 dBm 01 01 01 -20 dBm 02 -11.840 dBm 01 01 01 -30 dBm 02 -11.840 dBm 01 01 01 -20 dBm 02 -11.840 dBm 01 01 01 01 -20 dBm 02 -11.840 dBm 01 01 01 01 01 -20 dBm 02 -11.840 dBm 01 01 01 01 01 -20 dBm 02 -11.840 dBm 01 01 01 01 01 -30 dBm 00 01 01 01 01 01 01 01 01 01 01 01 01 01 02.03.018 02.03.018 02.03.018 02.03.018 02.03.018 02.03.018 02.03.018<	Ref Level	30.00 dBm	Offset 3	5.00 dB 😑 F	RBW 30 kHz					`
20 dBm D1[1] -3.51 dB 20 dBm 0cc Bw 2.693700 MHz 01 14.160 dBm 10.34 dBm 10.34 dBm 0 dBm 0 dBm 10.34 dBm -10 dBm 0 dBm 0 -20 dBm 0 dBm 0 -10 dBm 0.11.840 dBm 0 -20 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -40 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0 -20 dBm 0 0	Att	40 dB	SWT	30 ms 😑 ۷	/BW 100 kHz	Mode /	Auto Sweep			
20 dBm 0 cc Bw 2.691308691 MHz 10 dBm 0 1 14.160 dBm 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	●1Pk View									
20 dBm Occ Bw 2.691308691 MHz 01 14.160 dBm MI[1] -10.34 dBm 10 dBm MI[1] -10.34 dBm 0 dBm MI MI -10 dBm D2 -11.840 dBm D1 -20 dBm MI D1 -30 dBm D1 D1 -60 dBm I001 pts Span 6.0 MHz						D	1[1]			
0 dBm										
01 14.160 dBm 41.4.51.4.6.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	20 dBm									
10 dBm <td></td> <td>D1 14.160 (</td> <td>ן dBmדו</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		D1 14.160 (ן dBm דו							
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -10 dBm -20 d	10 dBm	51 1.100	74	Mushhalah	An Walter Barry	merilikhilipilitu	multy and a participation	4°V42	817.	53750 MHZ
-10 dBm D2 -11.840 dBm										
-10 dBm D2 -11.840 dBm -20 dBm	0 dBm									
-20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70	10 dBm		M							
-30 UBIN -40 dBm -50 dBm -60 dBm -60 dBm CF 819.0 MHz 1001 pts Span 6.0 MHz 02.03.2018	-10 ubiii	D2 -11	840 dBm					Bpi		
-30 UBIN -40 dBm -50 dBm -60 dBm -60 dBm CF 819.0 MHz 1001 pts Span 6.0 MHz 02.03.2018		i nat	11 million					¶a al L		
-30 UBIN -40 dBm -50 dBm -60 dBm -60 dBm CF 819.0 MHz 1001 pts Span 6.0 MHz 02.03.2018	-20 dBm	at all all and a second	r Hrann					- wallynd	Manufulipul	W. Kinghoppy Milling
-40 dBm -50 dBm -60 dBm -60 dBm CF 819.0 MHz 1001 pts Span 6.0 MHz 02.03.2018	-30 dBm									
-50 dBm -60 dBm -60 dBm CF 819.0 MHz 1001 pts Span 6.0 MHz 02.03.2018										
-60 dBm60	-40 dBm—									
-60 dBm60										
-60 dBm60	-50 dBm									
CF 819.0 MHz 1001 pts Span 6.0 MHz Measuring 02.03.2018										
CF 819.0 MHz 1001 pts Span 6.0 MHz Measuring 02.03.2018										
Measuring 02.03.2018	-60 dBm									
Measuring 02.03.2018										
	CF 819.0 M	 MHz			1001	pts			Spa	n 6.0 MHz
						Mea	suring		444	

4.1.1.4.2 Test Channel = MCH

Date: 2.MAR.2018 10:07:29

Report No.: SZEM180100021804 Page: 32 of 190

Spectrum	n								
Ref Level	30.00 dBm	Offset	5.00 dB 👄 I	RBW 30 kHz	2				
Att	40 dB	SWT	30 ms 👄 '	VBW 100 kHz	: Mode /	Auto Sweep	D		
●1Pk View									
					D	1[1]			-2.72 dB
								2.	91910 MHz
20 dBm						cc Bw			14685 MHz
	D1 13.670	 dBm 				1[1]			10.58 dBm
10 dBm	DI 13.070		And a how	photo in the second second	millimin	VIMan Margan	White	821.	05540 MHz
							11		
0.48							1.1		
0 dBm									
		M					4 V		
-10 dBm—				+			01		
	02 -12	2.330 dBm-					A A		
-20 dBm—							1 And		
	. All						W MM	MARK IN LOW TO A	L R
1.1. dualated	hypotolik	1 I *						Mar M. M. May Yorki	WMM working the first the second s
MBANDELLINGAN									
-40 dBm									
-50 dBm									
SO GBIN									
-60 dBm									
CF 822.5 N	 /IHz			1001	nts				n 6.0 MHz
)(1001			4	-	2.03.2018
					Mea	suring			10:06:48

4.1.1.4.3 Test Channel = HCH

Date: 2.MAR.2018 10:06:49

Report No.: SZEM180100021804 Page: 33 of 190

	4.1.1.5.1	Test Cha	nnel = LCH	I					
Spectru	m								
	l 30.00 dBm		5.00 dB 😑 R						
Att		SWT	30 ms 🖷 V	BW 100 kH	z Mode	Auto Swee	р		,
OIPK VIEW					n	1[1]			-5.84 dB
						-[-]		2.	93710 MHz
20 dBm—						CC BW		2.6913	08691 MHz
	D1 13.360	l dBm 	0		M	11[1]			-9.04 dBm 03150 MHz
10 dBm—		t phil	adeater when the poly	Salada Balanda Ba	ֈֈՠֈՠ֍֎ֈ֎ՠֈՠ	hter the strate was	1140-172	014.	00100 0012
0 dBm									
		M1							
-10 dBm—	D213	↓ <mark>∬</mark> 2.640 dBm—							
							1		
-20 dBm—		I IAN I					1.00		
h, na shi A	len yan minini	W1 ***					Výra#	Nutroutique	a kana mana ka
rao lapu.~	Ind or los								an mailteardwife
· .									
-40 dBm—									
-50 dBm—									
co do-									
-60 dBm—									
CF 815.5	MHz			1001	pts	·			n 6.0 MHz
					Mea	asuring		4/4	12.03.2018 10:08:47

4.1.1.5 Test Mode = LTE/TM2 3MHz

Date: 2.MAR.2018 10:08:48

Report No.: SZEM180100021804 Page: 34 of 190

Spectrum	ι								
Ref Level	30.00 dBm	Offset 3	5.00 dB 😑 R	:BW 30 kH:	z				`
Att	40 dB	e swt	30 ms 😑 🖌	'BW 100 kH:	z Mode /	Auto Sweep			
●1Pk View									
					D	1[1]			-3.50 dB
								2.	92510 MHz
20 dBm						cc Bw			08691 MHz
		l				1[1]			11.63 dBm
10 dBm	D1 12,720 (dBm The	1. 16 Argen by March	بيوط البويد المرابع	An Marked March	htward and a start and a st	T2 1947	817.	54350 MHz
10 0.0111		Aun					o. M		
							- L		
0 dBm									
		5					4		
-10 dBm		Mf					\		
	——D2 -13	3.280 dBm							
-20 dBm—							<u> </u>		
-20 dBm-	السابية من من م	MAN P					hullk	Monorflagebal	a 1 - 1
hand	Altrophy Harry	r					* 0.1V .	- " " www. where the	munadian
-30 dBm									· w * w
-40 dBm									
-50 dBm—									
-60 dBm—									
CF 819.0 N	1Hz			1001	pts			Spa	n 6.0 MHz
) Mea	suring [4/4 0	2.03.2018 10:08:05

4.1.1.5.2 Test Channel = MCH

Date: 2.MAR.2018 10:08:05

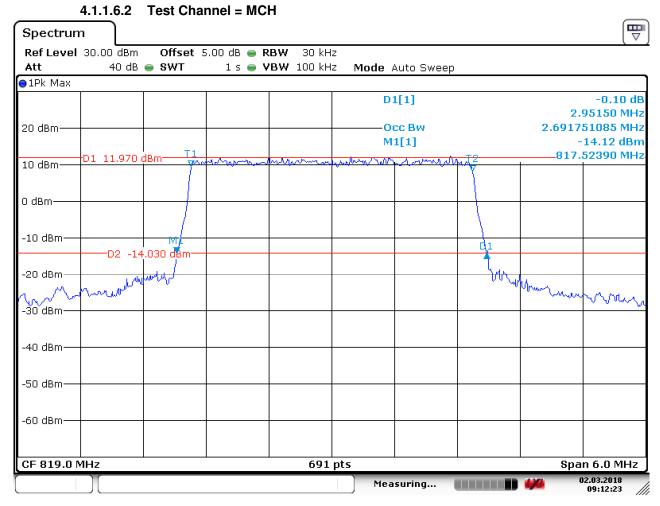
Report No.: SZEM180100021804 Page: 35 of 190

Spectrum	ı)								
Ref Level	30.00 dBm	Offset	5.00 dB 👄	RBW 30 kH	z				
Att	40 dB	e swt	30 ms 😑	VBW 100 kH	z Mode /	Auto Sweep			
●1Pk View									
					D	1[1]			-2.48 dB
					_	_			92510 MHz
20 dBm						CC BW			14685 MHz
	D1 13.170	dBm				1[1]	 T2		11.68 dBm 06140 MHz
10 dBm	01 10,170		, all the second states and the second s	mlannhabethreses,	and the second	gethan Warnahan	hung	021.	00140 0012
		1 (
0 dBm									
o abiii							4		
		м					I L		
-10 dBm—	D21	2.830 dBm-					Q1		
	02 1						A 1		
-20 dBm							W. Man	1.	
-20 abm 17791.1800.144	. ust	HMMM -					ստորդա	Murry Als 1.	Mulandapaya
1.30 dem.w/	-HUMAN AMAN AT	ah i						. of collection	WWW W ~ PULL & ALALI
սկին, այնել է դար, է									
-40 dBm									
-50 dBm									
-60 dBm									
CF 822.5 N	/IHz			1001	pts			-	n 6.0 MHz
					Mea	suring		4/4	2.03.2018 10:06:12

4.1.1.5.3 Test Channel = HCH

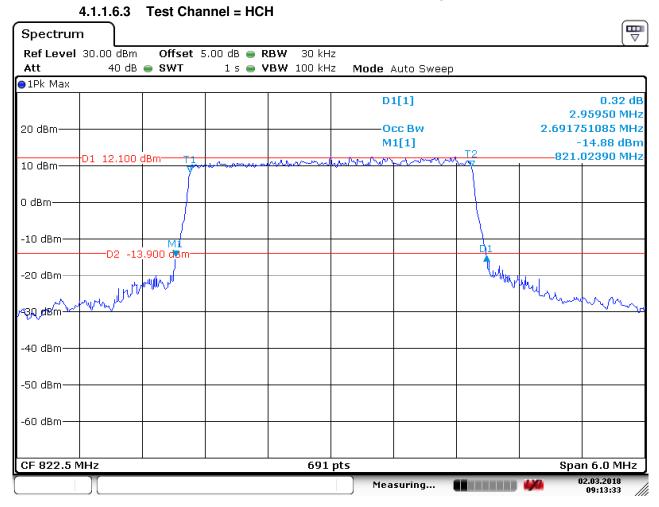
Date: 2.MAR.2018 10:06:12

Report No.: SZEM180100021804 Page: 36 of 190


	4.1.1.6.1	Test Channel = LCH	1				
Spectru	m						l □
Ref Leve	l 30.00 dBm	Offset 5.00 dB 🖷 R	BW 30 kHz				
Att	40 dB	🔵 SWT 1 s 🖷 V	BW 100 kHz	Mode Auto Swee	эр		
😑 1Pk Max							
				D1[1]			-0.68 dB
							94360 MHz
20 dBm—				Occ Bw			68017 MHz
		Τ1		M1[1]			13.31 dBm 02390 MHz
10 dBm—	D1 11.800	dBm yn wrwer were	mar and a second	and a star and a star and a star and a star a st	Apr V	014.0	02090 MHZ
0 dBm							
10 40							
-10 dBm—		4.200 dBm			d1		
	D2 -14	4.200 uBIII			1		
-20 dBm—	phone and the second se	Mrt			WY/1 I	mmun	
<i>.</i>	the relation				* "M	Monus	h de a
∕∾∋elvd¥m⊸≻	J ~~ 1					· •••	www.usa
-40 dBm—	_						
-50 dBm—							
-50 übiii—							
-60 dBm—							
CF 815.5	 MHz		691 pt	<u> </u>		Sna	n 6.0 MHz
)			2.03.2018
				Measuring		4/4 0	09:11:04

4.1.1.6 Test Mode = LTE/TM3 3MHz

Date: 2.MAR.2018 09:11:04


Report No.: SZEM180100021804 Page: 37 of 190

Date: 2.MAR.2018 09:12:23

Report No.: SZEM180100021804 Page: 38 of 190

Date: 2.MAR.2018 09:13:34

Report No.: SZEM180100021804 Page: 39 of 190

	4.1.1.7.1	Test Cha	nnel = LCH						
Spectru	m								[₩
Ref Lev	el 35.00 dBn	n Offset	5.00 dB 👄 F	RBW 50 kł	Ηz				`
🔵 Att	40 dE	B 👄 SWT	30 ms 👄	/BW 200 kł	Hz Mode	Auto Swee	р		
😑 1Pk View	/								
					D	1[1]			-3.53 dB
30 dBm—									86500 MHz
						cc Bw		4.4755	24476 MHz
20 dBm—					M	1[1]		014	-9.27 dBm 08200 MHz
	D1 14.950	dBm	1.4.1.1.1				1	814.	
10 dBm—			ubbleakotteshig	milliputiti	White Marked Mark	mouleuntre	dallaz		
0 dBm							1 1		
U UDIII		1							
		M					$ \langle \cdot \rangle$		
<u>-10 dBm—</u>	D2 -1:	1.050 dBm					<u> </u>		
		1(1		
-20 dBm—	hulunflererholenender						hert.		
1.0	hele of the performance where						° Inquiji	Marillandhyde	Muhauluningkahu
H30 dBm-	1.1400								. write
-40 dBm—									
-40 UBIII—									
-50 dBm—									
-60 dBm—									
05.046.5				1001					
CF 816.5	MHZ			1001	. pcs				10.0 MHz
					Mea	suring		4/4)1.03.2018 10:23:27 //

4.1.1.7 Test Mode = LTE/TM1 5MHz

Date: 1.MAR.2018 10:23:27

Report No.: SZEM180100021804 Page: 40 of 190

Spectrun	n								
	l 35.00 dBm		5.00 dB 👄						`
Att	40 dE	B 😑 SWT	30 ms 👄	VBW 200 kH	z Mode	Auto Swee	ер		
⊖1Pk View	1	1	1						
30 dBm					D	1[1]			-3.54 dB
oo abiii					0	CC BW			91500 MHz 14486 MHz
						1[1]		4.4033	-9.31 dBm
20 dBm——						1111		816.	55200 MHz
	D1 13.920	dBm T1	dida di ba tana <i>Jo</i>	une mander and with	t car and a	a b. toll Mandana A	14 73		
10 dBm		Turk	an and an	atten universitelle	acconcerne m	1000 0401 0 000 10	N WY		
0 dBm							<u> </u>		
							1		
-10 dBm		MŢ							
-10 0.0111	D2 -12	2.080 dBm					<u> </u>		
	L 1								
-20 dBm	4 pageore ballotter	1 m						and the building	Hunter August
									as astanookild
-30 dBm									
-40 dBm									
-50 dBm									
-30 0811									
-60 dBm—									
CF 819.0 M	I MHz		1	1001	pts	1	1	ı Span	10.0 MHz
	Υ)	asuring		-	01.03.2018
<u> </u>						-			10:22:43

4.1.1.7.2 Test Channel = MCH

Date: 1.MAR.2018 10:22:44

Report No.: SZEM180100021804 Page: 41 of 190

Spectrun	n								
	l 35.00 dBm		5.00 dB 👄						
Att	40 dE	SWT 😑 SWT	30 ms 😑	VBW 200 k	Hz Mode	Auto Swe	ер		
●1Pk View									
30 dBm					D	1[1]			-1.40 dB
SU UBIII									89500 MHz
					_	CC BW			24476 MHz 10.60 dBm
20 dBm——					IYI	1[1]			10.00 UBM 07200 MHz
	D1 14.510	dBm 1			الانت ب ا	ika a ak ma	10.70	015.	07200 0012
10 dBm		ytu.	murhilithe	underingutarity	and an and a state of the second s	uuununum	Alerand S		
0 dBm									
o abiii							1 1		
		MZ					1 5		
-10 dBm—	D2 -11	490 dBm							
							1 5.		
-20 dBm——		1 Jul 1					- Myth M	ومعاليا بباليا بالم	huhuhuhunuhu)
-20 aBm	Chick and Market Market	^{ho} ly molt					1.00	a un de ser de la construction de la construcción de la construcción de la construcción de la construcción de l	MMMMMMMMMM
-30 dBm									
-40 dBm									
-40 uBiii									
-50 dBm									
-60 dBm									
CF 821.5 N	MHZ			1001	. pts			-	10.0 MHz
					Mea	asuring		4/4	1.03.2018 10:25:38

4.1.1.7.3 Test Channel = HCH

Date: 1.MAR.2018 10:25:38

Report No.: SZEM180100021804 Page: 42 of 190

	4.1.1.8.1	Test Cha	nnel = LCH	1					_
Spectru	m								
Ref Leve	el 35.00 dBm	n Offset	5.00 dB 😑 I	RBW 50 kł	Ηz				
🖷 Att	40 dB	B 🔵 SWT	30 ms 👄 '	VBW 200 kł	Hz Mode	Auto Swei	ер		
⊖1Pk View									
					D	1[1]			-1.20 dB
30 dBm—									89500 MHz
						CC BW			14486 MHz
20 dBm—					M	1[1]			11.96 dBm 05200 MHz
	D1 13.370	de commencia				1		014.	03200 MHZ
10 dBm	DI 13,370		withminimized	which which which the	disalite in a children and	Ju Juke marked	WWW -		
		ľ					1		
0 dBm									
		M					1 4		
-10 dBm—		2.630 dBm-					Q 1		
		(l t		
-20 dBm—		mt					11.		
1.	1 it is the performance	head and a second s					- የወዲሞ	WAR HUBBLE MAR	
-3014844	flum and the						Ť	nahahahahahahahah	an ana ang ang ang ang ang ang ang ang a
411 ¹⁰ * *									
-40 dBm—									
-+0 ubiii									
-50 dBm—									
-60 dBm—									
CF 816.5	 MHz			1001	nts			 Snan	10.0 MHz
	Ϋ́					asuring		-	1.03.2018
						isuring			10:24:11 //

4.1.1.8 Test Mode = LTE/TM2 5MHz

Date: 1.MAR.2018 10:24:12

Report No.: SZEM180100021804 Page: 43 of 190

Spectrum	Spectrum											
Ref Level			et 5.00 dB 👄	RBW 50 k	Ηz							
e Att	40	dB 🔵 SWT	30 ms 👄	VBW 200 k	Hz Mode	Auto Swee	ep					
⊖1Pk View				_								
30 dBm						1[1] cc Bw			-4.67 dB 90500 MHz 04496 MHz			
20 dBm						11[1]		-	11.49 dBm 57200 MHz			
10 dBm	D1 12.96		Jullandikumunu	an a	spila cManniathan		und 172					
0 dBm							$\left \right $					
-10 dBm		13.040 dBm										
-20 dBm												
-20 aBm	on all the second s	(kalnulh it i					WT KAN	Mulikyhyhyhyttilipph	Mununun			
-30 dBm—												
-40 dBm												
-50 dBm												
-60 dBm												
CF 819.0 M	1Hz		1	1001	pts	1	1	ı Span	10.0 MHz			
)[Mea	asuring		4/4)1.03.2018 10:22:00 //			

4.1.1.8.2 Test Channel = MCH

Date: 1.MAR.2018 10:22:00

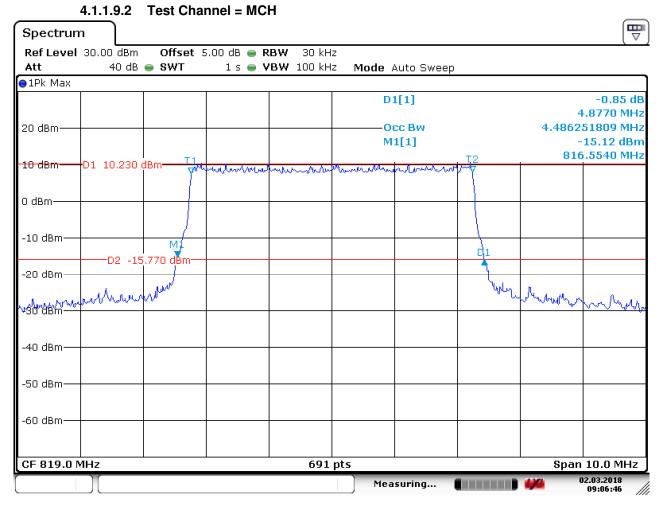
Report No.: SZEM180100021804 Page: 44 of 190

Spectrum	ι								
Ref Level	35.00 dBm	Offset	5.00 dB 👄						
Att	40 dB	🖷 SWT	30 ms 👄	VBW 200 k	Hz Mode	Auto Swe	ер		
●1Pk View		r	1	1	1				
30 dBm					D	1[1]			-2.95 dB
50 abin						D			87500 MHz
						cc Bw 1[1]			34466 MHz 11.12 dBm
20 dBm						1[1]			09200 MHz
	D1 13.620 (I dBm 							
10 dBm		<mark>}</mark> ∞	and the second second second	لمستعانية والمستحم والمستعم و	proprietuellera	ahlely-rallile-	ur nuge		
0 dBm									
0 0.0.111							1		
		м¢					- L - L - L - L - L - L - L - L - L - L		
-10 dBm—	D2 -12	.380 dBm							
							1		
-20 dBm								de a l	
Netween	ILLE ANA NAM						ખાખત્ન	Maryhand	aththeatherpy
Magnages and the second se	hddlld% wheeler e.								on a mapped
-40 dBm—									
-+0 ubiii									
-50 dBm—									
-60 dBm									
CF 821.5 N	1HZ			1001	l pts		_	-	10.0 MHz
					Mea	asuring		4/4	1.03.2018 10:24:59

4.1.1.8.3 Test Channel = HCH

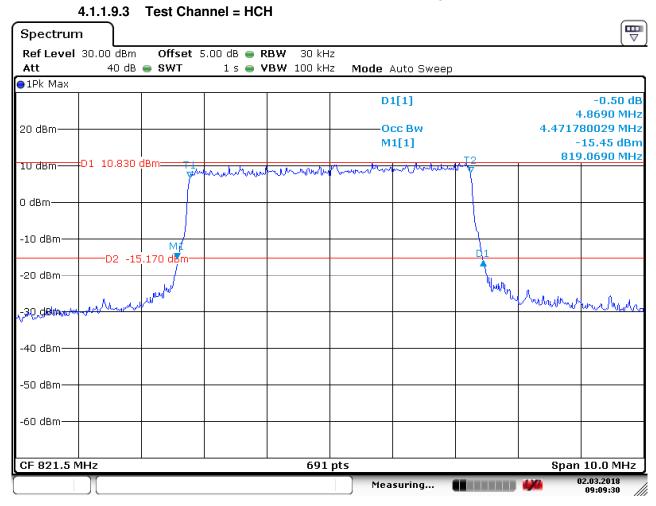
Date: 1.MAR.2018 10:24:59

Report No.: SZEM180100021804 Page: 45 of 190


	4.1.1.9.1	Test Cha	nnel = LCH						
Spectrun	n								
Ref Level	30.00 dBm	Offset	5.00 dB 🥃 RE	3W 30 kH:	z				
Att	40 dB	SWT	1 s 👄 🛛	3W 100 kH:	z Mode /	Auto Sweep			
⊖1Pk Max									
					D	l[1]			0.07 dB
					_	_			.8480 MHz
20 dBm—						cc Bw			80029 MHz
					M	1[1]			14.27 dBm .0540 MHz
10 dBm	D1 11.300	dBm	multiment	March	Maria and An	munder	- <u>T2</u>	014	.0340 MHZ
					(Contraction of the	n Change an			
0 dBm									
		/							
-10 dBm—		l M					d 1		
	D2 -14	4.700 dBm—					1		
-20 dBm—									
	Mur	and well and					Why when	Murmuhum	
-30 dBm	pAN WWW							o. Mr. Shudrah h	har Judge
where									
-40 dBm—									
-50 dBm—									
-50 aBm—									
-60 dBm—									
CF 816.5 (MHz			691	nts			Snan	10.0 MHz
	1112			160				!	10.0 19112
					Mea	suring 🖡		40	09:08:18

4.1.1.9 Test Mode = LTE/TM3 5MHz

Date: 2.MAR.2018 09:08:18


Report No.: SZEM180100021804 Page: 46 of 190

Date: 2.MAR.2018 09:06:47

Report No.: SZEM180100021804 Page: 47 of 190

Date: 2.MAR.2018 09:09:30

Report No.: SZEM180100021804 Page: 48 of 190

	4.1.1.10.1	Test Cha	nnel = LCI	H/ MCH/HC	H				
Spectru	n								
Ref Leve	el 35.00 dBm	n Offset	5.00 dB 👄	RBW 100 k	Ηz				`
🗎 Att	40 dE	B 😑 SWT	30 ms 👄	VBW 300 ki	Hz Mode	Auto Sweej	C		
⊖1Pk View									
					D	l[1]			-2.76 dB
30 dBm—									.8100 MHz
						cc Bw			08991 MHz
20 dBm—					M	1[1]			10.88 dBm
	D1 14.270	dBm Tha						814	1250 MHz
10 dBm		T T	anner aller and a	multiplicity	villette	honestalling	hung 2		
							1		
0.40									
0 dBm		J							
		м					1		
-10 dBm—	D2 _11	1.730 dBm							
		1 1					<u> </u>		
-20 dBm—		and the start					Hughts	a de la catal de la catal	1
	1. Marthallon						10 11	arturintetaparta	manutaling
20 Hall	hurulinhurdhur								
TOHANCIBUL									
-40 dBm—									
-50 dBm—									
-60 dBm—									
So abril									
CF 819.0	MHz			1001	pts			Span	20.0 MHz
					Mea	suring		4/4 0)1.03.2018 10:19:33 //

4.1.1.10 Test Mode = LTE/TM1 10MHz

Date: 1.MAR.2018 10:19:33

Report No.: SZEM180100021804 Page: 49 of 190

	4.1.1.11.1	Test Cha	nnel = LCł	H/ MCH/HC	H				_
Spectru	m								
Ref Lev	el 35.00 dBm	n Offset	5.00 dB 😑	RBW 100 ki	Ηz				
Att 🗧	40 dB	B 😑 SWT	30 ms 😑	VBW 300 ki	Hz Mode	Auto Swe	ер		
●1Pk View	-								
30 dBm					D	1[1]			-7.94 dB
30 uBiii—						D			.8100 MHz
						CC BW		8.9710	28971 MHz -8.54 dBm
20 dBm—						1[1]		814	.1450 MHz
	D1 14.220	dBm					1.JT2		
10 dBm—		7	Mar Maryury	adardara ang ang ang ang ang ang ang ang ang an	ամ ՎԱՆՆ հայ լ	angelet also where	www.		
0 dBm		r .							
		м					1 1		
-10 dBm—		1					<u> </u>		
	D2 -11	L.780 dBm					Dı		
00 d0 m							1 X		
-20 ubiii—	lileon lil markhilmy prive	4 July					"Holley	and the second	National and the second se
	prophilling .								an wa talimitikatikatika
-30 dBm#	uraet								
A. 0.40									
-40 dBm—									
-50 dBm—									
-60 dBm—									
CF 819.0	MHz			1001	pts				20.0 MHz
					Mea	asuring		4/4	1.03.2018 10:20:07

4.1.1.11 Test Mode = LTE/TM2 10MHz

Date: 1.MAR.2018 10:20:07

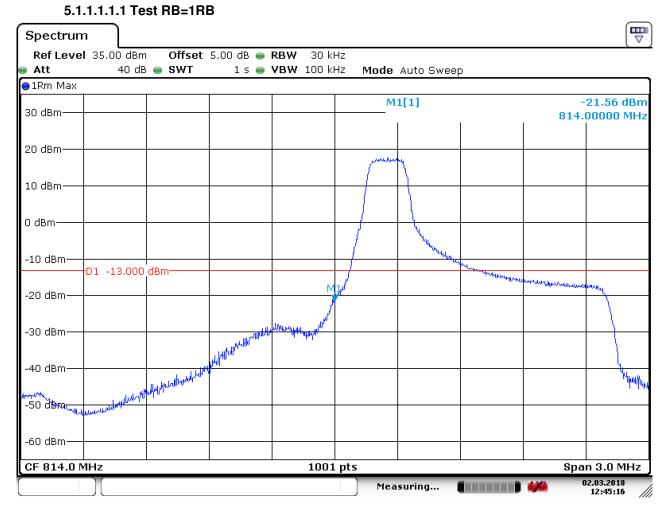
Report No.: SZEM180100021804 Page: 50 of 190

	4.1.1.12.1	Test Cha	nnel = LCH	H/ MCH/HC	H				
Spectru	m								
Ref Leve	I 30.00 dBm	Offset 9	5.00 dB 😑 R	.BW 30 kH	z				
Att	40 dB	e swt	1 s 👄 V	'BW 100 kH	z Mode	Auto Swee	р		
●1Pk Max									
					D	1[1]			0.21 dB
					~	D			0.6380 MHz
20 dBm—						CC BW			03618 MHz 18.16 dBm
					111	TTT			10.10 UBIN
10 dBm—	-D1 7.570 d						T2		
	D1 7.570 di		Wahalananana	manter	Willimmersk	mun	wint		
0 dBm									
-10 dBm—									
		M1 8.430 dBm <u>—</u>					d1		
-20 dBm—	02 -16	.430 ubiii					1		
		. And					1 Y.		
-30 dBm—	whether the ward ward	headler					"Ulline"	monthe autority	World method was
an an all	white								
∼40 dBm—									
-50 dBm—									
-60 dBm—									
CF 819.0	MHz			691	pts	·	· · · · · · · · · · · · · · · · · · ·	Span	20.0 MHz
					Mea	asuring		440	2.03.2018 09:05:15

4.1.1.12 Test Mode = LTE/TM3 10MHz

Date: 2.MAR.2018 09:05:15

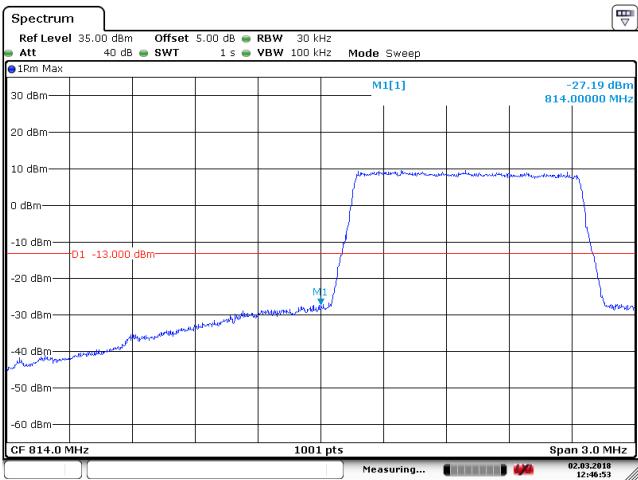
Report No.: SZEM180100021804 Page: 51 of 190


5 Band Edges Compliance

5.1 For LTE

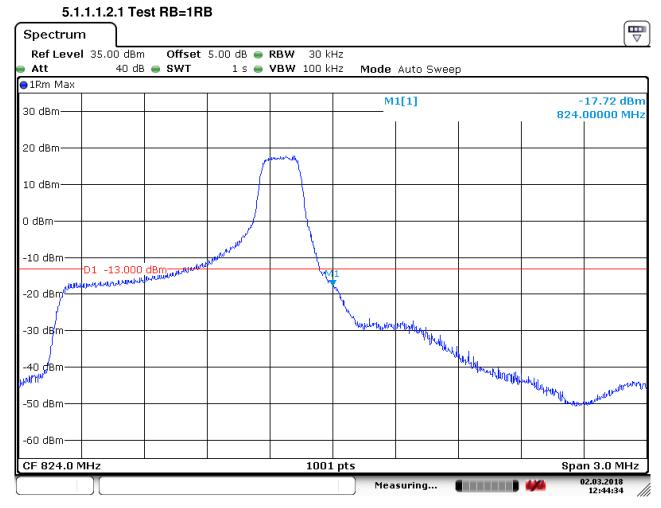
5.1.1 Test Band = LTE band26

5.1.1.1 Test Mode = LTE/TM1 1.4MHz


5.1.1.1.1 Test Channel = LCH

Date: 2.MAR.2018 12:45:16

Report No.: SZEM180100021804 Page: 52 of 190



5.1.1.1.1.2 Test RB=6RB

Date: 2.MAR.2018 12:46:54

Report No.: SZEM180100021804 Page: 53 of 190

5.1.1.1.2 Test Channel = HCH

Date: 2.MAR.2018 12:44:34

Report No.: SZEM180100021804 Page: 54 of 190

Spectrum	<u></u>	•••••	-						
	35.00 dBm		5.00 dB 👄						
Att	40 dB	SWT	1 S 👄	VBW 100 k	Hz Mode	Auto Swee	2		
⊖1Rm Max			1	Т					
30 dBm					W	1[1] I	I		27.31 dBm 00000 MHz
20 dBm									
10 dBm		,hp.ys	unturent Martin Charles	-					
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
™30 ¹ dBm				\~	1 White Manual M Manual Manual Ma	adhara	Number of the second		
-40 dBm							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	William water water	Mal alexandrover alexandrover alexandrover alexandrover alexandrover alexandrover alexandrover alexandrover ale
-50 dBm									ու առեմի
-60 dBm CF 824.0 M	IHz			1001	. pts			Spa	n 3.0 MHz
][]				📄 Mea	suring		4/4	2.03.2018 12:42:51

5.1.1.1.2.2 Test RB=6RB

Date: 2.MAR.2018 12:42:51

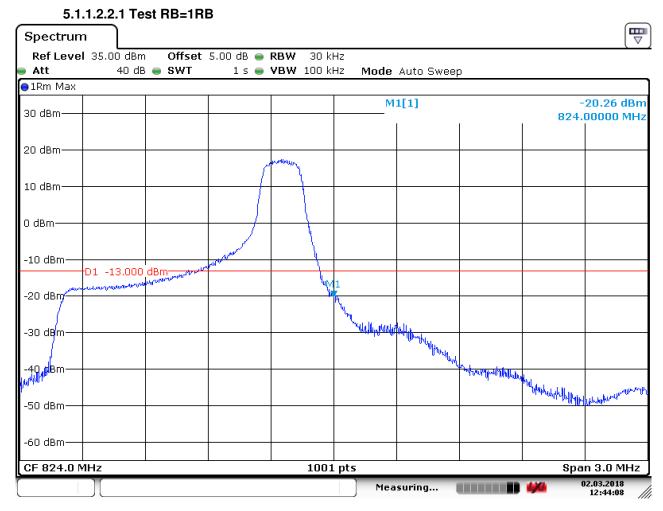
Report No.: SZEM180100021804 Page: 55 of 190

5.1.1.2.1.1 Test RB=1RB ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz 1 s 🔵 **VBW** 100 kHz Att 40 dB 💿 SWT Mode Auto Sweep ●1Rm Max M1[1] -23.79 dBm 30 dBm-814.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm INA ALLA -20 dBm-When the state of -30 dBmwe Willing www. willioutility -40 dBm-**W** 450 88mupuly pyth -60 dBm-1001 pts CF 814.0 MHz Span 3.0 MHz 02.03.2018 12:45:56 Measuring...

5.1.1.2 Test Mode = LTE/TM2 1.4MHz 5.1.1.2.1 Test Channel = LCH

Date: 2.MAR.2018 12:45:57

Report No.: SZEM180100021804 Page: 56 of 190


Spectrum	ι							
	l 35.00 dBm		5.00 dB 👄					`
e Att	40 dE	s 😑 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep		
●1Rm Max								
30 dBm					М	1[1]		-28.52 dBm
30 UBIII						1	814	.00000 MHz
20 dBm								
10 dBm					سالمسر		Jacoba and the welling and a start from and the	+
								www.
0 dBm								<u></u>
								1
-10 dBm					/			<u> </u>
	D1 -13.000	dBm						<u> </u>
-20 dBm—								
-20 ubiii					. [1
				M Mana and A				WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
-30 dBm			144Mb May	M Harring for and the second s	en			
		and when the	y while the second					
-40 dBm	and the state of the	Alfragher						
web and and and and a service	a have a strategy and the state of the state							
-50 dBm								
-60 dBm								
CF 814.0 N	/IHz			1001	pts			an 3.0 MHz
					Mea	suring	••••	02.03.2018 12:46:24

5.1.1.2.1.2 Test RB=6RB

Date: 2.MAR.2018 12:46:24

Report No.: SZEM180100021804 Page: 57 of 190

5.1.1.2.2 Test Channel = HCH

Date: 2.MAR.2018 12:44:08

Report No.: SZEM180100021804 Page: 58 of 190

Spectrum	')										
Ref Level	35.00 0	¦Bm	Offset	5.00 dB	🖷 RBW	30 k	Hz				`
🖷 Att	40	I dB 🧉	SWT	1 s	e vbw	100 k	Hz Mode	Auto Sweej	D		
⊖1Rm Max											
30 dBm							M	1[1]	l		28.72 dBm 00000 MHz
20 dBm											
10 dBm	and man apple - 10	line	m. Mandeller	www.com/thatto	and the second	۱.					
0 dBm						$\left \right $					
-10 dBm	D1 -13.0)00.dB	m			+					
-20 dBm						+					
"ശായഷ്Bm—						(M	1 Meyel-subblysication	Martly lip and line of the start	u al.n		
-40 dBm									1400MUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Munaler and the	Hardin and a state of the state
-50 dBm											
-60 dBm											
CF 824.0 M	IHz			<u> </u>		1001	pts	I	I	Spa	n 3.0 MHz
							Mea	suring		4/4	2.03.2018 12:43:25

5.1.1.2.2.2 Test RB=6RB

Date: 2.MAR.2018 12:43:26

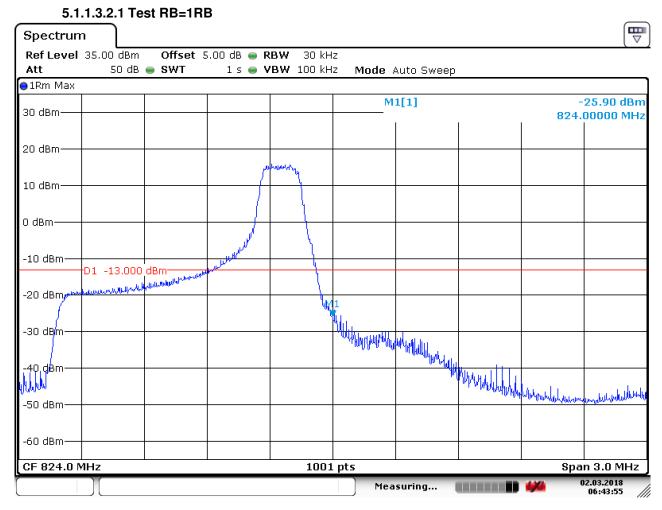
Report No.: SZEM180100021804 Page: 59 of 190

5.1.1.3 Test Mode = LTE/TM3 1.4MHz 5.1.1.3.1 Test Channel = LCH

5.1.1.3.1.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 50 dB 💿 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -25.55 dBm 30 dBm-814.00000 MHz 20 dBm-10 dBm-0 dBm-L.M.W -10 dBm-D1 -13.000 dBm -20 dBm-M1, with or philase fill philase we -30 dBm--40 dBmhundred . -50 dBm -60 dBm-CF 814.0 MHz 1001 pts Span 3.0 MHz 02.03.2018 110 Measuring... 11 06:42:30

Date: 2.MAR.2018 06:42:30

Report No.: SZEM180100021804 Page: 60 of 190


Spectrum	n								
Ref Level	35.00 dBm	Offset	5.00 dB 🥃 R	:BW 30 kH:	Z				`
Att	50 dB	e swt	1 s 👄 🗸	'BW 100 kH:	Mode .	Auto Sweep			
😑 1 Rm Max									
30 dBm					M	1[1]			32.77 dBm 00000 MHz
20 dBm									
10 dBm					Juntre	uniperspectation and the	and the second	Hartyk market wardel	h.
0 dBm									
-10 dBm—	D1 -13.000	dBm							
-20 dBm—									
-30 dBm			Halfwartherightermonauth	ed bollowhighterproduction	1) a				
-40 dBm			AMMAPONIP						
Hubblenerartoputh	weather weather the	the way as							
-50 dBm									
-60 dBm									
CF 814.0 N	MHz			1001	pts			Spa	n 3.0 MHz
					Mea	suring		4/4 0	2.03.2018 06:42:56

5.1.1.3.1.2 Test RB=6RB

Date: 2.MAR.2018 06:42:56

Report No.: SZEM180100021804 Page: 61 of 190

5.1.1.3.2 Test Channel = HCH

Date: 2.MAR.2018 06:43:56

Report No.: SZEM180100021804 Page: 62 of 190

Spectrum	ı)								
Ref Level	35.00 dBm	Offse	et 5.00 dB 👄	RBW 30 kH	łz				
Att	50 dB	🖷 SWT	1 s 👄	VBW 100 kH	lz Mode	Auto Sweep			
😑 1 Rm Max									
30 dBm					M	11[1]	1		32.54 dBm 00000 MHz
20 dBm									
10 dBm		-per-terret	man	mon					
0 dBm									
-10 dBm	D1 -13.00) dBm							
-20 dBm									
-30 dBm					11 Marian Minilipanapada	and the second of the second			
-40 dBm						and the second	www.while	1911 Malathuran	Address of the second
-50 dBm									odužnihodrativ
-60 dBm									
CF 824.0 N	/Hz		I	100:	L pts		I	Spa	n 3.0 MHz
					Me-	asuring		4	2.03.2018 06:43:30

5.1.1.3.2.2 Test RB=6RB

Date: 2.MAR.2018 06:43:30

5.1.1.4 Test Mode = LTE/TM1 3MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180100021804 Page: 63 of 190

5.1.1.4.1 Test Channel = LCH 5.1.1.4.1.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 40 dB 👄 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -16.94 dBm 30 dBm-814.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm-JUP AN -30 dBm-0 -40 dBm-- more and the first of the -50 dBmn - March who which have a -60 dBm-CF 814.0 MHz 1001 pts Span 6.0 MHz 02.03.2018 Measuring... /// 12:34:56

Date: 2.MAR.2018 12:34:57

Report No.: SZEM180100021804 Page: 64 of 190

Spectrum		5(110=10)							
	35.00 dBm		5.00 dB 👄						
Att	40 dB	🖷 SWT	1 s 👄	VBW 100 ki	Hz Mode	Auto Swee	p		
⊖1Rm Max		-							
30 dBm					M	1[1]	I		25.64 dBm 00000 MHz
20 dBm									
10 dBm									
0 dBm					porto and the second second	a filena fra anti-a granda hanan	and the strength of the streng	derhalden fritzen zur einigen	manner
-10 dBm	D1 -13.000	dPm-							
-20 dBm	DI -13,000	ивш		M					
-30 dBm									1
-40 dBm		nthe and a second and a second	monthematic	and a start and the start					
™50 dBm	y prophylation that the second								
-60 dBm									
CF 814.0 M	IHz			1001	pts			Spa	n 6.0 MHz
					Mea	asuring		4/4	02.03.2018 12:37:50

5.1.1.4.1.2 Test RB=15RB

Date: 2.MAR.2018 12:37:50

Report No.: SZEM180100021804 Page: 65 of 190

5.1.1.4.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -14.55 dBm 30 dBm-824.00000 MHz 20 dBm-10 dBm⁻ 0 dBm--10 dBm-Y D1 -13.000 dBm -20 dBm-MAG -30 dBmand which add the first of the -40 dBm--50 dBmhyper -60 dBm-CF 824.0 MHz 1001 pts Span 6.0 MHz 02.03.2018 Measuring... lli 12:41:09

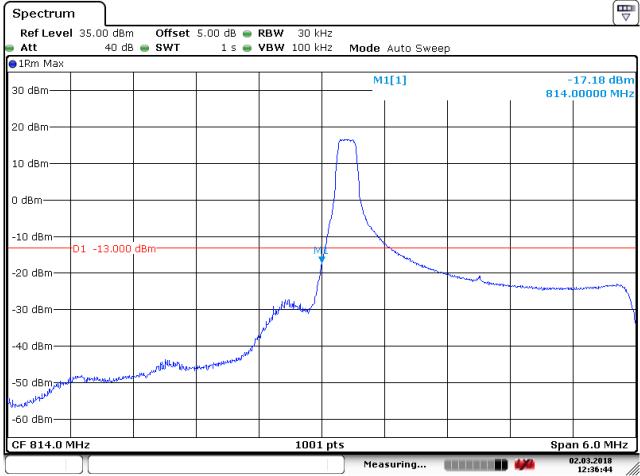
5.1.1.4.2 Test Channel = HCH

Date: 2.MAR.2018 12:41:09

Report No.: SZEM180100021804 Page: 66 of 190

Spectrum									
Ref Level	35.00 dBm	Offset	5.00 dB 👄	RBW 30 k	:Hz				
Att	40 dB	SWT	1 s 😑	VBW 100 k	Hz Mode	Auto Swee	2		
⊖1Rm Max									
30 dBm					M	1[1]	1		27.79 dBm 00000 MHz I
20 dBm									
10 dBm									
0 dBm	Westman White Providence of the State of the	adaala ka	ionhumbane Mikhor	allowershined					
-10 dBm									
20 dBm	D1 -13.000	dBm							
				Ņ	1				
-30 dBm——					and the property and all all and all all and all all all all all all all all all al	marken duridinge	whenhallyman	un and the second of the secon	м
-40 dBm									harmonthing
-50 dBm									
-60 dBm									
CF 824.0 M	Hz	l		<u>1</u> 00:	l pts	I	I	Spa	n 6.0 MHz
][]				Mea	suring		0	2.03.2018 12:38:30

5.1.1.4.2.2 Test RB=15RB


Date: 2.MAR.2018 12:38:31

Report No.: SZEM180100021804 Page: 67 of 190

5.1.1.5 Test Mode = LTE/TM2 3MHz 5.1.1.5.1 Test Channel = LCH

5.1.1.5.1.1 Test RB=1RB

Date: 2.MAR.2018 12:36:44

Report No.: SZEM180100021804 Page: 68 of 190

Spectrum	<u> </u>									
	35.00 dBm		5.00 dB 😑							
Att	40 dB	SWT	1 s 👄	VBW 100 ki	Hz	Mode	Auto Swee	эр		
⊖1Rm Max										
30 dBm						M	1[1]	I		·28.23 dBm 00000 MHz I
20 dBm										
10 dBm										
0 dBm						phalamation	Likumpahan aya	yneld war an an an ar	handuladornabilityaa	munner
-10 dBm										
-20 dBm	D1 -13.000	dBm-			ļ					
-30 dBm				M	4					
-40 dBm		Munager and and a start with the	wounder	al some half all the own the own						
-30 dBm -40 dBm ,,504/dBm	Work and Mary Mary Mary	ffruer.								
-60 dBm										
CF 814.0 M	IHz			1001	. pt	ts			 Spa	n 6.0 MHz
						Mea	suring		4/4	02.03.2018 12:37:18

5.1.1.5.1.2 Test RB=15RB

Date: 2.MAR.2018 12:37:18

Report No.: SZEM180100021804 Page: 69 of 190

5.1.1.5.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -16.48 dBm 30 dBm-824.00000 MHz 20 dBm-10 dBm⁻ 0 dBm· -10 dBm-D1 -13.000 dBm sunner -20 dBmmound калалланан Munan -30 dBm N. -40 dBm-WILLIAM MARCHINE ANN ANN -50 dBm--60 dBm-CF 824.0 MHz 1001 pts Span 6.0 MHz 02.03.2018 Measuring... lli 12:40:23

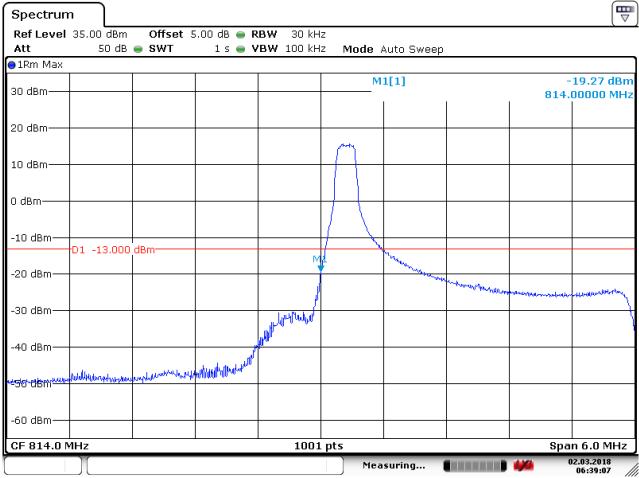
5.1.1.5.2 Test Channel = HCH

Date: 2.MAR.2018 12:40:23

Report No.: SZEM180100021804 Page: 70 of 190

Spectrum									
Ref Level	35.00 dBm	Offse	t 5.00 dB 👄	RBW 30 k	Hz				
🔵 Att	40 dB	🛛 👄 SWT	1 s 👄	VBW 100 ki	Hz Mode	Auto Swee	р		
⊖1Rm Max									
30 dBm					M	1[1]	I		28.63 dBm 00000 MHz I
20 dBm									
10 dBm									
0 dBm	unuhan han	unter water and the second	an a	A was replaced					
-10 dBm	01 -13.000	dBm							
/20 dBm			_						
-30 dBm				Ň	1				
-40 dBm					Millingha	whenterfunctions	ele-linderspirtury	wmithe	
								, ~P Validite	mpleturrelations
-50 dBm									
-60 dBm CF 824.0 M	Hz			1001	. pts			Spa	n 6.0 MHz
	Υ					suring			2.03.2018 12:39:06

5.1.1.5.3 Test RB=15RB


Date: 2.MAR.2018 12:39:06

Report No.: SZEM180100021804 Page: 71 of 190

5.1.1.6 Test Mode = LTE/TM3 3MHz 5.1.1.6.1 Test Channel = LCH

5.1.1.6.1.1 Test RB=1RB

Date: 2.MAR.2018 06:39:08

Report No.: SZEM180100021804 Page: 72 of 190

Spectrum	n)															ſ	V
Ref Level	35.00	dBm		Offset	5.00	l dB		RBW	30	kHz								
Att	5	io dB	•	SWT		1 s		VBW	100	kHz		Mode	Auto Swe	ер				
⊖1Rm Max																		
30 dBm												M	11[1]	I			29.93 dE 00000 M I	
20 dBm					_													
10 dBm										_								
0 dBm											-	listenpydrafyl	Uphr-kowy4	nuukur	Hannacharathan	4-hon-the-source-source	- Jully marked black	
-10 dBm											4							
-20 dBm	D1 -1	3.000	dB	-M														Ţ
-30 dBm										м								
							ollow	en fillungelon	while	Just								
-40 dBm	man	man	au	hurbulanyhad	<u>, an 19</u> 00													
-50 dBm																		
-60 dBm									10		+						n 6 0 M	
CF 814.0 M	MHZ		_				_		11	01	ρτ	2	_				n 6.0 MH	IZ
												Mea	asuring)2.03.2018 06:39:46	

5.1.1.6.1.2 Test RB=15RB

Date: 2.MAR.2018 06:39:46

Report No.: SZEM180100021804 Page: 73 of 190

5.1.1.6.2.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 50 dB 🔵 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep . ●1Rm Max M1[1] -19.97 dBm 30 dBm-824.00000 MHz 20 dBm-10 dBm⁻ 0 dBm--10 dBm-D1 -13.000 dBm--20 dBmthe all and the state of the st ⊭30 dBm--40 dBm-White here here the second and the second se -50 dBm--60 dBm-CF 824.0 MHz 1001 pts Span 6.0 MHz 02.03.2018 Measuring... lli 06:40:52

5.1.1.6.2 Test Channel = HCH

Date: 2.MAR.2018 06:40:52

Report No.: SZEM180100021804 Page: 74 of 190

Spectrum	ī									
Ref Level Att	35.00 dBm	Offset SWT	5.00 dB 👄	RBW VBW :	30 kHz					
All	50 UB	- 5WI	15 🖷	VBW .	100 KH2	2 Mode /	Auto Sweep			
30 dBm						M	1[1]			29.98 dBm 00000 MHz
20 dBm										
10 dBm										
0 gBm	umethyladamaan	polyephisonarrowald	englandownan	mbupnatha	bayllown					
-10 dBm	D1 -13.000	dBm								
-20 dBm										
-30 dBm—					N	i Mulai				
-40 dBm						ann fhrathannstel	un and some	while while the	human had by	herryllowstrappitchlaka
-50 dBm										. Jour whill will be
-60 dBm										
CF 824.0 M	/IHz	I	1	<u> I </u>	1001	pts	I	I	Spa	n 6.0 MHz
						Mea	suring		440	2.03.2018 06:41:16

5.1.1.6.3 Test RB=15RB

Date: 2.MAR.2018 06:41:16

5.1.1.7 Test Mode = LTE/TM1 5MHz

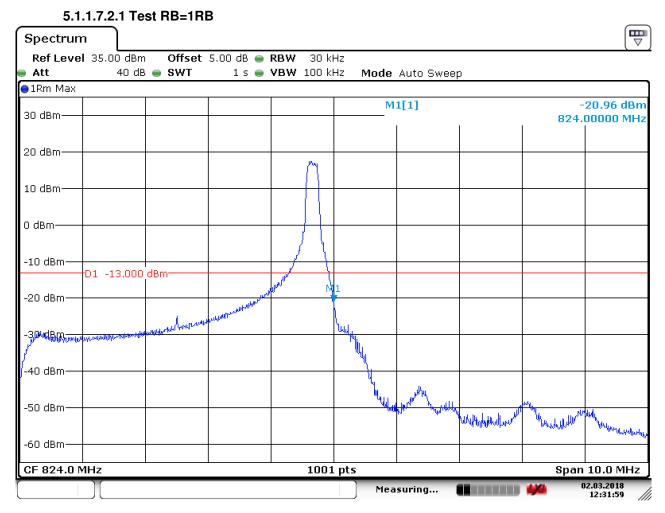
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180100021804 Page: 75 of 190

5.1.1.7.1 Test Channel = LCH 5.1.1.7.1.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 40 dB 👄 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -21.36 dBm 30 dBm-814.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm www.witerry.kite.energevicultraftenteininitenteininitenteininitenteinitenteinitenteinitenteinitenteinitenteinit -40 dBm--50 dBm-ALL HALL -60 dBm-CF 814.0 MHz 1001 pts Span 10.0 MHz 02.03.2018 Measuring... 11 12:30:36

Date: 2.MAR.2018 12:30:36

Report No.: SZEM180100021804 Page: 76 of 190


Spectrum												Ē
Ref Level	35.00	dBm	Offs	et 5.00 dB	😑 RE	W 30 ki	Hz					
Att	4	∔O dB	SWT	1 s	😑 VE	3W 100 ki	Hz	Mode	Auto Swe	ер		
⊖1Rm Max												
30 dBm								M	1[1]	I		-29.15 dBm .00000 MHz
20 dBm												
10 dBm												
0 dBm								proministra	- Merridaher James	have the second s	werten the analytic that we have	runnininin
-10 dBm	01 -13	000	-10 m									
-20 dBm	JI -13						/					$\left \right $
-30 dBm						M معمالهمان ماديون	4					4
-40 dBm		Jor	where per la be	Jantuatorationate	wand for the	hinner						
-50 dBm-tomod	out works	amat "										
-60 dBm												
CF 814.0 M	Hz					1001	. pi	ts	1		Span	10.0 MHz
)[1	suring		-	02.03.2018 12:29:51 //

5.1.1.7.1.2 Test RB=25RB

Date: 2.MAR.2018 12:29:51

Report No.: SZEM180100021804 Page: 77 of 190

5.1.1.7.2 Test Channel = HCH

Date: 2.MAR.2018 12:32:00

Report No.: SZEM180100021804 Page: 78 of 190

Spectrum									
	35.00 dBm		5.00 dB 👄						
e Att	40 dB	🖷 SWT	1 s 🖷	VBW 100 k	Hz Mode	Auto Swee	р		
⊖1Rm Max			1	1	1				
30 dBm					M	1[1] I	1		29.02 dBm 00000 MHz
20 dBm									
10 dBm									
o dem	h has shown and the hold	angele dense de la destruter	approved all and a second	alwood and a					
-10 dBm	D1 -13.000	dBm							
- <u></u> 20 dBm	51 15.000			$\left \right\rangle$					
-30 dBm				Ŋ	1				
-40 dBm					mar and all all and a second	ummharman	ana da ana ana ana ana ana ana ana ana a	and the way when the	nny
-50 dBm									human
-60 dBm CF 824.0 M	Hz			1001	. pts			Span	10.0 MHz
][]					suring			2.03.2018 12:32:25

5.1.1.7.2.2 Test RB=25RB

Date: 2.MAR.2018 12:32:26

Report No.: SZEM180100021804 Page: 79 of 190

5.1.1.8 Test Mode = LTE/TM2 5MHz 5.1.1.8.1 Test Channel = LCH

5.1.1.8.1.1 Test RB=1RB ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz 1 s 🔵 **VBW** 100 kHz Att 40 dB 💿 SWT Mode Auto Sweep ●1Rm Max M1[1] -21.40 dBm 30 dBm-814.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm M -20 dBm-When the work of the second hand white -30 dBm-Mr. allshappy and the mather who -40 dBm-Manundan and marget the and -50 dBm[.] ыh පරේ අප්රාංජී 1001 pts CF 814.0 MHz Span 10.0 MHz 02.03.2018 12:31:01 100 Measuring...

Date: 2.MAR.2018 12:31:02

Report No.: SZEM180100021804 Page: 80 of 190

Spectrum											
Ref Level	35.00	dBm	Offset	5.00 dB 😑	RBW 30 ki	Hz					
🔵 Att	4	O dB 🍯	swt 🛛	1 s 👄	VBW 100 k	Hz	Mode	Auto Swee	эр		
😑 1Rm Max											
30 dBm							M	1[1]			·30.72 dBm 00000 MHz
20 dBm											
10 dBm											
0 dBm						-	nolemater parts	Mangolan pala ang ta	which have a fundation	eland tanakasala gida dagangan s	
-10 dBm	D1 -13.	000 dF	\m								
-20 dBm											
-30 dBm					M	4					
-30 dBm -40 dBm -50 dBm -50 dBm				guetos der the alternet	and and a state of the second						
-50 dBm	allow Williams	NUMBER									
-60 dBm											
CF 814.0 M	Hz	I		1	1001	L pts	5	1		ı Span	10.0 MHz
(][2	suring		444	02.03.2018 12:29:29

5.1.1.8.1.2 Test RB=25RB

Date: 2.MAR.2018 12:29:29

Report No.: SZEM180100021804 Page: 81 of 190

5.1.1.8.2.1 Test RB=1RB ₩ Spectrum Offset 5.00 dB 💿 RBW Ref Level 35.00 dBm 30 kHz 40 dB 💿 SWT 1 s 👄 **VBW** 100 kHz Att Mode Auto Sweep ●1Rm Max M1[1] -22.39 dBm 30 dBm⁻ 824.00000 MHz 20 dBm-10 dBm⁻ 0 dBm· -10 dBm-D1 -13.000 dBm -20 dBm-Hertweet May Lypaged -3 And B mark المراور والمادهم 40 dBm Mil -50 dBm have and the shall and the sha wheel with the state of the sta -60 dBm-Span 10.0 MHz CF 824.0 MHz 1001 pts 02.03.2018 Measuring... 12:31:43

5.1.1.8.2 Test Channel = HCH

Date: 2.MAR.2018 12:31:43

Report No.: SZEM180100021804 Page: 82 of 190

Spectrum	·								
Ref Level	35.00 dBr	n Offset	5.00 dB 😑	RBW 30 k	Hz				`
🔵 Att	40 d	B 🔵 SWT	1 s 👄	VBW 100 k	Hz Mode	Auto Swee	0		
●1Rm Max									
30 dBm					M	1[1]	I		30.84 dBm 00000 MHz
20 dBm									
10 dBm									
0 d BMarwarde	and all all the second	all marked and the second of the second of the second second second second second second second second second s	u-alluguithing-to-turn	and the second					
-10 dBm	D1 -13.000) dBm							
-20 dBm									
-30 dBm				, N	1				
-40 dBm					White High of the childe	and Mondepulsion	milinarityliapender	margar and	traff war working the
-50 dBm									- H. wordsmarke
-60 dBm									
CF 824.0 M	IHz		<u> </u>	1001	. pts	I	I	Span	10.0 MHz
					Mea	suring		4/4 0)2.03.2018 12:32:45

5.1.1.8.2.2 Test RB=25RB

Date: 2.MAR.2018 12:32:45

Report No.: SZEM180100021804 Page: 83 of 190

5.1.1.9 Test Mode = LTE/TM3 5MHz 5.1.1.9.1 Test Channel = LCH

5.1.1.9.1.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 50 dB 🔵 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -23.94 dBm 30 dBm-814.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm-Me deraumation ward -40 dBm-2<mark>58°d8m*</mark> -60 dBm-CF 814.0 MHz 1001 pts Span 10.0 MHz 02.03.2018 Measuring... 06:45:47

Date: 2.MAR.2018 06:45:47

Report No.: SZEM180100021804 Page: 84 of 190

Spectrun	n								
Ref Level	35.00 dBm	Offset	5.00 dB 😑 R	88W 30 kH	z				
Att	50 dB	🔵 SWT	1 s 👄 🛛	'BW 100 kH	z Mode	Auto Swee	ер		
⊖1Rm Max									
30 dBm					M	1[1]			33.58 dBm 00000 MHz
20 dBm									
10 dBm									
0 dBm						to my or here to grade where	» Vo<mark>l</mark>derboptcovaractydy	at the second second	hternender
-10 dBm—	D1 -13.000	dBm							
-20 dBm—					 				
-30 dBm					ł				4
-40 dBm		- almanutur	Material Contractions	freedown of the second of the					
∿s©nd₽₩₩₩₩	and and a second second second	And the second sec							
-60 dBm—									
CF 814.0 N	MHz			1001	pts				10.0 MHz
					Mea	suring		4/4	02.03.2018 06:46:09

5.1.1.9.1.2 Test RB=25RB

Date: 2.MAR.2018 06:46:10

Report No.: SZEM180100021804 Page: 85 of 190

5.1.1.9.2.1 Test RB=1RB ₩ Spectrum Offset 5.00 dB 😑 RBW Ref Level 35.00 dBm 30 kHz 50 dB 💿 SWT 1 s 🔵 **VBW** 100 kHz Att Mode Auto Sweep ●1Rm Max M1[1] -22.95 dBm 30 dBm⁻ 824.00000 MHz 20 dBm-10 dBm⁻ 0 dBm· -10 dBm-D1 -13.000 dBm -20 dBmphotomerally Annound -30.dBm-. Willing المحاولة والمرجع والمرجع والمراجع والمعالية والمحاولة المحاولة والمحاولة و aku. -40 dBm "lph when the state MARIA -50 dBm--60 dBm-Span 10.0 MHz CF 824.0 MHz 1001 pts 02.03.2018 Measuring... 06:47:13

5.1.1.9.2 Test Channel = HCH

Date: 2.MAR.2018 06:47:14

Report No.: SZEM180100021804 Page: 86 of 190

Spectrun	n								
Ref Level	35.00 dBm	Offset	5.00 dB 😑	RBW 30	<hz< th=""><th></th><th></th><th></th><th></th></hz<>				
Att	50 dB	👄 SWT	1 s 😑	VBW 100	KHz Mode	Auto Sweep			
😑 1Rm Max									
30 dBm					<u>م</u>	41[1] 	1		31.40 dBm 00000 MHz
20 dBm									
10 dBm									
0 dBaggerman	hand the second of the second	and the spectrum spectrum sector	ad Harakan ang ang ang ang ang ang ang ang ang a	<u>Land Marine Marine</u>					
-10 dBm—	D1 -13,000) dBm							
-20 dBm—					L				
-30 dBm—					MI				
-40 dBm—					Hitskytheren	White the second	المرمية مرادي ومراجع مراجع مراجع ومراجع	Million and and	
-50 dBm									allow how and marked
-60 dBm									
CF 824.0 N	 MHz			10	D1 pts			 Span	10.0 MHz
					Ме	asuring		4/4)2.03.2018 06:46:47

5.1.1.9.2.2 Test RB=25RB

Date: 2.MAR.2018 06:46:47

5.1.1.10 Test Mode = LTE/TM1 10MHz

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180100021804 Page: 87 of 190

₩

12:25:00

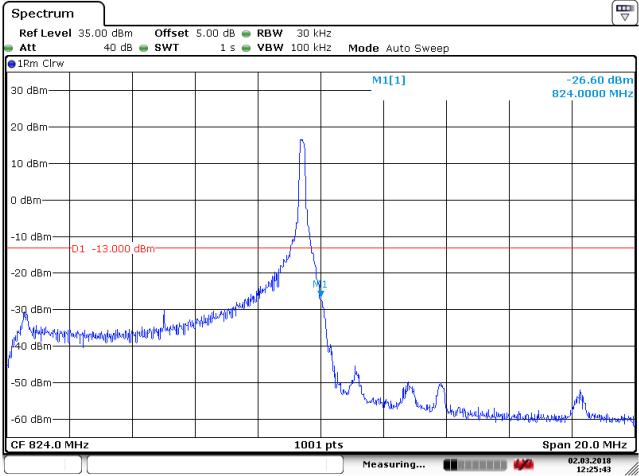
5.1.1.10.1 Test Channel = LCH/HCH 5.1.1.10.1.1 Test RB=1RB Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 40 dB 👄 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep o1Rm Clrw M1[1] -26.21 dBm 30 dBm-814.0000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-·D1 -13.000 dBm -20 dBmmy with the second states of the second se -30 dBm--40 dBm-Municherfield -50 dBmand the second second CF 814.0 MHz 1001 pts Span 20.0 MHz 02.03.2018 Measuring...

Date: 2.MAR.2018 12:25:01

Report No.: SZEM180100021804 Page: 88 of 190

Spectrum													
Ref Level	35.00	l dBm	O	ffset	5.00 dB		RBW 30	kHz					
🖷 Att	4	40 dB	😑 S\	ΝТ	1 s	•	VBW 100	kHz	Mode	Auto Swee	р		
⊖1Rm Max													
30 dBm									W	11[1] 	1		31.86 dBm 1.0000 MHz
20 dBm													
10 dBm													
0 dBm										turnapurana	gr-www.y.d-Mayd	L.Mahalumatican	hanna an
-10 dBm	D1 -13	8.000	dBm										
-20 dBm													
-30 dBm							. a. 1174	M					\
-40 dBm				. w.t 17 ¹¹¹	Way we want	NHURAN	www.						
-50 dBm	with	- AN	(47987 8 944) (An construct									
₩ @ @₩ ₫₿ ₶ħ₩₩ ^{₩₩}	Norklinson												
CF 814.0 M	IHz						100)1 p	ts	- I		Span	20.0 MHz
)[Mea	asuring		4/4	2.03.2018 12:28:13

5.1.1.10.1.2 Test RB=50RB


Date: 2.MAR.2018 12:28:13

Report No.: SZEM180100021804 Page: 89 of 190

5.1.1.11 Test Mode = LTE/TM2 10MHz 5.1.1.11.1 Test Channel = LCH/HCH

5.1.1.11.1.1 Test RB=1RB

Date: 2.MAR.2018 12:25:43

Report No.: SZEM180100021804 Page: 90 of 190

Spectrum	Γ								
	l 35.00 dBm		5.00 dB 😑						`
Att	40 dE	B 👄 SWT	1 s 👄	VBW 100	(Hz Mode	Auto Swee	р		
●1Rm Max					-				
30 dBm					M	1[1]	I		32.42 dBm 1.0000 MHz
20 dBm									
10 dBm									
0 abrawdaa	unnloghterstore		amment water a flew	p					
-1D dBm	D1 -13.000	dBm							
-20 dBm									
,-30 dBm									
-40 dBm					"WHAT IN IT IN ITA	an marked have been and the second	human hundra	4 Marcallon	prech,
-50 dBm									Lundenbergere
-60 dBm									
CF 824.0 M	1Hz			100	l pts			l Span	20.0 MHz
					Mea	asuring		444)2.03.2018 12:27:45

5.1.1.11.1.2 Test RB=50RB

Date: 2.MAR.2018 12:27:45

Report No.: SZEM180100021804 Page: 91 of 190

5.1.1.12 Test Mode = LTE/TM3 10MHz 5.1.1.12.1 Test Channel = LCH

5.1.1.12.1.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 30 kHz Att 50 dB 🔵 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm Max M1[1] -27.34 dBm 30 dBm-814.0000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm-M -30 dBm--40 dBm--50-dBmm -60 dBm-1001 pts CF 814.0 MHz Span 20.0 MHz 02.03.2018 Measuring... 06:49:48

Date: 2.MAR.2018 06:49:49

Report No.: SZEM180100021804 Page: 92 of 190

Spectrun	n									T T	V
	35.00 dBm		5.00 dB 😑 R							`	
Att	50 dB	SWT	1 s 😑 V	' BW 100 kH	Z	Mode	Auto Sweep				
⊖1Rm Max			1								
30 dBm						M	1[1]	I		·36.36 dB) F.0000 MH	
20 dBm											
10 dBm											
0 dBm						1 - Marthan	Thursdan and an	استهلمه المسترك المعالي والمسترك والمسترك	- Horsenth Marthan M	unnerturbot	
-10 dBm	D1 -13.000	 dBm									
-20 dBm—											
-30 dBm—				M							ł
-40 dBm		ann halphone market	and Markedown	burn block which have							
n-50uetername	- Mallory had an and the survey	and algebra with the Martin	patrio (
-60 dBm—											
CF 814.0 M	MHz			1001	pt	s			Span	20.0 MHz	z
)[Mea	suring		4/4	02.03.2018 06:50:14	

5.1.1.12.1.2 Test RB=50RB

Date: 2.MAR.2018 06:50:15

Report No.: SZEM180100021804 Page: 93 of 190

5.1	.1.12.2.1 7	Fest RB=5	0RB						
Spectrun	ı)								
Ref Level	35.00 dBm	Offset S	5.00 dB 😑 R	:BW 30 kH	z				
Att	50 dB	SWT	1 s 🛑 V	' BW 100 kH	z Mode /	Auto Sweep			
⊖1Rm Max	1			1	1				
30 dBm					M	1[1]			27.55 dBm 1.0000 MHz
							1	024	7.0000 MHZ
20 dBm									
20 00111				, M					
10 dBm									
10 000									
0 dBm									
o ubili									
-10 dBm—									
-10 ubiii	D1 -13.000	dBm		/ \					
-20 dBm—				- <i>M</i>					
-20 ubiii				July	1				
-30 dBm—			- Way we		7				
-30 uBiii— 	mana		Who will all all and						
of provinging	munumunup	Martin Constraining	ľ		1				
/40 dBm—									
Í					Margarethanne	and and a second	-	and the state of more	dul
-50 dBm—					х с сокру	Leves of the Diget	- Educard Billion redorm of Princes	ويونجونهم والانتخاب والمتعادية	الاربوبية ومعارفهم الانتاب
-60 dBm—									
CF 824.0 N	/Hz	I	I	1001	pts	I	I	Span	20.0 MHz
					Mea	suring		44	02.03.2018 06:49:10

5.1.1.12.2 Test Channel = HCH

Date: 2.MAR.2018 06:49:10

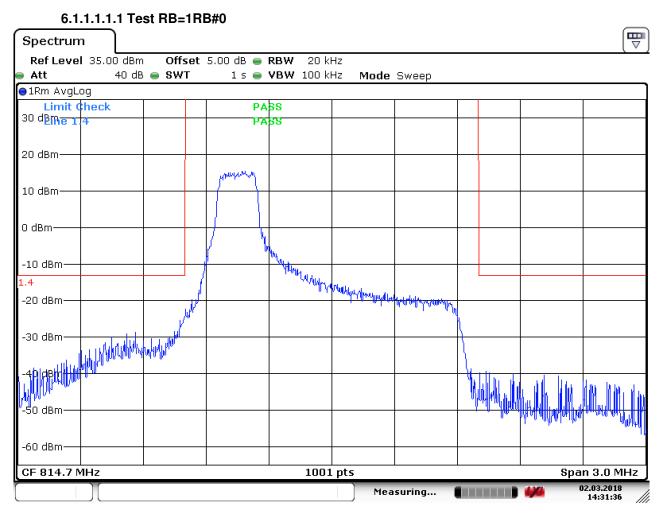
Report No.: SZEM180100021804 Page: 94 of 190

Spectrun	n									
	35.00 dBm		5.00 dB	-						
Att	50 dB	SWT	1 s	e vbw	100 kH	z Mode	Auto Sweep			
●1Rm Max										
30 dBm						M	11[1]	I		36.72 dBm 1.0000 MHz
20 dBm										
10 dBm										
0 dBm-	munichlammahama	muhullhal	mal particular	the public flat and	muthing					
-10 dBm	D1 -13.000	J.dBm								
-20 dBm					-					
/ /30 dBm						1				
-40 dBm					., J	Mulmud Murphan	^{la} ndonandusen ad	and and the second second		
-50 dBm									maringhypown	and the second second
-60 dBm										
CF 824.0 N	 /IHz				1001	pts			Span	20.0 MHz
						Mea	asuring		4/4 ()2.03.2018 06:48:09

5.1.1.12.2.2 Test RB=50RB

Date: 2.MAR.2018 06:48:09

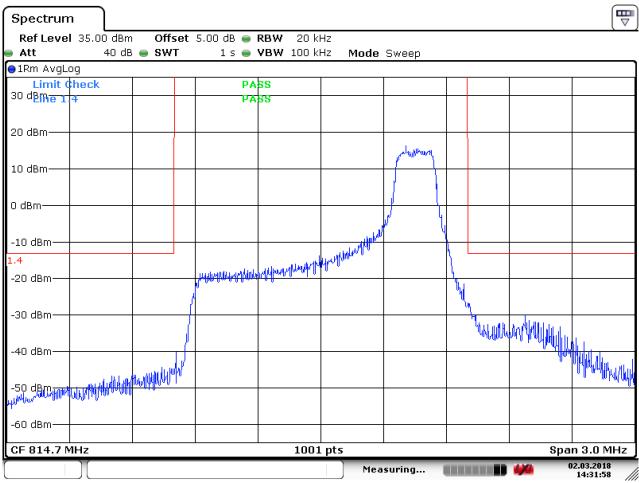
Report No.: SZEM180100021804 Page: 95 of 190


6 Emission Mask

6.1 For LTE

6.1.1 Test Band = LTE band26

6.1.1.1 Test Mode = LTE/TM1 1.4MHz


6.1.1.1.1 Test Channel = LCH

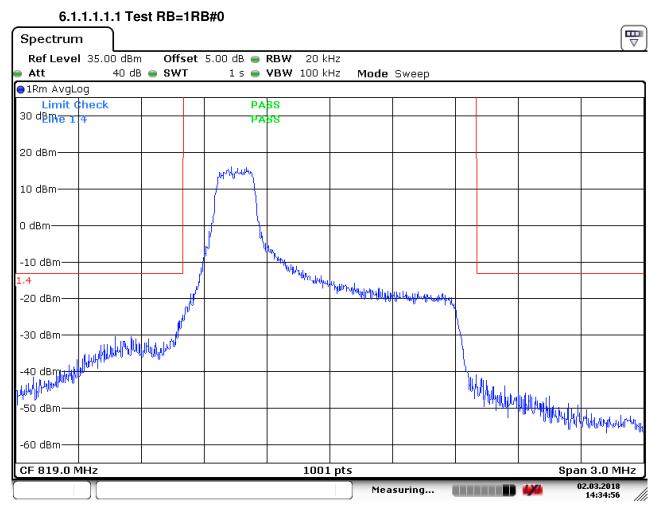
Date: 2.MAR.2018 14:31:37

Report No.: SZEM180100021804 Page: 96 of 190

6.1.1.1.1.2 Test RB=1RB#5

Date: 2.MAR.2018 14:31:59

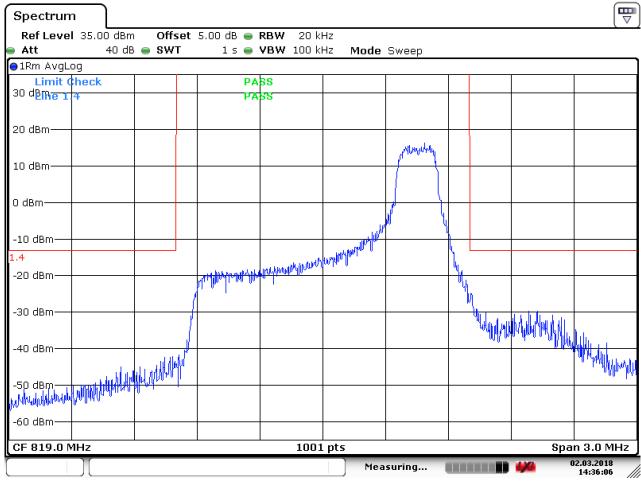
Report No.: SZEM180100021804 Page: 97 of 190


0.1.1.1.	1.3 Tes	I RB=0RE	>							
Spectrum]									
Ref Level 35.	00 dBm	Offset	5.00 dB 😑	RBW 20 k	Hz					· · · · ·
🖷 Att	40 dB	e swt	1 s 👄	VBW 100 k	Hz Mode	Sweep				
●1Rm AvgLog										
Limit Chec	k		PA	SS						
30 d <u>Bme 1,4</u>			РА	ss						
20 dBm										
10 dBm			the set							
			manganaman	anna an ann an an ann an an an an an an	adharanga ang ang ang ang ang ang ang ang ang	norder of the				
0 dBm						+				
-10 dBm			I							
1.4			r i i i i i i i i i i i i i i i i i i i			۱ ۱				
-20 dBm										
							ų,			
-30 dBm		HARAMAN C					- Josh	tonthologue 1.	WM WARE D. L.	1
-30 dBm 440 dBm 440 dBm	. 1 000								hermalledretayes	"white where we want
U										
-50 dBm										
-60 dBm										
CF 814.7 MHz				100-	L pts				 Snai	n 3.0 MHz
					Mea	suring				14:32:20

6.1.1.1.1.3 Test RB=6RB

Date: 2.MAR.2018 14:32:21

Report No.: SZEM180100021804 Page: 98 of 190



6.1.1.1.1 Test Channel = MCH

Date: 2.MAR.2018 14:34:57

Report No.: SZEM180100021804 Page: 99 of 190

6.1.1.1.1.2 Test RB=1RB#5

Date: 2.MAR.2018 14:36:06

Report No.: SZEM180100021804 Page: 100 of 190

		51110-011	5							
Spectrum										(V
	35.00 dBm		5.00 dB 😑							
Att		🖷 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep				
😑 1Rm AvgLo	-									
Limit C	heck		PA	8S						
30 d <u>B</u> M <mark>e 1</mark> ,	4		PA	ธร						
20 dBm										
10 dBm				and the second						
0 dBm			Manahanana	of a property of the property	mutereling	entraliditation with				
-10 dBm										
1.4			<i>p</i>			1 1				
			ľ				1			
-20 dBm -30 dBm #M44 ^{Jun} /ku/ ^{JMA} 4	Chershallhowed	watchart					h	alley and a	which where a start	aly and the start of the start
way al when the production	100000, 91								աստանություն	Heynerad Allandord
-40 dBm										
-50 dBm										
-60 dBm										
CF 819.0 MHz 1001 pts Span 3.0 MHz										n 3.0 MHz
)[]				Mea	suring			4/4 (2.03.2018 14:36:27

6.1.1.1.1.3 Test RB=6RB

Date: 2.MAR.2018 14:36:27