

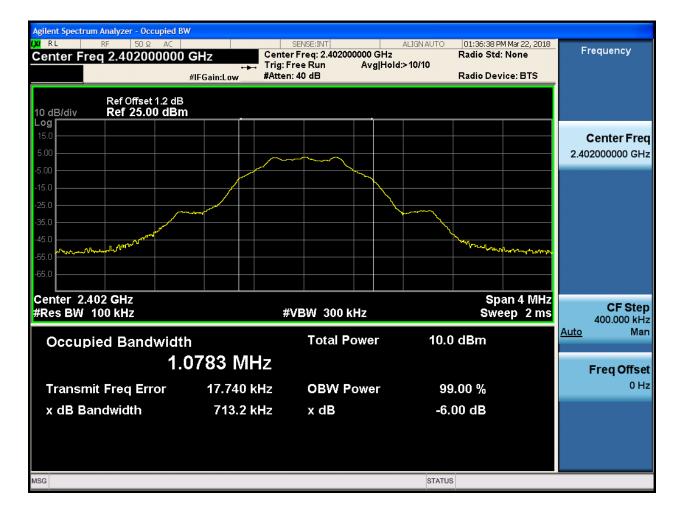
# Appendix for Test report



# Appendix A: DTS (6 dB) Bandwidth

In this document, the "DTS6dBBW" refers to the measured "DTS (6 dB) Bandwidth" value. In this Appendix, the "fc(DTS6dBBW)" refers to the centre of the measured "DTS6dBBW". The introduction of the "fc(DTS6dBBW)" is due to that other measurements use it as the spectrum analyzer setting.

For measurements on smart antenna systems (devices with multiple transmit chains), the test is performed at each chain, and used as respective results for each chain.


#### Part I - Test Results

| Test Mode | Test Channel | Frequency[MHz] | DTS6dBBW[MHz] | Verdict |
|-----------|--------------|----------------|---------------|---------|
| TM1 _Ch0  | L            | 2402           | 0.71          | pass    |
| TM1 _Ch19 | М            | 2440           | 0.72          | pass    |
| TM1 _Ch39 | Н            | 2480           | 0.72          | pass    |



#### Part II - Test Plots

#### 2.1 TM1\_Ch0\_L






### 2.2 TM1\_Ch19\_M

| Agilent Spectrum Analyzer - Occupied           Δ         RL         RF         50 Ω         AC           Center Freq 2.44000000 | 0 GHz Cer<br>Tris          | SENSE:INT<br>Iter Freq: 2.440000000 GHz<br>g: Free Run Avg Hold<br>sen: 40 dB |                        | <sup>8</sup> Frequency         |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|------------------------|--------------------------------|
| Ref Offset 1.2 d<br>10 dB/div Ref 25.00 dB                                                                                      | B                          | en: 40 ab                                                                     | Radio Device: BTS      |                                |
| 15.0<br>5.00<br>-5.00                                                                                                           |                            |                                                                               |                        | Center Freq<br>2.440000000 GHz |
| -15.0                                                                                                                           |                            |                                                                               |                        |                                |
| -35.0<br>-45.0<br>-55.0                                                                                                         |                            |                                                                               |                        | <u>N</u>                       |
| Center 2.44 GHz<br>#Res BW 100 kHz                                                                                              |                            | #VBW 300 kHz                                                                  | Span 4 MH<br>Sweep 2 m | CF Step                        |
| Occupied Bandwid                                                                                                                | <sup>th</sup><br>.0783 MHz | Total Power                                                                   | 11.4 dBm               | 400.000 kHz<br><u>Auto</u> Man |
| Transmit Freq Error                                                                                                             | 21.575 kHz                 | OBW Power                                                                     | 99.00 %                | Freq Offset<br>0 Hz            |
| x dB Bandwidth                                                                                                                  | 719.8 kHz                  | x dB                                                                          | -6.00 dB               |                                |
| MSG                                                                                                                             |                            |                                                                               | STATUS                 |                                |



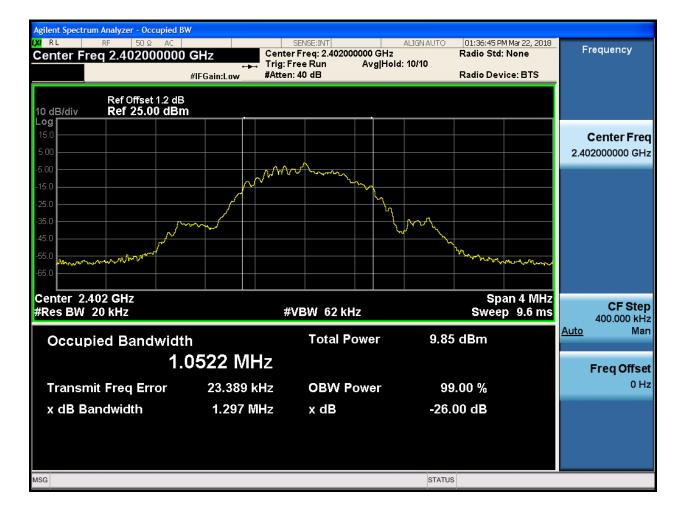
### 2.3 TM1\_Ch39\_H

| Agilent Spectrum Analyzer - Occupied B<br>Δ RL RF 50 Ω AC<br>Center Freq 2.480000000 | GHz Cente                | SENSE:INT<br>Pr Freq: 2.480000000 GHz<br>Free Run Avg Hold |                          | Frequency                      |
|--------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------|--------------------------|--------------------------------|
| Ref Offset 1.2 dB<br>10 dB/div Ref 25.00 dBr                                         |                          | n: 40 dB                                                   | Radio Device: BTS        |                                |
| 15.0<br>5.00                                                                         |                          |                                                            |                          | Center Freq<br>2.480000000 GHz |
| -15.0                                                                                |                          |                                                            |                          |                                |
| -35.0<br>-45.0<br>-55.0                                                              |                          |                                                            |                          |                                |
| Center 2.48 GHz<br>#Res BW 100 kHz                                                   | #                        | VBW 300 kHz                                                | Span 4 MHz<br>Sweep 2 ms |                                |
| Occupied Bandwidt                                                                    | <sub>h</sub><br>0793 MHz | Total Power                                                | 10.3 dBm                 | <u>Auto</u> Man                |
| Transmit Freq Error                                                                  | 23.796 kHz               | OBW Power                                                  | 99.00 %                  | Freq Offset<br>0 Hz            |
| x dB Bandwidth                                                                       | 719.4 kHz                | x dB                                                       | -6.00 dB                 |                                |
| MSG                                                                                  |                          |                                                            | STATUS                   |                                |



## Appendix B: Occupied Bandwidth

For measurements on smart antenna systems (devices with multiple transmit chains), the test is performed at each chain, and used as respective results for each chain.


#### Part I - Test Results

| Test Mode | Test Channel | Frequency[MHz] | Occupied Bandwidth [MHz] | Verdict |
|-----------|--------------|----------------|--------------------------|---------|
| TM1 _Ch0  | L            | 2402           | 1.05                     | pass    |
| TM1 _Ch19 | М            | 2440           | 1.05                     | pass    |
| TM1 _Ch39 | Н            | 2480           | 1.06                     | pass    |

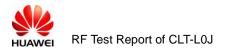


#### Part II - Test Plots

#### 2.1 TM1\_Ch0\_L






### 2.2 TM1\_Ch19\_M

| Agilent Spectrum Analyzer - Occupied I         Μ       RL       RF       50 Ω       AC         Center Freq       2.4400000000 | ) GHz c<br>↔⊷ T         | SENSE:INT<br>enter Freq: 2.440000000 GH<br>rig: Free Run Avg H<br>Atten: 40 dB | z Radio St<br>old: 10/10 | PM Mar 22, 2018<br>d: None<br>wice: BTS | Frequency                     |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------|
| Ref Offset 1.2 dE<br>10 dB/div Ref 25.00 dB<br>Log                                                                            |                         |                                                                                |                          |                                         |                               |
| 15.0<br>5.00                                                                                                                  |                         | M                                                                              |                          |                                         | Center Freq<br>2.44000000 GHz |
| -15.0                                                                                                                         |                         | a na a mana                                                                    | A                        |                                         |                               |
| -35.0                                                                                                                         |                         |                                                                                |                          |                                         |                               |
| -55.0 -65.0                                                                                                                   |                         |                                                                                |                          | Murninghan                              |                               |
| Center 2.44 GHz<br>#Res BW 20 kHz                                                                                             |                         | #VBW 62 kHz                                                                    |                          | oan 4 MHz<br>ep   9.6 ms                | CF Step<br>400.000 kHz        |
| Occupied Bandwid                                                                                                              |                         | Total Power                                                                    | 11.2 dBm                 |                                         | <u>Auto</u> Man               |
|                                                                                                                               | .0528 MHz               |                                                                                | 00.00.1/                 |                                         | Freq Offset<br>0 Hz           |
| Transmit Freq Error<br>x dB Bandwidth                                                                                         | 27.075 kHz<br>1.294 MHz |                                                                                | 99.00 %<br>-26.00 dB     |                                         | 0112                          |
| MSG                                                                                                                           |                         |                                                                                | STATUS                   |                                         |                               |



### 2.3 TM1\_Ch39\_H

|                                              | GHz Center | SENSE:INT<br>Freq: 2.480000000 GHz<br>ree Run Avg Hold<br>: 40 dB | ALIGNAUTO 01:44:06 PM M<br>Radio Std: N<br>d:>10/10<br>Radio Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency                              |
|----------------------------------------------|------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Ref Offset 1.2 dB<br>10 dB/div Ref 25.00 dBm |            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Log<br>15.0<br>5.00                          |            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Freq<br>2.480000000 GHz         |
| -15.0                                        |            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| -45.0                                        |            |                                                                   | the second secon | Lowlyn.                                |
| -65.0                                        |            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Center 2.48 GHz<br>#Res BW 20 kHz            | #\         | VBW 62 kHz                                                        | Span<br>Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 MHz<br>9.6 ms CF Step<br>400.000 kHz |
| Occupied Bandwidth                           |            | Total Power                                                       | 10.1 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Auto</u> Man                        |
| 1.0                                          | 568 MHz    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offset                            |
| Transmit Freq Error                          | 28.248 kHz | OBW Power                                                         | 99.00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Hz                                   |
| x dB Bandwidth                               | 1.262 MHz  | x dB                                                              | -26.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| MSG                                          |            |                                                                   | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                      |



# Appendix C: Duty Cycle

#### Part I - Test Results

| Test Mode | TX Freq. [MHz] | Duty cycle [%] |
|-----------|----------------|----------------|
| TM1       | CH0,CH19,CH39  | 62.3           |

#### Part II - Test Plots

#### 2.1 TM1

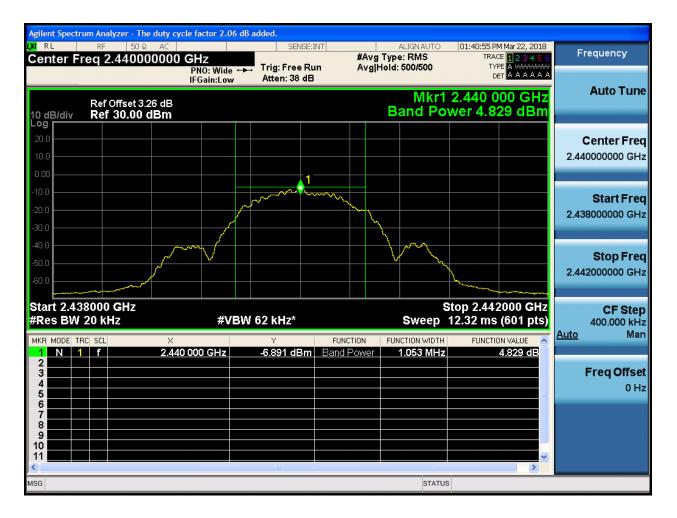
|                | um Analyzer - Swept SA        |                           |                           |                  |             |                         |           |                                               |                                    |
|----------------|-------------------------------|---------------------------|---------------------------|------------------|-------------|-------------------------|-----------|-----------------------------------------------|------------------------------------|
| Center Fi      | RF 50 Ω AC<br>req 2.440000000 | ) GHz                     | SENS                      | E:INT            | Avg Typ     | ALIGNAUTO<br>e: Log-Pwr | TRAC      | M Mar 22, 2018<br>CE <mark>1 2 3 4 5 6</mark> | Frequency                          |
|                |                               | PNO: Fast ↔<br>IFGain:Low | Trig: Free<br>Atten: 24   |                  |             |                         | TY<br>D   | PE WWWWWWW<br>ET P N N N N N                  |                                    |
|                |                               | II Odinizovi              |                           |                  |             |                         | Mkr3 1    | .082 ms                                       | Auto Tune                          |
| 10 dB/div      | Ref 14.00 dBm                 |                           |                           |                  |             |                         | 3.        | 61 dBm                                        |                                    |
| Log            | <u>\1</u>                     |                           | <mark>∕</mark> 2          | <mark>♦</mark> 3 |             |                         |           |                                               | Center Freq                        |
| -6.00          |                               |                           |                           |                  | `           |                         |           |                                               | 2.440000000 GHz                    |
| -16.0          |                               |                           |                           |                  |             |                         |           |                                               |                                    |
| -26.0          |                               |                           |                           |                  |             |                         | ļ,        |                                               | Otoret Enor                        |
| -36.0          |                               |                           |                           |                  |             |                         |           |                                               | Start Freq<br>2.44000000 GHz       |
| -46.0          |                               |                           |                           |                  |             |                         |           |                                               | 2.440000000 GHz                    |
| -56.0          | Vinter of the Andrew H        |                           | hypertellaphe             | ll typ           |             | v. with the second      | porphal   |                                               |                                    |
| -66.0          |                               |                           |                           |                  |             |                         |           |                                               | <b>Stop Freq</b><br>2.44000000 GHz |
| -76.0          |                               |                           |                           |                  |             |                         |           |                                               | 2.440000000 GH2                    |
| Center 24      | 440000000 GHz                 |                           |                           |                  |             |                         | S         | pan 0 Hz                                      | CE Step                            |
| Res BW 8       |                               | #VBW                      | 8.0 MHz                   |                  |             | Sweep 2                 | .000 ms ( | 1001 pts)                                     | CF Step<br>8.000000 MHz            |
| MKR MODE TF    | RC  SCL  X                    |                           | Y                         |                  | CTION   FUI | NCTION WIDTH            | FUNCTIO   | ON VALUE                                      | <u>Auto</u> Man                    |
| 1 N 1<br>2 N 1 | t t                           | 456.0 μs<br>846.0 μs      | <u>3.60 dB</u><br>3.60 dB |                  |             |                         |           |                                               |                                    |
| 3 N 1          | t                             | 1.082 ms                  | 3.61 dB                   | m                |             |                         |           |                                               | Freq Offset                        |
| 5              |                               |                           |                           |                  |             |                         |           |                                               | 0 Hz                               |
| 6<br>7         |                               |                           |                           |                  |             |                         |           |                                               |                                    |
| 8 9            |                               |                           |                           |                  |             |                         |           |                                               |                                    |
| 10             |                               |                           |                           |                  |             |                         |           |                                               |                                    |
| <              |                               |                           | Ш                         |                  |             |                         |           |                                               |                                    |
| MSG            |                               |                           |                           |                  |             | STATUS                  |           |                                               |                                    |

# Appendix D: Maximum Conducted Average Output Power

#### Part I - Test Results

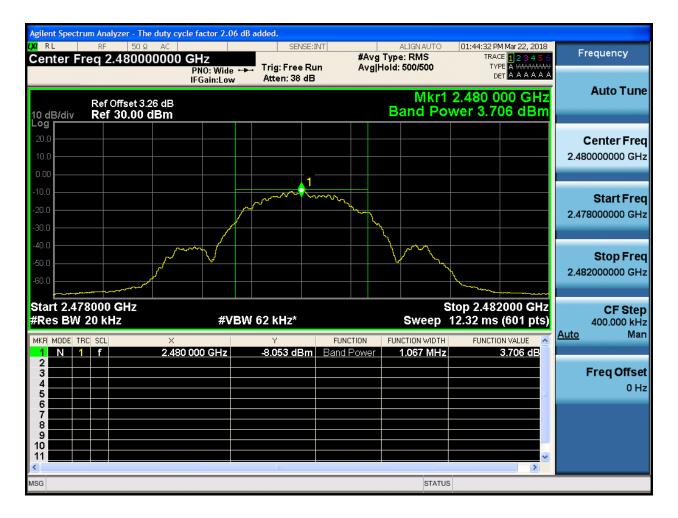
| Test Mode | Test Channel | Frequency[MHz] | Duty Cycle [%] | Power[dBm] | Verdict |
|-----------|--------------|----------------|----------------|------------|---------|
| TM1 _Ch0  | L            | 2402           | 62.3           | 3.45       | pass    |
| TM1 _Ch19 | М            | 2440           | 62.3           | 4.83       | pass    |
| TM1 _Ch39 | н            | 2480           | 62.3           | 3.71       | pass    |




#### Part II - Test Plots

#### 2.1 TM1\_Ch0\_L

| Agilent Spectro    | u <mark>m Analyzer - The</mark><br>RF 50 Ω |                | nctor 2.06    | dB ac   |                | ISE:INT                                |              |                         | ALIGN AUTO   | 01/27/07 0 | M Mar 22, 2018          |       |                          |
|--------------------|--------------------------------------------|----------------|---------------|---------|----------------|----------------------------------------|--------------|-------------------------|--------------|------------|-------------------------|-------|--------------------------|
|                    | eq 2.40200                                 | 0000 GH        | Z<br>IO: Wide |         | Trig: Free     |                                        |              | vg Typ                  |              | TRA<br>TY  | CE 123456<br>PE A WWWWW | Fre   | equency                  |
|                    |                                            |                | Gain:Low      | -       | Atten: 38      | dB                                     |              |                         | Maland       |            |                         |       | Auto Tune                |
| 10 dB/div          | Ref Offset 3.2<br>Ref 30.00 d              |                |               |         |                |                                        |              | В                       | and Po       | wer 3.4    | 00 GHz<br>50 dBm        |       |                          |
| <b>Log</b><br>20.0 |                                            |                |               |         |                |                                        |              |                         |              |            |                         | с     | enter Freq               |
| 10.0               |                                            |                |               |         |                |                                        |              |                         |              |            |                         | 2.402 | 000000 GHz               |
| -10.0              |                                            |                |               |         |                | 1                                      |              |                         |              |            |                         |       |                          |
| -20.0              |                                            |                |               | ىمىر    | ~~~~           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <b>~</b> ~~  | <u>۱</u>                |              |            |                         | 2 400 | Start Freq<br>000000 GHz |
| -30.0              |                                            |                | /             | <u></u> |                |                                        |              | Ly -                    |              |            |                         | 2.100 |                          |
| -40.0              |                                            | ~~~~~          |               |         |                |                                        |              | $\overline{\mathbf{b}}$ | $\sim$       |            |                         |       | Stop Freq                |
| -60.0              |                                            | /              |               |         |                |                                        |              |                         |              |            |                         | 2.404 | 000000 GHz               |
| Start 2.40         | 0000 GHz                                   |                |               |         |                |                                        |              |                         | <u> </u>     | stop 2.40  | 4000 GHz                |       | CF Step                  |
| #Res BW            |                                            |                | #VE           | 3W 6    | 62 kHz*        |                                        |              |                         | Sweep        | 12.32 ms   | (601 pts)               | Auto  | 400.000 kHz<br>Man       |
| MKR MODE TF        | C SCL                                      | ×<br>2.402.000 | ) GHz         |         | Y<br>-8.754 dE |                                        | CTION<br>Pow |                         | ICTION WIDTH |            | ON VALUE  3.450 dB      | Auto  | Widiri                   |
| 2 3                |                                            |                |               |         |                |                                        |              |                         |              |            |                         | F     | req Offset               |
| 5 6                |                                            |                |               |         |                |                                        |              |                         |              |            | <b>=</b>                |       | 0 Hz                     |
| 7                  |                                            |                |               |         |                |                                        |              |                         |              |            |                         |       |                          |
| 9<br>10            |                                            |                |               |         |                |                                        |              |                         |              |            |                         |       |                          |
| 11<br><            |                                            |                |               |         |                |                                        |              |                         |              |            | <u>&gt;</u>             |       |                          |
| MSG                |                                            |                |               |         |                |                                        |              |                         | STATUS       | 3          |                         |       |                          |




#### 2.2 TM1\_Ch19\_M





#### 2.3 TM1\_Ch39\_H



# Appendix E: Maximum Power Spectral Density Level

### Part I - Test Results

| Test Mode | Test Channel | Frequency[MHz] | Duty Cycle [%] | PSD[dBm/10<br>kHz] | Verdict |
|-----------|--------------|----------------|----------------|--------------------|---------|
| TM1 _Ch0  | L            | 2402           | 62.3           | -9.79              | pass    |
| TM1 _Ch19 | М            | 2440           | 62.3           | -8.97              | pass    |
| TM1 _Ch39 | н            | 2480           | 62.3           | -10.27             | pass    |




#### Part II - Test Plots

#### 2.1 TM1\_Ch0\_L





#### 2.2 TM1\_Ch19\_M





#### 2.3 TM1\_Ch39\_H



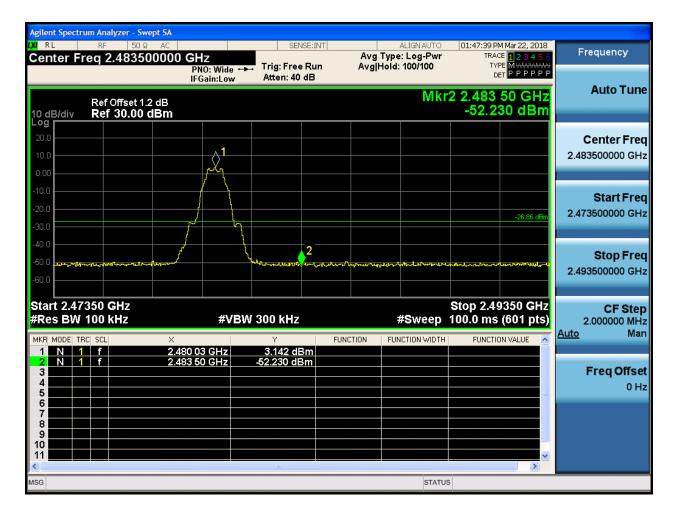


# Appendix F: Band Edges Compliance

#### Part I - Test Results

| Test Mode | Test<br>Channel | Frequency[MHz] | Carrier<br>Power[dBm] | Max.Spurious<br>Level[dBm] | Verdict |
|-----------|-----------------|----------------|-----------------------|----------------------------|---------|
| TM1 _Ch0  | L               | 2402           | 2.82                  | -50.91                     | pass    |
| TM1 _Ch39 | Н               | 2480           | 3.14                  | -52.23                     | pass    |




### Part II - Test Plots

#### 2.1 TM1\_Ch0\_L

|               |       | trum |            | lyzer - Swe |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
|---------------|-------|------|------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|---------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------|------|--------------------|
| <b>lxi</b> rl |       |      | RF         |             | AC           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | SEN                               | ISE:INT |         |                | LIGN AUTO                                                                                                                                                                                                                                                                                                                                            |                       | M Mar 22, 2018                                    |      | Frequency          |
| Cent          | ter   | Fre  | <u>q 2</u> | .39250      | 00000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Trig: Free                        | Dum     |         | Type:<br>Hold: | Log-Pwr                                                                                                                                                                                                                                                                                                                                              | TRA<br>T\             |                                                   |      | requeitcy          |
|               |       |      |            |             |              | PNO: Wid<br>IFGain:Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Atten: 40                         |         | Avgi    | Hold.          | 10/10                                                                                                                                                                                                                                                                                                                                                |                       | PE MWWWWW<br>ET P P P P P                         |      |                    |
|               | _     |      | _          |             |              | II Gainteo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      | <u> </u>              |                                                   |      | Auto Tune          |
|               |       |      |            | Offset 1.2  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                | IVIK                                                                                                                                                                                                                                                                                                                                                 | 2 2.400               | 00 GHz                                            |      |                    |
| 10 dE         | 3/div |      | Ref        | 30.00       | dBm          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      | -50.9                 | 06 dBm                                            |      |                    |
| Log           |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| 20.0          |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      | Center Freq        |
| 10.0          |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      | (                     | y <b>l</b>                                        | 2.3  | 92500000 GHz       |
| 0.00          |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      | مر م                  |                                                   |      |                    |
| -10.0         |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
|               |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       | ł                                                 |      | Start Freq         |
| -20.0         |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       | -27.18 dBm                                        | 2.3  | 80000000 GHz       |
| -30.0         |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      | - p <sup>2</sup>      | <u>Ч</u>                                          |      |                    |
| -40.0         |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| -50.0         |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       | L L                                               |      | Stop Freq          |
|               | ጉጉሥ   | ኮግሌ  | are a      | warentrate  | Mag-and V.S. | whole a whole a strength of the strength of th | hylledforthe | <b>ᢛᡣ᠊ᢩᡁ<sub>ᡀᡕᢧ</sub>ᡞ᠕ᢉ</b> ᡐᡃᡵ | ᠕ᡀᠧᢣᡒᡅᠴ |         | ՠՠՠՠ           | աստերի հերում է հերում է հերում է հերում է հերուներին է հերուներին է հերուներին է հերուներին է հերուներին է հե<br>Այստություններին է հերություններին է հերություններին է հերություններին է հերություններին է հերություններին է հե<br>Այստություններին է հերություններին է հերություններին է հերություններին է հերություններին է հերություններին է հե | 1.1644                | <sup>™</sup> ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ | 2.4  | 05000000 GHz       |
| -60.0         |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
|               |       |      |            | 811-        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      | <b>O</b> t <b>O 1</b> |                                                   |      |                    |
| Start         |       |      |            |             |              | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100147       | 000 LU-                           |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       | 0500 GHz                                          |      | CF Step            |
| #Res          | 5 DV  | V II | 10         | λΠΖ         |              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VDW          | 300 kHz                           |         |         | #              | Sweep                                                                                                                                                                                                                                                                                                                                                | 100.0 ms              | ; (601 pts)                                       | 0    | 2.500000 MHz       |
| MKR M         | 10DE  | TRC  | SCL        |             | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Y                                 |         | UNCTION | FUN            | CTION WIDTH                                                                                                                                                                                                                                                                                                                                          | FUNCTI                | ON VALUE 🛛 🔼                                      | Auto | Man                |
|               | N     | 1    | f          |             |              | 2 25 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 2.824 dE                          |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| 2             | N     | 1    |            |             | 2.4          | <u>00 00 GHz</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | <u>-50.906 dE</u>                 | sm      |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      | <b>Freq Offset</b> |
| 4             |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      | 0 Hz               |
| 5             |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       | ∃                                                 |      | 0112               |
| 6             |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| 8             |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| 9             |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| 10            |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       | ~                                                 |      |                    |
| <             |       |      |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                |                                                                                                                                                                                                                                                                                                                                                      |                       |                                                   |      |                    |
| MSG           |       |      | -          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         |                | STATUS                                                                                                                                                                                                                                                                                                                                               | s                     |                                                   |      |                    |
|               | _     | _    | _          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |         |         | _              |                                                                                                                                                                                                                                                                                                                                                      | -                     |                                                   |      |                    |



#### 2.2 TM1\_Ch39\_H



# Appendix G: Unwanted Emissions into Non-Restricted Frequency

## Bands

In this Appendix, the "Pref", which is used as the reference level, refers to the peak power level in any 100 kHz bandwidth within the fundamental emission, the "Puw" referrers to the maximum emission power in 100 kHz band segments outside of the authorized frequency band.

Considering that the higher ratio of RBW to the span for the frequency ranges below 30 MHz makes the results determination be complicated, a narrower RBW other than 100 kHz is used for these ranges. The measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =  $10 \times lg(100 \ [kHz]/narrower RBW \ [kHz])$ . As to this Appendix, the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

For measurements on smart antenna systems (devices with multiple transmit chains), the test is performed at each chain and used as respective results for each chain, due to the relative-limit requirement.

In the result table, the "< Limit" denotes that "The Puw [dBm] is less than Pref[dBm]-30[dBm],see test plots for detailed".

| Test Mode | Test Channel | Frequency[MHz] | Pref[dBm] | Puw[dBm]                             | Verdict |
|-----------|--------------|----------------|-----------|--------------------------------------|---------|
| TM1_Ch0   | L            | 2402           | 2.90      | <limit< td=""><td>pass</td></limit<> | pass    |
| TM1_Ch19  | М            | 2440           | 4.20      | <limit< td=""><td>pass</td></limit<> | pass    |
| TM1_Ch39  | Н            | 2480           | 3.14      | <limit< td=""><td>pass</td></limit<> | pass    |

#### Part I - Test Results



### Part II - Test Plots

#### 2.1 TM1\_Ch0\_L

Pref:

| Agilent Spectrum Analyzer - Swept SA         |               | E:INT ALIGN AU                          | TO 01:37:52 PM Mar 22, 2018   |                                          |
|----------------------------------------------|---------------|-----------------------------------------|-------------------------------|------------------------------------------|
| Center Freq 2.4020000                        |               | Avg Type: Log-P<br>Run Avg Hold:>1000/1 | Wr TRACE 123456               | Frequency                                |
| Ref Offset 1.2 dB<br>10 dB/div Ref 20.00 dBm | in outline ow |                                         | r1 2.402 013 GHz<br>2.905 dBm | Auto Tune                                |
| 10.0                                         |               | 1                                       |                               | Center Freq<br>2.402000000 GHz           |
| -10.0                                        |               |                                         |                               | Start Freq<br>2.400000000 GHz            |
| -20.0                                        |               |                                         |                               | Stop Free<br>2.404000000 GH;             |
| 40.0                                         |               |                                         |                               | CF Step<br>400.000 kH<br><u>Auto</u> Mar |
| -50.0<br>-60.0                               |               |                                         | Market Market                 | Freq Offse<br>0 Ha                       |
| -70.0                                        |               |                                         | Stop 2.404000 GHz             |                                          |
| #Res BW 100 kHz                              | #VBW 300 kHz  |                                         | p 2.000 ms (601 pts)          |                                          |



Puw:

|                              | um Analyzer - Swept SA                  |                                           |           |                              |               |                   |                                        |             |                                  |
|------------------------------|-----------------------------------------|-------------------------------------------|-----------|------------------------------|---------------|-------------------|----------------------------------------|-------------|----------------------------------|
| XIRL<br>Cepter Er            | ռ⊧ 50 Ջ <u>۸</u> DC  <br>req 79.500 kHz |                                           | SENSE:INT | Avg Type                     | LIGNAUTO      |                   | 4 Mar 22, 2018<br>E <b>1 2 3 4 5 6</b> | F           | requency                         |
| Senter Fi                    | req 73.300 kHz                          | PNO: Close Trig: Fr<br>IFGain:Low #Atten: |           | Avg Hold:                    |               | TYP               |                                        |             |                                  |
| l0 dB/div<br>_og             | Ref Offset 1.2 dB<br>Ref 0.00 dBm       |                                           |           |                              |               | Mkr1 9.0<br>-82.4 | 000 kHz<br>86 dBm                      |             | Auto Tune                        |
| 10.0                         |                                         |                                           |           |                              |               |                   |                                        | -           | Center Fred<br>79.500 kH:        |
| 20.0 <b></b><br>30.0 <b></b> |                                         |                                           |           |                              |               |                   |                                        |             | Start Free<br>9.000 kH           |
| 40.0<br>50.0                 |                                         |                                           |           |                              |               |                   | -47.10 dBm                             |             | <b>Stop Fre</b><br>150.000 kH    |
| 0.0                          |                                         |                                           |           |                              |               |                   |                                        | <u>Auto</u> | <b>CF Ste</b><br>14.100 kH<br>Ma |
| 30.0                         |                                         |                                           |           |                              |               |                   |                                        |             | Freq Offse                       |
| 30.0                         | ᢉᡃᠬ᠕ᡁᠬᢂᢩᠰᡂᠰᠾᠬᡟᡟ                         | ᠳ᠆ᡙᡰᡃᠬᡂ <sub>ᡆ</sub> ᠘ᡁᡎᠰᡅᡅᢑᡗᠧᡗᢧ          | ฬาณกุปกาไ | ᢦᠠ <sup>ᡗ</sup> ᡊ᠕ᡃᡌᢏᢇᡅᡎᢇᡁᠰᢧ | ᡁᡰᢩ᠕ᡔᢧᠬᠵᡢ᠋ᢩᡘᡁ | ᠆ᡗᢦ᠋ᢩᠺᡀᡘᠴᢝ᠋ᠿᠬᢦ    | ᡐᠬᡢᡗᢑᢦᡀᡎᢇᠯ                             |             |                                  |
| tart 9.00<br>Res BW          |                                         | #VBW 3.0 kH                               | <br>z     |                              | Sweep         |                   | i0.00 kHz<br>(601 pts)                 |             |                                  |
| SG                           |                                         |                                           |           |                              |               | s 🚺 DC Cou        |                                        |             |                                  |



|                   | um Analyzer - S                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      |                          |
|-------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|---------|-----------|------------------|-------------------|----------------------------------------------------------------------|--------------------------|
| XI RL<br>Center F | <sup>RF</sup> ∣50<br>req 15.07 | IΩ <u>A</u> DC<br>5000 MH:                                                                                     | Z                               |                          | ISE:INT | Avg Type  | ALIGNAUTO        | TRAC              | 4 Mar 22, 2018<br>E <mark>1 2 3 4 5 6</mark><br>E M <del>WWWWW</del> | Frequency                |
|                   |                                |                                                                                                                | PNO: Wide 🖵<br>FGain:Low        | Trig: Free<br>#Atten: 40 |         | Avg Hold: | >50/50           | DE                |                                                                      |                          |
| 10 dB/div<br>Log  | Ref Offset '<br>Ref 20.00      | 1.2 dB<br>) dBm                                                                                                |                                 |                          |         |           | N                | /kr1 1.3<br>-62.7 | 94 MHz<br>50 dBm                                                     | Auto Tune                |
|                   |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | Center Fred              |
| 10.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | 15.075000 MH             |
| 0.00              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      |                          |
| 10.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | Start Free<br>150.000 kH |
| 10.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      |                          |
| 20.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | Stop Fre                 |
| 30.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | 30.000000 MH             |
|                   |                                |                                                                                                                |                                 |                          |         |           |                  |                   | -37.10 dBm                                                           | CF Ste                   |
| 40.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | 2.985000 MH<br>Auto Ma   |
| 50.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | I Ma                     |
| 60.0 <b>1</b>     |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      | Freq Offse               |
| ing a data        | lisiyin in higibadha           | di dalah dalam | a, dah dipuntuh di kala da kana | i ya sheyidaraha         |         |           | nd har the house |                   | antia-international                                                  | 0 H                      |
| 70.0              |                                |                                                                                                                |                                 |                          |         |           |                  |                   |                                                                      |                          |
| Start 150         | kHz                            |                                                                                                                |                                 |                          |         |           |                  | Stop 3            | 0.00 MHz                                                             |                          |
| Res BW            |                                |                                                                                                                | #VBW                            | 30 kHz                   |         |           | Sweep 2          | 85.4 ms (         | 3001 pts)                                                            |                          |
| ISG               |                                |                                                                                                                |                                 |                          |         |           | STATUS           | 上 DC Cou          | pled                                                                 |                          |



| Agilent Spectr        | um Analyzer - Swep                                                        |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                              |
|-----------------------|---------------------------------------------------------------------------|-----------------------|---------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|
| XIRL                  | RF 50 Ω                                                                   |                       |                                                   | SEN                                                               | ISE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | ALIGNAUTO<br>: Log-Pwr |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mar 22, 2018                | Frequency                                    |
| Center F              | req 1.165000                                                              | PN                    | Z<br>10: Fast 😱<br>iain:Low                       | Trig: Free<br>#Atten: 40                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg Hold: |                        | TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E M WWWWWW<br>T P P P P P P |                                              |
| 10 dB/div<br>Log      | Ref Offset 1.2 c<br><b>Ref 20.00 dE</b>                                   | dB<br>3m              |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Mkı                    | 1 2.147<br>-48.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06 GHz<br>30 dBm            | Auto Tune                                    |
| 10.0                  |                                                                           |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Center Freq<br>1.165000000 GHz               |
| -10.0                 |                                                                           |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Start Freq<br>30.000000 MHz                  |
| -20.0                 |                                                                           |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -27.10 dBm                  | <b>Stop Freq</b><br>2.300000000 GHz          |
| -40.0                 |                                                                           |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>- 1 hu- 1 hit          | CF Step<br>227.000000 MHz<br><u>Auto</u> Man |
| -60.0                 | n style son i te ne sen sen sin de la | i lingin da sister da | a desti den dibidearen<br>Alfreder anteresteraren | alah katang tang bah<br>Katang tang tang tang tang tang tang tang | The set of the balance of the balanc |           |                        | al ( general (see )<br>al general |                             | Freq Offset                                  |
| -70.0                 |                                                                           |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                              |
| Start 30 N<br>#Res BW |                                                                           |                       | #VBW                                              | 300 kHz                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Sweep 2                | Stop 2.<br>217.1 ms (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300 GHz<br>8001 pts)        |                                              |
| MSG                   |                                                                           |                       |                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | STATU                  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                              |



| ISG                   |                               |           |                                                                                                                 |            |             |                       | STATU                  |                          |                                        |                                   |
|-----------------------|-------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------|------------------------|--------------------------|----------------------------------------|-----------------------------------|
| Start 2.30<br>#Res BW |                               |           | #VBW                                                                                                            | 300 kHz    |             |                       | Sweep (                | Stop 2.40<br>9.600 ms (  |                                        |                                   |
|                       |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        |                                   |
| 70.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        |                                   |
| 60.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | <b>Freq Offse</b><br>0 H          |
| 00.00                 | unturburtunturtu              | n Carrown | Mandal Mark Taken and Mandal Manda | mininan    | 4 m rannaly | have by the fi        | Mar Ne Andrew          | all attanted and a state | JreMptored WW                          |                                   |
| 50.0                  |                               |           |                                                                                                                 |            |             |                       | 1                      |                          |                                        | Auto Mai                          |
| 40.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | CF Stej<br>10.000000 MH           |
| 30.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | 2.4000000000                      |
| 20.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          | -27.10 dBm                             | <b>Stop Fre</b><br>2.400000000 GH |
|                       |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        |                                   |
| 10.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | 2.300000000 GH                    |
| 0.00                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | Start Fre                         |
| 10.0                  |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | 2.350000000 GH                    |
|                       |                               |           |                                                                                                                 |            |             |                       |                        |                          |                                        | Center Free                       |
| l0 dB/div             | Ref Offset 1.2<br>Ref 20.00 ( |           |                                                                                                                 |            |             |                       |                        | -49.4                    | 43 dBm                                 |                                   |
|                       |                               |           | IFGain:Low                                                                                                      | #Atten: 40 | ) dB        |                       | M                      | kr1 2.36                 |                                        | Auto Tun                          |
| Center F              | req 2.3500(                   | 00000     | GHz<br>PNO: Fast                                                                                                | Trig: Free |             | Avg Type<br>Avg Hold: | e: Log-Pwr<br>>200/200 | TRAC<br>TYP              | E 123456<br>E M WWWWW<br>T P P P P P P | Frequency                         |
| RL                    | RF 50 Ω                       | AC        |                                                                                                                 | SEM        | NSE:INT     |                       | ALIGN AUTO             | 01:38:58 PM              | 4 Mar 22, 2018                         | E                                 |



| ISG                   |                             |             |                    |                       |         |                       | STATUS                 | 1                      |                                        |                            |
|-----------------------|-----------------------------|-------------|--------------------|-----------------------|---------|-----------------------|------------------------|------------------------|----------------------------------------|----------------------------|
| Start 2.48<br>≉Res BW | 3500 GHz<br>100 kHz         |             | #VBW               | 300 kHz               |         |                       |                        | Stop 2.500<br>1.600 ms |                                        |                            |
|                       |                             |             |                    |                       |         |                       |                        |                        |                                        |                            |
| 70.0                  |                             |             |                    |                       |         |                       |                        |                        |                                        |                            |
| 50.0                  |                             |             |                    |                       |         |                       |                        |                        |                                        | Freq Offse<br>0 H          |
|                       |                             | հերթություն | www.www.ww         | hulunum               | ᡃᡅᡊᡙᠰ᠉  | ᢦ᠋ᢆ᠕᠕᠕᠘᠘᠘             | ᠬ᠕ᡀ᠕ᡢᡗᡃᠧᡟᢛᡗᠬ           | how and the            | ᠕ᡗᠬᠬᡟ <sup>ᠺ</sup> ᠈ᡩᡳᢧ᠉               | Ence Off                   |
| 50.0                  |                             |             |                    | <b>♦</b> <sup>1</sup> |         |                       |                        |                        |                                        | Auto Ma                    |
| 40.0                  |                             |             |                    |                       |         |                       |                        |                        |                                        | CF Stej<br>1.650000 MH     |
| 30.0                  |                             |             |                    |                       |         |                       |                        |                        |                                        | 2.000000000                |
| 20.0                  |                             |             |                    |                       |         |                       |                        |                        | -27.10 dBm                             | Stop Fre<br>2.500000000 GH |
|                       |                             |             |                    |                       |         |                       |                        |                        |                                        |                            |
| 10.0                  |                             |             |                    |                       |         |                       |                        |                        |                                        | 2.483500000 GH             |
| .00                   |                             |             |                    |                       |         |                       |                        |                        |                                        | Start Fre                  |
| 10.0                  |                             |             |                    |                       |         |                       |                        |                        |                                        | 2.491750000 GH             |
|                       |                             |             |                    |                       |         |                       |                        |                        |                                        | Center Free                |
| 0 dB/div              | Ref Offset 1.:<br>Ref 20.00 |             |                    |                       |         |                       |                        |                        | 42 dBm                                 |                            |
|                       |                             |             | IFGain:Low         | #Atten: 40            | dB      |                       | Mkr1.2                 | .490 59                |                                        | Auto Tun                   |
| enter F               | req 2.4917                  | 50000 (     | GHz<br>PNO: Wide 🗔 | Trig: Free            |         | Avg Type<br>Avg Hold: | e: Log-Pwr<br>>200/200 | TYP                    | E 123456<br>E M WWWWW<br>T P P P P P P | Frequency                  |
| RL                    | RF 50 Ω                     | AC          |                    | SEN                   | ISE:INT |                       | ALIGN AUTO             | 01:39:07 PM            | 1 Mar 22, 2018                         | E                          |



| Agilent Spectre  | um Analyzer - Swept SA             | A                                    |                                                                                                                                                                                                                                   |                                      |                                                  |                                                     |
|------------------|------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| LXI RL           | RF 50 Ω AC                         |                                      | SENSE:INT                                                                                                                                                                                                                         | ALIGNAUTO                            | 01:39:39 PM Mar 22, 2018                         | Frequency                                           |
| Center Fr        | req 14.500000                      | DUU GHZ<br>PNO: Fast 😱<br>IFGain:Low | Trig: Free Run<br>#Atten: 40 dB                                                                                                                                                                                                   | Avg Type: Log-Pwr<br>Avg Hold: 10/10 | TRACE 123456<br>TYPE M WWWWWW<br>DET P P P P P P |                                                     |
| 10 dB/div<br>Log | Ref Offset 1.2 dB<br>Ref 20.00 dBm | 1                                    |                                                                                                                                                                                                                                   | М                                    | kr1 25.513 GHz<br>-37.234 dBm                    | Auto Tune                                           |
| 10.0             |                                    |                                      |                                                                                                                                                                                                                                   |                                      |                                                  | Center Freq<br>14.50000000 GHz                      |
| -10.0            |                                    |                                      |                                                                                                                                                                                                                                   |                                      |                                                  | <b>Start Freq</b><br>2.500000000 GHz                |
| -20.0            |                                    |                                      |                                                                                                                                                                                                                                   |                                      | -27.10 dBm                                       | <b>Stop Freq</b><br>26.50000000 GHz                 |
| -40.0            |                                    |                                      | a na shekara ta shekar<br>Ta shekara ta shekara t |                                      |                                                  | <b>CF Step</b><br>2.40000000 GHz<br><u>Auto</u> Man |
| -60.0            |                                    |                                      | ste <sub>n</sub> n lan <sub>g</sub> i desident                                                                                                                                                                                    |                                      |                                                  | <b>Freq Offset</b><br>0 Hz                          |
| -70.0            | GH7                                |                                      |                                                                                                                                                                                                                                   |                                      | Stop 26.50 GHz                                   |                                                     |
| #Res BW          |                                    | #VBW                                 | 300 kHz                                                                                                                                                                                                                           | Sweep                                | 2.294 s (8001 pts)                               |                                                     |
| MSG              |                                    |                                      |                                                                                                                                                                                                                                   | STATUS                               |                                                  |                                                     |



#### 2.2 TM1\_Ch19\_M

Pref:





Puw:

| Agilent Spectrum Analyzer - Swept SA        |                                                         |                                  |                                               |                                               |
|---------------------------------------------|---------------------------------------------------------|----------------------------------|-----------------------------------------------|-----------------------------------------------|
|                                             | SENSE:IN                                                | T ALIGNAUTO<br>Avg Type: Log-Pwr | 01:41:54 PM Mar 22, 2018<br>TRACE 1 2 3 4 5 6 | Frequency                                     |
| Center Freq 79.500 kHz                      | PNO: Close 🖵 Trig: Free Run<br>IFGain:Low #Atten: 26 dB |                                  |                                               |                                               |
| Ref Offset 1.2 dB<br>10 dB/div Ref 0.00 dBm |                                                         | Iv                               | lkr1 26.625 kHz<br>-83.590 dBm                | Auto Tune                                     |
| -10.0                                       |                                                         |                                  |                                               | Center Freq<br>79.500 kHz                     |
| -20.0                                       |                                                         |                                  |                                               | Start Freq<br>9.000 kHz                       |
| 40.0                                        |                                                         |                                  | -45.80 dBm                                    | Stop Frec<br>150.000 kHz                      |
| 70.0                                        |                                                         |                                  |                                               | <b>CF Stej</b><br>14.100 kH<br><u>Auto</u> Ma |
| 80.0 <b>1</b>                               | Colon and particular                                    |                                  | Der ob en la                                  | Freq Offse<br>0 H:                            |
| Start 9.00 kHz                              |                                                         |                                  | Stop 150.00 kHz                               |                                               |
| Res BW 1.0 kHz                              | #VBW 3.0 kHz                                            | _                                | 134.8 ms (601 pts)                            |                                               |



|                |                 |          | alyzer - Sv                    |             |       |                                                                                                                 |        |                           |                   |                                       |                                                                                                                  |                                                                                                                 |                                        |                                            |
|----------------|-----------------|----------|--------------------------------|-------------|-------|-----------------------------------------------------------------------------------------------------------------|--------|---------------------------|-------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|
| XI R           | -               | RF       |                                | Ω 🧥 DC      |       |                                                                                                                 |        | SEI                       | VSE:INT           |                                       | ALIGNAUTO                                                                                                        |                                                                                                                 | 4 Mar 22, 2018<br>E <b>1 2 3 4 5</b> 6 | Frequency                                  |
| Cer            | ner F           | req      | 15.075                         |             | PN    | 0: Wide C<br>ain:Low                                                                                            |        | Trig: Free<br>#Atten: 40  |                   | Avg Hold:                             |                                                                                                                  | TYP                                                                                                             | PE MWWWWWW<br>TPPPPP                   |                                            |
| 10 dl<br>Log   | B/div           |          | Offset 1<br>5 <b>20.00</b>     |             |       |                                                                                                                 |        |                           |                   |                                       | N                                                                                                                | 1kr1 22.1<br>-62.2                                                                                              | 30 MHz<br>14 dBm                       | Auto Tune                                  |
| 10.0           |                 |          |                                |             |       |                                                                                                                 |        |                           |                   |                                       |                                                                                                                  |                                                                                                                 |                                        | Center Fred<br>15.075000 MH;               |
| 0.00<br>-10.0  |                 |          |                                |             |       |                                                                                                                 |        |                           |                   |                                       |                                                                                                                  |                                                                                                                 |                                        | Start Fred<br>150.000 kHz                  |
| -20.0<br>-30.0 |                 |          |                                |             |       |                                                                                                                 |        |                           |                   |                                       |                                                                                                                  |                                                                                                                 |                                        | Stop Free<br>30.000000 MH;                 |
| -40.0<br>-50.0 |                 |          |                                |             |       |                                                                                                                 |        |                           |                   |                                       |                                                                                                                  |                                                                                                                 | -35.80 dBm                             | CF Step<br>2.985000 MH:<br><u>Auto</u> Mar |
| -60.0          |                 | والم الم | ماليا.<br>والمارية المارية الم | faith delta | و الم | a da se d | delas. | a hada bah di ji da sa di | feel. An of other | والمعرفة والمعرفة والمعاومة والمعاورة |                                                                                                                  | No. In Mary Market Market                                                                                       | the street and the                     | Freq Offse<br>0 H;                         |
| -70.0          |                 |          | ina data kan da                |             |       | aja de data a cada di se                                                                                        |        |                           | an tankik telah   |                                       | li Viet de la la de la | harred at the part of the second s |                                        |                                            |
|                | rt 150<br>Is BW |          | Hz                             |             |       | #VB                                                                                                             | W 3    | 0 kHz                     |                   |                                       | Sweep                                                                                                            | Stop 3<br>285.4 ms (                                                                                            | 0.00 MHz<br>3001 pts)                  |                                            |
| MSG            |                 |          |                                |             |       |                                                                                                                 |        |                           |                   |                                       | STATI                                                                                                            | JS 🦺 DC Cou                                                                                                     | ipled                                  |                                            |



|                |                                                                                            | m Analyze                |              |                                                                                                                                                                                                                                     |                        |                  |                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                          |                                              |
|----------------|--------------------------------------------------------------------------------------------|--------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|----------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|
| Cen            | ter Fr                                                                                     | <sub>RF</sub><br>eq 1.16 | 50 Ω<br>5500 | 0000 GH                                                                                                                                                                                                                             | z                      | <b>.</b>         |                                  | Avg Type<br>Avg Hold:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRAC                                                                                                             | 1 Mar 22, 2018<br>E <mark>1 2 3 4 5 6</mark><br>E M <del>M M M M M</del> | Frequency                                    |
| 10 dE          | Bidiy                                                                                      | Ref Offs<br>Ref 20       |              | dB                                                                                                                                                                                                                                  | NO: Fast 🕞<br>Gain:Low | #Atten: 40       |                                  | Avginoid.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE<br>1 2.147                                                                                                    | ТРРРРР                                                                   | Auto Tune                                    |
| 10.0           |                                                                                            |                          |              | 5                                                                                                                                                                                                                                   |                        |                  |                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                          | Center Freq<br>1.165000000 GHz               |
| 0.00<br>-10.0  |                                                                                            |                          |              |                                                                                                                                                                                                                                     |                        |                  |                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                          | Start Freq<br>30.000000 MHz                  |
| -20.0<br>-30.0 |                                                                                            |                          |              |                                                                                                                                                                                                                                     |                        |                  |                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | -25.80 dBm                                                               | <b>Stop Freq</b><br>2.300000000 GHz          |
| -40.0<br>-50.0 |                                                                                            |                          |              |                                                                                                                                                                                                                                     | s sources and define   | a sula alla suda | مد و دار و الار فالد             | ովումունեն                           | The state of the s | in a ferring the starts of the                                                                                   |                                                                          | CF Step<br>227.000000 MHz<br><u>Auto</u> Man |
| -60.0          | <mark>ling dara ja siden ila</mark><br>Provensionen and and and and and and and and and an | , ili in a di anta ka    |              | n breg fri de de la desta de<br>Referencia de la desta de la desta<br>Referencia de la desta de |                        |                  | a k byst i Lenner Andre y Killer | n an 196 an Allen aine The Line Berl | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , an is an a first all the latence of |                                                                          | <b>Freq Offset</b><br>0 Hz                   |
| -70.0<br>Star  | t 30 M                                                                                     | Hz                       |              |                                                                                                                                                                                                                                     |                        |                  |                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 2                                                                                                           | .300 GHz                                                                 |                                              |
|                |                                                                                            | 00 kHz                   |              |                                                                                                                                                                                                                                     | #VBW                   | 300 kHz          |                                  |                                      | Sweep 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 217.1 ms (                                                                                                       | 8001 pts)                                                                |                                              |
| MSG            |                                                                                            |                          |              |                                                                                                                                                                                                                                     |                        |                  |                                  |                                      | STATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                                |                                                                          |                                              |



|                      | TOU KHZ                           |                    | #VBV                                                                                                            | JUU KHZ                  |                  |                 | Sweep s       | 9.600 ms (         | roor pisj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|----------------------|-----------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Start 2.30<br>Res BW | 000 GHz                           |                    | #\/B\A                                                                                                          | / 300 kHz                |                  |                 | Sween (       |                    | 0000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
|                      |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 70.0                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 60.0                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Freq Offse</b><br>0 H          |
| N. WARMAN            | พระสำโหญาประสะรัฐการเหม่าได       | leitotsetservijet. | W. W. Kanglor K | al White Marsel          | kiter-terpfinded | hard thread the | lowalduration | ntanathtital.aut   | n fallen setter fallen fa | Eron Offer                        |
| 50.0                 |                                   |                    |                                                                                                                 |                          | ¢'               |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>Auto</u> Mai                   |
| 40.0                 |                                   |                    |                                                                                                                 |                          | 4                |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF Step<br>10.000000 MH           |
| 30.0                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
|                      |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    | -25.80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Stop Fre</b><br>2.400000000 GH |
| 20.0                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop Ero                          |
| 10.0                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.300000000 GH                    |
| 0.00                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Start Fre                         |
|                      |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 10.0                 |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Center Free<br>2.350000000 GH     |
| - <sup>og</sup>      |                                   |                    |                                                                                                                 |                          |                  |                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contor Fro                        |
| 0 dB/div             | Ref Offset 1.<br><b>Ref 20.00</b> |                    |                                                                                                                 |                          |                  |                 | MI            | (r1 2.35)<br>-48.9 | 1 0 GHz<br>97 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Autorun                           |
|                      |                                   |                    | PNO: Fast 🕞<br>IFGain:Low                                                                                       | Trig: Free<br>#Atten: 40 |                  | Avginoid.       |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto Tun                          |
|                      | req 2.3500                        |                    | GHz                                                                                                             |                          |                  |                 | : Log-Pwr     | TRAC               | E 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency                         |
| gilent Spectr        |                                   | Ω AC               |                                                                                                                 | CEN                      | NSE:INT          |                 | ALIGN AUTO    | 01:42:45 0         | 4 Mar 22, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |



| KU RL     |               | AC    |                    | SEI          | NSE:INT                               |                        | ALIGN AUTO                 |              | 4 Mar 22, 2018                                                     | Frequency         |
|-----------|---------------|-------|--------------------|--------------|---------------------------------------|------------------------|----------------------------|--------------|--------------------------------------------------------------------|-------------------|
| Center Fi | req 2.4917    | 50000 | GHz<br>PNO: Wide 🗔 | Trig: Free   | e Run                                 | Avg Type<br>Avg Hold   | e: Log-Pwr<br>⊳200/200     | TRAC<br>TYP  | <sup>2E</sup> 123456<br><sup>2E</sup> M <del>WWWW</del><br>TPPPPPP | Frequency         |
|           |               |       | IFGain:Low         | #Atten: 4    | 0 dB                                  |                        |                            |              |                                                                    | Auto Tur          |
|           | Ref Offset 1. | 2 dB  |                    |              |                                       |                        | Mkr1 2                     | 493 37       | 2 5 GHz                                                            | Auto Tun          |
| l0 dB/div | Ref 20.00     | dBm   |                    |              |                                       |                        |                            | -48.4        | 26 dBm                                                             |                   |
|           |               |       |                    |              |                                       |                        |                            |              |                                                                    | Center Fre        |
| 10.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    | 2.491750000 GH    |
|           |               |       |                    |              |                                       |                        |                            |              |                                                                    | 2.40 11 00000 011 |
| 0.00      |               |       |                    |              |                                       |                        |                            |              |                                                                    |                   |
|           |               |       |                    |              |                                       |                        |                            |              |                                                                    | Start Fre         |
| 10.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    | 2.483500000 GH    |
|           |               |       |                    |              |                                       |                        |                            |              |                                                                    |                   |
| 20.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    | Stop Fre          |
|           |               |       |                    |              |                                       |                        |                            |              | -25.80 dBm                                                         | 2.500000000 GH    |
| 30.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    |                   |
| 40.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    | CF Ste            |
| 40.0      |               |       |                    |              |                                       | 1                      |                            |              |                                                                    | 1.650000 MH       |
| 50.0      |               |       |                    |              | · · · · · · · · · · · · · · · · · · · | <u></u>                |                            |              |                                                                    | <u>Auto</u> Ma    |
| ութարվե   | ᡎᢇᠾᡔᡔᡗᡢᡨ᠋ᢕᠾᡘᡅ | ᠕ᡙᡀᠰ  | ՠՠ֎ՠՠՠՠ            | ՙՄՈՒՎԱՆՐԿԱՆՆ | $\mu_{\mu}$                           | $ - \sqrt{-\sqrt{-1}}$ | Nor <sup>theo</sup> ldword | ᡩ᠋ᢧᡅᢤᡁᠬᠧᢧ᠊ᡗ᠉ | ᢍᡰᡃᡃᡊᠴᢇᡟ᠇ᡗᢆᡅᡳᢇ                                                     |                   |
| 60.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    | Freq Offse        |
|           |               |       |                    |              |                                       |                        |                            |              |                                                                    | 0 H               |
| 70.0      |               |       |                    |              |                                       |                        |                            |              |                                                                    |                   |
|           |               |       |                    |              |                                       |                        |                            |              |                                                                    |                   |
| tart 2 49 | 3500 GHz      |       |                    |              |                                       |                        |                            | ton 2 500    | 0000 GHz                                                           |                   |
| Res BW    |               |       | #VBM               | / 300 kHz    |                                       |                        |                            |              | (601 pts)                                                          |                   |
| sg        |               |       |                    |              |                                       |                        | STATUS                     | 1            |                                                                    |                   |



| Agilent Spectr   | rum Analyzer - Swe                   | pt SA             |                                                                                                                |                          |                   |                       |                    |                   |                                   |                                                      |
|------------------|--------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-----------------------|--------------------|-------------------|-----------------------------------|------------------------------------------------------|
| LXI RL           | RF 50 Ω                              |                   |                                                                                                                | SEN                      | ISE:INT           |                       | ALIGN AUTO         |                   | 4 Mar 22, 2018                    | Frequency                                            |
| Center F         | req 14.5000                          | PI                | I <b>HZ</b><br>NO: Fast 🖵<br>Gain:Low                                                                          | Trig: Free<br>#Atten: 40 |                   | Avg Type<br>Avg Hold: | : Log-Pwr<br>10/10 | TY                | CE 123456<br>PE MWWWWW<br>TPPPPPP |                                                      |
| 10 dB/div<br>Log | Ref Offset 1.2<br><b>Ref 20.00 d</b> | dB<br>I <b>Bm</b> |                                                                                                                |                          |                   |                       | Μ                  | kr1 25.6<br>-38.0 | 42 GHz<br>09 dBm                  | Auto Tune                                            |
| 10.0             |                                      |                   |                                                                                                                |                          |                   |                       |                    |                   |                                   | Center Freq<br>14.500000000 GHz                      |
| -10.0            |                                      |                   |                                                                                                                |                          |                   |                       |                    |                   |                                   | <b>Start Freq</b><br>2.50000000 GHz                  |
| -20.0            |                                      |                   |                                                                                                                |                          |                   |                       |                    |                   | -25.80 dBm                        | <b>Stop Freq</b><br>26.500000000 GHz                 |
| -40.0            | a al ann ag fan a blitter de seul    |                   | a y , y - h that live a star a star a star                                                                     | ninalita di sala         | a shi dalla sha a |                       |                    |                   |                                   | <b>CF Step</b><br>2.400000000 GHz<br><u>Auto</u> Man |
| -60.0            |                                      |                   | and a second |                          |                   |                       |                    |                   |                                   | <b>Freq Offset</b><br>0 Hz                           |
| .70.0            |                                      |                   |                                                                                                                |                          |                   |                       | ~                  | Ston              | 6 50 CH2                          |                                                      |
| #Res BW          |                                      |                   | #VBW                                                                                                           | 300 kHz                  |                   |                       | Sweep              | 2.294 s (         | 6.50 GHz<br>8001 pts)             |                                                      |
| MSG              |                                      |                   |                                                                                                                |                          |                   |                       | STATUS             | ;                 |                                   |                                                      |



#### 2.3 TM1\_Ch39\_H

Pref:





Puw:

|                      | um Analyzer - Swep               |              |                         |                          |                     |                       |                           |                           |                                                                                                                 |             |                                 |
|----------------------|----------------------------------|--------------|-------------------------|--------------------------|---------------------|-----------------------|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|
| XI RL                | RF 50 Ω 🥼                        |              |                         | SEN                      | ISE:INT             |                       | ALIGNAUTO<br>: Log-Pwr    |                           | 4 Mar 22, 2018<br>E <b>1 2 3 4 5 6</b>                                                                          | F           | requency                        |
| Center Fi            | req 79.500 k                     | PN           | IO: Close 🖵<br>Gain:Low | Trig: Free<br>#Atten: 26 |                     | Avg Type<br>Avg Hold: |                           | TYF                       |                                                                                                                 |             |                                 |
| 10 dB/div<br>Log     | Ref Offset 1.2 (<br>Ref 0.00 dB) |              |                         |                          |                     |                       |                           | Mkr1 9.4<br>-83.8         | 470 kHz<br>09 dBm                                                                                               |             | Auto Tune                       |
| -10.0                |                                  |              |                         |                          |                     |                       |                           |                           |                                                                                                                 |             | Center Fred<br>79.500 kHz       |
| -20.0                |                                  |              |                         |                          |                     |                       |                           |                           |                                                                                                                 |             | Start Fred<br>9.000 kHz         |
| 40.0<br>50.0         |                                  |              |                         |                          |                     |                       |                           |                           | -46.86 dBm                                                                                                      |             | <b>Stop Fred</b><br>150.000 kH; |
| 70.0                 |                                  |              |                         |                          |                     |                       |                           |                           |                                                                                                                 | <u>Auto</u> | CF Stej<br>14.100 kH<br>Ma      |
| 80.0                 |                                  |              |                         |                          |                     |                       |                           |                           |                                                                                                                 |             | Freq Offse                      |
| 0.00                 | ᠰᢆᡙᡗᡟᠰᠧᡔ᠋᠋᠕ᡁᠰᠬᠺ                  | ֈֈ֏ՠֈՠՠֈՠֈՠֈ | ᡁᡗᢩᡀᡔᡃᡃᢩᠬ᠆ᠰᢧᠵᢐ          |                          | <sub>๗</sub> ᠰᠡᠰᡎᠰᡅ | l                     | ᢞᡰᡁᡃᡝᠴᡟᢩ᠘ <sup>ᡁᢕ</sup> ᡙ | ᡒᢦᡗ <sup>ᡗ᠕ᡁᠰ</sup> ᠋ᡅᢇᢧᡗ | and a construction of the second s |             |                                 |
| Start 9.00<br>Res BW |                                  |              | #VBW                    | 3.0 kHz                  |                     |                       | Sweep                     | Stop 15<br>134.8 ms       | 0.00 kHz<br>(601 pts)                                                                                           |             |                                 |
| ISG                  |                                  |              |                         |                          |                     |                       | STATUS                    | DC Cou                    | pled                                                                                                            |             |                                 |



|               |                 |           | alyzer - Sw                    |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             |                                |
|---------------|-----------------|-----------|--------------------------------|------------------------|--------|----------------------|--------------------------|----------------------|-----------|----------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------|-------------|--------------------------------|
| LXI RI<br>Cen |                 | RF<br>eq  | 50 Ω<br>15.0750                | : <u>1</u> dc<br>000 M | Hz     |                      |                          | JSE:INT              | Avg Type  | ALIGNAUTO<br>:: Log-Pwr                                                                                              | TRAC              | 1 Mar 22, 2018<br>E <mark>1 2 3 4 5 6</mark> | F           | requency                       |
|               |                 |           |                                |                        | PN     | 0: Wide 🖵<br>ain:Low | Trig: Free<br>#Atten: 40 |                      | Avg Hold: | >50/50                                                                                                               | TYP<br>DE         | E MWWWWW<br>T P P P P P P                    |             |                                |
| 10 dE         | 3/div           |           | Offset 1.:<br>f <b>20.00</b> ( |                        |        |                      |                          |                      |           | Mł                                                                                                                   |                   | 31 MHz<br>01 dBm                             |             | Auto Tune                      |
| Log           |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             | Center Freg                    |
| 10.0          |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             | 5.075000 MHz                   |
| 0.00          |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             |                                |
|               |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             | Start Freq                     |
| -10.0         |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             | 150.000 kHz                    |
| -20.0         |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             | Stop Freq                      |
| -30.0         |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              | 3           | 0.000000 MHz                   |
| -30.0         |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   | -36.86 dBm                                   |             |                                |
| -40.0         |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             | <b>CF Step</b><br>2.985000 MHz |
| -50.0         |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              | <u>Auto</u> | Man                            |
|               |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      | <b>^</b> 1        |                                              |             | Freq Offset                    |
| -60.0         | s, (data) data  | a hail in | ا مهرا ال الم                  | المراد والعالي         | ور الم | and the second       | anala tanta              | resultari di 1944    |           | (<br>And the state of the | المنا والارتد وما | والنامية والله                               |             | 0 Hz                           |
| -70.0         | the ( president |           | a later for the state of the   | - Inder die            |        |                      | lifas seriator           | all a duite a duite. |           | national distantiane distance of the                                                                                 |                   | a all second light                           |             |                                |
|               |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      |                   |                                              |             |                                |
|               | t 150  <br>s BW |           | Hz                             |                        |        | #\/B\//              | 30 kHz                   |                      |           | Sweep 2                                                                                                              |                   | 0.00 MHz<br>3001 pts)                        |             |                                |
| MSG           |                 |           |                                |                        |        |                      |                          |                      |           |                                                                                                                      | L DC Cou          |                                              |             |                                |



| XI RL<br>Center F                          | RF   50 Ω<br>req 1.165000                                                                                | 0000 GH                                            | z                                                                                                                                                                                                                                     |                                                                                                                                                 | ISE:INT                                                  | Avg Type  | ALIGNAUTO                                                                              | TRAC                                                                                                                                                                                                                                | 1 Mar 22, 2018<br>E <mark>1 2 3 4 5 6</mark><br>E M <del>WWWWW</del> | Frequency                                    |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|
|                                            |                                                                                                          |                                                    | NO: Fast 🖵<br>Gain:Low                                                                                                                                                                                                                | Trig: Free<br>#Atten: 40                                                                                                                        |                                                          | Avg Hold: | >50/50                                                                                 | DE                                                                                                                                                                                                                                  |                                                                      |                                              |
| 10 dB/div<br>Log                           | Ref Offset 1.2<br><b>Ref 20.00 d</b>                                                                     | dB<br>Bm                                           |                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          |           | Mkr                                                                                    | 1 2.070<br>-48.40                                                                                                                                                                                                                   | 45 GHz<br>66 dBm                                                     | Auto Tune                                    |
| 10.0                                       |                                                                                                          |                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          |           |                                                                                        |                                                                                                                                                                                                                                     |                                                                      | Center Freq<br>1.165000000 GHz               |
| -10.0                                      |                                                                                                          |                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          |           |                                                                                        |                                                                                                                                                                                                                                     |                                                                      | Start Freq<br>30.000000 MHz                  |
| -20.0                                      |                                                                                                          |                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          |           |                                                                                        |                                                                                                                                                                                                                                     | -26.86 dBm                                                           | <b>Stop Freq</b><br>2.300000000 GHz          |
| -40.0                                      |                                                                                                          |                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          |           |                                                                                        |                                                                                                                                                                                                                                     | 1                                                                    | CF Step<br>227.000000 MHz<br><u>Auto</u> Man |
| -30.0<br>pplotertig<br>rpst.de.to<br>-60.0 | stiplina, proposi da piso a palata da da<br>A da cara a piso paga da | al tala ang sa | an ya di Afrika ya di Afrika<br>Mana ka na ka na<br>Mana ka na ka n | la a blar at set yr sweddau<br>Gegener yn a gymer y gymer yn g | da pal in pal in a forma da<br>Asing tipo da la programa |           | in a shirt in a shirt in a fan ta shirt i<br>Ta ya mi a sa a sa shirt i shirt i ayaa k | n fill film og en film film film som en s<br>Helle en som e |                                                                      | <b>Freq Offset</b><br>0 Hz                   |
| -70.0                                      |                                                                                                          |                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          |           |                                                                                        |                                                                                                                                                                                                                                     |                                                                      |                                              |
| Start 30 N<br>#Res BW                      |                                                                                                          |                                                    | #VBW                                                                                                                                                                                                                                  | 300 kHz                                                                                                                                         |                                                          |           | Sweep 2                                                                                |                                                                                                                                                                                                                                     | .300 GHz<br>8001 pts)                                                |                                              |



| ISG                   |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                | STATUS          |                        |                                              |                               |
|-----------------------|--------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|----------------|-----------------|------------------------|----------------------------------------------|-------------------------------|
| Start 2.30<br>#Res BW | 0000 GHz<br>100 kHz                  |                 | #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300 kHz                  |                                         |                | Sweep 9         | Stop 2.40<br>.600 ms ( | 0000 GHz<br>1001 pts)                        |                               |
|                       |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              |                               |
| 70.0                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              |                               |
| 60.0                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              | Freq Offse<br>0 H             |
| hunning               | iple have bad the production         | and a classical | the forthe balantic the main of the second sec | Makeline James Co.       | ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ | www.hendlu.hem | (harddayfirddyn | 1/11/14 million        | Mady Malan Mrsh                              |                               |
| 50.0                  | <b>∮</b> <sup>1</sup>                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              | Auto Ma                       |
| -40.0                 |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              | CF Stej<br>10.000000 MH       |
| 30.0                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              |                               |
|                       |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        | -26.86 dBm                                   | Stop Fre<br>2.400000000 GH    |
| 20.0                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              |                               |
| 10.0                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              | 2.300000000 GH                |
| 0.00                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              | Start Fre                     |
|                       |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              |                               |
| 10.0                  |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              | Center Free<br>2.350000000 GH |
|                       |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                |                 |                        |                                              |                               |
| I0 dB/div             | Ref Offset 1.2<br><b>Ref 20.00 (</b> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                         |                | MI              | (r1 2.31)<br>-49.1     | 6 4 GHz<br>19 dBm                            | Auto Tun                      |
|                       |                                      |                 | PNO: Fast 🖵<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trig: Free<br>#Atten: 40 |                                         | Avg Hold:      |                 |                        | PE MWWWWW<br>TPPPPPP                         | Auto Tun                      |
|                       | req 2.35000                          |                 | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | VSE:INT                                 | Avg Type       | ALIGNAUTO       | TRAC                   | 4 Mar 22, 2018<br>E <mark>1 2 3 4 5 6</mark> | Frequency                     |
| gilent Spectr         |                                      | AC              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 051                      | IOT IN IT                               |                |                 | 01:10:01 0             | 111                                          |                               |



|                                  | um Analyzer - Swej                               |           |                                                        |                          |             |             |                         |                    |                                      |                                            |
|----------------------------------|--------------------------------------------------|-----------|--------------------------------------------------------|--------------------------|-------------|-------------|-------------------------|--------------------|--------------------------------------|--------------------------------------------|
| X/ RL<br>Center E                | RF   50 Ω<br>req 2.491750                        |           | iHz                                                    | SEN                      | ISE:INT     |             | ALIGNAUTO<br>:: Log-Pwr | TRAC               | Mar 22, 2018                         | Frequency                                  |
|                                  |                                                  |           | PNO: Wide 🖵<br>FGain:Low                               | Trig: Free<br>#Atten: 40 |             | Avg Hold:   | >200/200                | TYP<br>DE          |                                      |                                            |
| 10 dB/div<br>Log                 | Ref Offset 1.2<br><b>Ref 20.00 d</b>             | dB<br>Bm  |                                                        |                          |             |             | Mkr1 2                  | 498 707.<br>-50.24 | 75 GHz<br>17 dBm                     | Auto Tune                                  |
| 10.0                             |                                                  |           |                                                        |                          |             |             |                         |                    |                                      | Center Freq<br>2.491750000 GHz             |
| 0.00<br>-10.0                    |                                                  |           |                                                        |                          |             |             |                         |                    |                                      | <b>Start Freq</b><br>2.483500000 GHz       |
| -20.0                            |                                                  |           |                                                        |                          |             |             |                         |                    | -26.86 dBm                           | <b>Stop Freq</b><br>2.500000000 GHz        |
| -40.0                            |                                                  |           |                                                        |                          |             |             |                         |                    | ↓ <sup>1</sup>                       | CF Step<br>1.650000 MHz<br><u>Auto</u> Man |
| оого <mark>радала</mark><br>60.0 | <sub>๚๚</sub> ๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚ | ᠵᠾᠰᡃᡅᠺ᠋ᠵᡗ | ᡃᡳᡊᡗ <sup>ᠰ</sup> ᡰᠩᠧᡅ᠇ <sub>ᠿᡄ</sub> ᠕᠆ᠬ <sub>ᡟ</sub> | ᠕ᡶᢏᡵᡗᢔᢑᠬᢑᢇᠺ              | ᠕ᡌᡃᡗᡅᡘᡁᡗᡃᢤᢍ | ᢔᡀ᠓᠆ᢧᠾ᠆ᠰᢈᠵᢏ | arvanta ara             | ᠳᠣᡗᡃᡅᠧᡗᡀᠰᡨᠾᡳᡢ      | <sup>ֈԱ</sup> Իղ <sup>գՄ</sup> ՆԻԿՆ- | Freq Offset<br>0 Hz                        |
| -70.0                            | 3500 GHz                                         |           |                                                        |                          |             |             |                         | Stop 2.500         | 000 GHz                              |                                            |
| ≉Res BW                          |                                                  |           | #VBW                                                   | 300 kHz                  |             |             | Sweep                   | 1.600 ms           | (601 pts)                            |                                            |
| SG                               |                                                  |           |                                                        |                          |             |             | STATUS                  | 3                  |                                      |                                            |

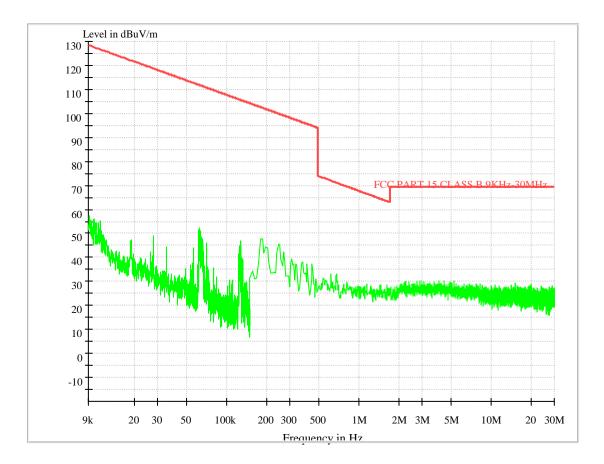






## Appendix H: Radiated Spurious Emission & Spurious in Restricted

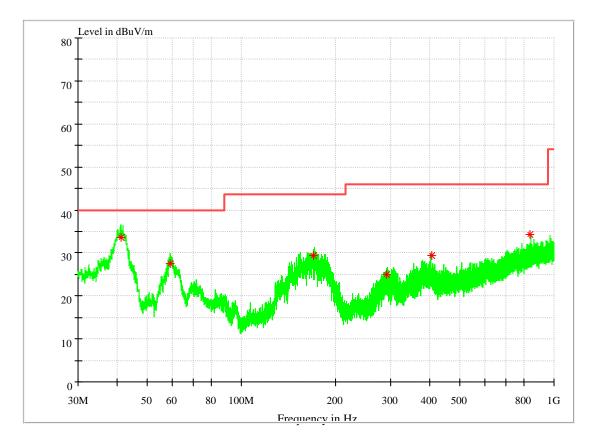
### Band


Note: We tested all modes, but the data presented below is the worst case.Below 1GHz, RBW = 100 kHz, VBW = 300 kHz.

Above 1GHz, RBW = 1 MHz, VBW = 3 MHz.

The simultaneous transmission has been considered










#### 2.2 Part 2: Testing Range of "30 MHz to 1 GHz"

- Note 1: The test results and plot for testing range of "30 MHz to 1 GHz" showed as below is the WORST case for all Test Modes and Channels. This range will not be presented for each Test Mode and each Channel.
- Note 2: The emissions in this range are mainly from the Platform Device (Notepad PC and its ancillary components).



| Frequency  | Level     | Limit     | Margin | Height | Pol | Azimu | Transd. |
|------------|-----------|-----------|--------|--------|-----|-------|---------|
| (MHz)      | (dBµ V/m) | (dBµ V/m) | (dB)   | (cm)   |     | th    | (dB)    |
| 41.121960  | 33.60     | 40.00     | 6.40   | 101.0  | V   | 100.0 | 17.5    |
| 59.234420  | 27.58     | 40.00     | 12.42  | 124.0  | V   | 37.0  | 12.0    |
| 169.474980 | 29.38     | 43.50     | 14.12  | 101.0  | V   | 60.0  | 11.5    |
| 291.847460 | 25.00     | 46.00     | 21.00  | 162.0  | Н   | 262.0 | 15.3    |
| 404.853320 | 29.35     | 46.00     | 16.65  | 100.0  | V   | 68.0  | 19.4    |
| 837.160100 | 34.30     | 46.00     | 11.70  | 100.0  | Н   | 5.0   | 25.5    |

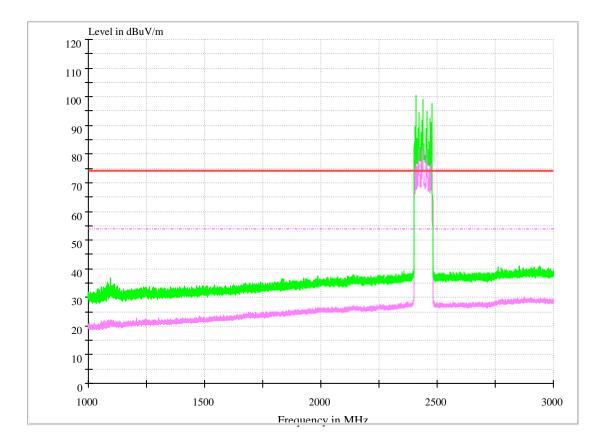
#### Note:

1, Level =Reading level by receiver + Transd (Antenna factor + cable loss – preamplifier gain) The reading level is calculated by software which is not shown in the sheet.

2, Margin=Limit - Level

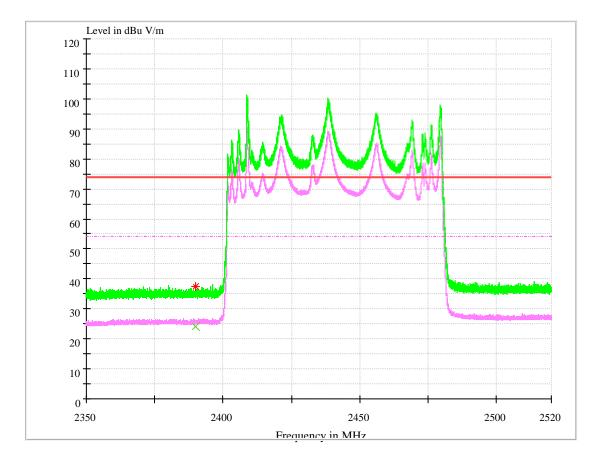


#### 2.3 Part 3: Testing Range of "1GHz to 3GHz"


Note 1: The testing range of "1GHz to 3 GHz" is for checking radiated emissions located in restricted bands near the EUT operating bands.

Note 2: Two limits are required in the testing range above 1 GHz, that is Peak limit (74  $dB\mu V/m$ ) and Average Limit (54  $dB\mu V/m$ ).

Note 3: The peak spike exceeds the limit line is EUT's operating frequency.


Test Mode:

#### 2.3.1Test Mode: TM1





#### 2.3.1.1 Channel 0

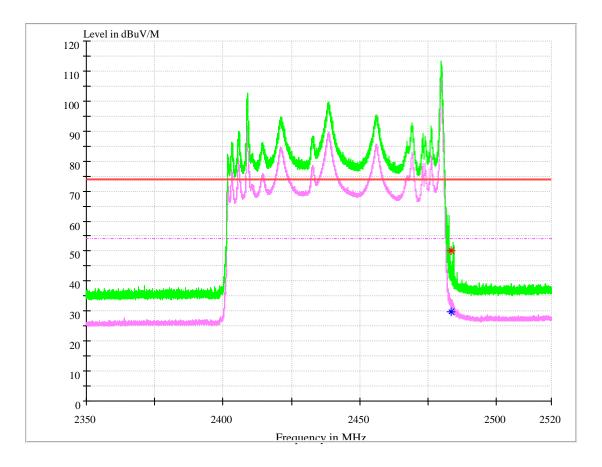


#### MEASUREMENT RESULT: AV Detector

| Frequency   | Level                           | Limit     | Margin | Height | Pol | Azimut | Transd. |  |  |
|-------------|---------------------------------|-----------|--------|--------|-----|--------|---------|--|--|
| (MHz)       | (dBµ V/m)                       | (dBµ V/m) | (dB)   | (cm)   |     | h      | (dB)    |  |  |
| 2390        | 24.08                           | 54.00     | 29.92  | 150.0  | Н   | 98.0   | -10.2   |  |  |
| MEASUREMENT | MEASUREMENT RESULT: PK Detector |           |        |        |     |        |         |  |  |

| Frequency | Level     | Limit     | Margin | Height | Pol | Azimut  | Transd. |  |  |  |  |
|-----------|-----------|-----------|--------|--------|-----|---------|---------|--|--|--|--|
| (MHz)     | (dBµ V/m) | (dBµ V/m) | (dB)   | (cm)   |     | h (deg) | (dB)    |  |  |  |  |
| 2390      | 37.55     | 74.00     | 36.45  | 150.0  | Н   | 315.0   | -10.2   |  |  |  |  |

Note:


1, Level =Reading level by receiver + Transd (Antenna factor + cable loss - preamplifier gain)

The reading level is calculated by software which is not shown in the sheet.

2, Margin=Limit - Level



#### 2.3.1.2 Channel 39



#### MEASUREMENT RESULT: AV Detector

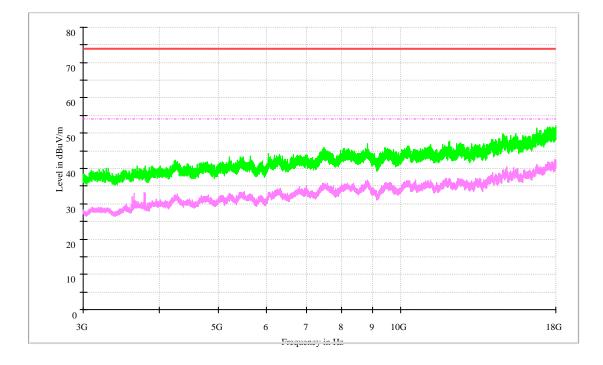
| Frequency | Level     | Limit     | Margin | Height | Pol | Azimut | Transd. |
|-----------|-----------|-----------|--------|--------|-----|--------|---------|
| (MHz)     | (dBµ V/m) | (dBµ V/m) | (dB)   | (cm)   |     | h      | (dB)    |
| 2483.5    | 27.76     | 54.00     | 26.24  | 150.0  | Н   | 186.0  | -10.2   |

MEASUREMENT RESULT: PK Detector

| Frequency | Level     | Limit     | Margin | Height | Pol | Azimut  | Transd. |
|-----------|-----------|-----------|--------|--------|-----|---------|---------|
| (MHz)     | (dBµ V/m) | (dBµ V/m) | (dB)   | (cm)   |     | h (deg) | (dB)    |
| 2483.5    | 45.18     | 74.00     | 28.82  | 150.0  | Н   | 32.0    | -10.2   |

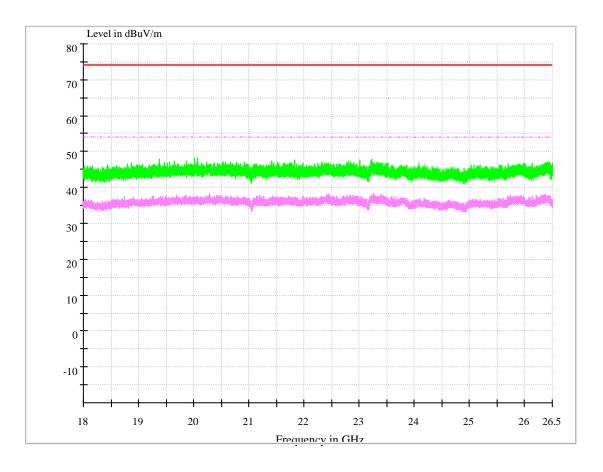
Note:

1, Level =Reading level by receiver + Transd (Antenna factor + cable loss – preamplifier gain)


The reading level is calculated by software which is not shown in the sheet.

2, Margin=Limit - Level

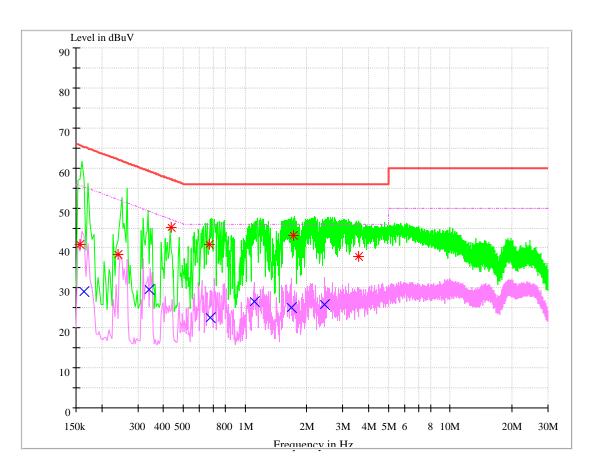



#### 2.4 Part 4: Testing Range of "3 GHz to 18 GHz"

- Note 1: The test results and plot for testing range of "3 GHz to 18 GHz" showed as below is the WORST case for all Test Modes and Channels. This range will not be presented for each Test Mode and each Channel.
- Note 2: The testing range of "3 GHz to 18 GHz" is for checking radiated emissions located in restricted bands faraway from the EUT operating bands.
- Note 3: Two limits are required in the testing range above 3 GHz, that is Peak limit (74  $dB\mu V/m$ ) and Average Limit (54  $dB\mu V/m$ ).






#### 2.5 Part 5: Testing Range of "18 GHz to 26.5 GHz"





## Appendix I: Conducted Emission at Power Port

Note: RBW =9 kHz, VBW = 30 kHz



# Channel 39

| Frequency |         | Limit   | Transd. | Margin | Line | PE  |
|-----------|---------|---------|---------|--------|------|-----|
| (MHz)     | (dBµ V) | (dBµ V) | (dB)    | (dB)   |      |     |
| 0.156975  | 40.85   | 65.62   | 9.7     | 24.77  | Ν    | FLO |
| 0.239303  | 38.35   | 62.12   | 9.7     | 23.77  | L1   | FLO |
| 0.439092  | 45.11   | 57.08   | 9.7     | 11.97  | Ν    | FLO |
| 0.666645  | 40.80   | 56.00   | 9.7     | 15.20  | Ν    | FLO |
| 1.730888  | 43.21   | 56.00   | 9.7     | 12.79  | Ν    | FLO |
| 3.594118  | 37.91   | 56.00   | 9.7     | 18.09  | Ν    | FLO |

#### MEASUREMENT RESULT: PK Detector

#### **MEASUREMENT RESULT: AV Detector**

| Frequency<br>(MHz) | Level<br>(dBµ V) | Limit<br>(dBµ V) | Transd.<br>(dB) | Margin<br>(dB) | Line | PE  |
|--------------------|------------------|------------------|-----------------|----------------|------|-----|
| 0.164413           | 29.02            | 55.24            | 9.7             | 26.22          | Ν    | FLO |
| 0.341436           | 29.50            | 49.17            | 9.7             | 19.67          | Ν    | FLO |
| 0.679570           | 22.50            | 46.00            | 9.7             | 23.50          | Ν    | FLO |
| 1.116469           | 26.55            | 46.00            | 9.7             | 19.45          | Ν    | FLO |
| 1.680912           | 24.96            | 46.00            | 9.7             | 21.04          | Ν    | FLO |
| 2.434142           | 25.92            | 46.00            | 9.7             | 20.08          | Ν    | FLO |

Note:

1, Level =Reading level by receiver + Transd (Antenna factor + cable loss - preamplifier gain)

The reading level is calculated by software which is not shown in the sheet.

2, Margin=Limit - Level

END