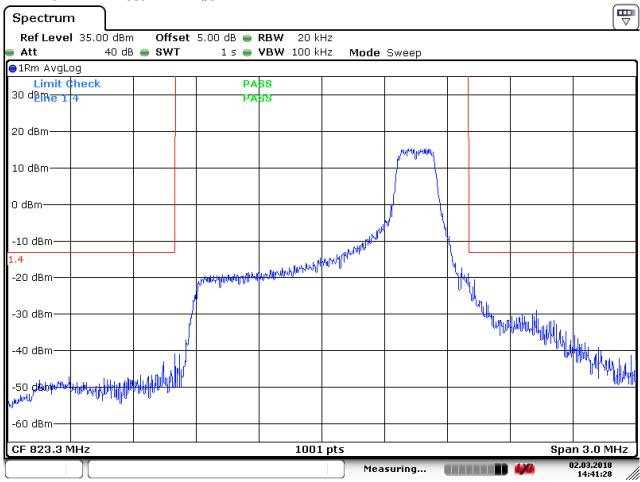


Report No.: SZEM180200138804 Page: 101 of 190



6.1.1.1.2 Test Channel = HCH

Date: 2.MAR.2018 14:41:12

Report No.: SZEM180200138804 Page: 102 of 190

6.1.1.1.2.2 Test RB=1RB#5

Date: 2.MAR.2018 14:41:28

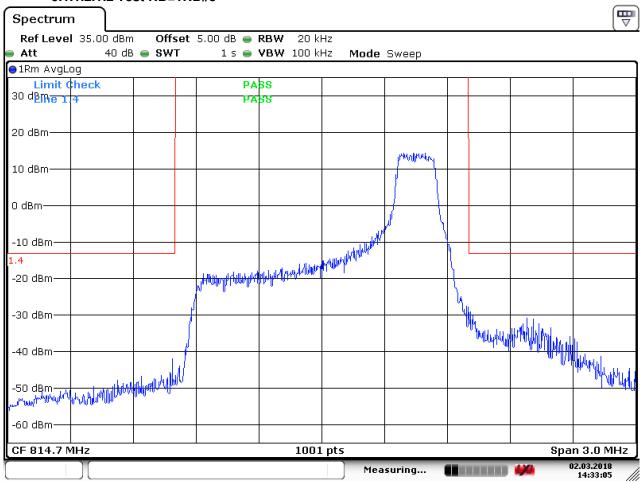
Report No.: SZEM180200138804 Page: 103 of 190

Spectrum	1.2.3 10		D							
Ref Level 3	35.00 dBm 40 dB		5.00 dB 👄 1 s 👄	RBW 20 k VBW 100 k		Sweep				(*
●1Rm AvgLog						1				
Limit Ch	eck		PA	SS						
30 d <mark>BM e 1,4</mark>			PA	ss						
20 dBm										
10 dBm										
0 dBm			from the family	philippine.	dypylunnunderly	between on the second				
-10 dBm						4				
1.4			h				l			
-20 dBm			1				l			
-30 dBm		a					4	MANALA.	allet a lot a	
-30 dBm Juhluhuikhuikhuikhuik 1440 dBm	handanada	ihadul di saa						an de de la	anna an tailing an tail	Andreadinghamation
-50 dBm										
SS dBill										
-60 dBm										
CF 823.3 MH	z	-		1001	l pts	-			Spa	n 3.0 MHz
					Mea	suring			4/4 0	2.03.2018 14:41:45

6 1 1 1 0 2 Toot DD_6DD

Date: 2.MAR.2018 14:41:45

Report No.: SZEM180200138804 Page: 104 of 190


6.1.1.2 Test Mode = LTE/TM2 1.4MHz 6.1.1.2.1 Test Channel = LCH

6.1.1.2.1.1 Test RB=1RB#0 ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 20 kHz 1 s 🔵 **VBW** 100 kHz Att 40 dB 💿 SWT Mode Sweep ●1Rm AvgLog Limit Check PASS 30 d<mark>8me 1</mark> PASS 20 dBm-..... 10 dBm-0 dBm· -10 dBmann fraithe the for th 1.4 -20 dBm-Jul . White a fresh the thing of wear and many and -60 dBm-1001 pts CF 814.7 MHz Span 3.0 MHz 02.03.2018 Measuring... 14:32:49

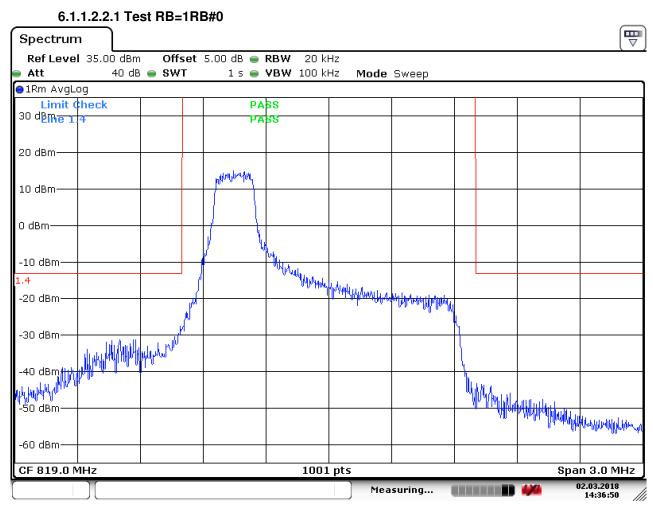
Date: 2.MAR.2018 14:32:49

Report No.: SZEM180200138804 Page: 105 of 190

6.1.1.2.1.2 Test RB=1RB#5

Date: 2.MAR.2018 14:33:06

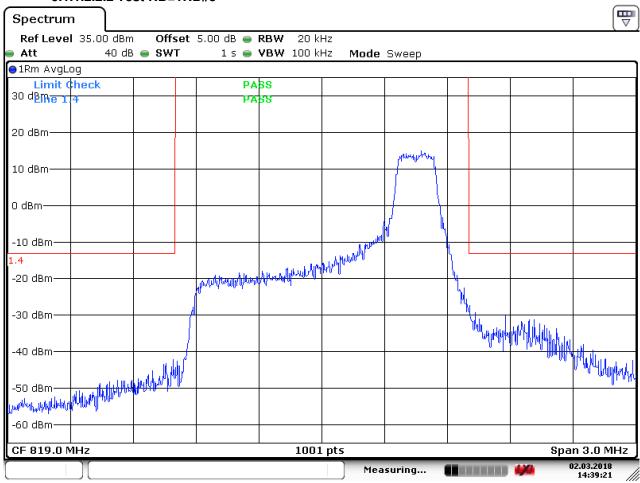
Report No.: SZEM180200138804 Page: 106 of 190


Spectrum	ן ו									
Ref Level	35.00 dBm	Offset	5.00 dB 👄 I	RBW 20 k	Hz					
Att	40 dB	🛛 😑 SWT	1 s 👄 '	VBW 100 k	Hz Mode	Sweep				
😑 1Rm AvgLa										
Limit 0	heck		PA	SS						
30 d <mark>BM e 1</mark> ,	4		РА	88						
20 dBm										
10 dBm										
0 dBm			phinistry	htenubula	halin, materia many hi	1407844.utvhnih				
-10 dBm										
			1			l l				
1.4							Y			
-20 dBm—										
-30 dBm	water	IN MANY HUMAN					Jury 1	rideredy	Muhandradhaph	ñ alatear
-Aqueter 12	1									. watthenty wate
-50 dBm										
-60 dBm										
CF 814.7 M	1Hz	I	I	1001	l pts	I	I		Spa	n 3.0 MHz
][]				Mea	suring			0 🚧	2.03.2018 14:33:29

6.1.1.2.1.3 Test RB=6RB

Date: 2.MAR.2018 14:33:29

Report No.: SZEM180200138804 Page: 107 of 190



6.1.1.2.2 Test Channel = MCH

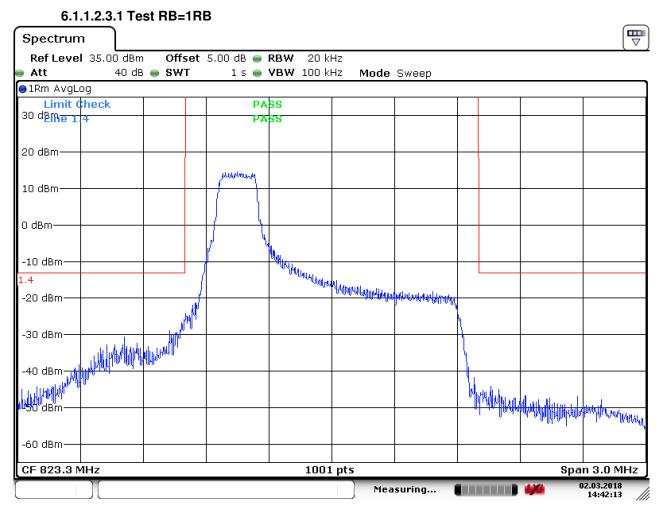
Date: 2.MAR.2018 14:36:50

Report No.: SZEM180200138804 Page: 108 of 190

6.1.1.2.2.2 Test RB=1RB#5

Date: 2.MAR.2018 14:39:21

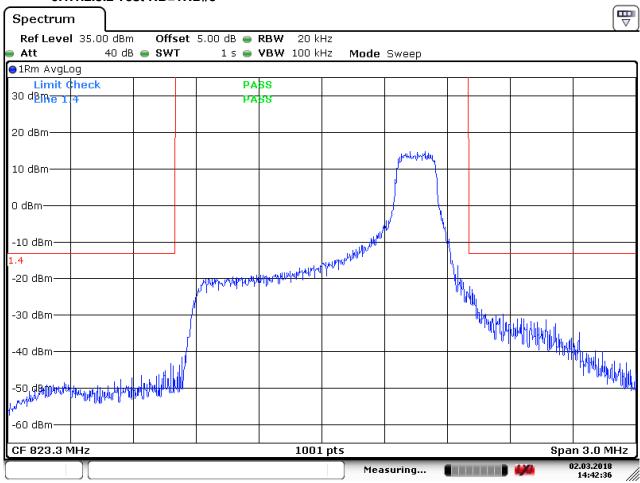
Report No.: SZEM180200138804 Page: 109 of 190


										Ē
Spectrum										
	l 35.00 dBm		5.00 dB 😑							
e Att		s 😑 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep				
⊖1Rm AvgLo		, , , , , , , , , , , , , , , , , , , ,	1							
Limit C	heck		PA							
30 d <u>B</u> Me 1,	4		РА	ss						
20 dBm										
10 dBm										
0.45			Manufadoritika	waynowaly	wheelthelphanetron	Mannand				
0 dBm			1							
-10 dBm—										
1.4			1			\				
-20 dBm—							<u>.</u>			
		/					Υ.			
-30 dBm—	. L. Holy Mary Motor	with a shipmer					44	uhthanger of the	MAN MANAL	1
warthy way	olydla a								o budda	Juris Malling Markey
-30 dBm 										· · · · · · · · · · · · · · · · · · ·
-50 dBm										
-60 dBm										
CF 819.0 M	1Hz	I	I	1001	. pts	l			Spa	n 3.0 MHz
					Mea	suring			4/4 0	2.03.2018 14:39:38

6.1.1.2.2.3 Test RB=6RB

Date: 2.MAR.2018 14:39:39

Report No.: SZEM180200138804 Page: 110 of 190



6.1.1.2.3 Test Channel = HCH

Date: 2.MAR.2018 14:42:13

Report No.: SZEM180200138804 Page: 111 of 190

6.1.1.2.3.2 Test RB=1RB#5

Date: 2.MAR.2018 14:42:37

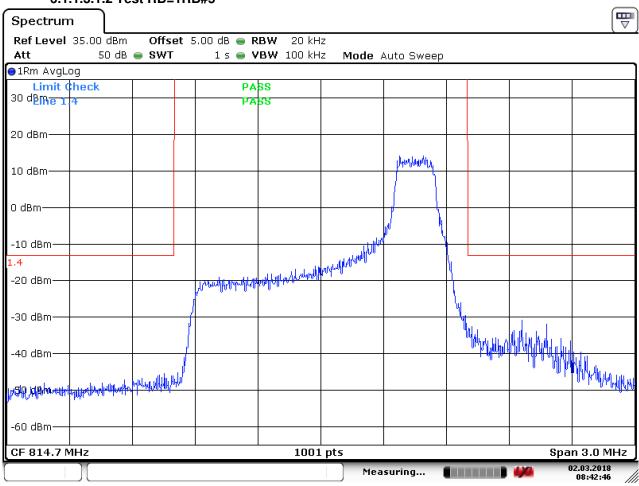
Report No.: SZEM180200138804 Page: 112 of 190

Spectrum		St HD-0H								
-										(∀
	35.00 dBm		5.00 dB 👄							
e Att		S 🔵 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep				
●1Rm AvgLo	-									
Limit C	heck		PA							
30 d <u>B</u> Me 1,	4		PA	55						
20 dBm										
10 dBm										
0 dBm			Munimum	unkhaadantantah	autodentifered war	ununununun				
0 uBm			<u> </u>							
-10 dBm—										
1.4			ľ			1				
-20 dBm—		j	ļ				ι			
							l) –			
-30 dBm—		l i i i i					- URL	Little de la		
-30 dBm	mulumantophy	harthally and a					પ્ય	www.py.ny	MARCHART	Muth redelle man
MIT -ttthrättru ****										<u>. 9. av at will</u>
-50 dBm—										
-60 dBm										
CF 823.3 M	1Hz	1		1001	l L pts				l Spa	n 3.0 MHz
][]				Mea	suring			4/4 0	2.03.2018 14:42:54 ///

6.1.1.2.3.3 Test RB=6RB

Date: 2.MAR.2018 14:42:54

Report No.: SZEM180200138804 Page: 113 of 190


6.1.1.3 Test Mode = LTE/TM3 1.4MHz 6.1.1.3.1 Test Channel = LCH

6.1.1.3.1.1 Test RB=1RB#0 ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 20 kHz 50 dB 🔵 SWT Att 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm AvgLog Limit Check PASS 30 d<mark>8me 1</mark> PASS 20 dBmpresidential films 10 dBm-0 dBm· University of the second of th -10 dBm-1.4 -20 dBm--30 dBm-Hole Hand Hole Martin -40 dBm-Th LEO dBm-Hidden Hiles Life #HULL.Alt Marga 4/hthere was -60 dBm-1001 pts CF 814.7 MHz Span 3.0 MHz 02.03.2018 Measuring... 08:42:33

Date: 2.MAR.2018 08:42:33

Report No.: SZEM180200138804 Page: 114 of 190

6.1.1.3.1.2 Test RB=1RB#5

Date: 2.MAR.2018 08:42:46

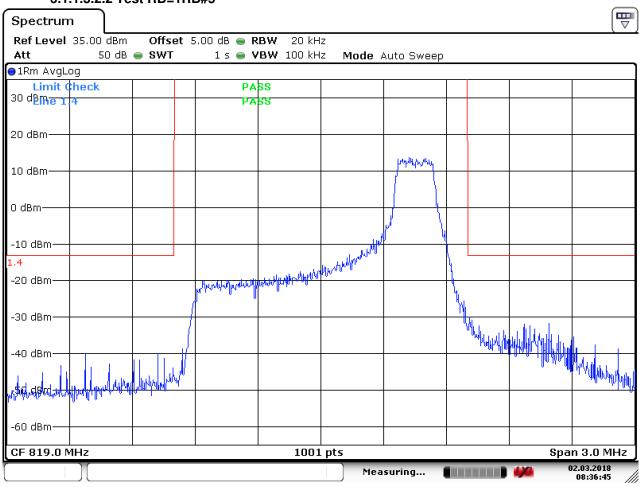
Report No.: SZEM180200138804 Page: 115 of 190

Spectrum									
Ref Level Att	35.00 dBm 50 dB	Offset 5 SWT	5.00 dB 👄 R 1 s 👄 V	BW 20 kH BW 100 kH		Auto Sweep			
😑 1Rm AvgLi	og								
Limit 0 30 d <u>BMe 1.</u>	heck 4		PA PA						
20 dBm									
10 dBm									
0 dBm			jihikolewanana Y	boongrafting and a second	oppygalywalyki	Muhdensephondy			
-10 dBm			N						
1.4 -20 dBm						٩			
-30 dBm -40 dBm տ ^{վին} վերային	n davel of the haden of the	www.wilon.ht.m.p.m					hunderungen	tolehay you you you you you you you you you yo	MAN UN
tad and a second second									S AND YO WINNY
-50 dBm									
-60 dBm									
CF 814.7 N	/IHz	·	·	1001	pts	·		Spa	n 3.0 MHz
)[]				Mea	suring		444 0	2.03.2018 08:43:00

6.1.1.3.1.3 Test RB=6RB

Date: 2.MAR.2018 08:43:01

Report No.: SZEM180200138804 Page: 116 of 190


6.1	.1.3.2.1 Te	st RB=1RI	3#0						_
Spectrun	n								
Ref Level	35.00 dBm	Offset 5	5.00 dB 😑 R	BW 20 kH	z				
Att	50 dB	e swt	1 s 😑 V	' BW 100 kH	z Mode /	Auto Sweep			
😑 1Rm AvgL	.og								
Limit (Check		PA						
30 d <mark>BM e 1</mark>	,4		PA	55					
20 dBm									
10 dBm			revenue						
0.40									
0 dBm			1						
-10 dBm—				N.					
1.4 -20 dBm				www.www.ukh	WHUP				
-20 0611				Manun and and and and and and and and and an	. Jacob of the other	on house the second the	L		
-30 dBm—	ւեսես	and the second							
-40 dBm	<u>i populational</u>	MWAAM					<u> </u>		
	hilling the state of the state						4-4- John Marine	-	ษณ _ี มีสั∰ชา/สา
								1.0.0.101.000000	n e Anameri
-60 dBm									
CF 814.7 M	MHz			1001	. pts			Spa	n 3.0 MHz
) Mea	suring		4/4	08:34:22

6.1.1.3.2 Test Channel = MCH

Date: 2.MAR.2018 08:34:23

Report No.: SZEM180200138804 Page: 117 of 190

6.1.1.3.2.2 Test RB=1RB#5

Date: 2.MAR.2018 08:36:46

Report No.: SZEM180200138804 Page: 118 of 190

Spectrun			5						
=									(∀
	35.00 dBm		i.00 dB 😑 R						
Att		SWT	1 S 📟 V	BW 100 k⊢	iz Mode /	Auto Sweep			
⊖1Rm AvgL	-				1	1	T T		
Limit C	theck		PA						
30 d <mark>BM e 1</mark> .	.4		РА	55					
20 dBm							$\left \right $		
10 dBm									
10 0.0111									
			phantanapha	egger representation	Humanhadabah	a how we wanted			
0 dBm——									
			1						
-10 dBm									
1.4			J			h,			
h			r				1		
-20 dBm—		أر							
		J					N		
-30 dBm		where while					Santa de l		
	How Mulley	Montechning					ANNI ANNA	Myle Mark John	
-30 dBm	More a							and fille the standard of the	and when have
All all creation									a la construction
-50 dBm									
-60 dBm									
CF 819.0 N	/IHz			100:	l pts			Spa	n 3.0 MHz
					Mea	suring) 🦇	2.03.2018 08:37:03
· · · · · · · · · · · · · · · · · · ·									08:37:03

6.1.1.3.2.3 Test RB=6RB

Date: 2.MAR.2018 08:37:04

Report No.: SZEM180200138804 Page: 119 of 190

6.1.1.3.3.1 Test RB=1RB ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 20 kHz Att 50 dB 💿 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep . ●1Rm AvgLog Limit Check PASS 30 d<mark>Bme 1</mark> PASS 20 dBm-10 dBm-0 dBm· -10 dBm-1.4 -20 dBm--30 dBm-الملى uticle Might Mary a -40 dBmwww.white -S0 dBm-يد د السو -60 dBm-Span 3.0 MHz CF 823.3 MHz 1001 pts 02.03.2018 Measuring... -----08:40:54

6.1.1.3.3 Test Channel = HCH

Date: 2.MAR.2018 08:40:55

Report No.: SZEM180200138804 Page: 120 of 190

	.1.3.3.2 10	51110-111	5						
Spectrun	n								[₩
Ref Level	35.00 dBm	Offset 3	5.00 dB 👄 R	88W 20 kH	z				
Att		e swt	1 s 👄 ۷	'BW 100 kH	z Mode /	Auto Sweep			
😑 1Rm AvgLi									
Limit 0	theck		PA	ss					
30 d <mark>BM e 1</mark> .	4		PA	55					
20 dBm									
10 dBm						matinuty			
0 dBm									
10 - 40						/ \			
-10 dBm—					, authors				
1.4					(water the fragment of the second		N		
-20 dBm—			Aparadhapadha	allelohtyrrögeteltettat.	0		W		
-30 dBm—							White the	MALLAU	
-40 dBm							ակնօ		May Landa Mahana
"AFRA HABANAHHH	patricipal and the second	funder on the second							1 a road Alley May
-60 dBm									
CF 823.3 N	MHz		I	1001	pts	I		Spa	n 3.0 MHz
					Mea	suring		0 🚧	2.03.2018 08:41:10

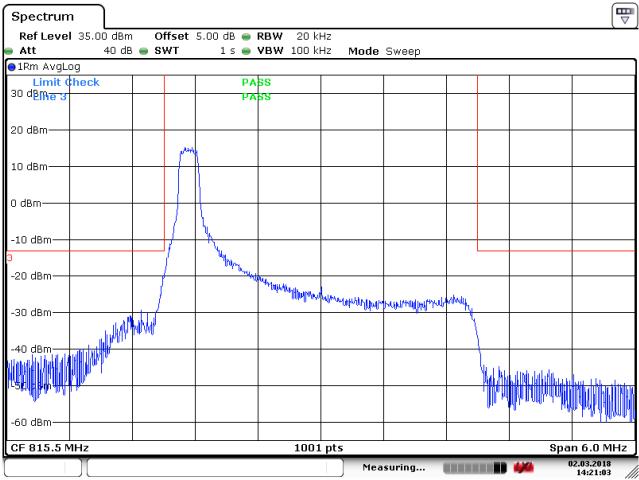
6.1.1.3.3.2 Test RB=1RB#5

Date: 2.MAR.2018 08:41:10

Report No.: SZEM180200138804 Page: 121 of 190

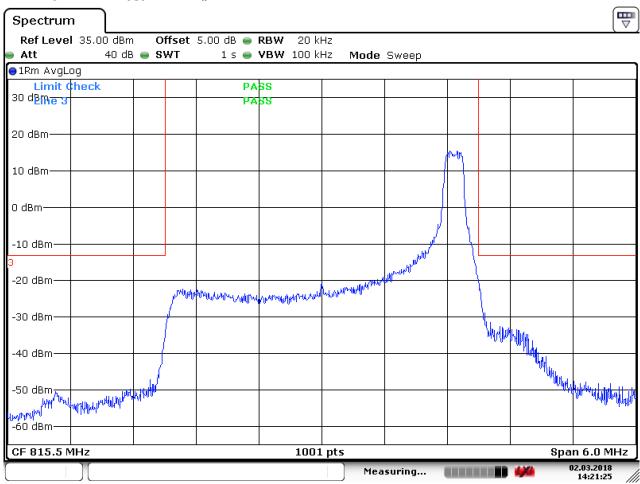
Spectrum	า)															
Ref Level				Offset	5.0					kHz							
Att		50 dB		SWT		1 s		VBW	100	kHz	Mode	Auto Swee	эр				
●1Rm AvgL			-														
Limit 0	theck						P	ASS									
30 d <mark>Bme 1</mark> .	4						P.	ASS									
20 dBm																	
10 dBm					_												
0 dBm						pulle	ullyyyd	nuvun	un/ll-rala	uphan	the and the analysis of the second	Marrynort	4				
-10 dBm						[
1.4					ľ	,							ų				
-20 dBm					ľ								ો				
	car bat	num	holp	14 martin	¥									ไห	Myrnauly	White population	MALANDAUNICHINA
-30 dBm	aport d	· U ·															When have have been a start of the
-50 dBm					+					+							
-60 dBm																	
CF 823.3 N	l /IHz		1					1	10	01	pts	1				spa	n 3.0 MHz
											Mea	asuring				4/4 (08:41:25

6.1.1.3.3.3 Test RB=6RB


Date: 2.MAR.2018 08:41:25

Report No.: SZEM180200138804 Page: 122 of 190

6.1.1.4 Test Mode = LTE/TM1 3MHz 6.1.1.4.1 Test Channel = LCH


6.1.1.4.1.1 Test RB=1RB#0

Date: 2.MAR.2018 14:21:04

Report No.: SZEM180200138804 Page: 123 of 190

6.1.1.4.1.2 Test RB=1RB#14

Date: 2.MAR.2018 14:21:25

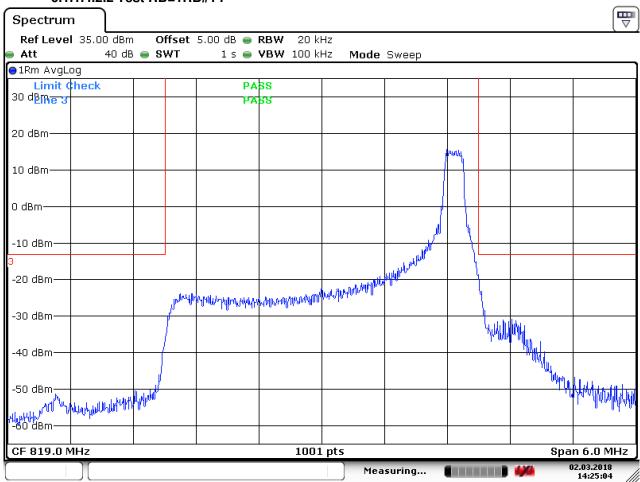
Report No.: SZEM180200138804 Page: 124 of 190

Spectrum			10						
-	l 35.00 dBm	Offset e SWT	5.00 dB 👄 1 s 👄	RBW 20 k VBW 100 k		Sweep			(*
😑 1Rm AvgLo	og								
Limit C 30 d <u>Bme 3</u>	heck		PA PA						
20 dBm									
10 dBm									
0 dBm		abely I	wprolational and	holphantenauthyhden	youdrealaraatiindaa	munition	Audy		
-10 dBm									
3 -20 dBm									
-30 dBm							L.		
-3U dBm Ն¥Ծ dBm	upphylicite and a particular	opulador ^a					եկում	ubblichter of the state of the	handrykulanadae
-50 dBm									
-60 dBm									
CF 815.5 M	1Hz	I	1	1001	l pts	1	1	Spa	n 6.0 MHz
][]				Mea	suring		0	2.03.2018 14:21:43 //

6.1.1.4.1.3 Test RB=15RB

Date: 2.MAR.2018 14:21:43

Report No.: SZEM180200138804 Page: 125 of 190


6.1	.1.4.2.1 Te	st RB=1R	B#0							_
Spectrum	Γ									(₩
Ref Leve	I 35.00 dBm	offset	5.00 dB 😑	RBW 20 ki	Hz					`
🗕 Att	40 dB	SWT 😑	1 s 👄	VBW 100 k	Hz Mode	Sweep				
😑 1Rm AvgL(
Limit 0	heck		PA	8S						
30 d <u>BM е 3</u>			PA	รร						
20 dBm										
10 dBm		ļ (~								
0 dBm										
-10 dBm			\square							
3 -20 dBm										
				man	hamman		m			
-30 dBm	and the	Aqueral								
-40 dBm										
⊾ә БО⊬88 ₩ ^{⊷⊷⊷}	w."							mh	wanter water for an	unta a
-60 dBm										when
CF 819.0 N	/IHz	1	I	1001	. pts		I		Spa	n 6.0 MHz
)[) Mea	suring (4	2.03.2018 14:24:39 //

6.1.1.4.2 Test Channel = MCH

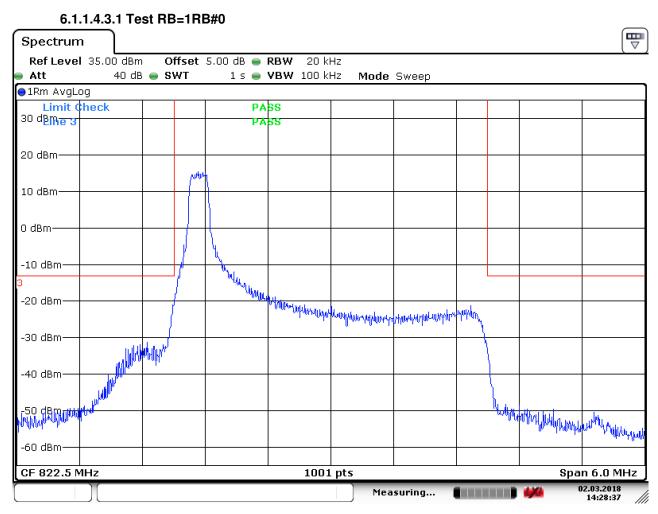
Date: 2.MAR.2018 14:24:40

Report No.: SZEM180200138804 Page: 126 of 190

6.1.1.4.2.2 Test RB=1RB#14

Date: 2.MAR.2018 14:25:04

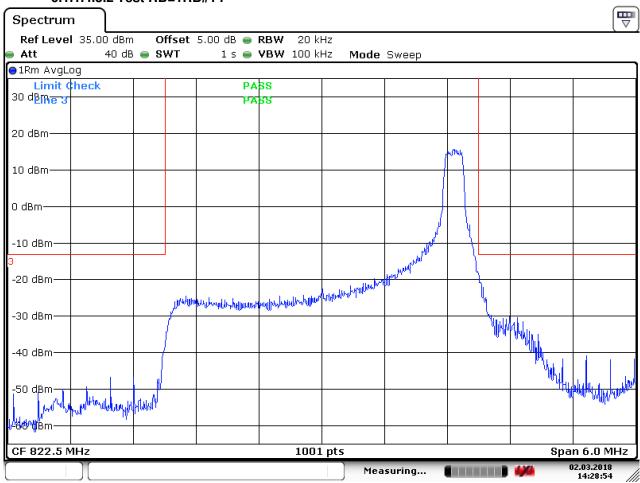
Report No.: SZEM180200138804 Page: 127 of 190


Spectrum	ī									
Ref Level				5.00 dB 👄						
Att		dB 😑 🕄	SWT	1 s 👄	VBW 100	kHz Mode	Sweep			
●1Rm AvgLo					_					
Limit C	heck			P7	488					
30 dB <mark>Me 3</mark>				P7	488					
20 dBm										
10 dBm										
0 dBm			puth	annonterarconteration	Hunderstand	ughrangearinged	at your when	10 mm		
-10 dBm—										
3 -20 dBm			<u> </u>							
			ſ					L V		
-30 dBm	nuclearly	J-WWWW	b ^{rt}					<u>ստո</u> ւթեր	Mahahaayeedahahaha	habelalandarahalagh
-40 dBm										
-50 dBm										
-60 dBm										
CF 819.0 M	1Hz			1	100	1 pts	1	1	spa	n 6.0 MHz
(][]					Mea	asuring			2.03.2018 14:25:27

6.1.1.4.2.3 Test RB=15RB

Date: 2.MAR.2018 14:25:28

Report No.: SZEM180200138804 Page: 128 of 190



6.1.1.4.3 Test Channel = HCH

Date: 2.MAR.2018 14:28:37

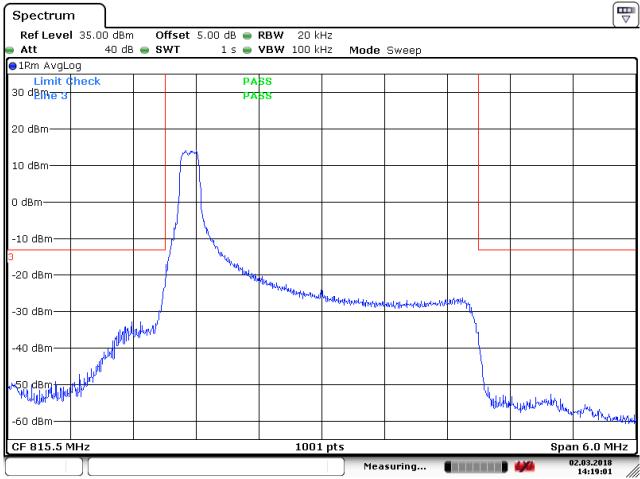
Report No.: SZEM180200138804 Page: 129 of 190

6.1.1.4.3.2 Test RB=1RB#14

Date: 2.MAR.2018 14:28:55

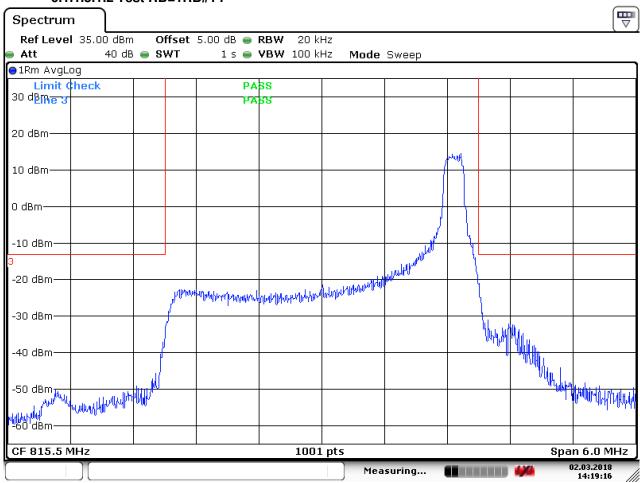
Report No.: SZEM180200138804 Page: 130 of 190

6.1	.1.4.3.3 Te	st RB=	15F	RB								_
Spectrun	n											
Ref Leve	l 35.00 dBm) Offs	et	5.00 dB 😑	RBW 20	kHz						
e Att		5 🔵 SW	Г	1 s 😑	VBW 100	kHz M	1ode	Sweep				
●1Rm AvgL												
Limit C	theck			PA								
30 d <u>BM e 3</u>				PA	ss							
20 dBm												
10 dBm												
				multinutreth	a landa a sa ana aka	stiller and works	1. here the	manuald	MANA			
0 dBm			M	MARINA AND MARINA	allali sa Andrea	0.14000	210 0 11	1				
-10 dBm												
2												
-20 dBm										<u> </u>		
		ľ								1		
-30 dBm										4		
		an all the second								"hallowly	MARALAPARA	นสมไห้เสียง (ค.ศ
r-andronality.	[[]]philandannadad]										. 1	
-50 dBm												
-60 dBm——												
CF 822.5 N	MHz				10	01 pts					Spa	n 6.0 MHz
							Mea	suring			4/4 0	2.03.2018 14:29:18


Date: 2.MAR.2018 14:29:18

Report No.: SZEM180200138804 Page: 131 of 190

6.1.1.5 Test Mode = LTE/TM2 3MHz 6.1.1.5.1 Test Channel = LCH


6.1.1.5.1.1 Test RB=1RB#0

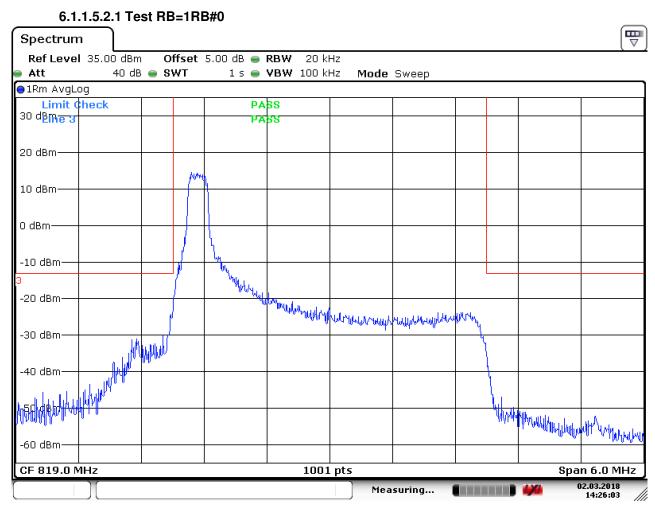
Date: 2.MAR.2018 14:19:01

Report No.: SZEM180200138804 Page: 132 of 190

6.1.1.5.1.2 Test RB=1RB#14

Date: 2.MAR.2018 14:19:17

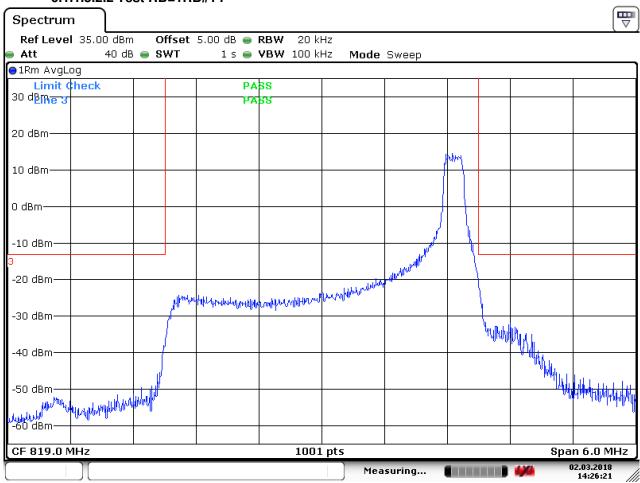
Report No.: SZEM180200138804 Page: 133 of 190


Spectrum	ι											
Ref Level				t 5.00 dB		20 kH	_					`
🗕 Att		O dB 😑	SWT	1 s (• VBW	100 kH	z Mode	Sweep				
●1Rm AvgLog												
Limit C	heck				PASS							
30 d <u>BM e 3</u>				,	ASS							
20 dBm												
10 dBm												
0 dBm			<i>p</i>	when her why many	walkrung	With Million	datageogladigites of	low-ngh rates with the				
-10 dBm												
3			-									
-20 dBm—			1							1		
-30 dBm—			+							-		
profile difference for	handderfordd	ant the price	ለ/							huddillin	udaring lung	Ann Marchard Contraction of the
-50 dBm												
-60 dBm												
CF 815.5 M	/IHz					1001	pts				 Spa	n 6.0 MHz
Measuring												

6.1.1.5.1.3 Test RB=15RB

Date: 2.MAR.2018 14:19:46

Report No.: SZEM180200138804 Page: 134 of 190



6.1.1.5.2 Test Channel = MCH

Date: 2.MAR.2018 14:26:03

Report No.: SZEM180200138804 Page: 135 of 190

6.1.1.5.2.2 Test RB=1RB#14

Date: 2.MAR.2018 14:26:21

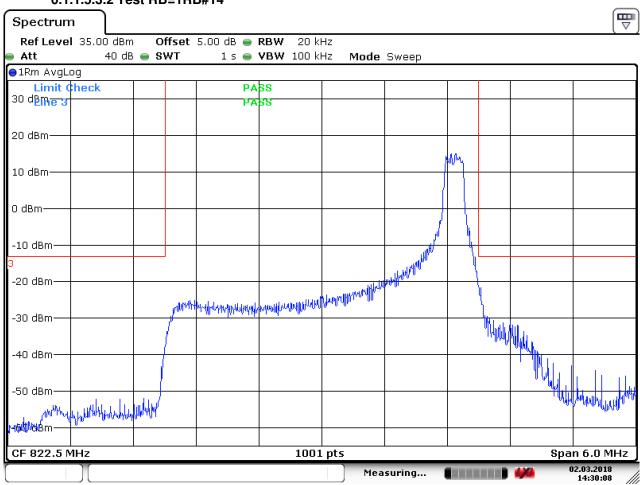
Report No.: SZEM180200138804 Page: 136 of 190

Spectrum	1.0.2.0 10	01112-									
Ref Level	35.00 dBm	Offs	et 5.00 d	B 👄 RB	W 20 ki	Ηz					(•
👄 Att	40 dB	6 👄 SW1	Г 1	s 👄 VB'	W 100 kl	Hz Mode	Sweep				
😑 1Rm AvgLo)g										
Limit C	heck			PASS							
30 d <u>BMe 3</u>				PASS							
20 dBm											
10 dBm											
0 dBm			- puttor Burtannage	hili an	and for the states	and the stand and a set	h protonet have been been been been been been been be	day_			
-10 dBm			ļ								
З			[]								
-20 dBm											
-30 dBm		. /							1		
-30 aBm ////////////////////////////////////	hand	HUMMUN							undrug (1)	Hillinsonshight	whow when have been all
-40 abiii											
-50 dBm											
-60 dBm											
CF 819.0 M	IHz	I		I	1001	pts	l	I		Spa	n 6.0 MHz
						Mea	suring			444 (2.03.2018 14:25:43

6.1.1.5.2.3 Test RB=15RB

Date: 2.MAR.2018 14:25:44

Report No.: SZEM180200138804 Page: 137 of 190


6.1.1.5.3.1 Test RB=1RB#0 ₩ Spectrum Offset 5.00 dB 💿 RBW Ref Level 35.00 dBm 20 kHz Att 40 dB 💿 SWT 1 s 👄 **VBW** 100 kHz Mode Sweep . ●1Rm AvgLog Limit Check PASS 30 d<mark>BM e 3</mark> PASS 20 dBmμЦ 10 dBm⁻ 0 dBm· -10 dBm-"When white a start with a start with a start with the start of the st -20 dBm--30 dBm[.] 40 dBm -60 dBm Span 6.0 MHz CF 822.5 MHz 1001 pts 02.03.2018 Measuring... ----14:29:53

6.1.1.5.3 Test Channel = HCH

Date: 2.MAR.2018 14:29:53

Report No.: SZEM180200138804 Page: 138 of 190

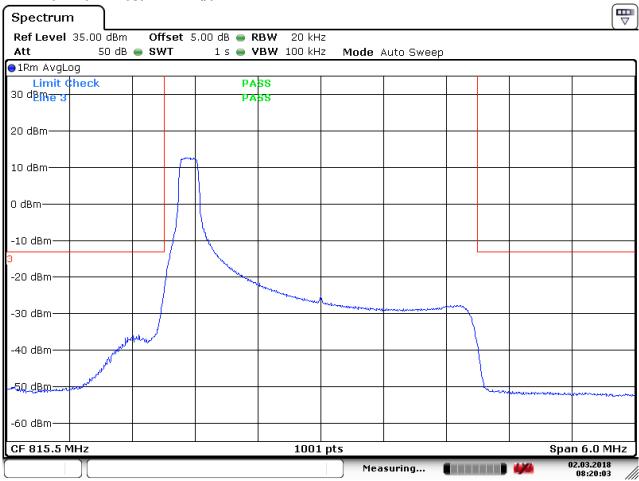
6.1.1.5.3.2 Test RB=1RB#14

Date: 2.MAR.2018 14:30:08

Report No.: SZEM180200138804 Page: 139 of 190

Spectrum		5(110=10)							
	35.00 dBm		5.00 dB 👄						
Att		🛛 😑 SWT	1 s 👄	VBW 100 ki	Hz Mode	Sweep			
😑 1Rm AvgLo	-								
Limit C	heck		PA	8S					
30 d <mark>BMe 3</mark>			РА	88					
20 dBm									
10 dBm									
0 dBm		μη	herengerahere	, addie maar dijke hynyddyddd	<u>Anthernationalise</u>	Nymmuna	wh.		
-10 dBm									
							կ		
-20 dBm		1							
-30 dBm——		<u> </u>							
hut Alles working		HUNNAN					Yuruthp	whole the appropriate	ฟลินีนเพล. 2.6.22.
HAT THE PARTY AND THE PARTY AN	allition and a c	P							
-50 dBm									
-60 dBm									
CF 822.5 M	Hz			1001	. pts			 Spa	n 6.0 MHz
][]					suring (-)2.03.2018 14:29:33

6.1.1.5.3.3 Test RB=15RB


Date: 2.MAR.2018 14:29:33

Report No.: SZEM180200138804 Page: 140 of 190

6.1.1.6 Test Mode = LTE/TM3 3MHz 6.1.1.6.1 Test Channel = LCH

6.1.1.6.1.1 Test RB=1RB#0

Date: 2.MAR.2018 08:20:04

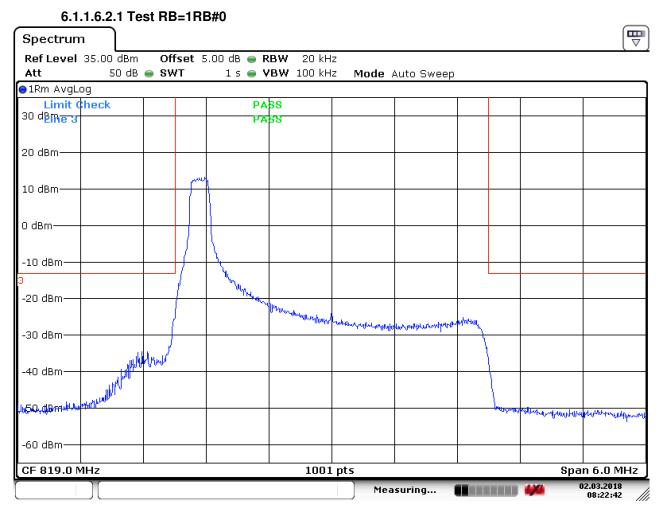
Report No.: SZEM180200138804 Page: 141 of 190

0.1	0.1.1.0.1.2 Test RD=1RD#14									
Spectrun	n]									
Ref Level	35.00 dBm	Offset	t 5.00 dB 🥃 R	. BW 20 kH	z				i	
Att	50 dB	🔵 SWT	1 s 👄 🛛	' BW 100 kH	z Mode /	Auto Sweep				
😑 1Rm AvgLi	og									
Limit 0	Check .		PA	ss						
30 d <mark>BM е 3</mark>			РА	88						
20 dBm										
							findy			
10 dBm——										
0 dBm										
-10 dBm—										
3						wanter	\			
-20 dBm—						A CONTRACT	+	+		
		p	un many many and the	namphy and a fear	Mummertent					
-30 dBm——										
-40 dBm							եղում			
F0 dBmp								Man Malanda	Here and Larver	
	houder the american	le-nor-par						1	the wood of the work of the second second	
-60 dBm										
CF 815.5 N	MHz	I		1001	. pts	1	1	Spa	n 6.0 MHz	
					Mea	suring) 🥠 (2.03.2018 08:20:32	

6.1.1.6.1.2 Test RB=1RB#14

Date: 2.MAR.2018 08:20:33

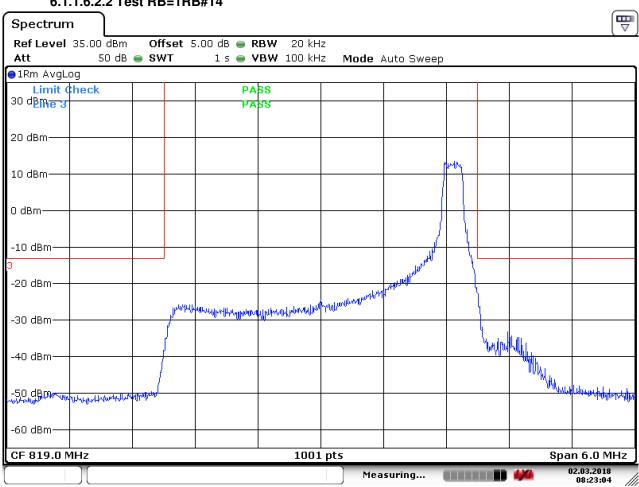
Report No.: SZEM180200138804 Page: 142 of 190


Spectrum	ייין <u>ווויי</u> וויי											
Ref Level				5.00 dB 👄								
Att		e sw		1 S 🛑	ARM	100 kH	z Mode	Auto Sweep				
⊖1Rm AvgLo				1							1	
Limit C	heck				ASS							
30 d <u>BM e 3</u>				р,	ASS							
20 dBm					_							
10 dBm					-							
0 40			ort a			1						
0 dBm——				<u> </u>		and a grade the second	an a	and half of a failed by the	hand			
-10 dBm—									\square	_		
3									$ \rangle$			
-20 dBm—			+						+ 1	1		
-30 dBm—										\		
		1.7								1		
-40 dBm	Land that the	milledura								Monart	herberteleter hard	al an internet
-40 dBm A ^{nner} that	George											
-50 dBm												
-60 dBm												
CF 815.5 N	1Hz				-	1001	pts	·			-	n 6.0 MHz
							Mea	asuring			4/4)2.03.2018 08:20:57

6.1.1.6.1.3 Test RB=15RB

Date: 2.MAR.2018 08:20:57

Report No.: SZEM180200138804 Page: 143 of 190



6.1.1.6.2 Test Channel = MCH

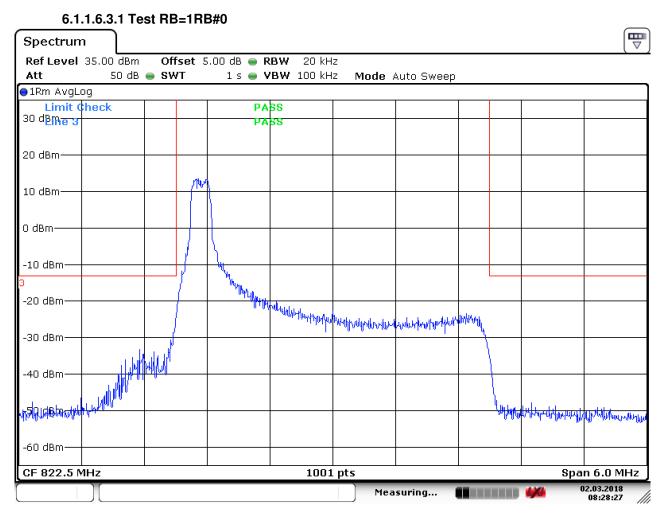
Date: 2.MAR.2018 08:22:43

Report No.: SZEM180200138804 Page: 144 of 190

6.1.1.6.2.2 Test RB=1RB#14

Date: 2.MAR.2018 08:23:04

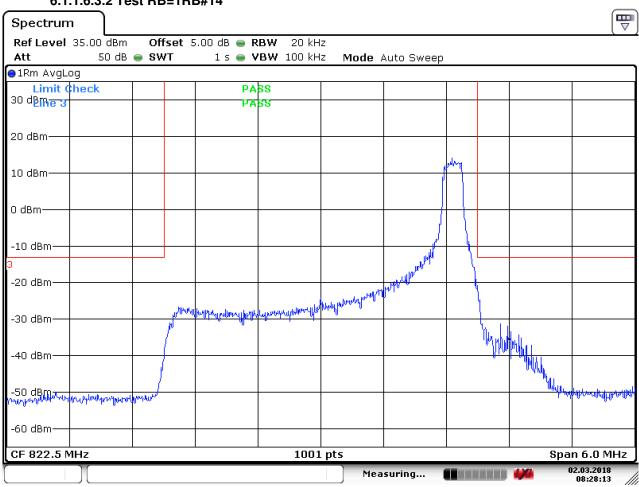
Report No.: SZEM180200138804 Page: 145 of 190


Spectrum	n								
	35.00 dBm		5.00 dB 👄 R						
Att		SWT	1 S 🖶 V	′BW 100 k⊢	IZ Mode /	Auto Sweep			
⊖1Rm AvgLo	-			L _	1	T			
Limit 0 30 d <u>BMe 3</u>	Check		PA PA						
20 dBm									
10 dBm									
0 dBm		/v*	a alban selo same a da parte	algothered have a cale	and a stranger and a	n	rivey -		
-10 dBm—									
3 -20 dBm									
-30 dBm									
∿₩®∕₩₿₩ ^{₩₩₽₩}	ayun yaaykaa wa	www.chub					4	allhablehandrymetaball	a for the state of the state of the
-50 dBm									
-60 dBm									
CF 819.0 M	ı viHz	1	1	1001	L pts	I	I	 Sp:	an 6.0 MHz
()[suring		· · · · · ·	02.03.2018 08:23:33

6.1.1.6.2.3 Test RB=15RB

Date: 2.MAR.2018 08:23:33

Report No.: SZEM180200138804 Page: 146 of 190



6.1.1.6.3 Test Channel = HCH

Date: 2.MAR.2018 08:28:27

Report No.: SZEM180200138804 Page: 147 of 190

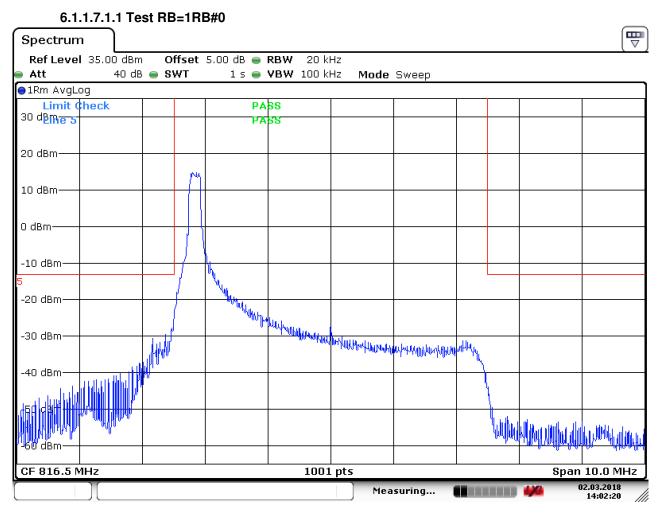
6.1.1.6.3.2 Test RB=1RB#14

Date: 2.MAR.2018 08:28:13

Report No.: SZEM180200138804 Page: 148 of 190

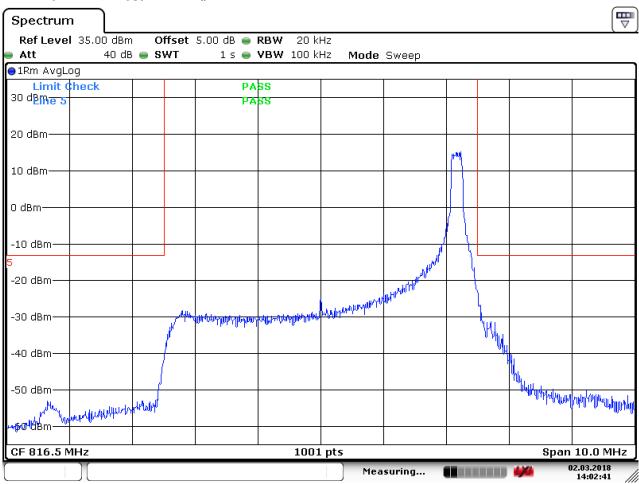
Spectrum	1.0.0.0 TC								
	35.00 dBm		5.00 dB 👄 R						
Att		SWT	1 s 🖷 V	/BW 100 k	Hz Mode	Auto Sweep			
⊖1Rm AvgLo								-	
Limit 0	heck		PA	ss					
30 d <u>BM e 3</u>			PA	ss					
20 dBm									
10 dBm									
0 dBm		bî	www.warpharpharpharpharpharpharpharpharpharph	-	Hallord and all a start and	anation of all appression	twa,y		
-10 dBm		ľ							
2							[
.							1 1		
-20 dBm—		l l) J		
-30 dBm									
		and the					h.ursth	dub	
-49 dBM	arter Walkhab way the	MAN						huntrent opensoon	www.whenter
-50 dBm									
-60 dBm									
CF 822.5 M	1Hz	·		100	1 pts	•		Spa	n 6.0 MHz
					Mea	suring		444 0	12.03.2018 08:28:46

6.1.1.6.3.3 Test RB=15RB


Date: 2.MAR.2018 08:28:47

Report No.: SZEM180200138804 Page: 149 of 190

6.1.1.7 Test Mode = LTE/TM1 5MHz


6.1.1.7.1 Test Channel = LCH

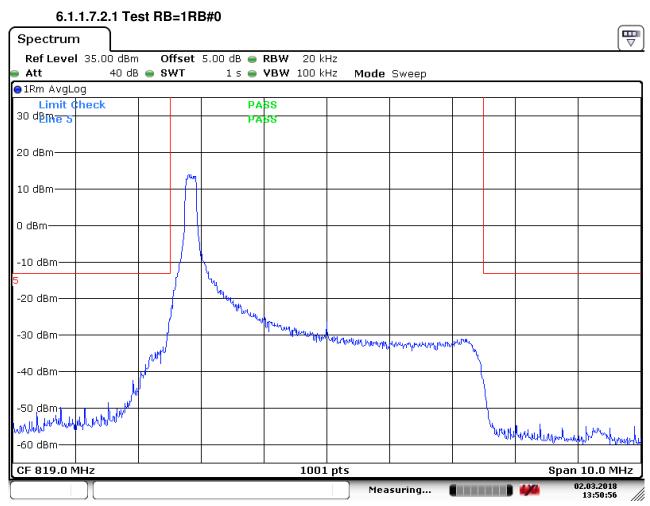
Date: 2.MAR.2018 14:02:21

Report No.: SZEM180200138804 Page: 150 of 190

6.1.1.7.1.2 Test RB=1RB#24

Date: 2.MAR.2018 14:02:41

Report No.: SZEM180200138804 Page: 151 of 190


Spectrum		51 ND=25							
-	35.00 dBm	Offset e SWT	5.00 dB 👄 1 s 👄	RBW 20 k VBW 100 k		Sweep			(•
●1Rm AvgLa)g								
Limit C 30 dB <u>Me 5</u>	heck		PA	SS SS					
20 dBm									
10 dBm									
0 dBm		p.	llo-dub-lipe-diferenced	al subsection of the second	magnagation	ang	Yrum		
-10 dBm—									
5 -20 dBm									
		J J							
-30 dBm 	L. WALLAND MARKA	a flog the all					hhu	unintaninumahartuta	Wikindowa wa wa wa
n-than HBHH	000 00 0								and a microffed
-50 dBm									
-60 dBm									
CF 816.5 M	1Hz		I	100:	1 pts	I	1	Spar	10.0 MHz
][]				Mea	suring		•••	02.03.2018 14:01:55

6.1.1.7.1.3 Test RB=25RB

Date: 2.MAR.2018 14:01:55

Report No.: SZEM180200138804 Page: 152 of 190

6.1.1.7.2 Test Channel = MCH

Date: 2.MAR.2018 13:50:57

Report No.: SZEM180200138804 Page: 153 of 190

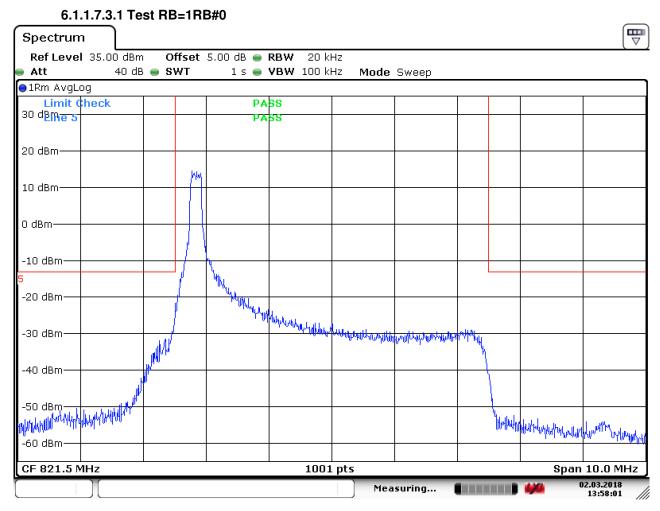
Spectrum	'n								Ē
Ref Level	35.00 dBm	Offset	5.00 dB 😑	RBW 20 k	Hz				(-
🖷 Att	40 dB	🔵 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep			
😑 1Rm AvgLo	og								
Limit C	heck		PA	SS					
30 d <u>Bme 5</u>			РА	ss					
20 dBm									
10 dBm							m		
10 0.0111									
0 dBm									
-10 dBm						ļ j			
5									
-20 dBm						amound the			
-30 dBm		~		and and a second se	-				
-40 dBm							hand		
								Walter	
-50 dBm	wholework	und and						White the share	Marthebrushappeli
-60 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ndhuana.							
CF 819.0 M	1Hz			100:	L pts	<u> </u>	<u> </u>	 Span	10.0 MHz
					Mea	suring		4// 0	2.03.2018 13:56:21 //

6.1.1.7.2.2 Test RB=1RB#24

Date: 2.MAR.2018 13:56:21

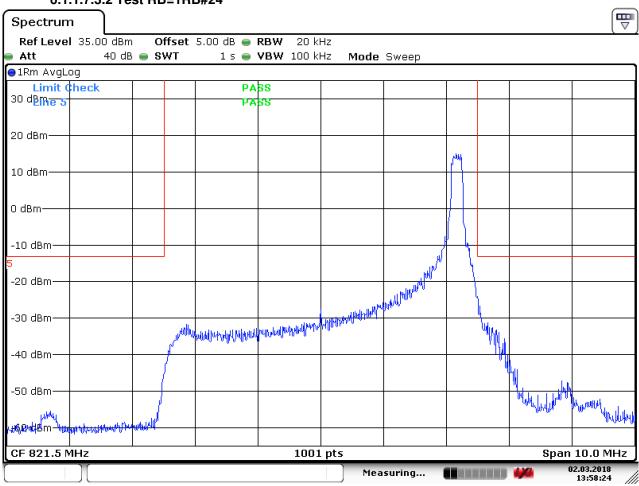
Report No.: SZEM180200138804 Page: 154 of 190

Spectrum											
-	35.00 dBm	Offs	et 5.00 dB	RBW	20 kHz						(v
Att		s 🕳 swi			100 kHz	Mode	Sweep				
∣o1Rm AvgLo	ig										
Limit C	heck			PASS							
30 d <mark>BM e 5</mark>				PASS							
20 dBm											
10 dBm											
0 dBm			provention	workitedutions	huthandular	let and a new p	- www.hanaany	tuny .			
-10 dBm											
5 -20 dBm											
-20 UBIII		ļ						ų			
-30 dBm		<u> </u>									
րուների չարերություն 140 dBm	providentiality	genalou where							multin	arrightanaputo	Muluhadada
-50 dBm											
-60 dBm											
CF 819.0 M	IHz				1001 pt	s				Span	10.0 MHz
][]) Mea	suring			4/4 0	2.03.2018 13:51:33


6.1.1.7.2.3 Test RB=25RB

Date: 2.MAR.2018 13:51:34

Report No.: SZEM180200138804 Page: 155 of 190


6.1.1.7.3 Test Channel = HCH

Date: 2.MAR.2018 13:58:02

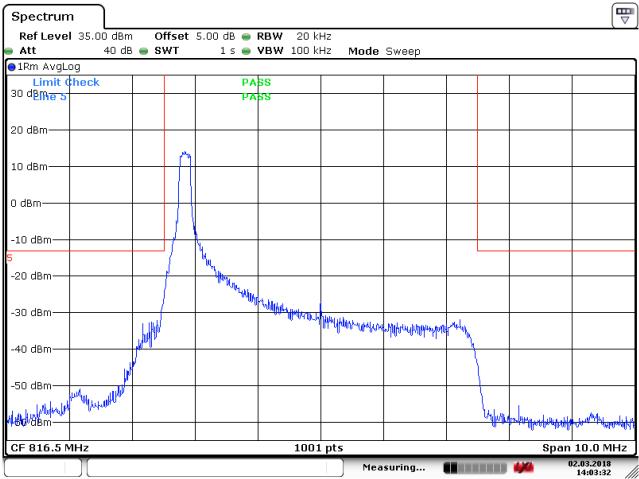
Report No.: SZEM180200138804 Page: 156 of 190

6.1.1.7.3.2 Test RB=1RB#24

Date: 2.MAR.2018 13:58:24

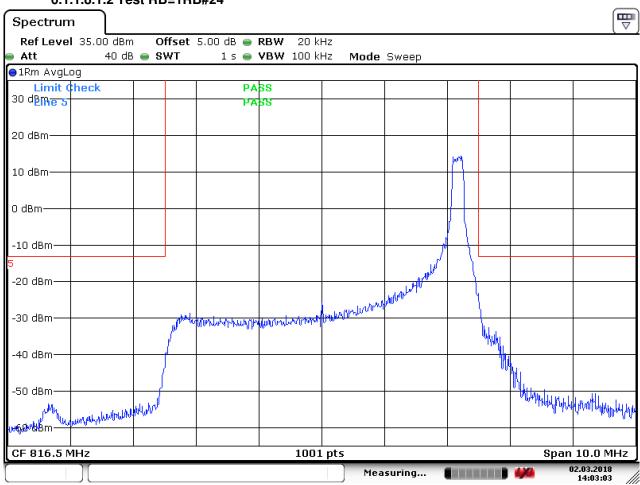
Report No.: SZEM180200138804 Page: 157 of 190

6.1	.1.7.3.3 Te	st RB=25F	RB						_
Spectrum	ι								
Ref Leve	I 35.00 dBm	Offset	5.00 dB 😑	RBW 20 ki	Hz				
🕳 Att		🔵 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep			
😑 1Rm AvgLi									
Limit C	heck		PA						
30 d <mark>BM e 5</mark>			РА	55					
00 ID									
20 dBm									
10 dBm									
						. I	u		
0 dBm——		jh.M	han manager and the state of th	arth productions	halfaceraptics _{berne} single	while and a second			
-10 dBm—									
5									
-20 dBm—									
							ų ų		
-30 dBm		1					landit.		
www.and.comm ^{bull} y	AND MUTURAL PORT	multipul					W HUUAU	u ^h vuyunyiplaujinijina	www.hullhullhh
WHONCIBIN	- (· · · ·								i
-50 dBm									
-60 dBm									
CF 821.5 N	/IHz			1001	pts	· · · · · · · · · · · · · · · · · · ·	ı	Span	10.0 MHz
					Mea	suring		· 🦇	2.03.2018 14:00:07


Date: 2.MAR.2018 14:00:08

Report No.: SZEM180200138804 Page: 158 of 190

6.1.1.8 Test Mode = LTE/TM2 5MHz 6.1.1.8.1 Test Channel = LCH


6.1.1.8.1.1 Test RB=1RB#0

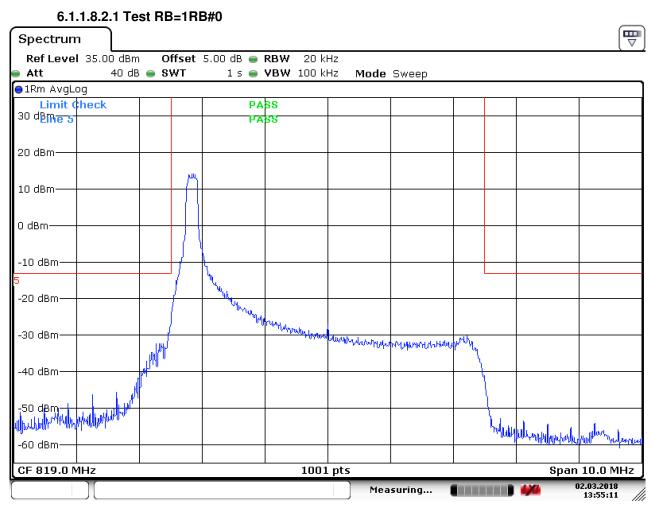
Date: 2.MAR.2018 14:03:32

Report No.: SZEM180200138804 Page: 159 of 190

6.1.1.8.1.2 Test RB=1RB#24

Date: 2.MAR.2018 14:03:02

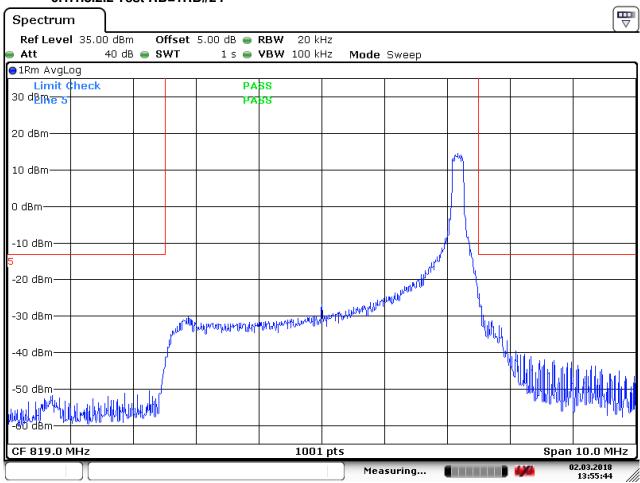
Report No.: SZEM180200138804 Page: 160 of 190


Spectrum	<u>, </u>								
	35.00 dBm		5.00 dB 👄						('
Att		s 🔵 SWT	1 s 👄	VBW 100 k	Hz Mode	Sweep			
🕒 1Rm AvgLo)g								
Limit C 30 d <mark>BM e 5</mark>	heck		PA PA						
20 dBm									
10 dBm									
0 dBm		/m	and allow over an and	hubora huboral address	wether the second	umPalaulana/Madaa/	1 ⁴⁴ N		
-10 dBm									
5									
-20 dBm——		l l							
-30 dBm									
	HUMAN NING LANG	4Water					Munihu	born white the	Laph manage las
-40 dBm	Van								
-50 dBm									
-60 dBm									
CF 816.5 M	IHz			1001	. pts			 Span	10.0 MHz
)[]				Mea	suring		4/4 (2.03.2018 14:03:49 //

6.1.1.8.1.3 Test RB=25RB

Date: 2.MAR.2018 14:03:49

Report No.: SZEM180200138804 Page: 161 of 190



6.1.1.8.2 Test Channel = MCH

Date: 2.MAR.2018 13:55:12

Report No.: SZEM180200138804 Page: 162 of 190

6.1.1.8.2.2 Test RB=1RB#24

Date: 2.MAR.2018 13:55:45

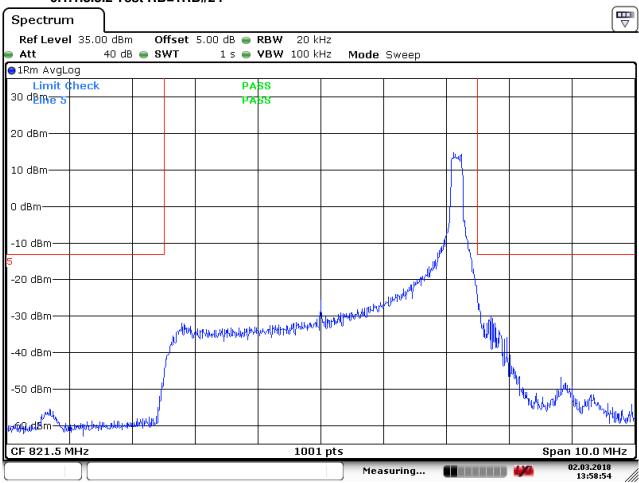
Report No.: SZEM180200138804 Page: 163 of 190

Spectrum	<u> </u>								E
	35.00 dBm		5.00 dB 👄						('
Att 📃	40 dB	SWT 📄	1 s 👄	VBW 100 k	Hz Mode	Sweep			
⊖1Rm AvgLo	g								
Limit C	heck		PA	SS					
30 d <mark>BM e 5</mark>			РА	88					
20 dBm									
10 dBm									
0 dBm		ىلالىر مەللىر	houndertake	here and the second	un and the states of the state	alabar ang tang tang tang tang tang tang tang	nutry		
-10 dBm									
5									
-20 dBm									
-30 dBm—		, A							
upuh bulo dem	algalizzation	haw4mbh ^{al}					Why police	hopenthemoticary	wydy luder lyrta
-50 dBm									
-60 dBm									
CF 819.0 M	IHz	1	1	100	1 pts	I	1	 Span	10.0 MHz
	\mathbf{M}					suring		-	2.03.2018
						is string			13:54:43 //

6.1.1.8.2.3 Test RB=25RB

Date: 2.MAR.2018 13:54:43

Report No.: SZEM180200138804 Page: 164 of 190


6.1.1.8.3.1 Test RB=1RB#0 ₩ Spectrum Offset 5.00 dB 💿 RBW Ref Level 35.00 dBm 20 kHz 40 dB 💿 SWT 1 s 👄 **VBW** 100 kHz Att Mode Sweep ●1Rm AvgLog Limit Check PASS 30 d<mark>BM e 5</mark> PASS 20 dBmμų 10 dBm⁻ 0 dBm· -10 dBm-When the source of the source -20 dBm--30 dBm--40 dBm Appropriate and the second of the second s world by allally and an and be and a second -60 dBm Span 10.0 MHz CF 821.5 MHz 1001 pts 02.03.2018 Measuring... 120 13:59:21

6.1.1.8.3 Test Channel = HCH

Date: 2.MAR.2018 13:59:21

Report No.: SZEM180200138804 Page: 165 of 190

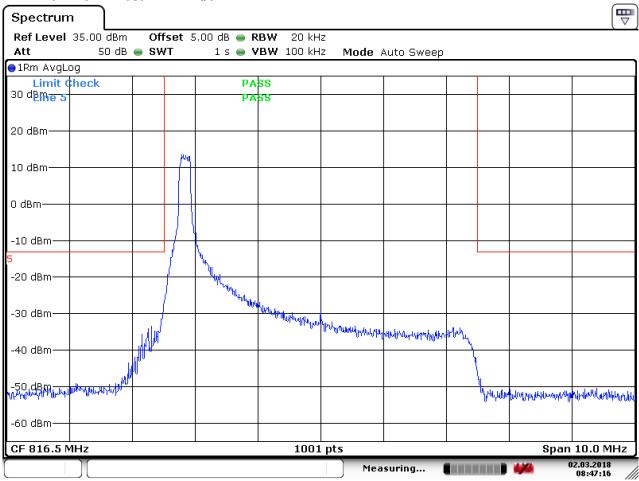
6.1.1.8.3.2 Test RB=1RB#24

Date: 2.MAR.2018 13:58:54

Report No.: SZEM180200138804 Page: 166 of 190

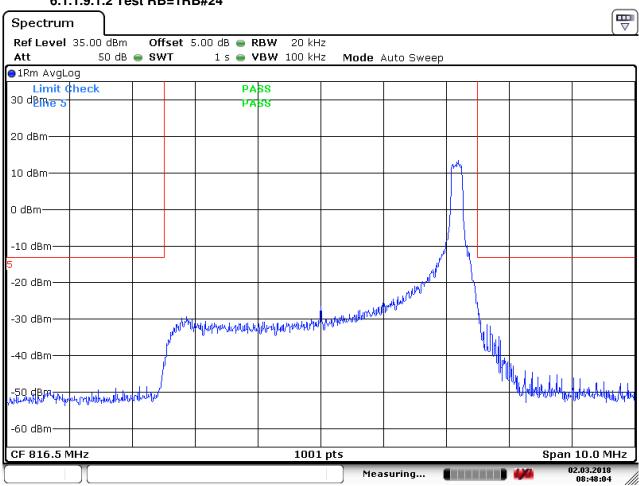
Spectrum	1.0.0.0 10	51110-20								
	35.00 dBm	Offset	: 5.00 dB 👄	RBW 20 k	Hz					(*
🕳 Att	40 dB	e swt		VBW 100 k	Hz Mode	Sweep				
😑 1Rm AvgLo)g									
Limit C 30 dBM e 5	heck			88 88						
20 dBm										
10 dBm										
0 dBm		pr.	w man who have	harlylingunation	4 74.and brangeroor	the water	elmi-			
-10 dBm——										
5 -20 dBm										
-30 dBm										
u-49.dBmood	orphic opyethy	ulou-Job						Month	umperhapping	-
-50 dBm										
-60 dBm										
CF 821.5 M	IHz	·		100	1 pts				Span	10.0 MHz
					Mea	suring			4/4 0	2.03.2018 13:59:45

6.1.1.8.3.3 Test RB=25RB


Date: 2.MAR.2018 13:59:45

Report No.: SZEM180200138804 Page: 167 of 190

6.1.1.9 Test Mode = LTE/TM3 5MHz 6.1.1.9.1 Test Channel = LCH


6.1.1.9.1.1 Test RB=1RB#0

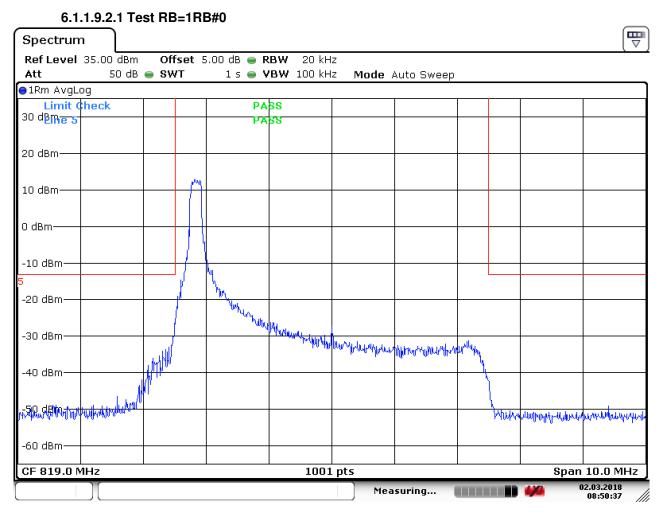
Date: 2.MAR.2018 08:47:16

Report No.: SZEM180200138804 Page: 168 of 190

6.1.1.9.1.2 Test RB=1RB#24

Date: 2.MAR.2018 08:48:05

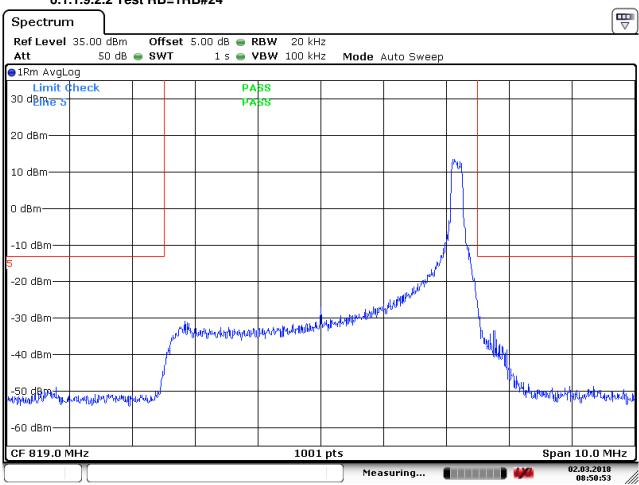
Report No.: SZEM180200138804 Page: 169 of 190


Spectrum	יין <u>ווא</u> וויי		-201										
Ref Level Att	35.00 dBm	Offs SWT		5.00 dB	e RB'		D kHz	Mada	Auto Sweep				
●1Rm AvgLo		- 3WI		15	•••	99 IU		moue	Auto Sweet	,			
		<u> </u>		1	PASS								
30 dBM e 5	HECK				PASS						_		
20 dBm													
10 dBm													
0 dBm			N	hjuhquillitikay	religiolder	htter	darsporter	Плиничини	www.www.www.	thereby	_		
-10 dBm—			_							<u> </u>			
5]											
-20 dBm—			/										
-30 dBm——											$\left\{ - \right\}$		
40 d0m		doubralled									Material	Millalana a	
-40 dBm-	h ^m hillelenn also											understader officialization	ՠՠՠֈՠՠֈՠՠֈ
-50 dBm													
-60 dBm													
CF 816.5 M	1Hz					1	.001 pt	ts				 Span	10.0 MHz
								Mea	asuring			444	02.03.2018 08:48:25

6.1.1.9.1.3 Test RB=25RB

Date: 2.MAR.2018 08:48:25

Report No.: SZEM180200138804 Page: 170 of 190



6.1.1.9.2 Test Channel = MCH

Date: 2.MAR.2018 08:50:37

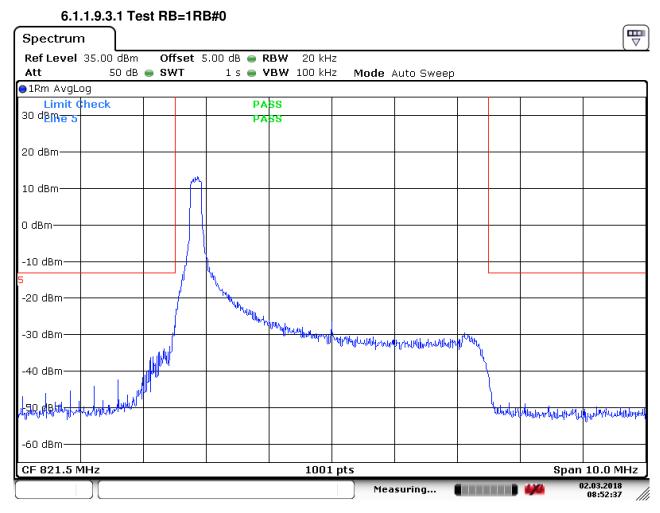
Report No.: SZEM180200138804 Page: 171 of 190

6.1.1.9.2.2 Test RB=1RB#24

Date: 2.MAR.2018 08:50:53

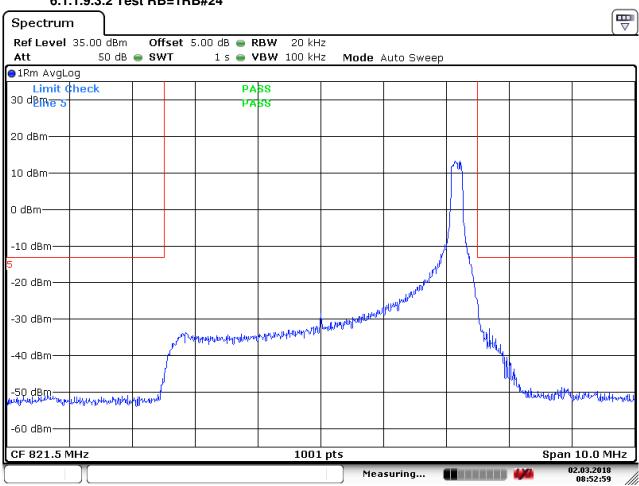
Report No.: SZEM180200138804 Page: 172 of 190

Spectrum	ī												
Ref Level				5.00 dB									
Att	50 dB	⊜ SV	₩Т	1 s	e VBW	/ 100 k	Hz Mod	e Auto) Sweep				
●1Rm AvgLog													
Limit 0	heck				PASS								
30 dB <mark>Me 5</mark>					PASS								
20 dBm													
10 dBm													
0 dBm			pypely	nth Andred	nother the top of the	ymanhhum	whileworth	types and	yhphalpha	nuluy			
-10 dBm—											_		
5			-										
-20 dBm—										\square			
-30 dBm											\		
N4Q1dBhalloud	matura	al when	¢								hubble	have when the fort of the	
Audelinene ladaga ma	0 · · · ·											ւ ։ Հայության թվ	Ուծոնու ու ծեպիքերե
-50 dBm													
-60 dBm													
CF 819.0 MHz 1001 pts Span 10.0 MHz													
Measuring 02.03.2018													


6.1.1.9.2.3 Test RB=25RB

Date: 2.MAR.2018 08:51:08

Report No.: SZEM180200138804 Page: 173 of 190


6.1.1.9.3 Test Channel = HCH

Date: 2.MAR.2018 08:52:38

Report No.: SZEM180200138804 Page: 174 of 190

6.1.1.9.3.2 Test RB=1RB#24

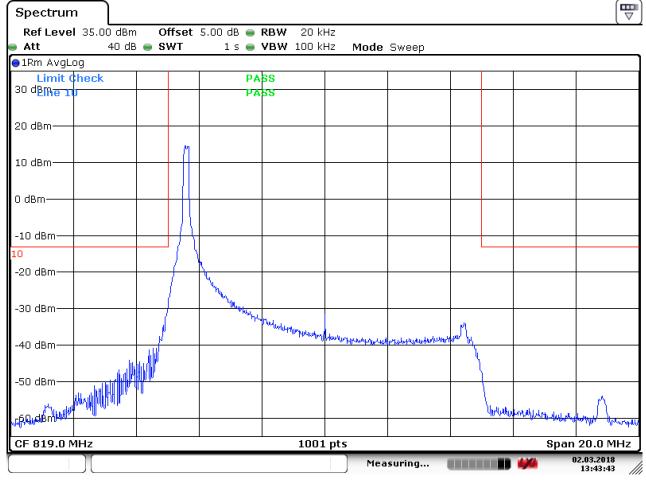
Date: 2.MAR.2018 08:52:59

Report No.: SZEM180200138804 Page: 175 of 190

Spectrum	ī											E
Ref Level	35.00 dBm	Offs	et 5	.00 dB (RBW	20 kH	z					(-
Att	50 dB	SWT	•	1 s (VBW	100 kH	z Mode .	Auto Sweep				
😑 1Rm AvgLa	og											
Limit C	heck				PASS							
30 dB <mark>Me 5</mark>					PASS							
20 dBm												
10 dBm												
0 dBm			طالمان	Marina Marina	ML MPLANLAUM		y M. A. Mahamata	phylopenallynamorrad	Hurry			
-10 dBm							•					
5 -20 dBm												
			1						4	l		
-30 dBm—		1								hider .	1	
-40 dBm	ann ar an ann an an ann an an an an an an an a	hyselblyeedt								W WWW	ĸſŧŀſŧŗĸſŧſŧſŧſŧĬ ^ŗ Ľŀø	hterestower and the state
-50 dBm												
-60 dBm												
CF 821.5 M	1Hz					1001	. pts				Span	10.0 MHz
							Mea	suring			4/4	2.03.2018 08:53:17

6.1.1.9.3.3 Test RB=25RB

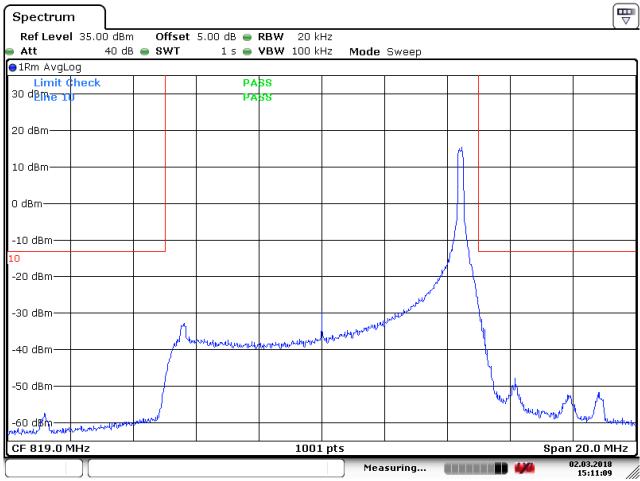
Date: 2.MAR.2018 08:53:17



Report No.: SZEM180200138804 Page: 176 of 190

6.1.1.10 Test Mode = LTE/TM1 10MHz

6.1.1.10.1 Test Channel = LCH/ MCH/HCH


6.1.1.10.1.1 Test RB=1RB#0

Date: 2.MAR.2018 13:43:44

Report No.: SZEM180200138804 Page: 177 of 190

6.1.1.10.1.2 Test RB=1RB#49

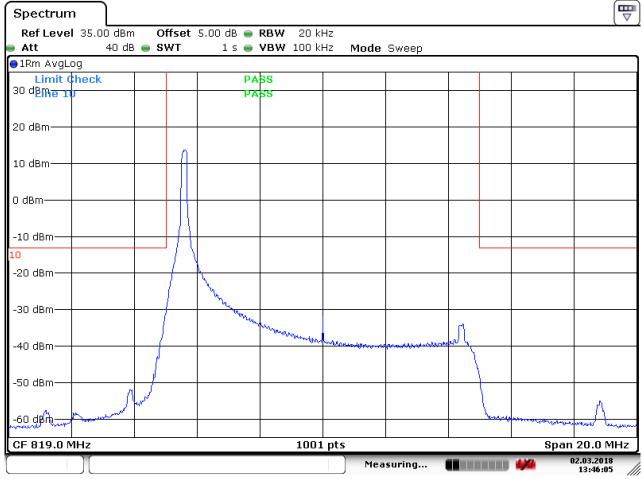
Date: 2.MAR.2018 15:11:09

Report No.: SZEM180200138804 Page: 178 of 190

Spectrum							
		5.00 dB 👄 RBW					
	40 dB 🖷 SWT	1 s 👄 VBW	100 kHz Mo	de Sweep			
1Rm AvgLog							
Limit Check		PASS					
30 dB <mark>Me 10</mark>		PASS					
20 dBm							
10 dBm							
) dBm	r	Sugar and a sugar and	and a second and the second	Maren and an and a second	rming		
-10 dBm							
0							
-20 dBm							
-30 dBm							
-40 dBm	wanted and a strange day				Line	whether and the state of the st	Marthan martal and a start
-40 UBIII							
-50 dBm							
-60 dBm				_		_	
CF 819.0 MHz			1001 pts			Sp	an 20.0 MH
				1easuring		4444	02.03.2018 13:42:26

6.1.1.10.1.3 Test RB=50RB

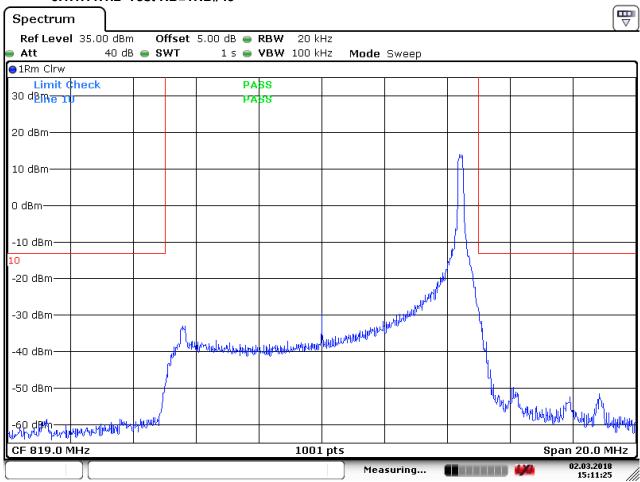
Date: 2.MAR.2018 13:42:27



Report No.: SZEM180200138804 Page: 179 of 190

6.1.1.11 Test Mode = LTE/TM2 10MHz

6.1.1.11.1 Test Channel = LCH/ MCH/HCH


6.1.1.11.1.1 Test RB=1RB#0

Date: 2.MAR.2018 13:46:06

Report No.: SZEM180200138804 Page: 180 of 190

6.1.1.11.1.2 Test RB=1RB#49

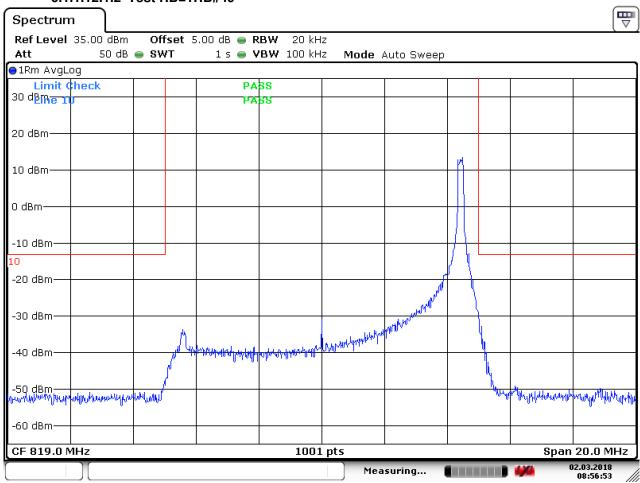
Date: 2.MAR.2018 15:11:25

Report No.: SZEM180200138804 Page: 181 of 190

Ref Level 35.00 dB Offset 5.00 dB RBW 20 kHz Att 40 dB SWT 1 s VBW 100 kHz Mode Sweep Imm AvgLog Imm AvgLog PASS Imm AvgLog Imm AvgLog 20 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog 10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog 20 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog 10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog 10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog 10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog -10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog -10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog -10 dBm Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog Imm AvgLog	
IRm AvgLog Limit check PASS 30 dBm PASS 20 dBm PASS 10 dBm PASS 10 dBm PASS 10 dBm PASS 10 dBm PASS	
Limit Check PASS Image: Check state sta	
20 dBm Image: state	
10 dBm Image: Constraint of the state	
0 dBm	
-10 dBm	
-10 dBm	
-30 dBm	
-40 dBm40 dBm	14th Marine
-40 dBm -40 dBm -40 dBm	
-60 dBm	
CF 819.0 MHz 1001 pts Span 20	.0 MHz

6.1.1.11.1.3 Test RB=50RB

Date: 2.MAR.2018 13:47:27


Report No.: SZEM180200138804 Page: 182 of 190

6.1.1.12 Test Mode = LTE/TM3 10MHz 6.1.1.12.1 Test Channel = LCH/ MCH/HCH 6.1.1.12.1.1 Test RB=1RB#0 ₩ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 🔵 RBW 20 kHz Att 50 dB 👄 SWT 1 s 👄 **VBW** 100 kHz Mode Auto Sweep ●1Rm AvgLog Limit Check PASS 30 d<mark>BM e 1</mark> PASS 20 dBm-10 dBm-0 dBm--10 dBm-10 -20 dBm[.] Under the second of the second -30 dBm--40 dBm--50 dBm Hundertragerflebenken, punkley ber freder hal and an and a state of the second and the second an -60 dBm-CF 819.0 MHz 1001 pts Span 20.0 MHz 02.03.2018 Measuring... 08:56:39

Date: 2.MAR.2018 08:56:39

Report No.: SZEM180200138804 Page: 183 of 190

6.1.1.12.1.2 Test RB=1RB#49

Date: 2.MAR.2018 08:56:54

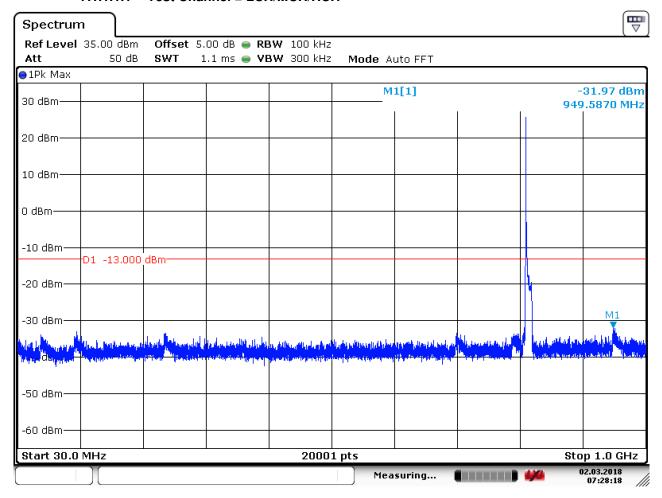
Report No.: SZEM180200138804 Page: 184 of 190

∀ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 🔵 RBW 20 kHz Att 50 dB 🔵 SWT 1 s 🔵 **VBW** 100 kHz Mode Auto Sweep ●1Rm AvgLog Limit Check PASS 30 dBme 10 PASS 20 dBm-10 dBm-0 dBm· Monther more filled a water march the property part of an far has been a far the far and the far the far a far the far a far the far a far -10 dBmιO -20 dBm--30 dBm--storation luging when the backforente graph law of tray way -60 dBm-Span 20.0 MHz CF 819.0 MHz 1001 pts 02.03.2018 120 Measuring... 08:57:12

6.1.1.12.1.3 Test RB=50RB

Date: 2.MAR.2018 08:57:11

Report No.: SZEM180200138804 Page: 185 of 190


7 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

Part I - Test Plots

7.1 For LTE

7.1.1.1 Test Mode = LTE / TM1 10MHz RB1#0 7.1.1.1.1 Test Channel = LCH/MCH/HCH

Date: 2.MAR.2018 07:28:18

Report No.: SZEM180200138804 Page: 186 of 190

Spectrur	n]								
Ref Leve Att	el 25.00 dBr 30 dl		5.00 dB 👄 F 27 ms 👄 V	RBW 1 MHz /BW 3 MHz	Mode at	ito Sweep			
● 1Pk Max					noue ne				
20 dBm					M	1[1]	1		37.36 dBm 28840 GHz
10 dBm									
0 dBm									
-10 dBm—	-D1 -13.000)_dBm							
-20 dBm—									
-30 dBm									
-40 dBm —				ada da katalan a katalan katala			and and all should be addressed by	and the first state of the stat	مريا ال <mark>معرجين فالمعالمات.</mark>
⊶so aBm—	dala dala dala da ang da dan 19 ang pendukan ng manang sa terseti 1		ng ang ang ang ang ang ang ang ang ang a	and and a second se			the part of the formation		Destingung formannt
-60 dBm—									
-70 dBm—									
Start 1.0	GHz			2000	1 pts	I	I	Stop	10.0 GHz
) Mea	suring		4/4	02.03.2018 06:17:35 //

Date: 2.MAR.2018 06:17:35

Report No.: SZEM180200138804 Page: 187 of 190

8 Field Strength of Spurious Radiation

8.1 For LTE

8.1.1 Test Band = LTE band26

Diversity antenna

8.1.1.1 Test Mode =LTE/TM1 10MHz RB1#0

8.1.1.1.1	8.1.1.1.1 Test Channel = LCH/MCH/HCH											
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization								
40.173333	-78.04	-13.00	65.04	Vertical								
72.606667	-73.59	-13.00	60.59	Vertical								
1103.000000	-66.36	-13.00	53.36	Vertical								
2608.000000	-58.15	-13.00	45.15	Vertical								
4211.432500	-67.13	-13.00	54.13	Vertical								
9265.837500	-64.02	-13.00	51.02	Vertical								
62.946667	-77.05	-13.00	64.05	Horizontal								
74.006667	-80.04	-13.00	67.04	Horizontal								
620.912500	-78.77	-13.00	65.77	Horizontal								
1673.500000	-65.05	-13.00	52.05	Horizontal								
3955.012500	-68.35	-13.00	55.35	Horizontal								
7917.412500	-63.99	-13.00	50.99	Horizontal								

Report No.: SZEM180200138804 188 of 190 Page:

Main antenna

8.1.1.2 Test Mode =LTE/TM1 10MHz RB1#0

8.1.1.2.1 Test Channel = LCH/MCH/HCH Over Limit (dB) Frequency (MHz) Level (dBm) Limit Line (dBm) Polarization Vertical 69.526667 -82.05 -13.00 69.05 Vertical <u>621.</u>508333 67.47 -80.47 -13.00 Vertical 1630.500000 -64.27 -13.00 51.27 Vertical 2710.000000 -57.47 -13.00 44.47 Vertical 4461.037500 -67.43 -13.00 54.43 Vertical 7235.400000 -64.62 -13.00 51.62 Horizontal 56.553333 -77.93 64.93 -13.00 Horizontal 171.633333 -84.66 -13.00 71.66 Horizontal 1103.000000 -66.44 -13.00 53.44 Horizontal 4298.212500 -66.47 -13.00 53.47 Horizontal 6551.925000 -64.19 -13.00 51.19 Horizontal 9220.500000 -63.28 -13.00 50.28 NOTE:

1) All modes are tested, but the data presented above is the worst case the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: SZEM180200138804 Page: 189 of 190

9 Frequency Stability

9.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
		LCH/MCH/HCH		VL	-2.65	-0.00323	PASS
	LTE/TM1 10MHz		ΤN	VN	1.41	0.00181	PASS
			-	VH	-5.22	-0.00624	PASS
	LTE/TM2 10MHz	LCH/MCH/HCH	TN	VL	-4.32	-0.00517	PASS
LTE band26				VN	-3.34	-0.00404	PASS
Sandio				VH	-4.12	-0.00495	PASS
				VL	4.03	0.00482	PASS
	LTE/TM3 10MHz	LCH/MCH/HCH	ΤN	VN	5.02	0.00603	PASS
				VH	-0.53	-0.00067	PASS

9.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
		LCH/MCH/HCH		-30	-4.38	-0.005284	PASS
	LTE/TM1 10MHz		VN	-20	-2.61	-0.003132	PASS
				-10	-2.48	-0.00287	PASS
				0	1.23	0.00148	PASS
LTE band26				10	1.21	0.00144	PASS
ballazo				20	3.91	0.00470	PASS
				30	-0.66	-0.00077	PASS
				40	-2.78	-0.00337	PASS
				50	-6.21	-0.00747	PASS

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-3.65	-0.00439	PASS
	LTE/TM2 10MHz	LCH/MCH/HCH		-20	-2.46	-0.00296	PASS
			VN	-10	1.27	0.00153	PASS
				0	2.24	0.00268	PASS
LTE band26				10	1.78	0.00211	PASS
ballazo				20	-0.84	-0.00098	PASS
				30	-3.86	-0.00463	PASS
				40	2.27	0.00272	PASS
				50	-4.83	-0.00580	PASS

Report No.: SZEM180200138804 Page: 190 of 190

					ye. i	30 01 130	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-3.67	-0.00441	PASS
	LTE/TM3 10MHz	LCH/MCH/HCH	VN	-20	-2.44	-0.00293	PASS
				-10	1.89	0.00227	PASS
				0	2.35	0.00283	PASS
LTE band26				10	1.78	0.00214	PASS
ballazo				20	-0.89	-0.00107	PASS
				30	-3.83	-0.00461	PASS
				40	2.45	0.00295	PASS
				50	-4.38	-0.00527	PASS

The End