

FCC SAR Compliance Test Report

Project Name : cdma2000 Digital Mobile Phone

Model : HUAWEI C8512/ C8512

FCC ID : QISC8512

Report No. : SYBH(Z-SAR)009082011-2

	APPROVED	CHECKED	PREPARED
BY	<i>LiuChunlin</i>	<i>Alainway</i>	<i>LuChaogon</i>
DATE	2011-09-14	2011-09-14	2011-09-14

The test results of this test report relate exclusively to the item(s) tested , The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Table of Contents

1	General Information	4
1.1	Statement of Compliance.....	4
1.2	RF exposure limits.....	4
1.3	EUT Description.....	5
1.3.1	General Description.....	6
1.4	Test specification(s)	7
1.5	Testing laboratory.....	7
1.6	Applicant and Manufacturer.....	7
1.7	Application details	7
1.8	Ambient Condition.....	7
2	SAR Measurement System.....	8
2.1	SAR Measurement Set-up.....	8
2.2	Test environment.....	9
2.3	Data Acquisition Electronics description.....	9
2.4	Probe description.....	10
2.5	Phantom description	11
2.6	Device holder description.....	11
2.7	Test Equipment List	12
3	SAR Measurement Procedure.....	13
3.1	Scanning procedure.....	13
3.2	Spatial Peak SAR Evaluation	14
3.3	Data Storage and Evaluation.....	15
4	System Verification Procedure.....	17
4.1	Tissue Verification	17
4.2	System Check.....	19
4.3	Validation Procedure.....	19
5	Measurement Uncertainty Evaluation.....	20
5.1	Measurement uncertainty evaluation for SAR test.....	20
5.2	Measurement uncertainty evaluation for system validation	21
6	SAR Test Configuration	22
6.1	CDMA Test Configuration	22
6.1.1	CDMA 1x Devices	22
6.1.2	CDMA Ev-Do Devices	23
6.2	WiFi Test Configuration	23
7	SAR Measurement Results	24
7.1	Conducted power measurements.....	24
7.1.1	Conducted power measurements CDMA 800 MHz.....	24
7.2	SAR measurement Result.....	24
7.2.1	SAR measurement Result of CDMA 800	24
7.2.2	SAR measurement Result of WiFi.....	26
7.3	Multiple Transmitter Evaluation	27
	Appendix A. System Check Plots	29
	Appendix B. SAR Measurement Plots	29
	Appendix C. Calibration Certificate	29
	Appendix D. Photo documentation.....	29

HUAWEI

Report No.: SYBH(Z-SAR)009082011-2

FCC ID:QISC8512

※ ※ **Modified History** ※ ※

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev. 1.0	Initial Test Report Release	2011-09-14	Lu Chaogan

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for HUAWEI C8512 are as below Table 1.

Band	Position	Test Mode	Measured MAX SAR _{1g} (W/kg)	MAX Conducted Power (dBm)	Turn-up Power (dBm)	Extrapolated Result (W/kg)
CDMA 800	Head	RC3 SO55	0.928	24.73	25.20	1.034
	Body(10mm)	RC3 SO32	1.21	24.77	25.20	1.380
	Hotspot(10mm)	RC3 SO32	1.21	24.77	25.20	1.380
WiFi	Head	802.11 b	0.137	/	/	/
	Body(10mm)	802.11 b	0.112	/	/	/
	Hotspot(10mm)	802.11 b	0.112	/	/	/

Table 1: Summary of test result

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement.

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

1.3 EUT Description

Device Information:			
DUT Name:	cdma2000 Digital Mobile Phone		
Type Identification:	HUAWEI C8512/ C8512		
FCC ID :	QISC8512		
MEID No:	A000002E4D03E0		
Device Type :	portable device		
Exposure Category:	uncontrolled environment / general population		
Hardware Version :	HC1C851M		
Software Version :	C8512V100R001C179B623		
Antenna Type :	Integrated		
Battery Options :	Huawei Technologies Co., Ltd. Rechargeable Li-ion Battery Model: HB4J1 ; Rated capacity: 1050mAh Nominal Voltage: --- +3.7V; Charging Voltage: --- +4.2V S/N: GAGA807XC3259045 S/N: BAAB408XJ1426823		
Others Accessories	Headset		
Device Operating Configurations:			
Supporting Mode(s)	CDMA 800,WiFi (Tested) ; Bluetooth,		
Test Modulation	QPSK		
Device Class	B		
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)
	CDMA 800	824.7 ~848.31	869.7 ~893.31
Power Class :	Tested with power control all up bits(CDMA800)		
Test Channels (low-mid-high) :	1013-384-777 (CDMA 800)		

Table 3: Device information and operating configuration

1.3.1 General Description

cdma2000 Digital Mobile Phone-HUAWEI C8512/ C8512 is subscriber equipment in the CDMA/EVDO system. The frequency band is US Cellular The band test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, CDMA2000 1x and 1XEV-DO protocol processing, voice, MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port(to provide voice service). It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices

HUAWEI C8512/C8512 is a cdma2000 Digital Mobile Phone mobile phone with Bluetooth, which supports CDMA 1x EVDO Mobile Phone with Bluetooth.

The difference between HUAWEI C8511/C8511 and HUAWEI C8512/C8512 is showed in the following table.

	HUAWEI C8511/C8511	HUAWEI C8512/C8512
CDMA 1X&EVDO CELL	the same	the same
FLASH	the same	the same
PCB	the same	the same
Appearance	the same	the same
Bluetooth mode	the same	the same
WLAN mode	the same	the same
BT/ WLAN antenna	the same	the same
External camera	the same	the same
USIM card	support	No
Adapter	the same	the same
Battery	the same	the same

1.4 Test specification(s)

IEEE Std C95.1 – 1999	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
OET Bulletin No. 65, Supplement C– 2001	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields---Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions
Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010)
KDB941225 D01	SAR test for 3G devices v02 ,Published on Nov 13 2009
KDB941225 D06	Hot Spot SAR v01
KDB648474 D01	SAR Handsets Multi Xmter and Ant v01r05

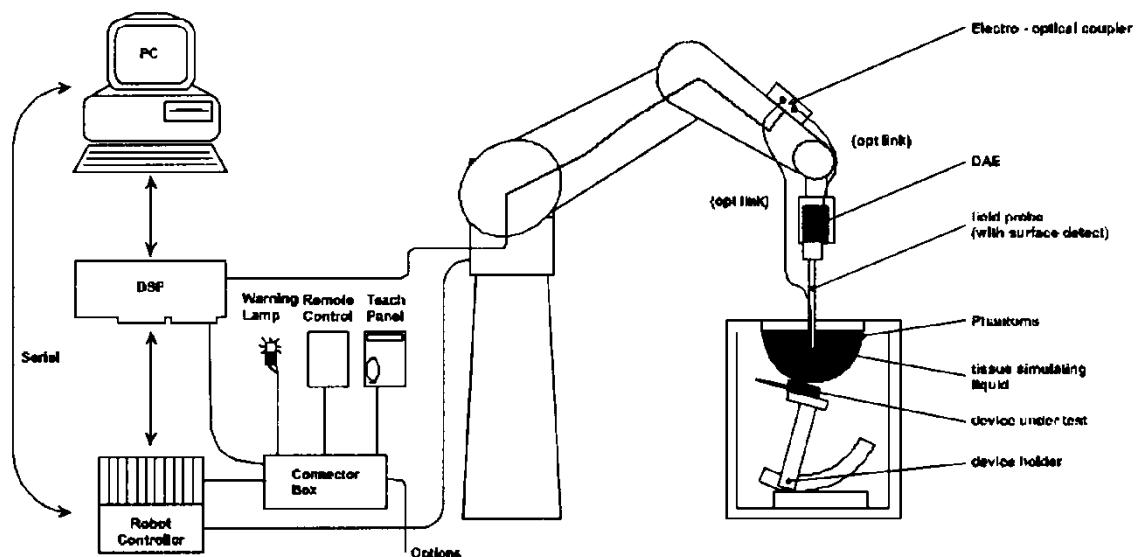
1.5 Testing laboratory

Test Site	Reliability Laboratory of Huawei Technologies Co., Ltd.
Test Location	Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China
Telephone	+86-755-28785513
Fax	+86-755-36834474
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number: L0310

1.6 Applicant and Manufacturer

Company Name	HUAWEI TECHNOLOGIES CO., LTD
Address	Huawei Base, Bantian, Longgang District, Shenzhen, P.R.China

1.7 Application details


Start Date of test	2011-09-02
End Date of test	2011-09-09

1.8 Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
 - A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
 - A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
 - A unit to operate the optical surface detector which is connected to the EOC.
 - The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
 - The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
 - DASY5 software and SEMCAD data evaluation software.
 - Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
 - The generic twin phantom enabling the testing of left-hand and right-hand usage.
 - The device holder for handheld mobile phones.
 - Tissue simulating liquid mixed according to the given recipes.
 - System validation dipoles allowing to validate the proper functioning of the system.

2.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: 5 x 2.5 x 3 m³, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

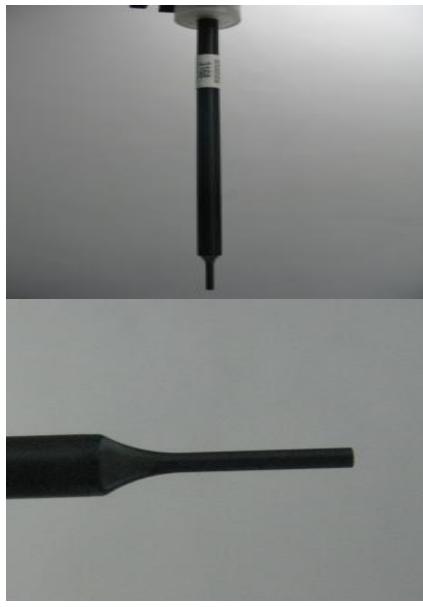
Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.


DAE4

Input Impedance	200MOhm	
The Inputs	symmetrical and floating	
Common mode rejection	above 80 dB	

2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (± 2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Calibration	ISO/IEC 17025 calibration service available.	
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones	

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycoether)	
Calibration	In air from 10 MHz to 2.5 GHz In head tissue simulating liquid (HSL) at 900 (800-1000) MHz and 1.8 GHz (1700-1910 MHz) (accuracy $\pm 11\%$; k=2) Calibration for other liquids and frequencies upon request	
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)	
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Optical Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces (EX3DV4 only)	
Dimensions	Overall length: 337 mm Tip length: 9 mm Body diameter: 10 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: 1.0 mm	
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (EX3DV4)	

2.5 Phantom description

SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	
The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.		

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm	
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Flat phantom	
The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.		

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment
Devices used during the test described are marked

	Manufacturer	Device	Type	Serial number	Date of last calibration)*
<input type="checkbox"/>	SPEAG	Dosimetric E-Field Probe	ES3DV3	3168	2010-12-23
<input checked="" type="checkbox"/>	SPEAG	Dosimetric E-Field Probe	EX3DV4	3753	2010-12-13
<input type="checkbox"/>	SPEAG	Dosimetric E-Field Probe	ES3DV4	3254	2011-03-11
<input type="checkbox"/>	SPEAG	835 MHz Validation Dipole	D835V2	4d095	2011-02-23
<input checked="" type="checkbox"/>	SPEAG	900 MHz Validation Dipole	D900V2	1d112	2011-03-09
<input type="checkbox"/>	SPEAG	1800 MHz Validation Dipole	D1800V2	2d184	2011-03-08
<input type="checkbox"/>	SPEAG	1900 MHz Validation Dipole	D1900V2	5d018	2011-06-16
<input type="checkbox"/>	SPEAG	2000 MHz Validation Dipole	D2000V2	1036	2011-02-23
<input type="checkbox"/>	SPEAG	2300 MHz Validation Dipole	D2300V2	1016	2011-04-13
<input checked="" type="checkbox"/>	SPEAG	2450 MHz Validation Dipole	D2450V2	860	2011-03-08
<input type="checkbox"/>	SPEAG	2600 MHz Validation Dipole	D2600V2	1021	2011-04-13
<input type="checkbox"/>	SPEAG	Data acquisition electronics	DAE4	851	2010-06-30
<input checked="" type="checkbox"/>	SPEAG	Data acquisition electronics	DAE4	1235	2010-10-22
<input type="checkbox"/>	SPEAG	Data acquisition electronics	DAE4	1236	2010-10-26
<input checked="" type="checkbox"/>	SPEAG	Software	DASY 5	N/A	N/A
<input checked="" type="checkbox"/>	SPEAG	Twin Phantom	SAM1	TP-1475	N/A
<input checked="" type="checkbox"/>	SPEAG	Twin Phantom	SAM2	TP-1474	N/A
<input type="checkbox"/>	SPEAG	Twin Phantom	SAM3	TP-1597	N/A
<input type="checkbox"/>	SPEAG	Twin Phantom	SAM4	TP-1620	N/A
<input type="checkbox"/>	SPEAG	Flat Phantom	ELI 4.0	TP-1038	N/A
<input type="checkbox"/>	SPEAG	Flat Phantom	ELI 4.0	TP-1111	N/A
<input type="checkbox"/>	R & S	Universal Radio Communication Tester	CMU 200	111379	2011-08-06
<input checked="" type="checkbox"/>	R & S	Universal Radio Communication Tester	CMU 200	113989	2011-06-02
<input checked="" type="checkbox"/>	Agilent)*	Network Analyser	E5071B	MY42404956	2011-02-22
<input checked="" type="checkbox"/>	Agilent	Dielectric Probe Kit	85070E	2484	N/A
<input checked="" type="checkbox"/>	Agilent	Signal Generator	N5181A	MY47420989	2011-02-22
<input checked="" type="checkbox"/>	MINI-CIRCUITS	Amplifier	ZHL-42W	QA0746001	N/A
<input checked="" type="checkbox"/>	Agilent	Power Meter	E4417A	MY45101339	2011-02-22
<input checked="" type="checkbox"/>	Agilent	Power Meter Sensor	E9321A	MY44420359	2011-02-22

Note: The calibration interval of validation dipoles is 3 years.

- 1) Per KDB 450824 D02 requirements for dipole calibration, Huawei SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval.
 - a) There is no physical damage on the dipole;
 - b) System validation with specific dipole is within 10% of calibrated value;
 - c) Return-loss is within 10% of calibrated measurement;
 - d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.
- 3) 900 MHz probe/dipole calibration is valid +/-100 MHz and fully covers the 800 MHz band

3 SAR Measurement Procedure

3.1 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The „reference“ and „drift“ measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $+/- 5\%$.
- The „surface check“ measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- The „area scan“ measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A „7x7x7 zoom scan“ measures the field in a volume around the 2D peak SAR value acquired in the previous „coarse“ scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can – depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

3.2 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $7 \times 7 \times 7$ points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points ($20 \times 20 \times 20$) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

3.3 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i ($i = x, y, z$)
 U_i = input signal of channel i ($i = x, y, z$)
cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i $(i = x, y, z)$
 $Norm_i$ = sensor sensitivity of channel i $(i = x, y, z)$
[mV/(V/m)²] for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²
 E_{tot} = total electric field strength in V/m
 H_{tot} = total magnetic field strength in A/m

4 System Verification Procedure

4.1 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients (% of weight)		Head Tissue				
Frequency Band (MHz)	450	835	900	1800	1950	2450
Water	38.56	41.45	40.92	52.64	55.242	62.7
Salt (NaCl)	3.95	1.45	1.48	0.36	0.306	0.5
Sugar	56.32	56.0	56.5	0.0	0.0	0.0
HEC	0.98	1.0	1.0	0.0	0.0	0.0
Bactericide	0.19	0.1	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	47.0	44.542	36.8
Ingredients (% of weight)		Body Tissue				
Frequency Band (MHz)	450	835	900	1800	1950	2450
Water	51.16	52.4	56.0	69.91	69.91	73.2
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04
Sugar	46.78	45.0	41.76	0.0	0.0	0.0
HEC	0.52	1.0	1.21	0.0	0.0	0.0
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	29.96	29.96	26.7

Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, $16\text{M}\Omega\text{-}$ resistivity
HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]
Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Used Target Frequency	Target Tissue		Measured Tissue		Liquid Temp.	Test Date
	ϵ_r (+/-5%)	σ (S/m) (+/-5%)	ϵ_r	σ (S/m)		
825MHz Head	41.6 (39.52~43.68)	0.90 (0.86~0.95)	40.68	0.874	21.4°C	2011-09-09
835MHz Head	41.5 (39.43~43.58)	0.90 (0.86~0.95)	40.58	0.867	21.4°C	2011-09-09
850MHz Head	41.5 (39.43~43.58)	0.92 (0.87~0.96)	40.33	0.891	21.4°C	2011-09-09
900MHz Head	41.5 (39.43~43.58)	0.97 (0.92~1.02)	39.77	0.937	21.4°C	2011-09-09
2410MHz Head	39.3 (37.34~41.26)	1.76 (1.67~1.85)	39.7	1.776	21.5°C	2011-09-02
2435MHz Head	39.2 (37.24~41.16)	1.79 (1.70~1.88)	39.56	1.800	21.5°C	2011-09-02
2460MHz Head	39.2 (37.24~41.16)	1.81 (1.72~1.90)	39.52	1.835	21.5°C	2011-09-02
2450MHz Head	39.2 (37.24~41.16)	1.80 (1.71~1.89)	39.61	1.835	21.5°C	2011-09-02
825MHz Body	55.2 (52.44~57.96)	0.97 (0.92~1.02)	53.25	0.951	21.5°C	2011-09-05

835MHz Body	55.2 (52.44~57.96)	0.97 (0.92~1.02)	52.89	0.952	21.5°C	2011-09-05
850MHz Body	55.2 (52.44~57.96)	0.99 (0.94~1.04)	53.15	0.980	21.5°C	2011-09-05
900MHz Body	55.0 (52.25~57.75)	1.05 (1.00~1.10)	52.55	1.015	21.5°C	2011-09-05
2410MHz Body	52.8 (50.16~55.44)	1.91 (1.81~2.00)	51.31	1.961	21.5°C	2011-09-03
2435MHz Body	52.7 (50.07~55.34)	1.94 (1.84~2.04)	51.24	1.996	21.5°C	2011-09-03
2460MHz Body	52.7 (50.07~55.34)	1.96 (1.86~2.06)	51.11	2.021	21.5°C	2011-09-03
2450MHz Body	52.7 (50.07~55.34)	1.95 (1.85~2.05)	51.28	2.023	21.5°C	2011-09-03

ϵ_r = Relative permittivity, σ = Conductivity

Table 5: Measured Tissue Parameter

The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

Note: 1) KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.

2) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

3) For CDMA measurement in cellular band and for 900 MHz system verification the same TSL and 835 MHz SAR probe calibration point have been used.

4.2 System Check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests (Graphic Plot(s) see Appendix A).

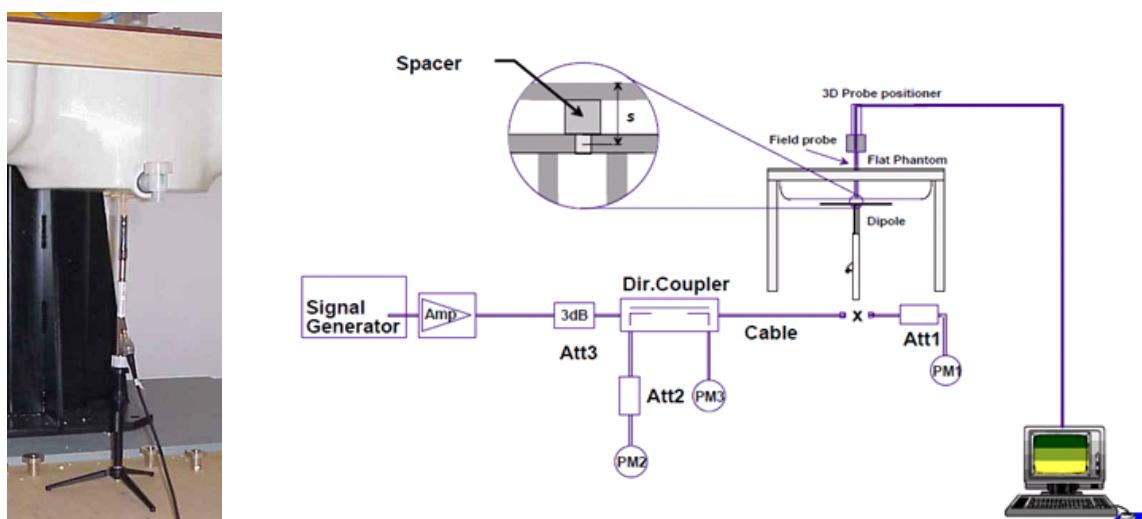

System Check	Target SAR (1W) (+/-10%)		Measured SAR (Normalized to 1W)		Liquid Temp.	Test Date
	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)		
D900V2 Head	11.2 (10.08~12.32)	7.13 (1.584~1.936)	10.88	6.92	21.4°C	2011-09-09
D2450V2 Head	53.7 (48.33~59.07)	24.9 (22.41~27.39)	57.2	26.04	21.4°C	2011-09-02
D900V2 Body	11.3 (10.17~12.43)	7.3 (6.57~8.03)	11.16	7.20	21.5°C	2011-09-05
D2450V2 Body	52.8 (47.52~58.08)	24.5 (22.05~26.95)	56.8	25.92	21.4°C	2011-09-03

Table 6: System Check Results

4.3 Validation Procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

5 Measurement Uncertainty Evaluation

5.1 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is $\pm 10.9\%$ ($K=1$).

The expanded uncertainty ($k=2$) is assessed to be $\pm 21.9\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divisor	c_i 1g	c_i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 6.0\%$	Normal	1	1	1	$\pm 6.0\%$	$\pm 6.0\%$	∞
Axial isotropy	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical isotropy	$\pm 9.6\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	∞
Spatial resolution	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Boundary effects	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe linearity	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System detection limits	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	$\pm 0.3\%$	Normal	1	1	1	$\pm 0.3\%$	$\pm 0.3\%$	∞
Response time	$\pm 0.8\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5\%$	∞
Integration time	$\pm 2.6\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5\%$	∞
RF ambient conditions	$\pm 3.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Test Sample Related								
Device positioning	$\pm 2.9\%$	Normal	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145
Device holder uncertainty	$\pm 3.6\%$	Normal	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5
Power drift	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	∞
Phantom and Set-up								
Phantom uncertainty	$\pm 4.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid conductivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	$\pm 1.2\%$	∞
Liquid conductivity (meas.)	$\pm 2.5\%$	Normal	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid permittivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	∞
Combined Uncertainty								
Expanded Std. Uncertainty								
						$\pm 10.9\%$	$\pm 10.7\%$	387
						$\pm 21.9\%$	$\pm 21.4\%$	

Table 7:Measurement uncertainties

5.2 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is $\pm 9.5\%$ ($K=1$).

The expanded uncertainty ($k=2$) is assessed to be $\pm 18.9\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divisor	c_i 1g	c_i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 6.0\%$	Normal	1	1	1	$\pm 6.0\%$	$\pm 6.0\%$	∞
Axial isotropy	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
Hemispherical isotropy	$\pm 9.6\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 0.0\%$	$\pm 0.0\%$	∞
Boundary effects	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe linearity	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System detection limits	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	$\pm 0.3\%$	Normal	1	1	1	$\pm 0.3\%$	$\pm 0.3\%$	∞
Response time	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Integration time	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
RF ambient conditions	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Dipole								
Deviation of experimental dipole	$\pm 5.5\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 3.2\%$	$\pm 3.2\%$	∞
Dipole axis to liquid distance	$\pm 2.0\%$	Rectangular	1	1	1	$\pm 1.2\%$	$\pm 1.2\%$	∞
Power drift	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
Phantom and Set-up								
Phantom uncertainty	$\pm 4.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid conductivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	$\pm 1.2\%$	∞
Liquid conductivity (meas.)	$\pm 2.5\%$	Normal	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid permittivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	∞
Combined Uncertainty								
Expanded Std. Uncertainty								
						$\pm 9.5\%$	$\pm 9.2\%$	
						$\pm 18.9\%$	$\pm 18.4\%$	

Table 8: Measurement uncertainties

6 SAR Test Configuration

6.1 CDMA Test Configuration

6.1.1 CDMA 1x Devices

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3(FW RC3, RVS RC3, SO55) as the worst case for SAR test.

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2;

Parameter	Units	Value
I or	dBm/1.23MHz	-104
PilotE c/I or	dB	-7
TrafficE c/I or	dB	-7.4

SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

SAR for body exposure configurations is measured in RC3 with the DUT configured using TDSO / SO32, to transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH + SCHn) is not required when the maximum average output of each RF channel is less than ¼ dB higher than that measured with FCH only. Otherwise, SAR is measured on the maximum output channel (FCH + SCHn) with FCH at full rate and SCH0 enabled at 9600 bps, using the exposure configuration that results in the highest SAR for that channel with FCH only. When multiple code channels are enabled, the DUT output may shift by more than 0.5 dB and lead to higher SAR drifts and SCH dropouts.

Body SAR in RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

Test communication setup meet as followings:

Communication standard between mobile station and base station simulator	3GPP2 C.S0011-B
Radio configuration	RC3(Supporting CDMA 1X)
Spreading Rate	SR1
Data Rate	9600bps
Service Options	SO55(Loopback service)
Service Options	SO32(Test Data service)
Multiplex Options	The mobile station does not support this service

6.1.2 CDMA Ev-Do Devices

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev.0 is less than $\frac{1}{4}$ dB higher than that measured in RC3 (1x RTT), body SAR for Ev-Do is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3. SAR for Rev.A is not required when the maximum average output of each channel is less than that measured in Rev.0 or less than $\frac{1}{4}$ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel for Rev.A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots should be configured in the downlink for both Rev.0 and Rev.A.

6.2 WiFi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on channel 1,6,11; however, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

7 SAR Measurement Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was also checked before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

7.1.1 Conducted power measurements CDMA 800 MHz

CDMA800 (1xRTT)		Conducted Power (dBm)		
		1013CH	384CH	777CH
RC1	SO55 (Loopback)	24.73	24.69	24.71
RC3	SO55 (Loopback)	24.77	24.73	24.62
	TDSO32 (FCH+SCH)	24.63	24.69	24.47
	TDSO32 (FCH)	24.65	24.62	24.49
CDMA800 (1xEV-DO)		Conducted Power (dBm)		
		1013CH	384CH	777CH
Rev 0	RTAP 153.6k	24.19	24.14	24.11
Rev A	RETAP 4096	24.13	24.19	24.12

Table 9: Test results conducted power measurement CDMA 800 MHz

7.2 SAR measurement Result

7.2.1 SAR measurement Result of CDMA 800

Test Position of Head	Test Mode	Test channel /Frequency	SAR Value (W/kg)		Power Drift (dB)	Limit (W/kg)	Liquid Temp.
			1-g	10-g			
C8511 With battery(SN: BAAB408XJ1426823)							
Left Hand Touched	RC3 SO55	777/848.31	0.900	0.637	0.060	1.6	21.4°C
Left Hand Touched	RC3 SO55	384/836.52	0.928	0.658	-0.111	1.6	21.4°C
Left Hand Touched	RC3 SO55	1013/824.7	0.882	0.622	0.130	1.6	21.4°C
Left Hand Tilted 15°	RC3 SO55	384/836.52	0.539	0.402	0.058	1.6	21.4°C
Right Hand Touched	RC3 SO55	777/848.31	0.856	0.630	0.078	1.6	21.4°C
Right Hand Touched	RC3 SO55	384/836.52	0.883	0.651	-0.074	1.6	21.4°C
Right Hand Touched	RC3 SO55	1013/824.7	0.837	0.619	0.026	1.6	21.4°C
Right Hand Tilted 15°	RC3 SO55	1013/824.7	0.481	0.360	0.002	1.6	21.4°C
C8511 With battery(SN: GAGA807XC3259045)							
Left Hand Touched	RC3SO55	384/836.52	0.922	0.644	-0.096	1.6	21.4°C
C8512 Tested at the worst position of C8511							
Left Hand Touched	RC3SO55	384/836.52	0.830	0.586	-0.138	1.6	21.4°C

Table 10: Test results head SAR CDMA 800 MHz

Test Position of Body with 10mm	Test Mode	Test channel /Frequency	SAR Value (W/kg)		Power Drift (dB)	Limit (W/kg)	Liquid Temp.
			1-g	10-g			
C8511 With battery(SN:BAAB408XJ1426823)							
Towards Phantom	RC3 SO32	384/836.52	0.692	0.503	-0.165	1.6	21.6°C
Towards Ground	RC3 SO32	384/836.52	1.150	0.817	-0.146	1.6	21.6°C
Left edge	RC3 SO32	384/836.52	0.612	0.420	0.117	1.6	21.6°C
Right edge	RC3 SO32	384/836.52	0.526	0.363	0.018	1.6	21.6°C
Bottom edge	RC3 SO32	384/836.52	0.075	0.047	-0.192	1.6	21.6°C
Towards Ground	RC3 SO32	777/848.31	0.933	0.663	-0.190	1.6	21.6°C
Towards Ground	RC3 SO32	1013/824.7	1.210	0.866	0.087	1.6	21.6°C
Towards Ground	Rev.0	1013/824.7	1.190	0.848	0.012	1.6	21.6°C
Towards Ground	Rev.A	1013/824.7	1.150	0.823	-0.193	1.6	21.6°C
Towards Ground with Headset	RC3SO55	1013/824.7	0.816	0.577	0.020	1.6	21.6°C
C8511 With battery(SN: GAGA807XC3259045)							
Towards Ground	RC3 SO32	1013/824.7	1.210	0.857	-0.114	1.6	21.6°C
C8512 Tested at the worst position of C8511							
Towards Ground	RC3 SO32	1013/824.7	1.060	0.760	-0.181	1.6	21.6°C

Table 11: Test results body SAR CDMA 800 MHz

Note: 1) The value with bold colour is the maximum SAR value of each test band.

2) The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

3) Tests in body position were performed with 10 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

4) For the antenna-to-edge distance is greater than 2.5 cm, so the top edge side does not need to be tested

5) The C8512 were verified on the worst channels from the original report of QISC8511 according to the difference on Page 5.

7.2.2 SAR measurement Result of WiFi

Test Position of Head	Test Mode	Test channel /Frequency	SAR Value (W/kg)		Power Drift (dB)	Limit (W/kg)	Liquid Temp.
			1-g	10-g			
C8500 With battery(SN: BAAB408XJ1426823)							
Left Hand Touched	802.11 b	6\2437	0.137	0.062	-0.025	1.6	21.5°C
Left Hand Tilted 15°	802.11 b	6\2438	0.117	0.061	0.032	1.6	21.5°C
Right Hand Touched	802.11 b	6\2439	0.124	0.066	0.110	1.6	21.5°C
Right Hand Tilted 15°	802.11 b	6\2440	0.117	0.061	0.108	1.6	21.5°C
C8500 With battery(SN: GAGA807XC3259045)							
Left Hand Touched	802.11 b	1\2412	0.137	0.061	0.122	1.6	21.5°C
C8512 Tested at the worst position of C8511							
Left Hand Touched	802.11 b	1\2412	0.107	0.050	-0.030	1.6	21.5°C

Table 12: Test results head SAR WiFi 2450 MHz

Test Position of Body with 10mm	Test Mode	Test channel /Frequency	SAR Value (W/kg)		Power Drift (dB)	Limit (W/kg)	Liquid Temp.
			1-g	10-g			
C8511 With battery(SN: BAAB408XJ1426823)							
Towards Phantom	802.11 b	6\2437	0.072	0.042	0.071	1.6	21.4°C
Towards Ground	802.11 b	6\2437	0.112	0.064	-0.184	1.6	21.4°C
Right edge	802.11 b	6\2437	0.111	0.051	0.195	1.6	21.4°C
Top edge	802.11 b	6\2437	0.085	0.045	0.119	1.6	21.4°C
C8511 With battery(SN: GAGA807XC3259045)							
Towards Ground	802.11 b	6\2437	0.093	0.050	0.023	1.6	21.4°C
C8512 Tested at the worst position of C8511							
Towards Ground	802.11 b	6\2437	0.092	0.048	0.126	1.6	21.4°C

Table 13: Test results body SAR WiFi 2450 MHz

Note: 1) The value with bold colour is the maximum SAR value of each test band.

2) The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

3) Tests in body position were performed with 10 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

4) The addition body test was performed at worst case.

5) For the antenna-to-edge distance is greater than 2.5 cm, so the bottom and left edge sides do not need to be tested

5) The C8512 were verified on the worst channels from the original report of QISC8511 according to the difference on Page 5.

7.3 Multiple Transmitter Evaluation

The closest distance between BT/WiFi antenna and main antenna is 5.765cm>5cm, and the location of the antennas inside mobile phone is shown as below picture:

The output power of BT antenna is as following:

BT 2450MHz	Average Conducted Power (dBm)		
	0CH	39CH	78CH
	6.94	7.83	7.66

Table 14: Test results conducted power measurement BT 2450 MHz

The output power of WiFi antenna is as following:

Wi-Fi 2450MHz	Channel	Average Power (dBm) for Data Rates (Mbps)							
		1	2	5.5	11	/	/	/	/
802.11b	1	15.97	16.03	16.07	15.92	/	/	/	/
	6	16.18	16.15	16.13	16.14	/	/	/	/
	11	16.01	15.99	15.96	15.94	/	/	/	/
802.11g	Channel	6	9	12	18	24	36	48	54
	1	11.03	10.99	10.95	10.92	10.94	10.97	10.96	10.93
	6	10.96	10.92	10.89	10.87	10.91	10.92	10.93	10.94
	11	10.93	10.89	10.87	10.85	10.86	10.88	10.91	10.87
802.11n HT20	Channel	6.5	13	19.5	26	39	52	58.5	65
	1	6.4	6.39	6.45	6.51	6.32	6.31	6.47	6.31
	6	6.59	6.61	6.52	6.51	6.49	6.53	6.49	6.45
	11	6.41	6.45	6.51	6.37	6.43	6.51	6.44	6.37

Table 15: Test results conducted power measurement WiFi 2450 MHz

Stand-alone SAR

According to the output power measurement results and the distance between BT antenna and CDMA antenna we can draw the conclusion that:

stand-alone SAR evaluation is not required for BT, because the output power of BT unlicensed transmitter is $\leq 2 \cdot P_{Ref}$ (24mW) and its antenna(s) is ≥ 5.0 cm from main antenna.,

Stand-alone SAR evaluation is required for WiFi, because the output power of WiFi unlicensed transmitter is $16.18\text{dBm} \geq 24\text{mW}$ (13.8dBm).

Simultaneous SAR

Simultaneous Transmission SAR evaluation is not required for CDMA& BT, because stand-alone SAR are not required for BT and its antenna is $5.765 \geq 5.0$ cm from main antenna,

Simultaneous Transmission SAR evaluation is not required for WiFi and CDMA, because the sum of the 1g SAR is $1.473\text{W/kg} < 1.6\text{W/kg}$ for WiFi and CDMA

Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because the sum of the 1g SAR is $0.137\text{W/kg} < 1.6\text{ W/kg}$ for BT and WiFi

Appendix A. System Check Plots

(Pls See Appendix A.)

Appendix B. SAR Measurement Plots

(Pls See Appendix B.)

Appendix C. Calibration Certificate

(Pls See Appendix C.)

Appendix D. Photo documentation

(Pls See Appendix D.)

End