

Report No.: RZA1103-0408HAC01

ANSI C63.19

TEST REPORT

Product Name	CDMA 1X Digital Mobile Telephone
Model	HUAWEI M635
FCC ID	QISC6071
Client	Huawei Technologies Co., Ltd.

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

Product Name	CDMA 1X Digital Mobile Telephone	Model	HUAWEI M635
FCC ID	QISC6071	Report No.	RZA1103-0408HAC01
Client	Huawei Technologies Co., Ltd.		
Manufacturer	Huawei Technologies Co., Ltd.		
Reference Standard(s)	ANSI C63.19-2007: American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.		
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards.</p> <p>General Judgment: M4 (RF Emission)</p> <p style="text-align: right;">(Stamp)</p> <p style="text-align: right;">Date of issue: April 7th, 2011</p>		
Comment	The test result only responds to the measured sample.		

Approved by 杨伟中

Yang Weizhong

Revised by 凌敏宝

Ling Minbao

Performed by 沈辰

Shen Chen

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	4
1.1. Notes of the Test Report.....	4
1.2. Testing Laboratory	4
1.3. Applicant Information	5
1.4. Manufacturer Information.....	5
1.5. Information of EUT.....	6
1.6. The Ambient Conditions during Test.....	7
1.7. The Total M-rating of each tested band	7
1.8. Test Date	7
2. Test Information	8
2.1. Operational Conditions during Test.....	8
2.1.1. General Description of Test Procedures.....	8
2.1.2. CDMA Test Configuration.....	8
2.2. HAC RF Measurements System Configuration.....	9
2.2.1. HAC Measurement Set-up.....	9
2.2.2. Probe System	10
2.2.3. Test Arch Phantom & Phone Positioner	11
2.3. RF Test Procedures.....	12
2.4. System Check.....	14
2.5. Probe Modulation Factor.....	15
2.6. Conducted Output Power Measurement.....	17
3. Test Results	18
3.1. ANSI C63.19-2007 Limits	18
3.2. Summary Test Results.....	19
4. Measurement Uncertainty	21
5. Main Test Instruments	23
ANNEX A: System Check Results.....	24
ANNEX B: Graph Results.....	28
ANNEX C: E-Probe Calibration Certificate	46
ANNEX D: H-Probe Calibration Certificate.....	56
ANNEX E: CD835V3 Dipole Calibration Certificate (SN: 1149).....	66
ANNEX F: CD1880V3 Dipole Calibration Certificate (SN: 1135).....	72
ANNEX G: DAE4 Calibration Certificate.....	78
ANNEX H: The EUT Appearances and Test Configuration.....	83

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 4 of 84

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Yang Weizhong
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: yangweizhong@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.

Test Report

1.3. Applicant Information

Company: Huawei Technologies Co., Ltd.
Address: Bantian, Longgang District
City: Shenzhen
Postal Code: 518129
Country: P.R. China
Contact: Wang Yue
Telephone: 0755-28780808
Fax: 0755-28780808

1.4. Manufacturer Information

Company: Huawei Technologies Co., Ltd.
Address: Bantian, Longgang District
City: Shenzhen
Postal Code: 518129
Country: P.R. China
Telephone: 0755-28780808
Fax: 0755-28780808

TA Technology (Shanghai) Co., Ltd.
Test Report

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Product Name:	CDMA 1X Digital Mobile Telephone		
MEID:	A000002D241C54		
Hardware Version:	Ver.B		
Software Version:	M635C45B105		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Supporting Mode(s):	CDMA Cellular (tested)		
	CDMA PCS (tested)		
	CDMA AWS (tested)		
	Bluetooth		
Test Modulation:	QPSK		
Operating Frequency Range(s):	Mode	Tx (MHz)	Rx (MHz)
	CDMA Cellular	824.7 ~ 848.31	869.7 ~ 893.31
	CDMA PCS	1851.25 ~ 1908.75	1931.25 ~ 1988.75
	CDMA AWS	1711.25 ~ 1752.5	2111.25 ~ 2152.5
Test Channel: (Low - Middle - High)	1013 - 384 - 777 25 - 600 - 1175 25 - 450 - 850	(CDMA Cellular) (CDMA PCS) (CDMA AWS)	(tested) (tested) (tested)
Power Class:	CDMA Cellular: Tested with Power Control All up bits		
	CDMA PCS: Tested with Power Control All up bits		
	CDMA AWS: Tested with Power Control All up bits		

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 7 of 84

Auxiliary Equipment Details

AE1:Battery

Model: HB5D1H
Manufacturer: Huawei Technologies Co., Ltd.
S/N: YHCAC31HI5305048

Equipment Under Test (EUT) is a model of CDMA 1X Digital Mobile Telephone. The detail about Mobile phone and Lithium Battery is in chapter 1.5 in this report. HAC is tested for CDMA Cellular, CDMA PCS and CDMA AWS. The EUT has a CDMA antenna that is used for Tx/Rx, and the other is BT antenna.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Ambient Conditions during Test

Temperature	Min. = 18°C, Max. = 28 °C
Relative humidity	Min. = 0%, Max. = 80%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

1.7. The Total M-rating of each tested band

Band	Rating
CDMA Cellular	M4
CDMA PCS	M4
CDMA AWS	M4

1.8. Test Date

The test is performed from April 2, 2011 to April 3, 2011.

2. Test Information

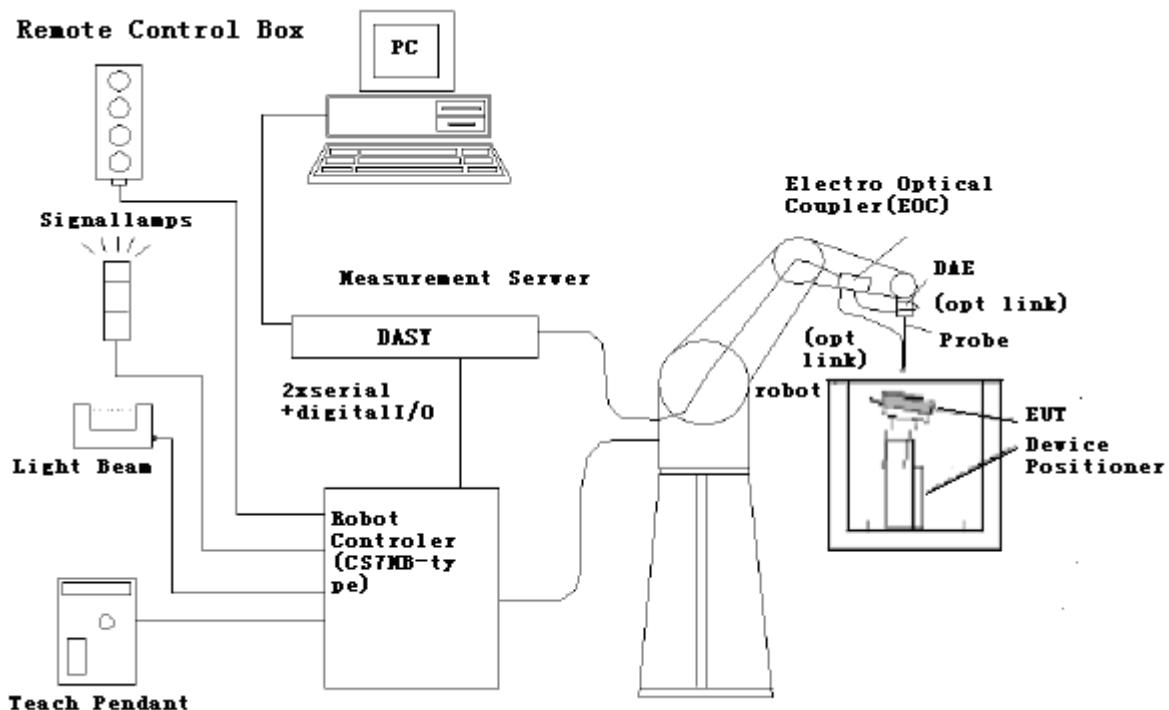
2.1. Operational Conditions during Test

2.1.1. General Description of Test Procedures

The phone was tested in all normal configurations for the ear use. The EUT is mounted in the device holder equivalent as for classic dosimeter measurements. The acoustic output of the EUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame. The EUT shall be moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete. The EUT holder is on the yellow base plate of the Test Arch phantom. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode; for example, GSM, WCDMA (UMTS), CDMA and TDMA.

2.1.2. CDMA Test Configuration

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) are allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular, allocated to 25, 600 and 1175 respectively in the case of CDMA PCS, allocated to 25, 450 and 850 respectively in the case of CDMA AWS, The EUT is commanded to operate at maximum transmitting power.


Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2.

Parameter	Units	Value
I or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

2.2. HAC RF Measurements System Configuration

2.2.1. HAC Measurement Set-up

These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. Cell controller systems contain the power supply, robot controller, teach pendant (Joystick) and remote control, and are used to drive the robot motors. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure 1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

2.2.2. Probe System

The HAC measurements were conducted with the E-Field Probe ER3DV6 and the H-Field Probe H3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

E-Field Probe Description

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material
Calibration	In air from 100 MHz to 3.0 GHz (absolute accuracy $\pm 6.0\%$, $k=2$)
Frequency	40 MHz to > 6 GHz (can be extended to < 20 MHz) Linearity: ± 0.2 dB (100 MHz to 3 GHz)
Directivity	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)
Dynamic Range	2 V/m to > 1000 V/m; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm
Application	General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms

Figure 2 ER3DV6 E-field Probe

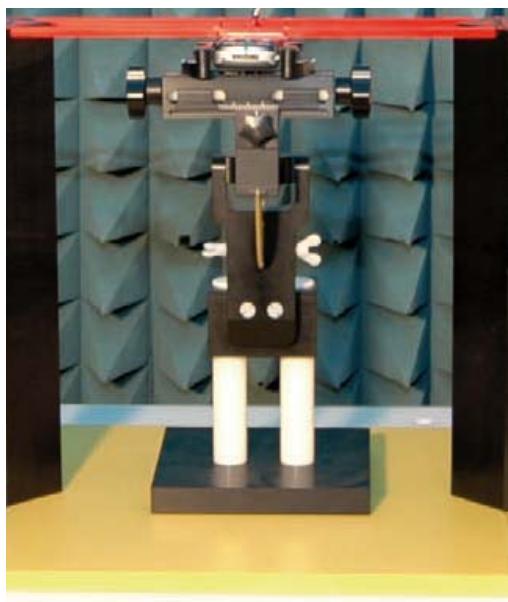
H-Field Probe Description

Construction	Three concentric loop sensors with 3.8 mm loop diameters Resistively loaded detector diodes for linear response Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)
Frequency	200 MHz to 3 GHz (absolute accuracy $\pm 6.0\%$, $k=2$); Output linearized
Directivity	± 0.2 dB (spherical isotropy error)
Dynamic Range	10 mA/m to 2 A/m at 1 GHz
E-Field Interference	< 10% at 3 GHz (for plane wave)
Dimensions	Overall length: 330 mm (Tip: 40 mm) Tip diameter: 6 mm (Body: 12 mm) Distance from probe tip to dipole centers: 3 mm

Figure 3 H3DV6 H-field Probe

TA Technology (Shanghai) Co., Ltd.

Test Report


Application	General magnetic near-field measurements up to 3 GHz (in air or liquids) Field component measurements Surface current measurements Low interaction with the measured field
-------------	---

2.2.3. Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: 370 x 370 x 370 mm).

The Device reference point is set for the EUT at 6.3 mm, the Grid reference point is on the upper surface at the origin of the coordinates, and the “user point \Height Check 0.5 mm” is 0.5mm above the center, allowing verification of the gap of 0.5mm while the probe is positioned there.

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm 0.5$ dB.

Figure 4 HAC Phantom & Device Holder

TA Technology (Shanghai) Co., Ltd.

Test Report

2.3. RF Test Procedures

The evaluation was performed with the following procedure:

1. Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
2. Position the WD in its intended test position. The gauge block can simplify this positioning. Note that a separate E-field and H-field gauge block will be needed if the center of the probe sensor elements is at different distances from the tip of the probe.
3. Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
4. The center sub-grid shall center on the center of the axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
5. Record the reading.
6. Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
7. Identify the five contiguous sub-grids around the center sub-grid with the lowest maximum field strength readings. Thus the six areas to be used to determine the WD's highest emissions are identified and outlined for the final manual scan. Please note that a maximum of five blocks can be excluded for both E-field and H-field measurements for the WD output being measured. Stated another way, the center sub-grid and three others must be common to both the E-field and H-field measurements.
8. Identify the maximum field reading within the non-excluded sub-grids identified in Step 7.
9. Convert the maximum field strength reading identified in Step 8 to V/m or A/m, as appropriate. For probes which require a probe modulation factor, this conversion shall be done using the appropriate probe modulation factor and the calibration.
10. Repeat Step 1 through Step 10 for both the E-field and H-field measurements.
11. Compare this reading to the categories in ANSI C63.19 Clause 7 and record the resulting category. The lowest category number listed in 7.2, Table 7.4, or Table 7.5 obtained in Step 10 for either E- or H-field determines the M category for the audio coupling mode assessment. Record the WD category rating.

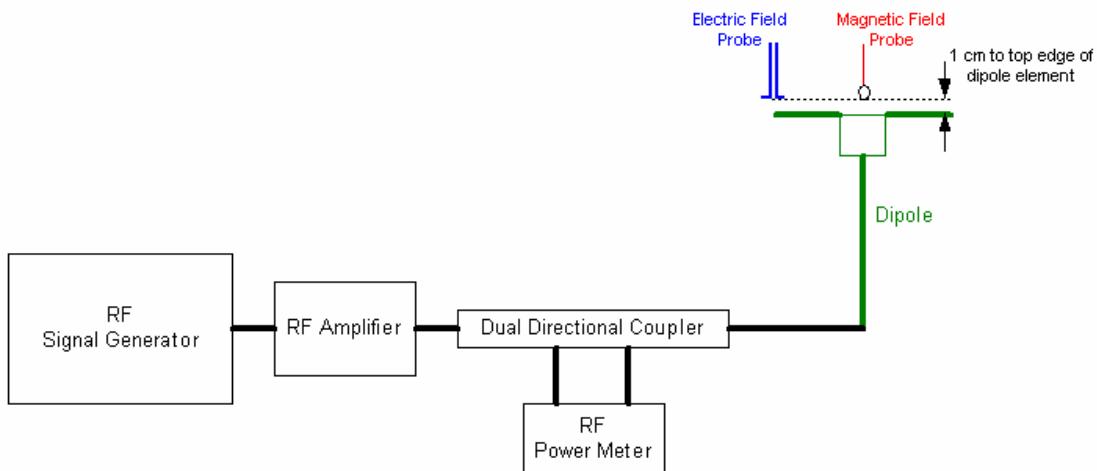
TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 13 of 84

Figure 5 WD reference and plane for RF emission measurements

2.4. System Check


Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 D.5 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field and H-field probes so that:

The probes and their cables are parallel to the coaxial feed of the dipole antenna.

The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions.

The center point of the probe element(s) are 10 mm from the closest surface of the dipole elements. Validation was performed to verify that measured E-field and H-field values are within +/-25% from the target reference values provided by the manufacturer. "Values within +/-25% are acceptable. Of which 12% is deviation and 13% is measurement uncertainty."

Figure 6 Dipole Validation Setup

Dipole Measurement Summary

E-Field Scan						
Mode	Frequency (MHz)	Input Power (mW)	Measured ¹ Value(V/m)	Target ² Value(V/m)	Deviation ³ (%)	Test Date
CW	835	100	149.2	170.7	12.60	April 3, 2011
CW	1880	100	131.4	142.9	8.05	April 3, 2011
H-Field Scan						
Mode	Frequency (MHz)	Input Power (mW)	Measured Value(A/m)	Target Value(A/m)	Deviation (%)	Test Date
CW	835	100	0.443	0.465	4.73	April 2, 2011
CW	1880	100	0.449	0.475	5.47	April 3, 2011

Notes: 1. please refer to the attachment for detailed measurement data and plot.

2. Target value is provided by SPEAD in the calibration certificate of specific dipoles.

3. Deviation (%) = 100 * (Target value minus Measured value) divided by Target value.

2.5. Probe Modulation Factor

The Probe Modulation Factor (PMF) is defined as the ratio of the field readings for a CW and a modulated signal with the equivalent Field Envelope Peak as defined in ANSI C63.19 (Chapter C.3.1). Calibration shall be made of the modulation response of the probe and its instrumentation chain. This Calibration shall be performed with the field probe, attached to the instrumentation that is to be used with it during the measurement. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. The field level of the test signals shall be more than 10dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated field shall be applied to the readings taken of modulated fields of the specified type.

Modulation Factor Test Procedure

This may be done using the following procedure:

1. Fix the field probe in a set location relative to a field generating device, such as the reference dipole antenna.
2. Illuminate the probe using the wireless device connected to the reference dipole with a test signal at the intended measurement frequency. Ensure there is sufficient field coupling between the probe and the antenna so the resulting reading is greater than 10 dB above the probe system noise floor but within the systems operating range.
3. Record the amplitude applied to the antenna during transmission and the field strength measured by the E-field probe located near the tip of the dipole antenna
4. Replace the wireless device with an RF signal generator producing an unmodulated CW signal and set to the wireless device operating frequency.
5. Set the amplitude of the unmodulated signal to equal that recorded from the wireless device.
6. Record the reading of the probe measurement system of the unmodulated signal.
7. The ratio, in linear units, of the probe reading in Step 6 to the reading in Step 3 is the E-field modulation factor. $PMF_E = E_{CW} / E_{mod}$ ($PMF_H = H_{CW} / H_{mod}$)
8. Repeat the previous steps using the H-field probe, except locate the probe at the center of the dipole.

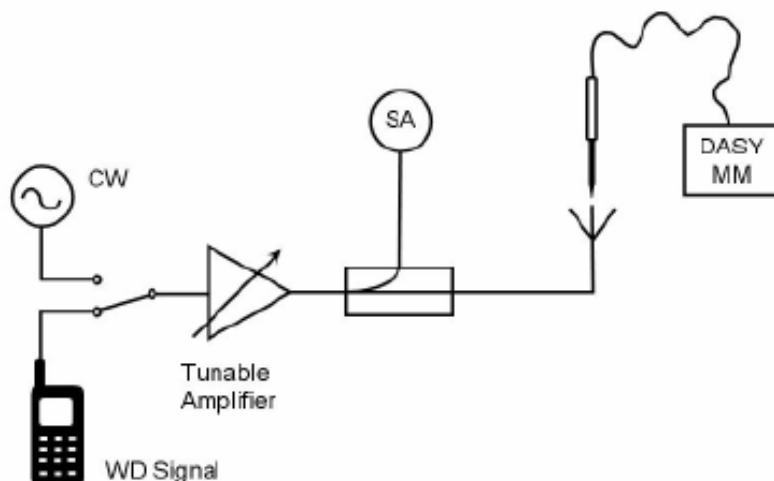


Figure 7 Probe Modulation Factor Test Setup

TA Technology (Shanghai) Co., Ltd.
Test Report

PMF

Band	E-Field Probe Modulation Factor	H-Field Probe Modulation Factor
CDMA Cellular	1.03	1.00
CDMA PCS	1.03	1.00
CDMA AWS	1.03	1.00

TA Technology (Shanghai) Co., Ltd.

Test Report

2.6. Conducted Output Power Measurement

Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power. Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

Conducted Power Results

CDMA Cellular		Conducted Power (dBm)		
		Channel 1013	Channel 384	Channel 777
RC3	Before test	24.3	24.3	24.4
	After test	24.4	24.3	24.3
RC1	Before test	24.4	24.2	24.3
CDMA PCS		Conducted Power (dBm)		
		Channel 25	Channel 600	Channel 1175
RC3	Before test	24.3	24.3	24.4
	After test	24.4	24.4	24.5
RC1	Before test	24.3	24.3	24.2
CDMA AWS		Conducted Power (dBm)		
		Channel 25	Channel 450	Channel 850
RC3	Before test	24.4	24.5	24.2
	After test	24.4	24.4	24.4
RC1	Before test	24.4	24.4	24.5

TA Technology (Shanghai) Co., Ltd.
Test Report

3. Test Results

3.1. ANSI C63.19-2007 Limits

Category		Telephone RF parameters < 960 MHz			
Near field	AWF	E-field emissions		H-field emissions	
Category M1/T1	0	631.0 to 1122.0	V/m	1.91 to 3.39	A/m
	-5	473.2 to 841.4	V/m	1.43 to 2.54	A/m
Category M2/T2	0	354.8 to 631.0	V/m	1.07 to 1.91	A/m
	-5	266.1 to 473.2	V/m	0.80 to 1.43	A/m
Category M3/T3	0	199.5 to 354.8	V/m	0.60 to 1.07	A/m
	-5	149.6 to 266.1	V/m	0.45 to 0.80	A/m
Category M4/T4	0	< 199.5	V/m	< 0.60	A/m
	-5	< 149.6	V/m	< 0.45	A/m
Category		Telephone RF parameters > 960 MHz			
Near field	AWF	E-field emissions		H-field emissions	
Category M1/T1	0	199.5 to 354.8	V/m	0.60 to 1.07	A/m
	-5	149.6 to 266.1	V/m	0.45 to 0.80	A/m
Category M2/T2	0	112.2 to 199.5	V/m	0.34 to 0.60	A/m
	-5	84.1 to 149.6	V/m	0.25 to 0.45	A/m
Category M3/T3	0	63.1 to 112.2	V/m	0.19 to 0.34	A/m
	-5	47.3 to 84.1	V/m	0.14 to 0.25	A/m
Category M4/T4	0	< 63.1	V/m	< 0.19	A/m
	-5	< 47.3	V/m	< 0.14	A/m

TA Technology (Shanghai) Co., Ltd.
Test Report

3.2. Summary Test Results

CDMA Cellular Results

E-Field					
Channel	Frequency (MHz)	Peak Field (V/m)	Power Drift (dB)	Rating	Graph Results
777	848.31	74.9	-0.013	M4	Figure 12
384	836.52	79.1	-0.031	M4	Figure 13
1013	824.70	74.1	-0.026	M4	Figure 14
H-Field					
Channel	Frequency (MHz)	Peak Field (A/m)	Power Drift (dB)	Rating	Graph Results
777	848.31	0.116	-0.043	M4	Figure 15
384	836.52	0.12	-0.040	M4	Figure 16
1013	824.70	0.11	-0.008	M4	Figure 17

CDMA PCS Results

E-Field					
Channel	Frequency (MHz)	Peak Field (V/m)	Power Drift (dB)	Rating	Graph Results
1175	1908.75	42.9	-0.134	M4	Figure 18
600	1880	42.1	-0.040	M4	Figure 19
25	1851.25	42.6	-0.125	M4	Figure 20
H-Field					
Channel	Frequency (MHz)	Peak Field (A/m)	Power Drift (dB)	Rating	Graph Results
1175	1908.75	0.104	-0.034	M4	Figure 21
600	1880	0.097	-0.073	M4	Figure 22
25	1851.25	0.1	-0.060	M4	Figure 23

TA Technology (Shanghai) Co., Ltd.
Test Report

CDMA AWS Results

E-Field					
Channel	Frequency (MHz)	Peak Field (V/m)	Power Drift (dB)	Rating	Graph Results
850	1752.5	41.3	-0.009	M4	Figure 24
450	1732.5	42.6	0.055	M4	Figure 25
25	1711.25	40.9	-0.009	M4	Figure 26

H-Field					
Channel	Frequency (MHz)	Peak Field (A/m)	Power Drift (dB)	Rating	Graph Results
850	1752.5	0.104	-0.037	M4	Figure 27
450	1732.5	0.106	-0.020	M4	Figure 28
25	1711.25	0.105	0.057	M4	Figure 29

TA Technology (Shanghai) Co., Ltd.
Test Report

4. Measurement Uncertainty

No.	Error source	Type	Uncertainty Value (%)	Prob. Dist.	k	c _i E	c _i H	Standard Uncertainty (%) u _i (%) E	Standard Uncertainty (%) u _i (%) H	Degree of freedom V _{eff} or v _i
Measurement System										
1	Probe Calibration	B	5.	N	1	1	1	5.1	5.1	∞
2	Axial Isotropy	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
3	Sensor Displacement	B	16.5	R	$\sqrt{3}$	1	0.145	9.5	1.4	∞
4	Boundary Effects	B	2.4	R	$\sqrt{3}$	1	1	1.4	1.4	∞
5	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
6	Scaling to Peak Envelope Power	B	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
7	System Detection Limit	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
8	Readout Electronics	B	0.3	N	1	1	1	0.3	0.3	∞
9	Response Time	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
10	Integration Time	B	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
11	RF Ambient Conditions	B	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
12	RF Reflections	B	12.0	R	$\sqrt{3}$	1	1	6.9	6.9	∞
13	Probe Positioner	B	1.2	R	$\sqrt{3}$	1	0.67	0.7	0.5	∞
14	Probe Positioning	A	4.7	R	$\sqrt{3}$	1	0.67	2.7	1.8	∞
15	Extra. And Interpolation	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related										
16	Device Positioning Vertical	B	4.7	R	$\sqrt{3}$	1	0.67	2.7	1.8	∞
17	Device Positioning Lateral	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
18	Device Holder and Phantom	B	2.4	R	$\sqrt{3}$	1	1	1.4	1.4	∞

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 22 of 84

19	Power Drift	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and Setup related										
20s	Phantom Thickness	B	2.4	R	$\sqrt{3}$	1	0.67	1.4	0.9	∞
Combined standard uncertainty(%)								14.7	10.9	
Expanded uncertainty (confidence interval of 95 %)			$u_e = 2u_c$	N		k=2		29.4	21.8	

TA Technology (Shanghai) Co., Ltd.
Test Report

5. Main Test Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Power meter	Agilent E4417A	GB41291714	March 12, 2011	One year
02	Power sensor	Agilent N8481H	MY50350004	September 26, 2010	One year
03	Signal Generator	HP 8341B	2730A00804	September 13, 2010	One year
04	Amplifier	IXA-020	0401	No Calibration Requested	
05	BTS	E5515C	MY48360988	December 3, 2010	One year
06	E-Field Probe	ER3DV6	2428	October 20, 2009	Two years
07	H-Field Probe	H3DV6	6260	October 20, 2009	Two years
08	DAE	DAE4	871	November 18, 2010	One year
09	Validation Kit 835MHz	CD835V3	1149	January 12, 2010	Two years
10	Validation Kit 1880MHz	CD1880V3	1135	January 13, 2010	Two years

*****END OF REPORT BODY*****

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 24 of 84

ANNEX A: System Check Results

HAC_System Performance Check at 835MHz_E

DUT: Dipole 835 MHz; Type: CD835V3; SN:1149

Date/Time: 4/3/2011 5:13:32 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

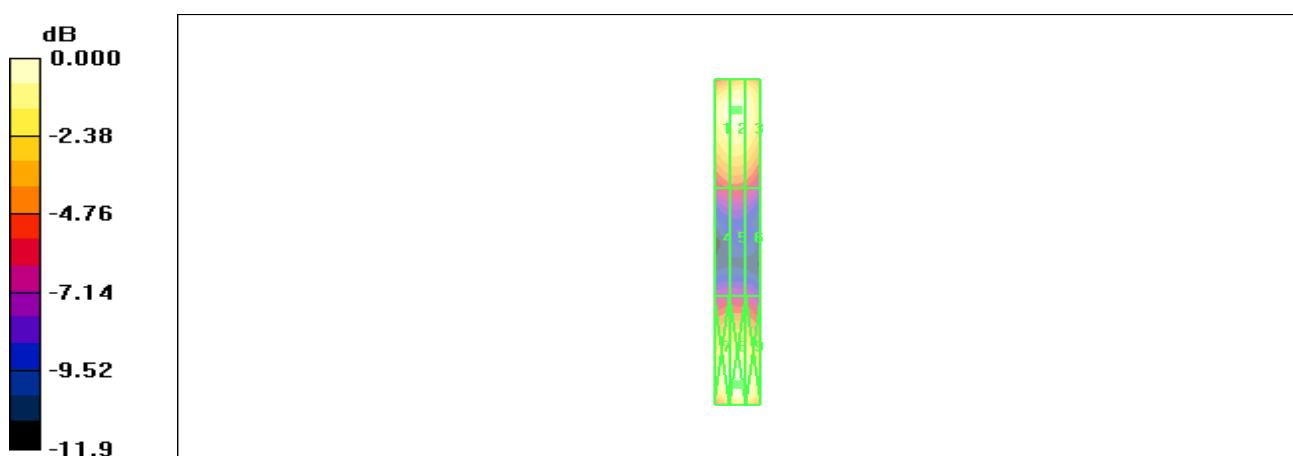
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 149.2 V/m

Probe Modulation Factor = 1.00


Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 100.7 V/m; Power Drift = -0.066 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
147.0 M4	149.2 M4	143.9 M4
Grid 4	Grid 5	Grid 6
83.4 M4	85.0 M4	81.1 M4

0 dB = 154.0V/m

Figure 8 System Performance Check 835MHz_E

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 25 of 84

HAC_System Performance Check at 835MHz_H

DUT: Dipole 835 MHz; Type: CD835V3; SN: 1149

Date/Time: 4/2/2011 12:04:58 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

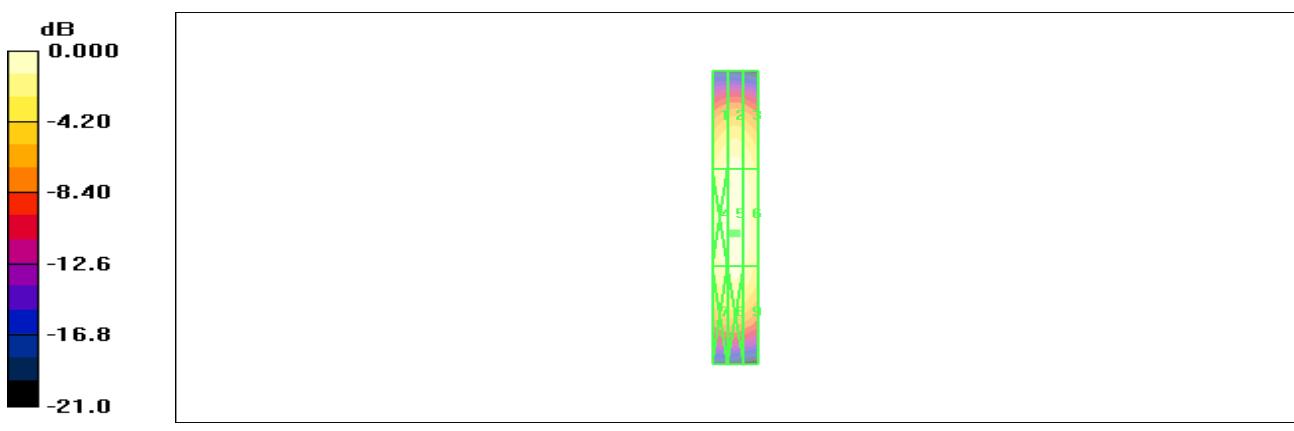
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.443 A/m

Probe Modulation Factor = 1.00


Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 0.464 A/m; Power Drift = 0.019 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.391 M4	0.408 M4	0.384 M4
Grid 4	Grid 5	Grid 6
0.427 M4	0.443 M4	0.414 M4
Grid 7	Grid 8	Grid 9
0.397 M4	0.410 M4	0.381 M4

0 dB = 0.443A/m

Figure 9 System Performance Check 835MHz_H

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 26 of 84

HAC_System Performance Check at 1880MHz_E

DUT: Dipole 1880 MHz; Type: CD1880V3; SN:1135

Date/Time: 4/3/2011 6:40:34 AM

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

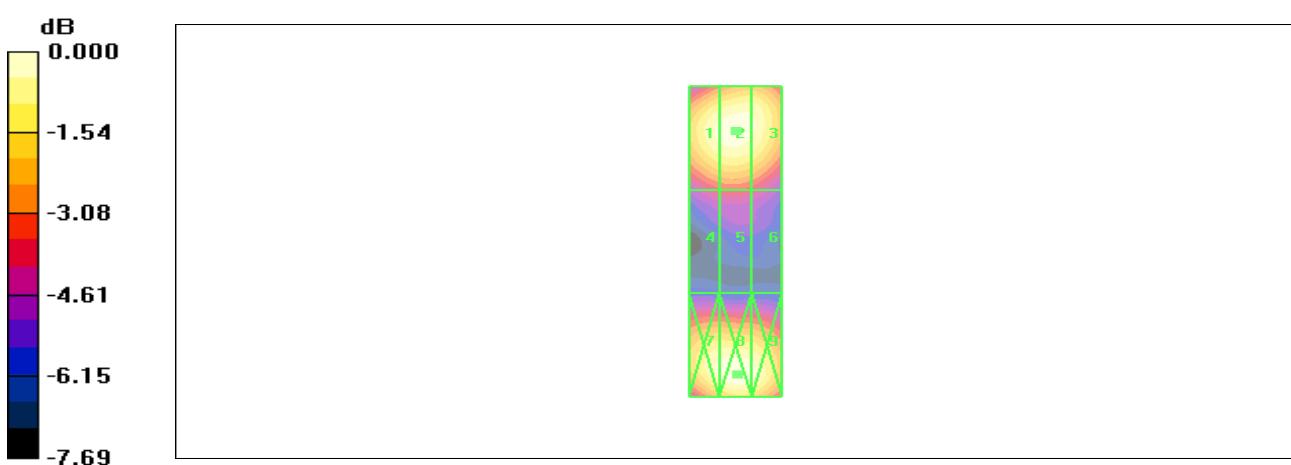
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 131.4 V/m

Probe Modulation Factor = 1.00


Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 151.0 V/m; Power Drift = -0.047 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
128.5 M2	131.4 M2	128.5 M2
Grid 4	89.7 M3	Grid 6
87.5 M3		86.2 M3
Grid 7	Grid 8	Grid 9
128.7 M2	134.0 M2	130.3 M2

Figure 10 System Performance Check 1880MHz_E

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 27 of 84

HAC_System Performance Check at 1880MHz_H

DUT: Dipole 1880 MHz; Type: CD1880V3; SN:1135

Date/Time: 4/3/2011 8:01:22 AM

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

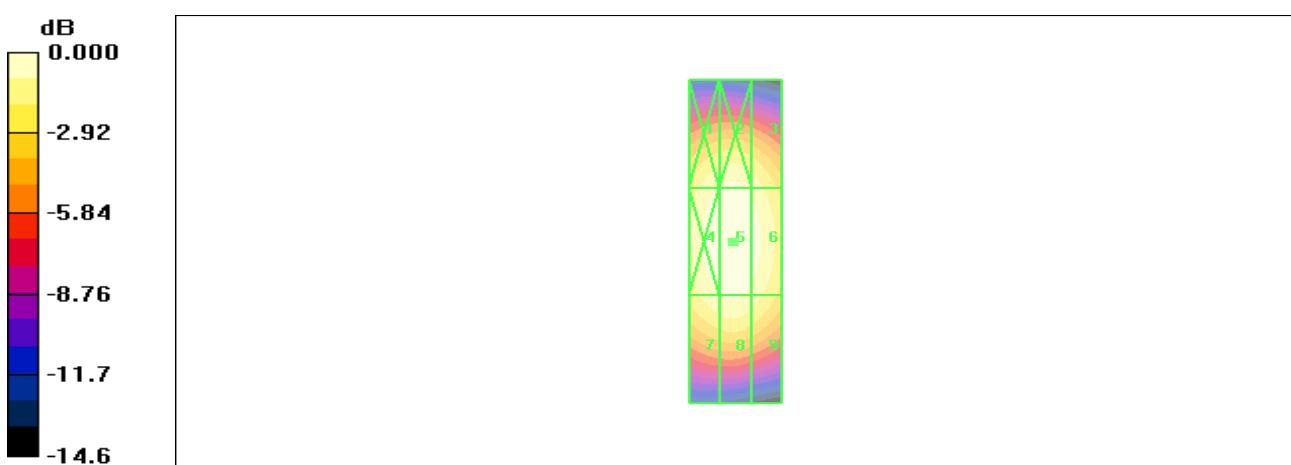
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - measurement distance from the probe sensor center to Dipole = 10mm/Hearing Aid

Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.449 A/m

Probe Modulation Factor = 1.00


Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 0.472 A/m; Power Drift = -0.005 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.400 M2	0.413 M2	0.387 M2
Grid 4	Grid 5	Grid 6
0.435 M2	0.449 M2	0.422 M2

Figure 11 System Performance Check 1880MHz_H

ANNEX B: Graph Results

HAC RF E-Field CDMA Cellular High

Date/Time: 4/3/2011 10:56:06 AM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 74.9 V/m

Probe Modulation Factor = 1.03


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 94.3 V/m; Power Drift = -0.013 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
66.8 M4	72.9 M4	70.4 M4
68.8 M4	74.9 M4	72.3 M4
67.5 M4	73.4 M4	70.6 M4

Figure 12 HAC RF E-Field CDMA Cellular Channel 777

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 29 of 84

HAC RF E-Field CDMA Cellular Middle

Date/Time: 4/3/2011 10:50:37 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device Middle/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 79.1 V/m

Probe Modulation Factor = 1.03

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 100.1 V/m; Power Drift = -0.031 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
71.2 M4	77.4 M4	74.5 M4
Grid 4	Grid 5	Grid 6
73.4 M4	79.1 M4	76.5 M4

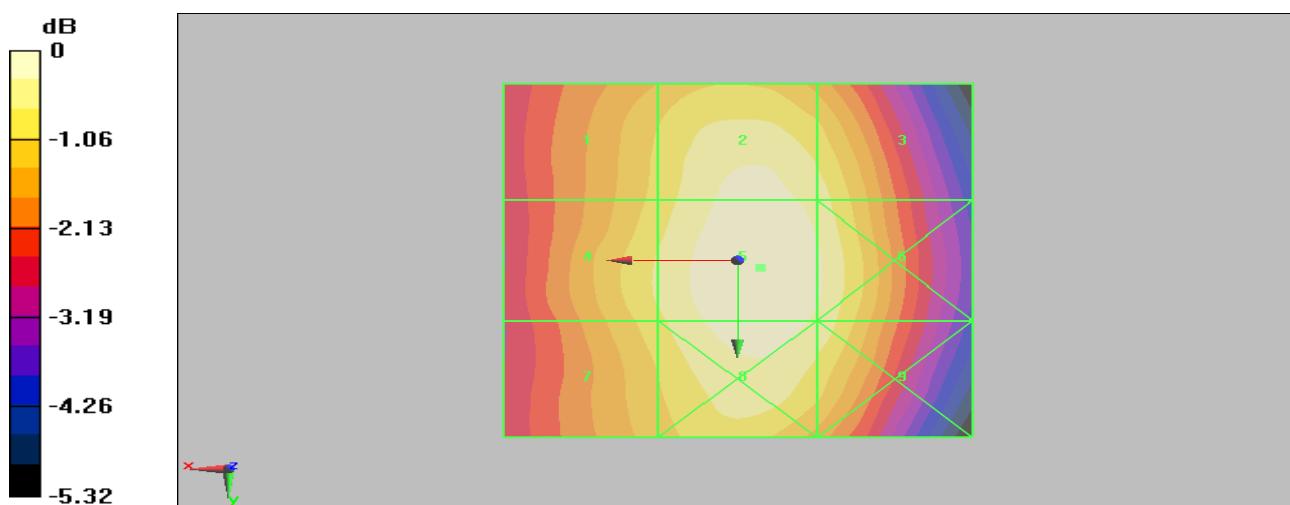


Figure 13 HAC RF E-Field CDMA Cellular Channel 384

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 30 of 84

HAC RF E-Field CDMA Cellular Low

Date/Time: 4/3/2011 11:01:29 AM

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

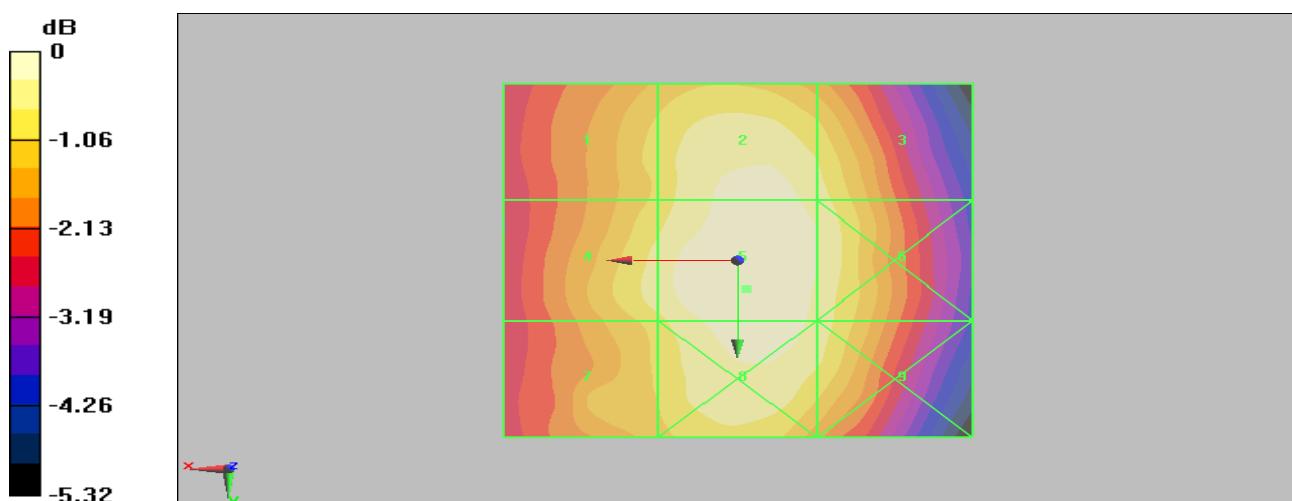
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 74.1 V/m

Probe Modulation Factor = 1.03


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 93.5 V/m; Power Drift = -0.026 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
66.9 M4	72.5 M4	69.9 M4
Grid 4	Grid 5	Grid 6
69.9 M4	74.1 M4	71.3 M4

0 dB = 74.1V/m

Figure 14 HAC RF E-Field CDMA Cellular Channel 1013

TA Technology (Shanghai) Co., Ltd.
Test Report

HAC RF H-Field CDMA Cellular High

Date/Time: 4/2/2011 1:29:58 PM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

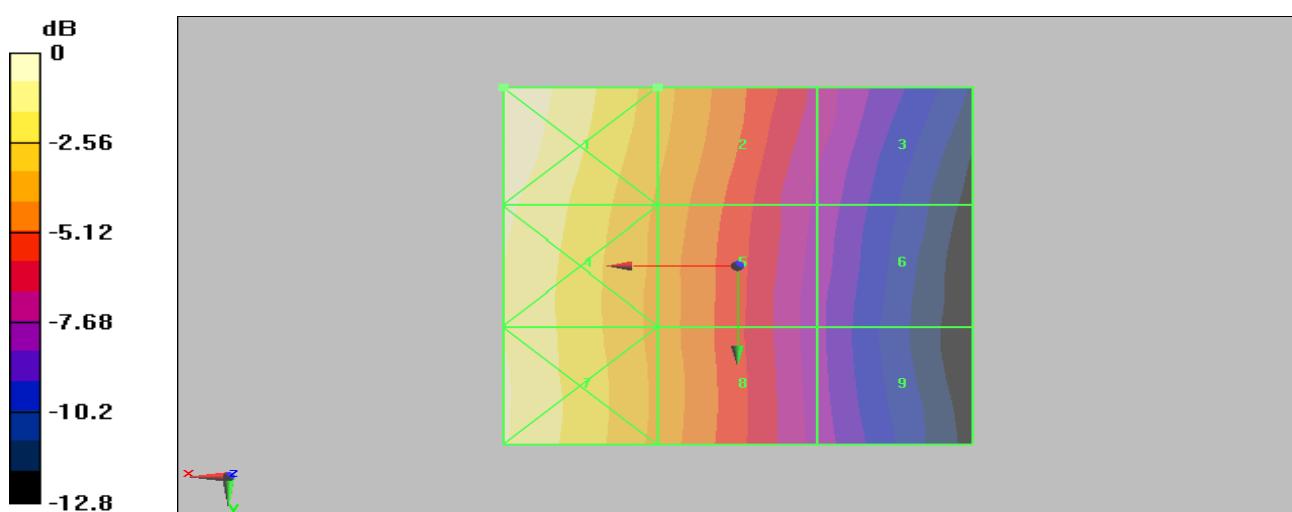
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device High/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.116 A/m

Probe Modulation Factor = 1


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.086 A/m; Power Drift = -0.043 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.163 M4	0.116 M4	0.072 M4
Grid 4	Grid 5	Grid 6
0.151 M4	0.109 M4	0.066 M4

Figure 15 HAC RF H-Field CDMA Cellular Channel 777

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 32 of 84

HAC RF H-Field CDMA Cellular Middle

Date/Time: 4/2/2011 1:24:23 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device Middle/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.120 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.089 A/m; Power Drift = -0.040 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.172 M4	0.120 M4	0.075 M4
Grid 4	Grid 5	Grid 6
0.159 M4	0.113 M4	0.068 M4

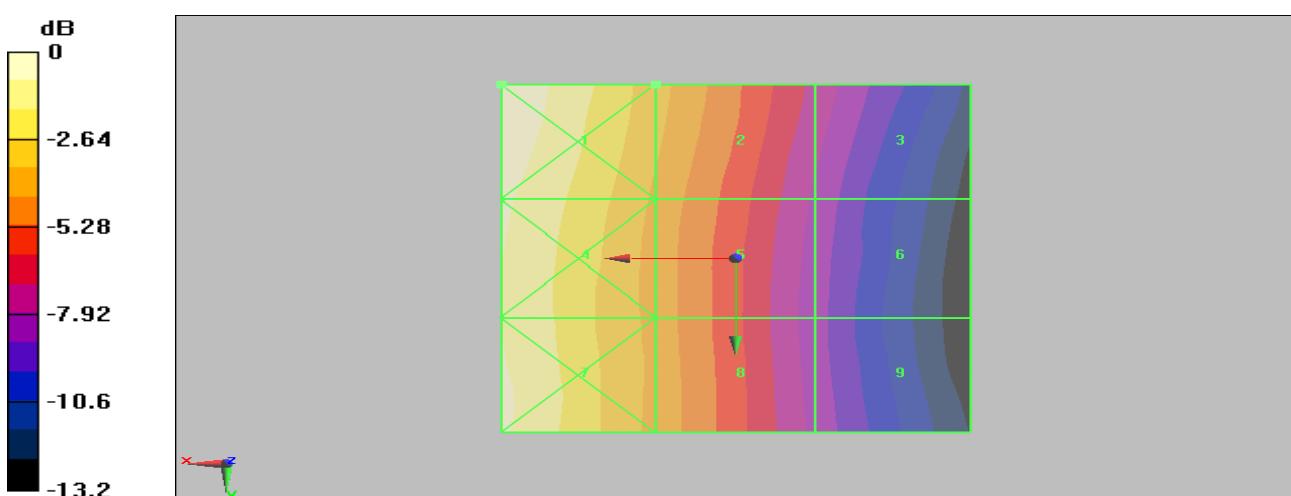


Figure 16 HAC RF H-Field CDMA Cellular Channel 384

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 33 of 84

HAC RF H-Field CDMA Cellular Low

Date/Time: 4/2/2011 1:41:39 PM

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.110 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.081 A/m; Power Drift = -0.008 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.156 M4	0.110 M4	0.067 M4
Grid 4	Grid 5	Grid 6
0.145 M4	0.104 M4	0.061 M4

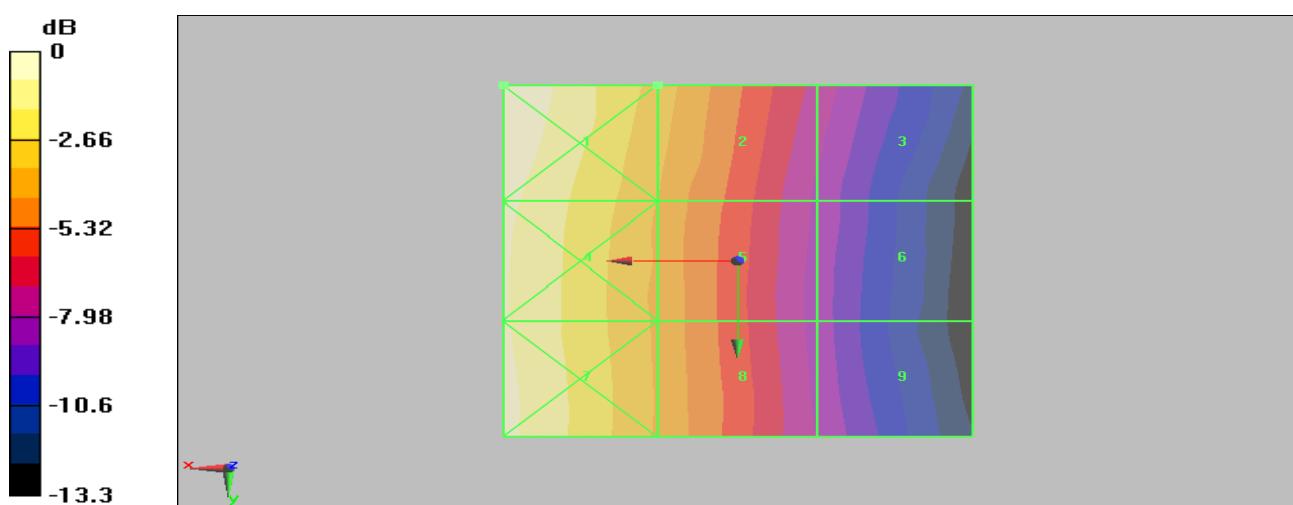


Figure 17 HAC RF H-Field CDMA Cellular Channel 1013

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 34 of 84

HAC RF E-Field CDMA PCS High

Date/Time: 4/3/2011 10:38:13 AM

Communication System: CDMA PCS; Frequency: 1908.75 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 42.9 V/m

Probe Modulation Factor = 1.03

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 45.6 V/m; Power Drift = -0.134 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
27.9 M4	33.2 M4	33.2 M4
31.4 M4	42.9 M4	42.7 M4
35.6 M4	44.1 M4	43.5 M4

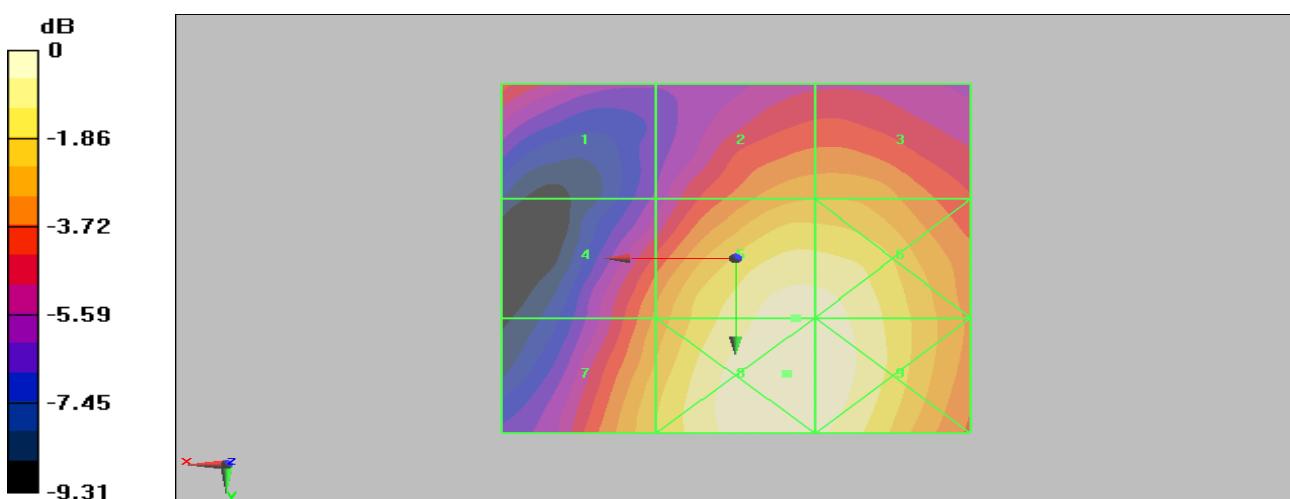


Figure 18 HAC RF E-Field CDMA PCS Channel 1175

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 35 of 84

HAC RF E-Field CDMA PCS Middle

Date/Time: 4/3/2011 10:32:50 AM

Communication System: CDMA PCS; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

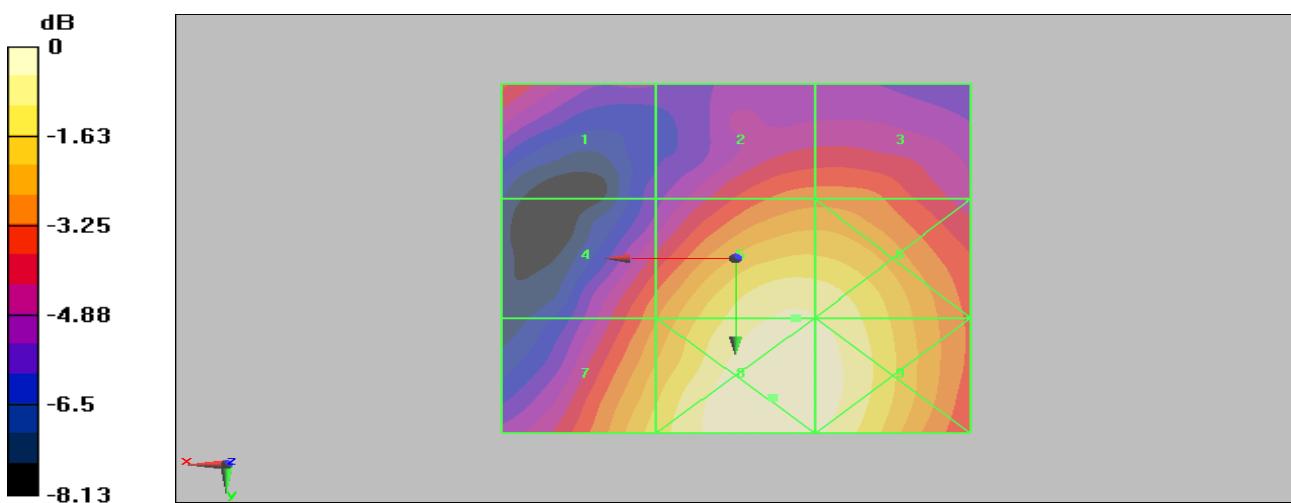
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device Middle/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 42.1 V/m

Probe Modulation Factor = 1.03


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 43.5 V/m; Power Drift = -0.040 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
29.5 M4	31.8 M4	31.8 M4
Grid 4	Grid 5	Grid 6
32.3 M4	42.1 M4	41.8 M4

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 36 of 84

HAC RF E-Field CDMA PCS Low

Date/Time: 4/3/2011 10:43:41 AM

Communication System: CDMA PCS; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 42.6 V/m

Probe Modulation Factor = 1.03

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 44.1 V/m; Power Drift = -0.125 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
28.6 M4	31.5 M4	31.4 M4
Grid 4	Grid 5	Grid 6
33.3 M4	42.6 M4	42.1 M4

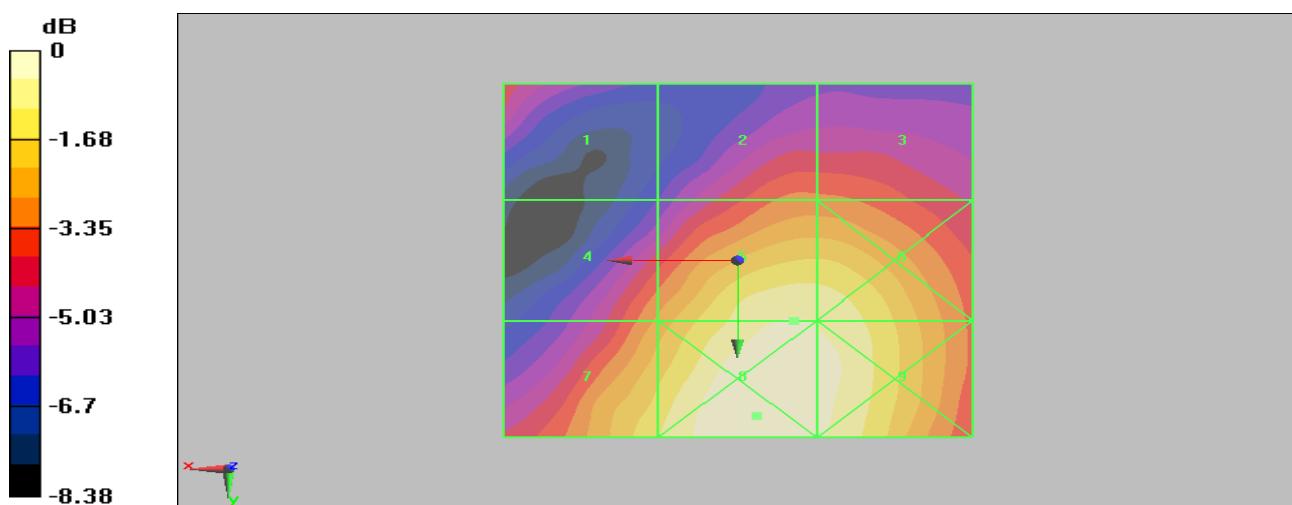


Figure 20 HAC RF E-Field CDMA PCS Channel 25

TA Technology (Shanghai) Co., Ltd.
Test Report

HAC RF H-Field CDMA PCS High

Date/Time: 4/3/2011 9:32:27 AM

Communication System: CDMA PCS; Frequency: 1908.75 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

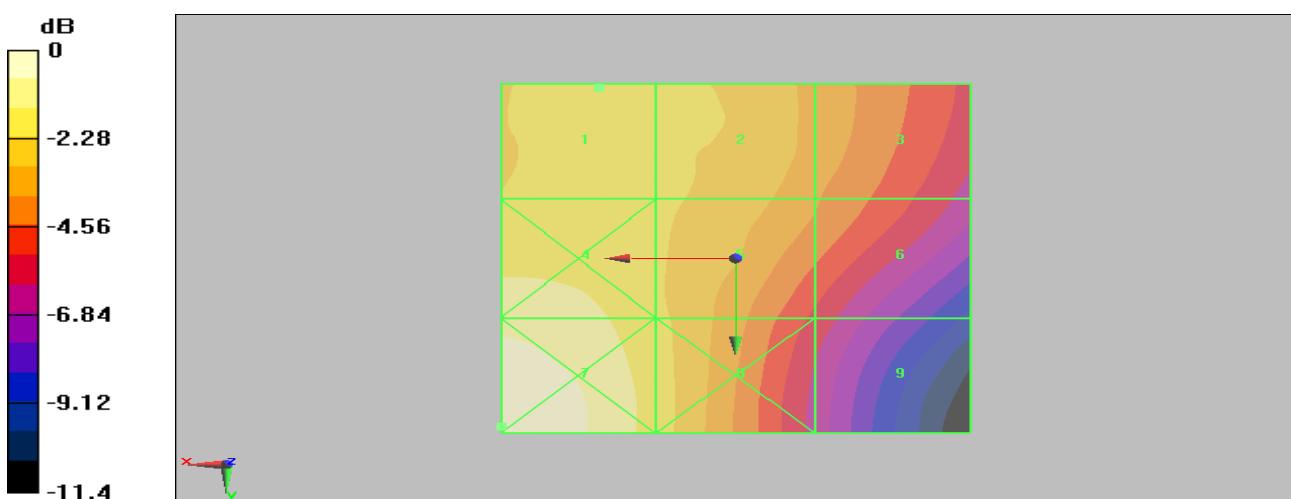
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device High/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.104 A/m

Probe Modulation Factor = 1


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.098 A/m; Power Drift = -0.034 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.104 M4	0.103 M4	0.090 M4
Grid 4	Grid 5	Grid 6
0.116 M4	0.102 M4	0.085 M4

Figure 21 HAC RF H-Field CDMA PCS Channel 1175

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 38 of 84

HAC RF H-Field CDMA PCS Middle

Date/Time: 4/3/2011 9:26:42 AM

Communication System: CDMA PCS; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device Middle/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.097 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.094 A/m; Power Drift = -0.073 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.097 M4	0.096 M4	0.086 M4
Grid 4	Grid 5	Grid 6
0.110 M4	0.096 M4	0.083 M4

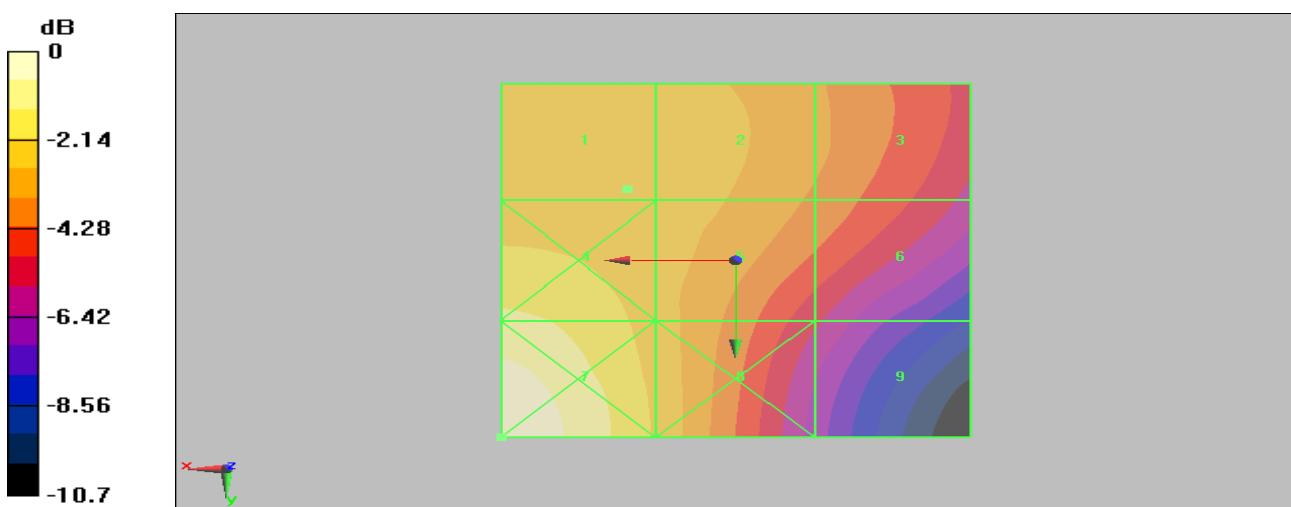


Figure 22 HAC RF H-Field CDMA PCS Channel 600

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 39 of 84

HAC RF H-Field CDMA PCS Low

Date/Time: 4/3/2011 9:37:54 AM

Communication System: CDMA PCS; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.100 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.098 A/m; Power Drift = -0.060 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.100 M4	0.098 M4	0.087 M4
Grid 4	Grid 5	Grid 6
0.114 M4	0.099 M4	0.084 M4

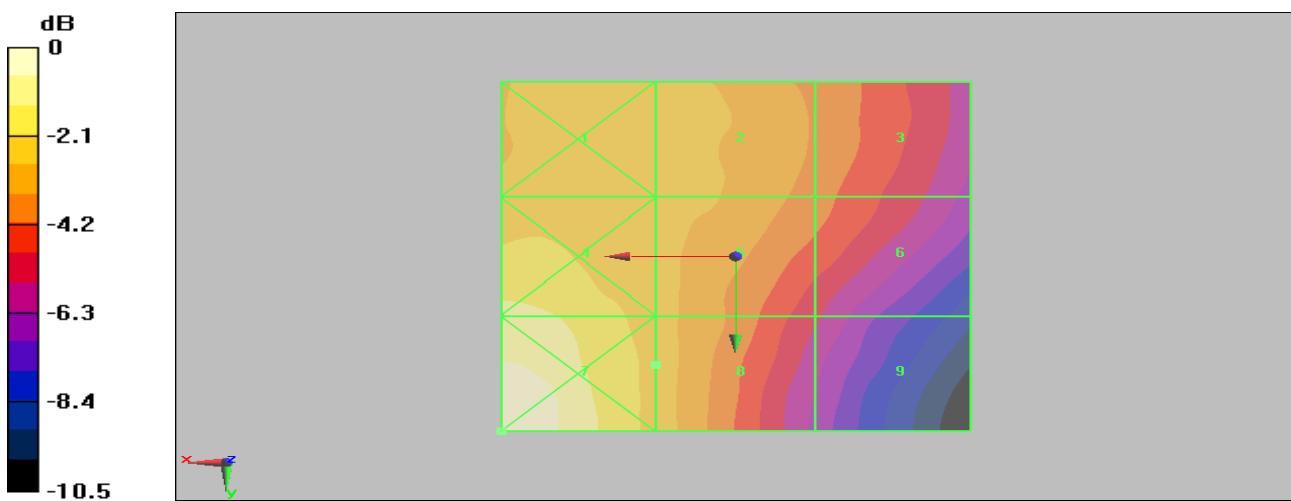


Figure 23 HAC RF H-Field CDMA PCS Channel 25

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 40 of 84

HAC RF E-Field CDMA AWS High

Date/Time: 4/3/2011 11:14:27 AM

Communication System: CDMA AWS; Frequency: 1752.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

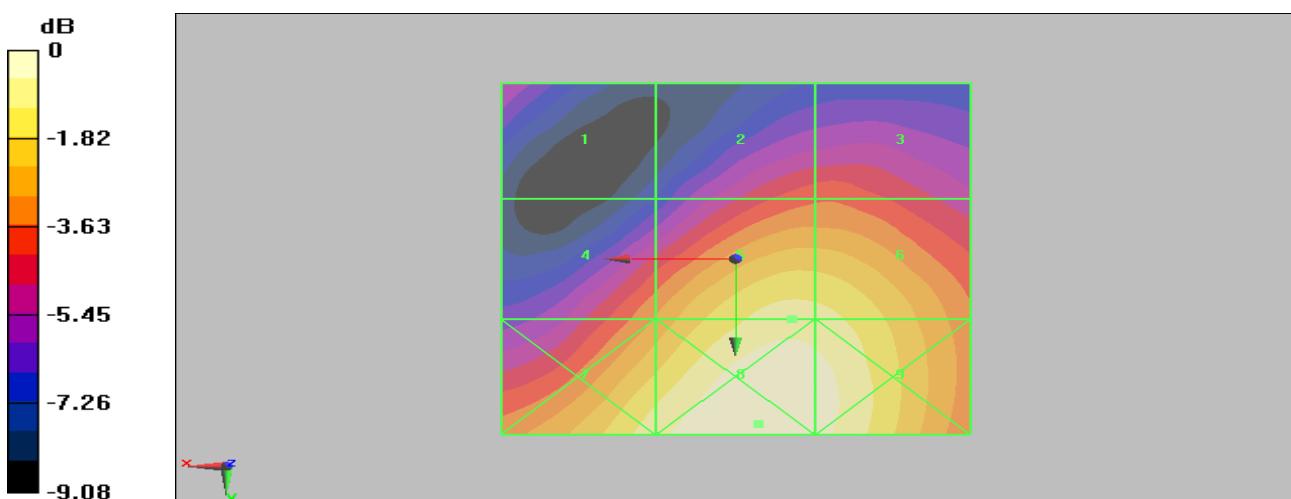
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 41.3 V/m

Probe Modulation Factor = 1.03


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 40.4 V/m; Power Drift = -0.009 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
25 M4	29.9 M4	30 M4
32.6 M4	41.3 M4	41 M4
41.7 M4	45.8 M4	44.3 M4

Figure 24 HAC RF E-Field CDMA AWS Channel 850

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 41 of 84

HAC RF E-Field CDMA AWS Middle

Date/Time: 4/3/2011 11:08:35 AM

Communication System: CDMA AWS; Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device Middle/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 42.6 V/m

Probe Modulation Factor = 1.03

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 41.8 V/m; Power Drift = 0.055 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
23.7 M4	31 M4	31.1 M4
Grid 4	Grid 5	Grid 6
33.2 M4	42.6 M4	42.5 M4
Grid 7	Grid 8	Grid 9
42.2 M4	47.2 M4	45.7 M4

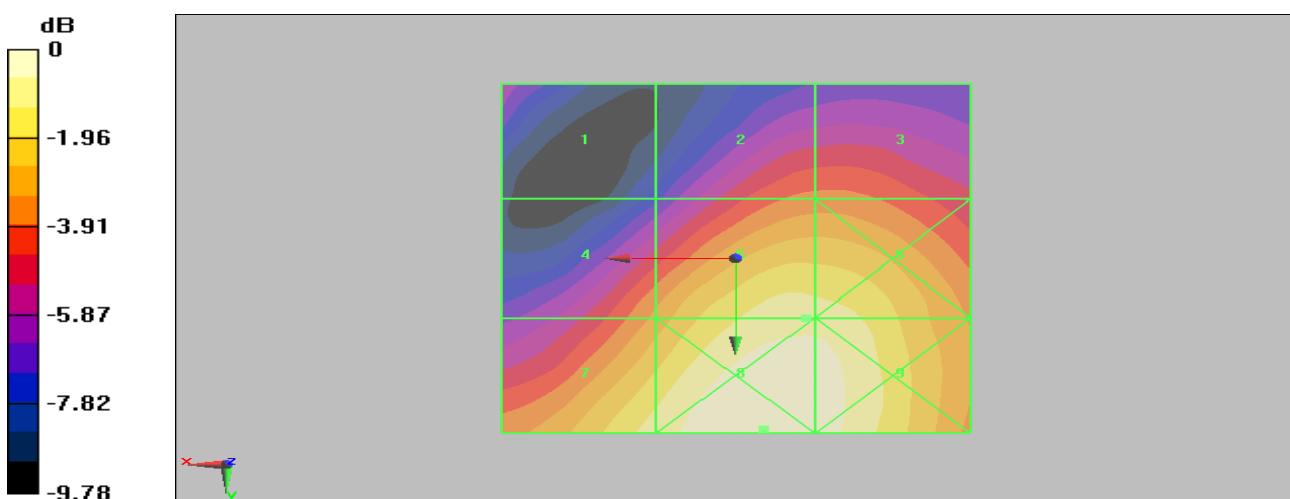


Figure 25 HAC RF E-Field CDMA AWS Channel 450

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 42 of 84

HAC RF E-Field CDMA AWS Low

Date/Time: 4/3/2011 11:19:56 AM

Communication System: CDMA AWS; Frequency: 1711.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2428; ConvF(1, 1, 1); Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

E Scan - ER3D - 2007: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 40.9 V/m

Probe Modulation Factor = 1.03

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 41 V/m; Power Drift = -0.009 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
23.3 M4	29.7 M4	29.8 M4
Grid 4	Grid 5	Grid 6
31.7 M4	40.9 M4	40.8 M4

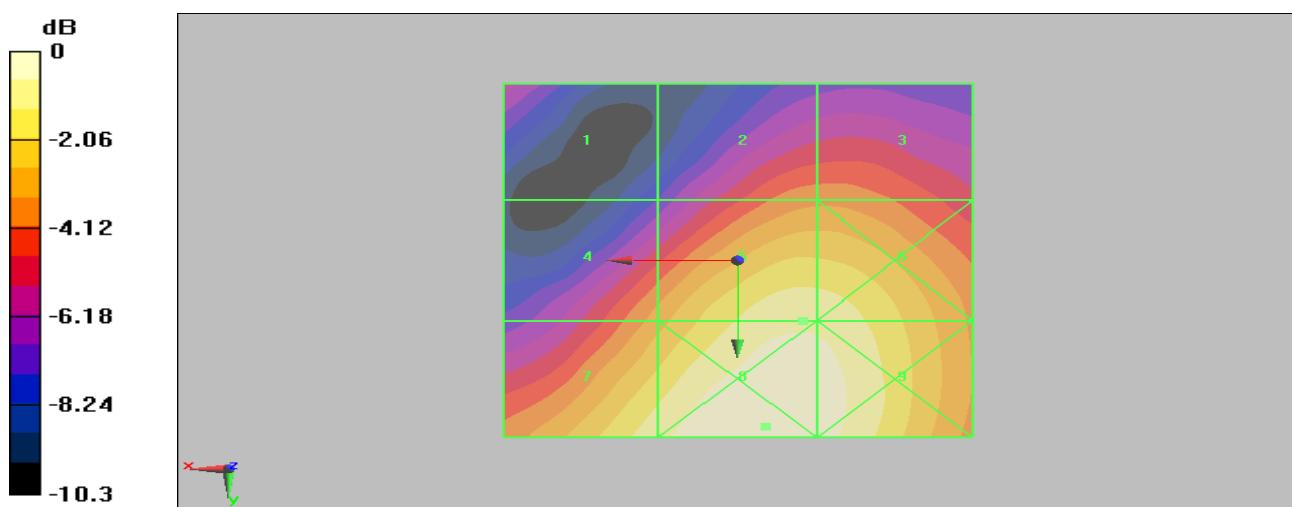


Figure 26 HAC RF E-Field CDMA AWS Channel 25

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 43 of 84

HAC RF H-Field CDMA AWS High

Date/Time: 4/3/2011 9:56:35 AM

Communication System: CDMA AWS; Frequency: 1752.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device High/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.104 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.101 A/m; Power Drift = -0.037 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.099 M4	0.098 M4	0.083 M4
Grid 4	Grid 5	Grid 6
0.118 M4	0.104 M4	0.083 M4
Grid 7	Grid 8	Grid 9
0.135 M4	0.107 M4	0.076 M4

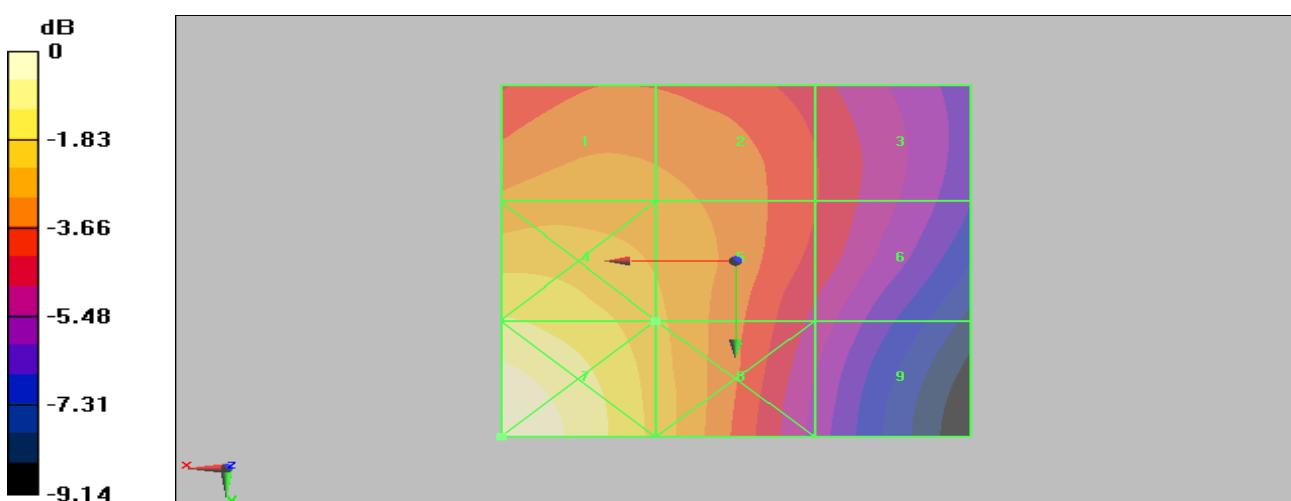


Figure 27 HAC RF H-Field CDMA AWS Channel 850

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 44 of 84

HAC RF H-Field CDMA AWS Middle

Date/Time: 4/3/2011 9:44:43 AM

Communication System: CDMA AWS; Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device Middle/Hearing Aid

Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.106 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.102 A/m; Power Drift = -0.020 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.101 M4	0.099 M4	0.083 M4
Grid 4	Grid 5	Grid 6
0.120 M4	0.106 M4	0.083 M4

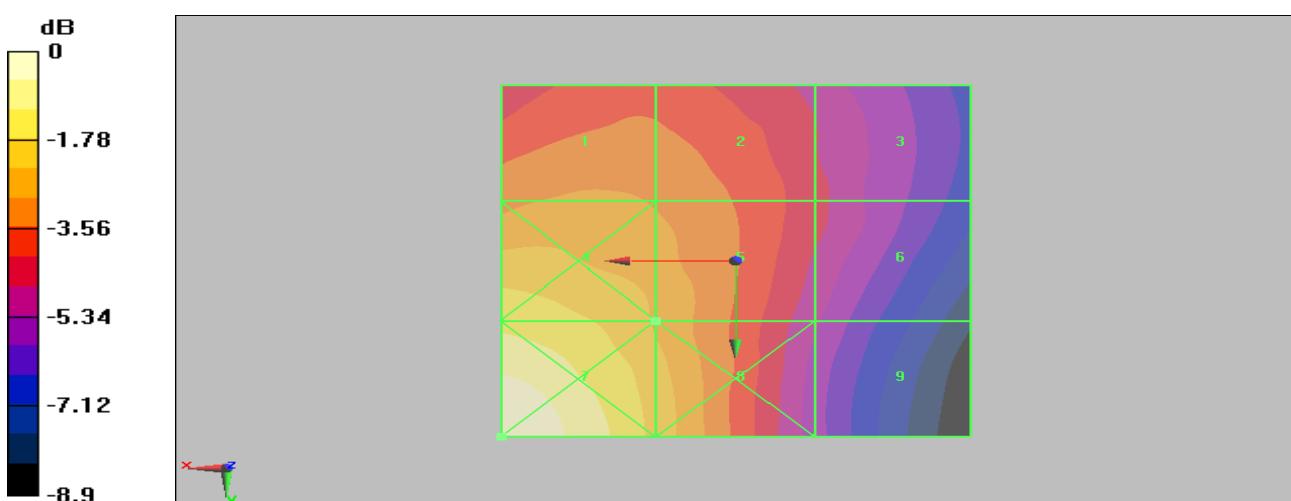


Figure 28 HAC RF H-Field CDMA AWS Channel 450

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1103-0408HAC01

Page 45 of 84

HAC RF H-Field CDMA AWS Low

Date/Time: 4/3/2011 10:01:58 AM

Communication System: CDMA AWS; Frequency: 1711.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: RF Section

DASY5 Configuration:

Probe: H3DV6 - SN6260 ; Calibrated: 10/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility

Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.105 A/m

Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.100 A/m; Power Drift = 0.057 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.103 M4	0.100 M4	0.082 M4
Grid 4	Grid 5	Grid 6
0.120 M4	0.105 M4	0.082 M4

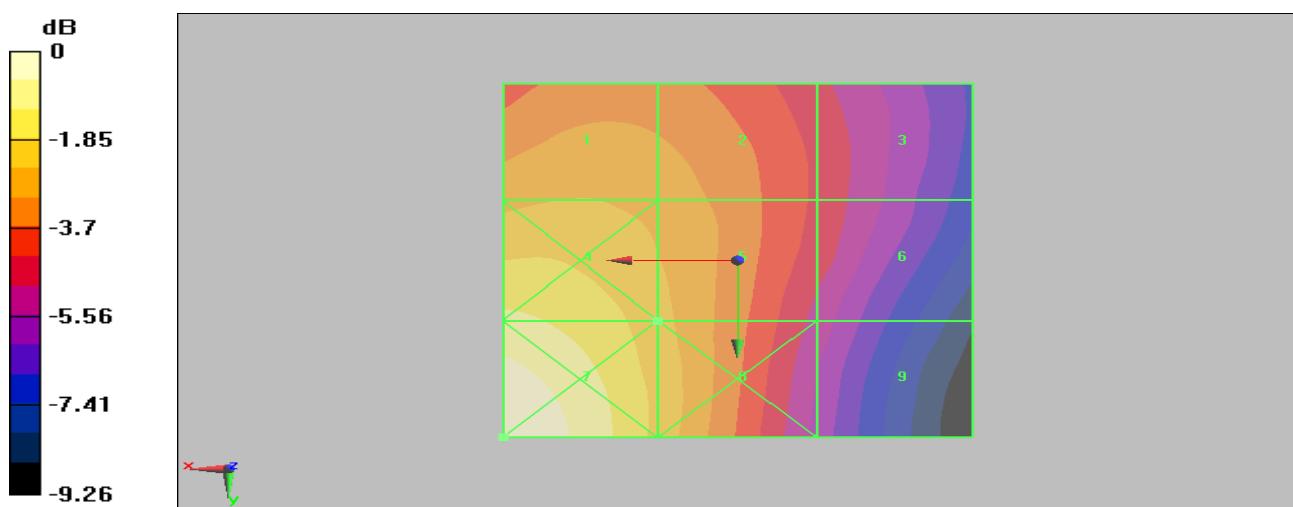


Figure 29 HAC RF H-Field CDMA AWS Channel 25

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 46 of 84

ANNEX C: E-Probe Calibration Certificate

<p>Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland</p> <p> </p> <p>Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates</p>		<p>S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura S Swiss Calibration Service</p>																																																																
Client	TMC	Accreditation No.: SCS 108																																																																
<p>CALIBRATION CERTIFICATE</p> <table border="1"><tr><td>Object</td><td>ER3DV6 - SN:2428</td></tr><tr><td>Calibration procedure(s)</td><td>QA CAL-02,v5 and QA CAL-25,v2 Calibration procedure for E-field probes optimized for close near field evaluations in air</td></tr><tr><td>Calibration date:</td><td>October 20, 2009</td></tr><tr><td colspan="2"><p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p><p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p><p>Calibration Equipment used (M&TE critical for calibration):</p><table border="1"><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date (Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power meter E4419B</td><td>GB41293874</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Power sensor E4412A</td><td>MY41495277</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Power sensor E4412A</td><td>MY41498087</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Reference 3 dB Attenuator</td><td>SN: S5054 (3c)</td><td>31-Mar-09 (No. 217-01026)</td><td>Mar-10</td></tr><tr><td>Reference 20 dB Attenuator</td><td>SN: S5086 (20b)</td><td>31-Mar-09 (No. 217-01028)</td><td>Mar-10</td></tr><tr><td>Reference 30 dB Attenuator</td><td>SN: S5129 (30b)</td><td>31-Mar-09 (No. 217-01027)</td><td>Mar-10</td></tr><tr><td>Reference Probe ER3DV6</td><td>SN: 2328</td><td>3-Oct-09 (No. ER3-2328_Oct09)</td><td>Oct-10</td></tr><tr><td>DAE4</td><td>SN: 789</td><td>19-Dec-08 (No. DAE4-789_Dec08)</td><td>Dec-09</td></tr><tr><td>Secondary Standards</td><td>ID #</td><td>Check Date (in house)</td><td>Scheduled Check</td></tr><tr><td>RF generator HP 8648C</td><td>US3642U01700</td><td>4-Aug-09 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>Network Analyzer HP 8753E</td><td>US37390585</td><td>18-Oct-01 (in house check Oct-09)</td><td>In house check: Oct-10</td></tr><tr><td>Calibrated by:</td><td>Name Marcel Fehr</td><td>Function Laboratory Technician</td><td>Signature </td></tr><tr><td>Approved by:</td><td>Katja Pokovic</td><td>Technical Manager</td><td></td></tr></tbody></table><p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p><p>Issued: October 22, 2009</p></td></tr></table>			Object	ER3DV6 - SN:2428	Calibration procedure(s)	QA CAL-02,v5 and QA CAL-25,v2 Calibration procedure for E-field probes optimized for close near field evaluations in air	Calibration date:	October 20, 2009	<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration):</p> <table border="1"><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date (Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power meter E4419B</td><td>GB41293874</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Power sensor E4412A</td><td>MY41495277</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Power sensor E4412A</td><td>MY41498087</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Reference 3 dB Attenuator</td><td>SN: S5054 (3c)</td><td>31-Mar-09 (No. 217-01026)</td><td>Mar-10</td></tr><tr><td>Reference 20 dB Attenuator</td><td>SN: S5086 (20b)</td><td>31-Mar-09 (No. 217-01028)</td><td>Mar-10</td></tr><tr><td>Reference 30 dB Attenuator</td><td>SN: S5129 (30b)</td><td>31-Mar-09 (No. 217-01027)</td><td>Mar-10</td></tr><tr><td>Reference Probe ER3DV6</td><td>SN: 2328</td><td>3-Oct-09 (No. ER3-2328_Oct09)</td><td>Oct-10</td></tr><tr><td>DAE4</td><td>SN: 789</td><td>19-Dec-08 (No. DAE4-789_Dec08)</td><td>Dec-09</td></tr><tr><td>Secondary Standards</td><td>ID #</td><td>Check Date (in house)</td><td>Scheduled Check</td></tr><tr><td>RF generator HP 8648C</td><td>US3642U01700</td><td>4-Aug-09 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>Network Analyzer HP 8753E</td><td>US37390585</td><td>18-Oct-01 (in house check Oct-09)</td><td>In house check: Oct-10</td></tr><tr><td>Calibrated by:</td><td>Name Marcel Fehr</td><td>Function Laboratory Technician</td><td>Signature </td></tr><tr><td>Approved by:</td><td>Katja Pokovic</td><td>Technical Manager</td><td></td></tr></tbody></table> <p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p> <p>Issued: October 22, 2009</p>		Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10	Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10	Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10	Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10	Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10	Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10	Reference Probe ER3DV6	SN: 2328	3-Oct-09 (No. ER3-2328_Oct09)	Oct-10	DAE4	SN: 789	19-Dec-08 (No. DAE4-789_Dec08)	Dec-09	Secondary Standards	ID #	Check Date (in house)	Scheduled Check	RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-09)	In house check: Oct-11	Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct-10	Calibrated by:	Name Marcel Fehr	Function Laboratory Technician	Signature 	Approved by:	Katja Pokovic	Technical Manager	
Object	ER3DV6 - SN:2428																																																																	
Calibration procedure(s)	QA CAL-02,v5 and QA CAL-25,v2 Calibration procedure for E-field probes optimized for close near field evaluations in air																																																																	
Calibration date:	October 20, 2009																																																																	
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration):</p> <table border="1"><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date (Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power meter E4419B</td><td>GB41293874</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Power sensor E4412A</td><td>MY41495277</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Power sensor E4412A</td><td>MY41498087</td><td>1-Apr-09 (No. 217-01030)</td><td>Apr-10</td></tr><tr><td>Reference 3 dB Attenuator</td><td>SN: S5054 (3c)</td><td>31-Mar-09 (No. 217-01026)</td><td>Mar-10</td></tr><tr><td>Reference 20 dB Attenuator</td><td>SN: S5086 (20b)</td><td>31-Mar-09 (No. 217-01028)</td><td>Mar-10</td></tr><tr><td>Reference 30 dB Attenuator</td><td>SN: S5129 (30b)</td><td>31-Mar-09 (No. 217-01027)</td><td>Mar-10</td></tr><tr><td>Reference Probe ER3DV6</td><td>SN: 2328</td><td>3-Oct-09 (No. ER3-2328_Oct09)</td><td>Oct-10</td></tr><tr><td>DAE4</td><td>SN: 789</td><td>19-Dec-08 (No. DAE4-789_Dec08)</td><td>Dec-09</td></tr><tr><td>Secondary Standards</td><td>ID #</td><td>Check Date (in house)</td><td>Scheduled Check</td></tr><tr><td>RF generator HP 8648C</td><td>US3642U01700</td><td>4-Aug-09 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>Network Analyzer HP 8753E</td><td>US37390585</td><td>18-Oct-01 (in house check Oct-09)</td><td>In house check: Oct-10</td></tr><tr><td>Calibrated by:</td><td>Name Marcel Fehr</td><td>Function Laboratory Technician</td><td>Signature </td></tr><tr><td>Approved by:</td><td>Katja Pokovic</td><td>Technical Manager</td><td></td></tr></tbody></table> <p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p> <p>Issued: October 22, 2009</p>		Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10	Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10	Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10	Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10	Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10	Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10	Reference Probe ER3DV6	SN: 2328	3-Oct-09 (No. ER3-2328_Oct09)	Oct-10	DAE4	SN: 789	19-Dec-08 (No. DAE4-789_Dec08)	Dec-09	Secondary Standards	ID #	Check Date (in house)	Scheduled Check	RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-09)	In house check: Oct-11	Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct-10	Calibrated by:	Name Marcel Fehr	Function Laboratory Technician	Signature 	Approved by:	Katja Pokovic	Technical Manager										
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration																																																															
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10																																																															
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10																																																															
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10																																																															
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10																																																															
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10																																																															
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10																																																															
Reference Probe ER3DV6	SN: 2328	3-Oct-09 (No. ER3-2328_Oct09)	Oct-10																																																															
DAE4	SN: 789	19-Dec-08 (No. DAE4-789_Dec08)	Dec-09																																																															
Secondary Standards	ID #	Check Date (in house)	Scheduled Check																																																															
RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-09)	In house check: Oct-11																																																															
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct-10																																																															
Calibrated by:	Name Marcel Fehr	Function Laboratory Technician	Signature 																																																															
Approved by:	Katja Pokovic	Technical Manager																																																																
Certificate No: ER3-2428_Oct09		Page 1 of 10																																																																

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 47 of 84

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

NORM x,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORM x,y,z : Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide).
- NORM $(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 48 of 84

ER3DV6 SN:2428

October 20, 2009

Probe ER3DV6

SN:2428

Manufactured: September 11, 2007
Last calibrated: December 13, 2007
Recalibrated: October 20, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 49 of 84

ER3DV6 SN:2428

October 20, 2009

DASY - Parameters of Probe: ER3DV6 SN:2428

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²)	1.52	1.59	1.86	\pm 10.1%
DCP (mV) ^A	91.5	93.0	98.9	

Modulation Calibration Parameters

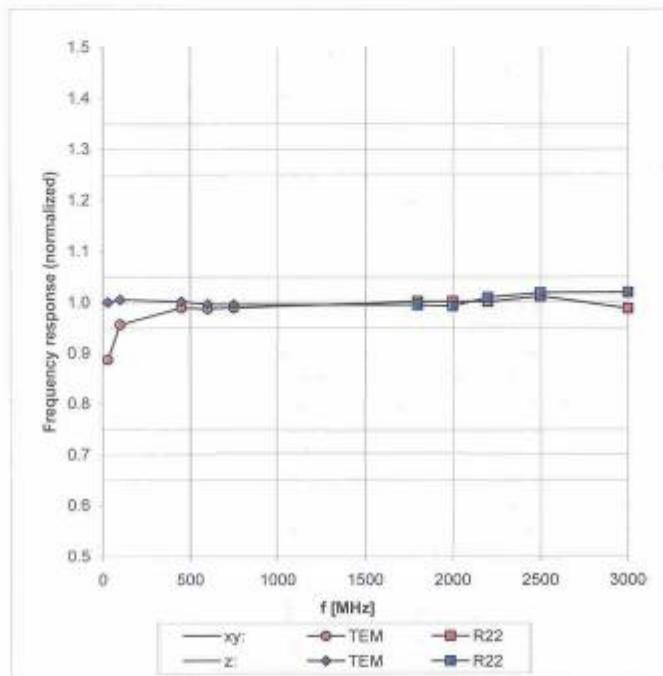
UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc (k=2)
10000	CW		X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	300 300 300	\pm 1.5%

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A numerical linearization parameter: uncertainty not required

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01


Page 50 of 84

ER3DV6 SN:2428

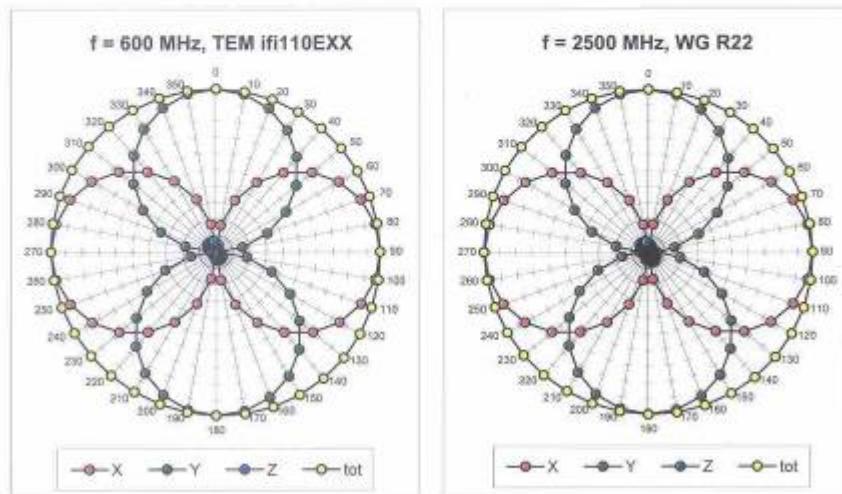
October 20, 2009

Frequency Response of E-Field

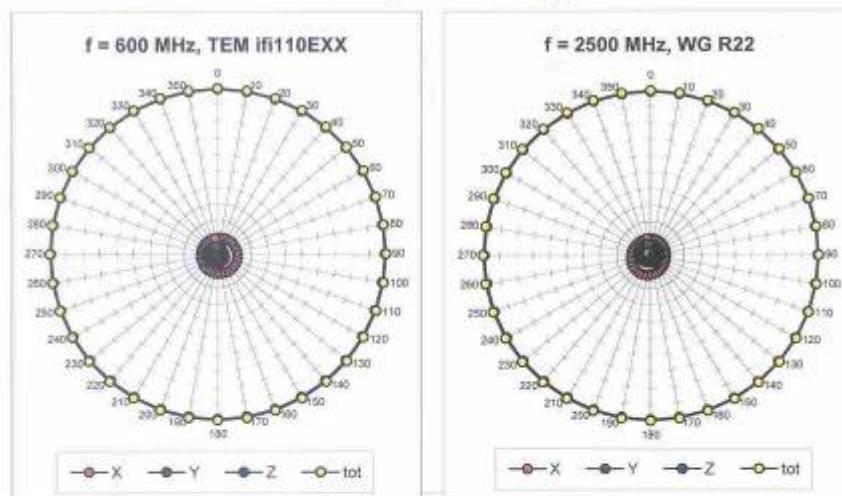
(TEM-Cell:ifi110 EXX, Waveguide R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA1103-0408HAC01

Page 51 of 84

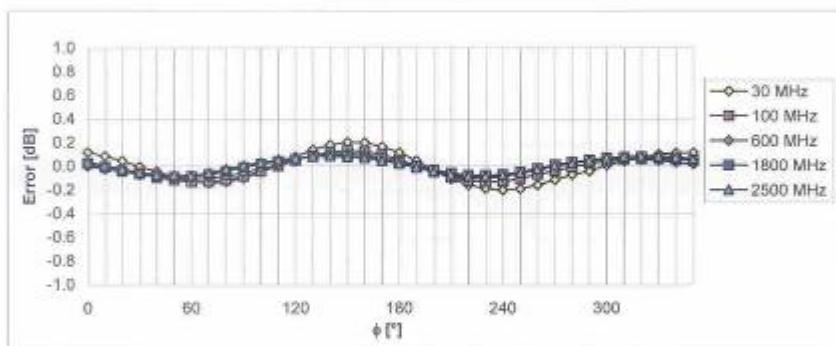

ER3DV6 SN:2428

October 20, 2009

Receiving Pattern (ϕ), $\theta = 0^\circ$

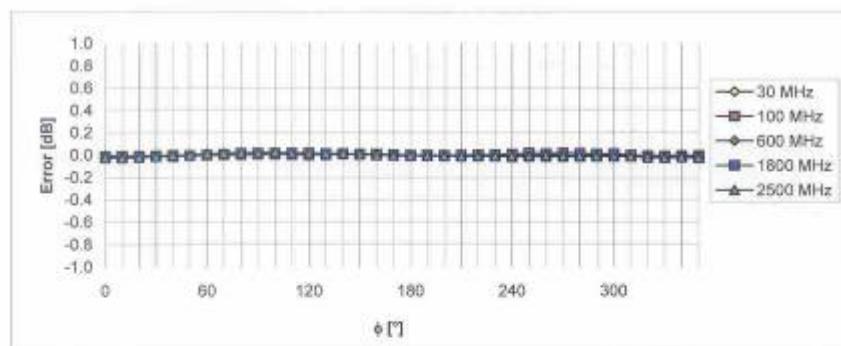
Receiving Pattern (ϕ), $\theta = 90^\circ$

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA1103-0408HAC01

Page 52 of 84

ER3DV6 SN:2428


October 20, 2009

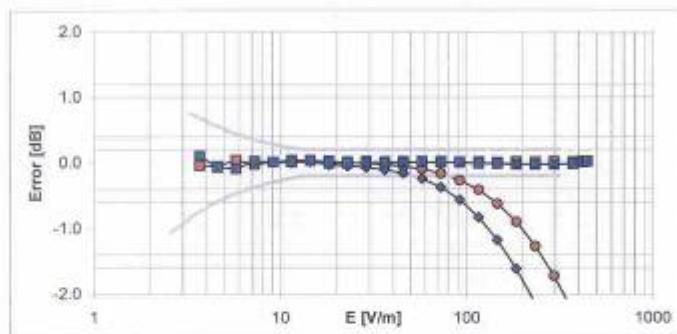
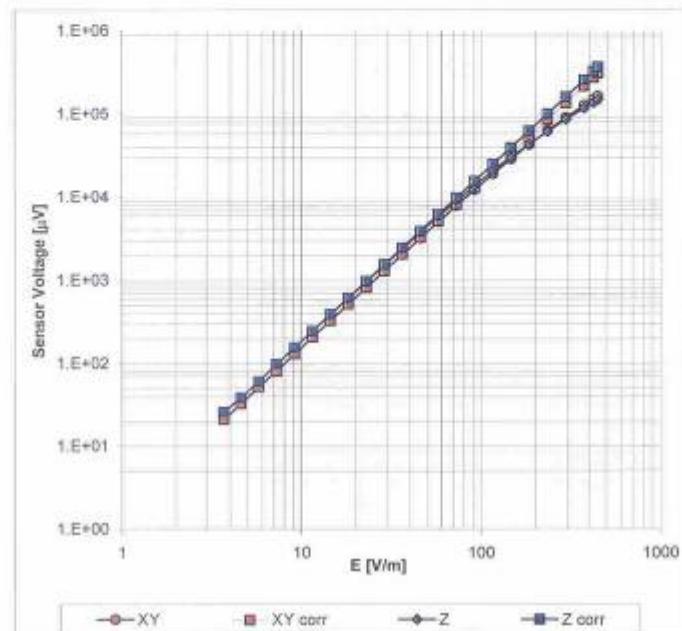
Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Receiving Pattern (ϕ), $\theta = 90^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No. RZA1103-0408HAC01

Page 53 of 84

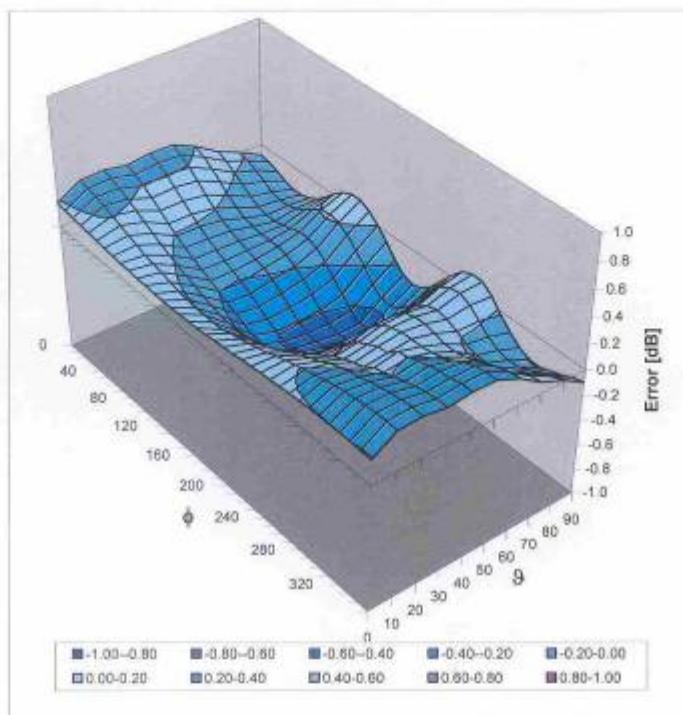
ER3DV6 SN:2428

October 20, 2009

Dynamic Range f(E-field)
(Waveguide R22, $f = 1800$ MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA1103-0408HAC01

Page 54 of 84

ER3DV6 SN:2428

October 20, 2009

Deviation from Isotropy in Air
Error (ϕ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 55 of 84

ER3DV6 SN:2428

October 20, 2009

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-218.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 56 of 84

ANNEX D: H-Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TMC

Certificate No: H3-6260_Oct09

CALIBRATION CERTIFICATE

Object H3DV6 - SN:6260

Calibration procedure(s)
QA CAL-03.v5 and QA CAL-25.v2
Calibration procedure for H-field probes optimized for close near field evaluations in air

Calibration date: October 20, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe H3DV6	SN: 6182	3-Oct-09 (No. H3-6182_Oct09)	Oct-10
DAE4	SN: 789	19-Dec-08 (No. DAE4-789_Dec08)	Dec-09

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3842U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Calibrated by:	Name	Function	Signature
	Marcel Fehr	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: October 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 57 of 84

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

NORM x,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- *NORM x,y,z* : Assessed for E-field polarization $\beta = 0$ for XY sensors and $\beta = 90$ for Z sensor ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide).
- *X,Y,Z(f)_a0a1a2=X,Y,Z_a0a1a2*frequency_response* (see Frequency Response Chart).
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *Ax,y,z; Bx,y,z; Cx,y,z* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- *Spherical isotropy (3D deviation from isotropy)*: in a locally homogeneous field realized using an open waveguide setup.
- *Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle*: The angle is assessed using the information gained by determining the *X_a0a1a2* (no uncertainty required).

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 58 of 84

H3DV6 SN:6260

October 20, 2009

Probe H3DV6

SN:6260

Manufactured:	September 7, 2007
Last calibrated:	December 13, 2007
Recalibrated:	October 20, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 59 of 84

H3DV6 SN:6260

October 20, 2009

DASY - Parameters of Probe: H3DV6 SN:6260

Basic Calibration Parameters

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (A/m / ∛(μV))	a0	2.47E-3	2.49E-3	2.95E-3	± 10.1%
Norm (A/m / ∛(μV))	a1	-2.97E-5	5.62E-6	-4.47E-5	± 10.1%
Norm (A/m / ∛(μV))	a2	4.84E-5	4.36E-5	6.01E-5	± 10.1%
DCP (mV) ^A		84.5	90.3	83.9	

Modulation Calibration Parameters

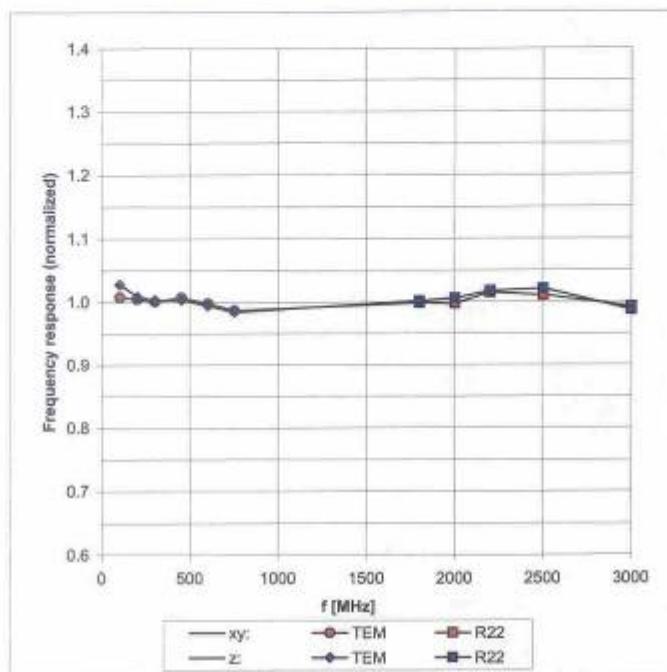
UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc (k=2)
10000	CW	0.00	X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	300 300 300	± 1.5%

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A numerical linearization parameter: uncertainty not required

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01


Page 60 of 84

H3DV6 SN:6260

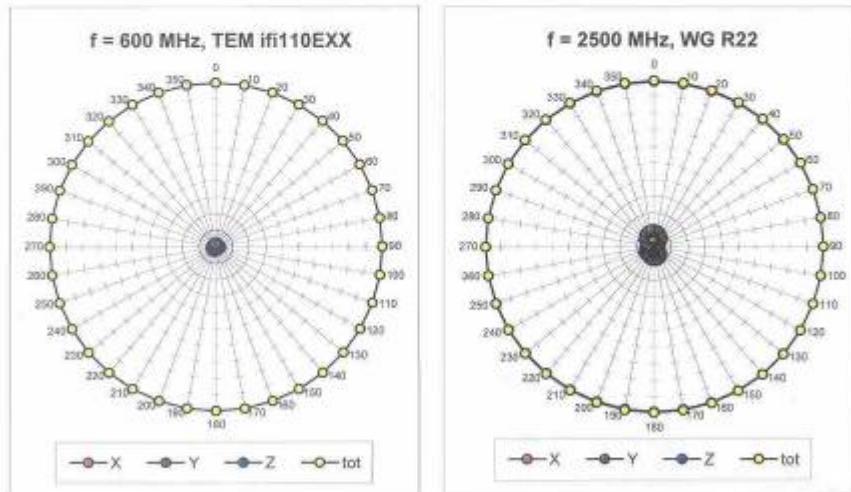
October 20, 2009

Frequency Response of H-Field

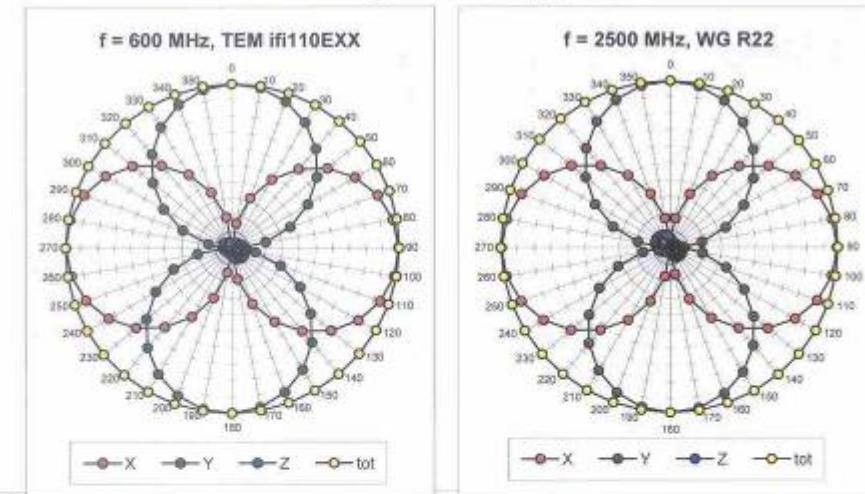
(TEM-Cell:ifi110 EXX, Waveguide R22)

Uncertainty of Frequency Response of H-field: $\pm 6.3\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd. Test Report


Report No. RZA1103-0408HAC01

Page 61 of 84

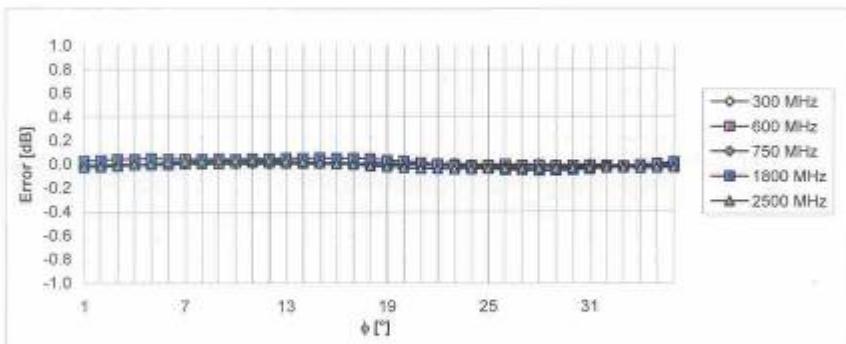

H3DV6 SN:6260

October 20, 2009

Receiving Pattern (ϕ), $\theta = 90^\circ$

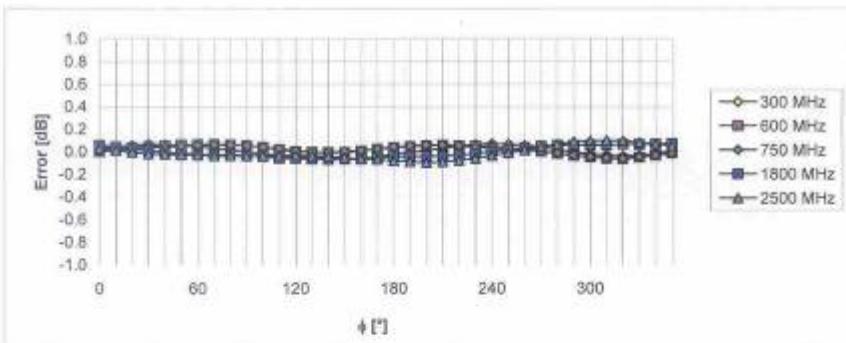
Receiving Pattern (ϕ), $\theta = 0^\circ$

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA1103-0408HAC01

Page 62 of 84

H3DV6 SN:6260


October 20, 2009

Receiving Pattern (ϕ), $\vartheta = 90^\circ$

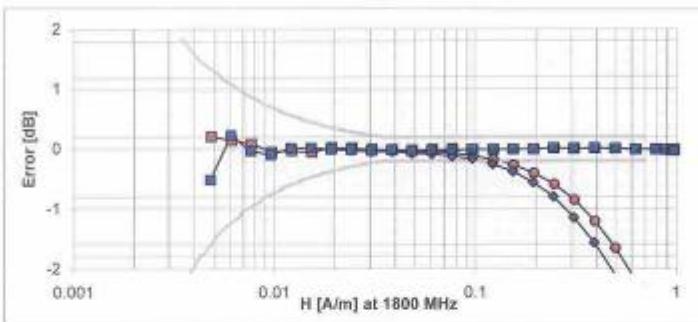
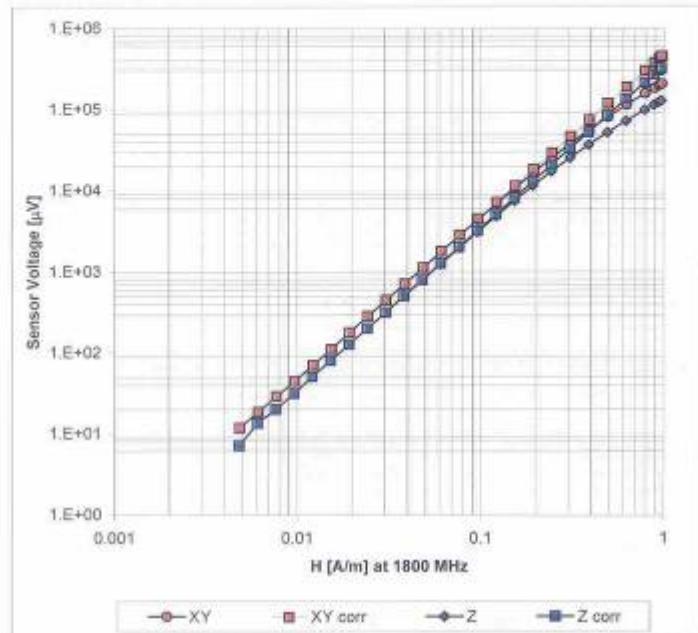
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Receiving Pattern (ϕ), $\vartheta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01



Page 63 of 84

H3DV6 SN:6260

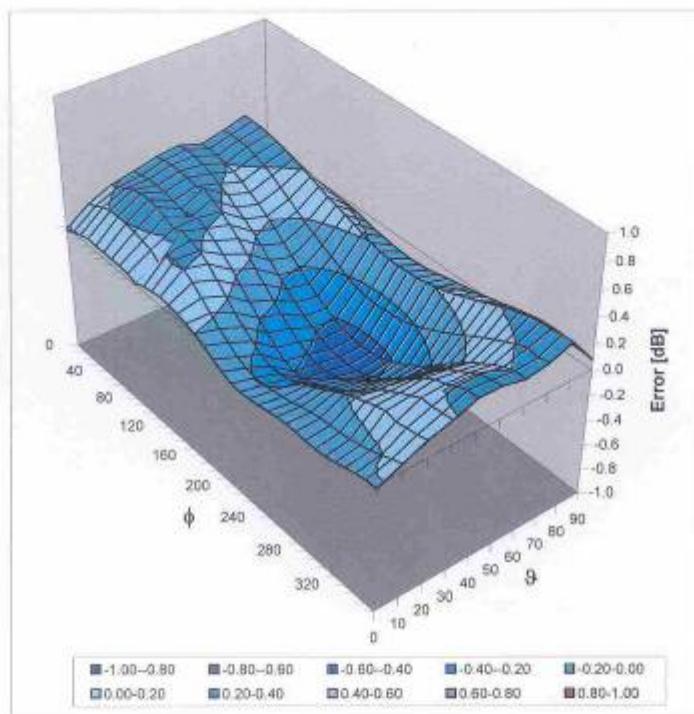
October 20, 2009

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA1103-0408HAC01

Page 64 of 84

H3DV6 SN:6260

October 20, 2009

Deviation from Isotropy in Air
Error (ϕ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1103-0408HAC01

Page 65 of 84

H3DV6 SN:6260

October 20, 2009

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle ("")	-154.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6.0 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 66 of 84

ANNEX E: CD835V3 Dipole Calibration Certificate (SN: 1149)

**Calibration Laboratory of
Schmid & Partner
Engineering AG**
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Client **Auden**

Certificates No: CD835V3-1149 Jan10

CALIBRATION CERTIFICATE

Object CD835V3 - SN: 1149

Calibration procedure(s) QA CAL-20.v5
Calibration procedure for dipoles in air

Calibration date: January 12, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8461A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Probe ER3DV6	SN: 2336	30-Dec-09 (No. ER3-2336_Dec09)	Dec-10
Probe H3DV6	SN: 6065	30-Dec-09 (No. H3-6065_Dec09)	Dec-10
DAE4	SN: 781	30-Nov-09 (No. DAE4-781_Nov09)	Nov-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-09)	In house check: Oct-10
Power sensor HP 8462H	SN: 3318A09450	09-Oct-09 (in house check Oct-09)	In house check: Oct-10
Power sensor HP 8462A	SN: US37285597	09-Oct-09 (in house check Oct-09)	In house check: Oct-10
Network Analyzer HP 8753E	US37380585	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
RF generator E4433B	MY 41000675	03-Nov-04 (in house check Oct-09)	In house check: Oct-11

Calibrated by: Name Function
Claudio Leutbler Laboratory Technician

Signature

Approved by: Katja Pokovic Technical Manager

Issued: January 19, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 67 of 84

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

References

- [1] ANSI-C63.19-2006
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2007
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- **Coordinate System:** y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1, 2], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- **Measurement Conditions:** Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- **Antenna Positioning:** The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- **Feed Point Impedance and Return Loss:** These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminated by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- **E-field distribution:** E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1, 2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelism to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- **H-field distribution:** H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

TA Technology (Shanghai) Co., Ltd.

Test Report

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2 B157
DASY PP Version	SEMCAD X	V14.0 B57
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.465 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured above high end-	100 mW forward power	170.7 V/m
Maximum measured above low end	100 mW forward power	162.6 V/m
Averaged maximum above arm	100 mW forward power	166.7 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.4 dB	(43.4 - j12.6) Ohm
835 MHz	25.5 dB	(49.5 + j5.3) Ohm
900 MHz	16.6 dB	(55.7 - j14.8) Ohm
950 MHz	23.5 dB	(45.4 + j4.4) Ohm
960 MHz	16.8 dB	(48.6 + j14.4) Ohm

3.2 Antenna Design and Handling

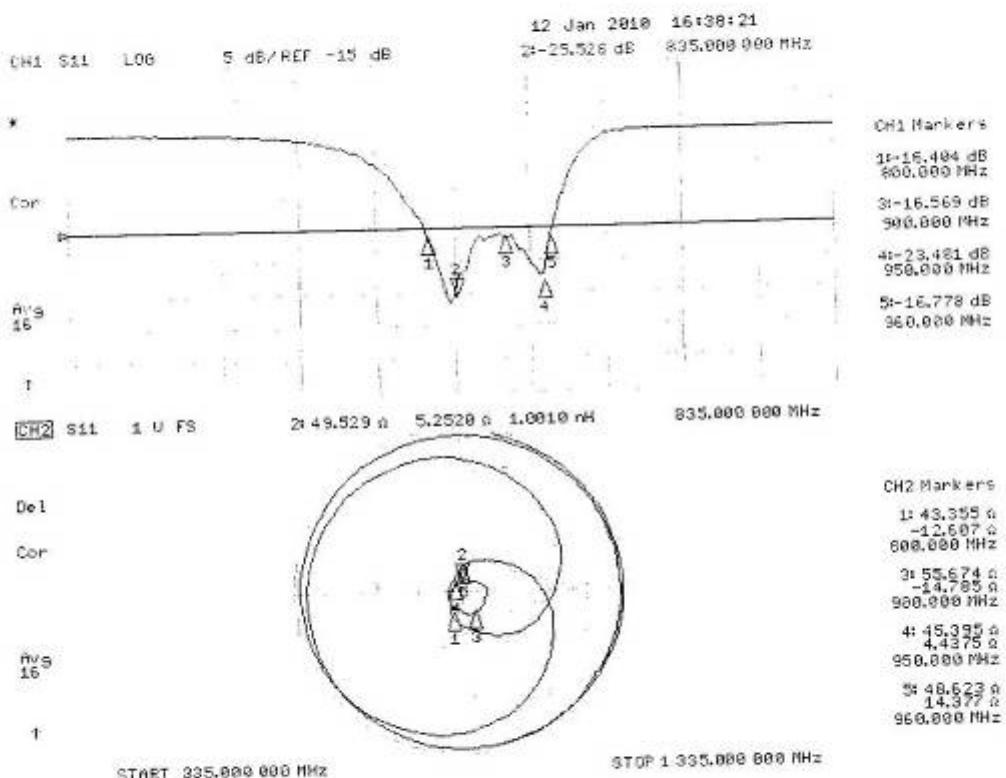
The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

TA Technology (Shanghai) Co., Ltd.


Test Report

Report No. RZA1103-0408HAC01

Page 69 of 84

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 70 of 84

3.3.2 DASY4 H-field Result

Date/Time: 12.01.2010 12:23:55

Test Laboratory: SPEAG Lab2

HAC RF_CD835_1149_100112_H_CL

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1149

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: H3DV6 - SN6065; Calibrated: 30.12.2009
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 30.11.2009
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Dipole H-Field measurement @ 835MHz/H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$

Maximum value of peak Total field = 0.465 A/m

Probe Modulation Factor = 1


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.495 A/m; Power Drift = -0.012 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1 0.395 M4	Grid 2 0.411 M4	Grid 3 0.381 M4
Grid 4 0.446 M4	Grid 5 0.465 M4	Grid 6 0.433 M4
Grid 7 0.394 M4	Grid 8 0.414 M4	Grid 9 0.388 M4

0 dB = 0.465 A/m

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 71 of 84

3.3.3 DASY4 E-field Result

Date/Time: 12.01.2010 14:55:38

Test Laboratory: SPEAG Lab2

HAC RF_CD835_1149_100112_E_CL

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1149

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

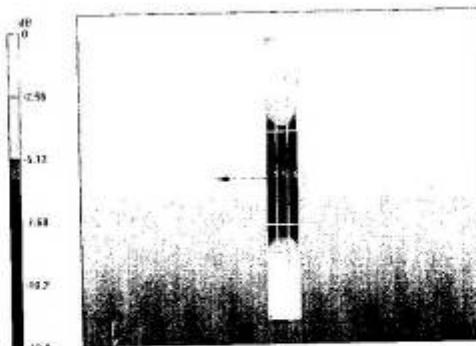
- Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2009
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 30.11.2009
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Dipole E-Field measurement @ 835MHz/E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm 2/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$

Maximum value of peak Total field = 170.7 V/m

Probe Modulation Factor = 1


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 108.8 V/m; Power Drift = 0.013 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1 158.8 M4	Grid 2 162.6 M4	Grid 3 157.4 M4
Grid 4 86.2 M4	Grid 5 88.2 M4	Grid 6 85.4 M4
Grid 7 158.6 M4	Grid 8 170.7 M4	Grid 9 169.5 M4

0 dB = 170.7V/m

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 73 of 84

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

- [1] ANSI-C63.19-2006
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2007
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- **Coordinate System:** y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1, 2], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- **Measurement Conditions:** Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- **Antenna Positioning:** The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- **Feed Point Impedance and Return Loss:** These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminated by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- **E-field distribution:** E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1, 2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelism to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- **H-field distribution:** H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

TA Technology (Shanghai) Co., Ltd.

Test Report

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2 B157
DASY PP Version	SEMCAD X	V14.0 B57
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz \pm 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.475 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	142.9 V/m
Maximum measured above low end	100 mW forward power	139.7 V/m
Averaged maximum above arm	100 mW forward power	141.3 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3. Appendix

3.1 Antenna Parameters

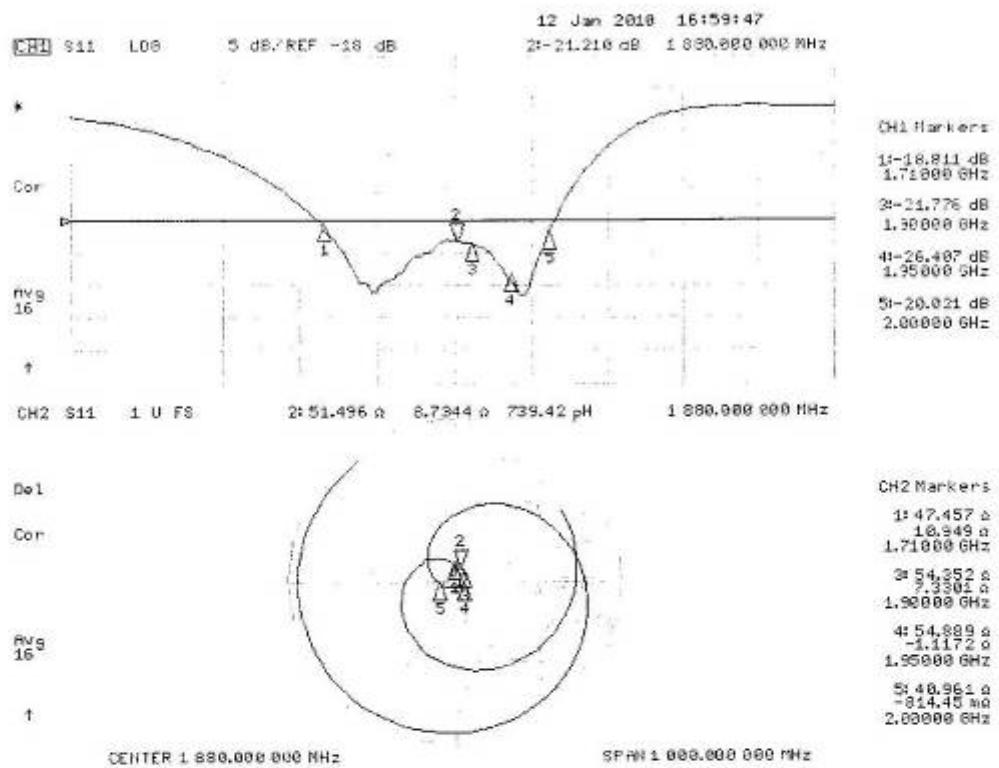
Frequency	Return Loss	Impedance
1710 MHz	18.8 dB	(47.5 + j10.9) Ohm
1880 MHz	21.2 dB	(51.5 + j8.7) Ohm
1900 MHz	21.8 dB	(54.4 + j7.3) Ohm
1950 MHz	26.4 dB	(54.9 - j1.1) Ohm
2000 MHz	20.0 dB	(41.0 - j0.8) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

TA Technology (Shanghai) Co., Ltd.

Test Report

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

TA Technology (Shanghai) Co., Ltd.

Test Report

3.3.2 DASY4 H-Field Result

Date/Time: 13.01.2010 12:17:00

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1135_100113_H_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1135

Communication System: CW; Frequency: 1880 MHz

Medium parameters used: $\sigma = 0$ mho/m, $c_0 = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: H3DV6 - SN6065; Calibrated: 30.12.2009
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 S1781; Calibrated: 30.11.2009
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

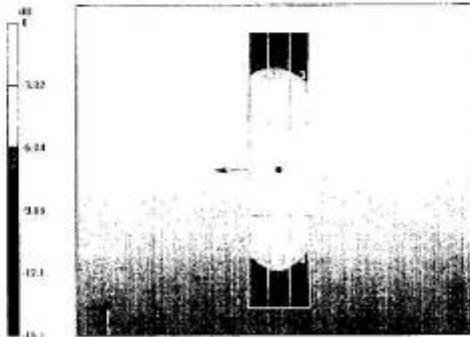
Dipole H-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$

Maximum value of peak Total field = 0.475 A/m

Maximum value of peak Four
Probe Modulation Factor ≈ 1

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.503 A/m; Power Drift = -0.017 dB

Hearing Aid Non-Field Categories

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1 0.421 M2	Grid 2 0.436 M2	Grid 3 0.410 M2
Grid 4 0.458 M2	Grid 5 0.475 M2	Grid 6 0.447 M2
Grid 7 0.412 M2	Grid 8 0.431 M2	Grid 9 0.407 M2

$$0 \text{ dB} = 0.475 \text{ A/m}$$

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 77 of 84

3.3.3 DASY4 E-Field Result

Date/Time: 13.01.2010 13:42:51

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1135_100113_E_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1135

Communication System: CW; Frequency: 1880 MHz

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

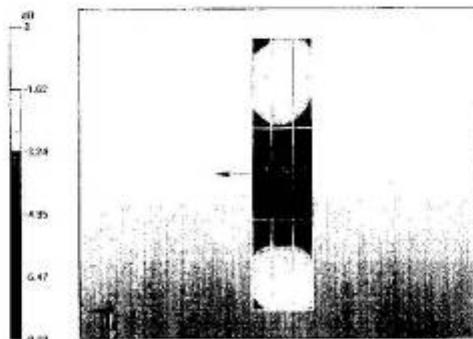
- Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2009
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 30.11.2009
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Dipole E-Field measurement @ 1880MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$

Maximum value of peak Total field = 142.9 V/m

Probe Modulation Factor = 1


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 162.1 V/m; Power Drift = -0.010 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1 136.2 M2	Grid 2 139.7 M2	Grid 3 135.5 M2
Grid 4 93.1 M3	Grid 5 95.1 M3	Grid 6 90.7 M3
Grid 7 135.2 M2	Grid 8 142.9 M2	Grid 9 140.6 M2

0 dB = 142.9V/m

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 78 of 84

ANNEX G: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA - SH (Auden)

Certificate No.: DAE4-871_Nov10

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 871

Calibration procedure(s) QA CAL-06.v22
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: November 18, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11

Calibrated by: Name Andrea Guntli Function Technician Signature

Approved by: Name Finn Bornholt Function R&D Director Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: November 18, 2010

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1103-0408HAC01

Page 79 of 84

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- **DC Voltage Measurement:** Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- **Connector angle:** The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - **DC Voltage Measurement Linearity:** Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - **Common mode sensitivity:** Influence of a positive or negative common mode voltage on the differential measurement.
 - **Channel separation:** Influence of a voltage on the neighbor channels not subject to an input voltage.
 - **AD Converter Values with inputs shorted:** Values on the internal AD converter corresponding to zero input voltage
 - **Input Offset Measurement:** Output voltage and statistical results over a large number of zero voltage measurements.
 - **Input Offset Current:** Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - **Input resistance:** Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - **Low Battery Alarm Voltage:** Typical value for information. Below this voltage, a battery alarm signal is generated.
 - **Power consumption:** Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100...+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.757 \pm 0.1\% \text{ (k=2)}$	$404.740 \pm 0.1\% \text{ (k=2)}$	$405.181 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.98219 \pm 0.7\% \text{ (k=2)}$	$3.93489 \pm 0.7\% \text{ (k=2)}$	$3.96831 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$90.0^\circ \pm 1^\circ$
---	--------------------------

TA Technology (Shanghai) Co., Ltd.
Test Report

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200001.2	-1.56	-0.00
Channel X	+ Input	20000.71	0.71	0.00
Channel X	- Input	-19997.87	1.63	-0.01
Channel Y	+ Input	199994.3	1.99	0.00
Channel Y	+ Input	19998.92	-1.08	-0.01
Channel Y	- Input	-20000.26	-0.76	0.00
Channel Z	+ Input	200009.2	-1.04	-0.00
Channel Z	+ Input	19998.70	-1.10	-0.01
Channel Z	- Input	-20000.16	-0.76	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.1	0.16	0.01
Channel X	+ Input	199.58	-0.52	-0.26
Channel X	- Input	-200.79	-0.89	0.45
Channel Y	+ Input	1999.9	-0.03	-0.00
Channel Y	+ Input	199.45	-0.55	-0.27
Channel Y	- Input	-200.31	-0.41	0.21
Channel Z	+ Input	2000.1	0.33	0.02
Channel Z	+ Input	199.13	-0.77	-0.38
Channel Z	- Input	-201.47	-1.37	0.69

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	14.25	12.86
	-200	-12.68	-14.21
Channel Y	200	-10.04	-10.39
	-200	9.20	9.17
Channel Z	200	-0.85	-1.40
	-200	-0.34	-0.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.85	0.69
Channel Y	200	2.41	-	2.73
Channel Z	200	2.54	0.73	-

TA Technology (Shanghai) Co., Ltd.

Test Report

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15920	15517
Channel Y	16171	16732
Channel Z	15803	16474

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	0.03	-2.35	0.86	0.43
Channel Y	-0.50	-1.49	-0.49	0.38
Channel Z	-0.92	-2.21	0.14	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9