

NO.: RZA2009-0365

OET 65

TEST REPORT

Test name Electromagnetic Field (Specific Absorption Rate)

Product CDMA 1X Digital Mobile Telephone

FCC ID QISC2809

Model HUAWEI C2809

Client Huawei Technologies Co., Ltd.

TA Technology (Shanghai) Co., Ltd.

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 2 of 81

GENERAL TERMS

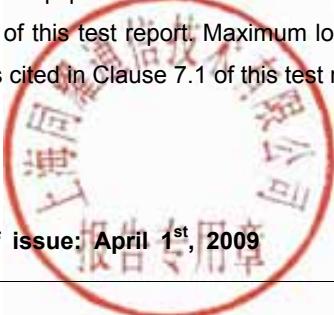
1. The test report is invalid if not marked with “exclusive stamp for the data report” or the stamp of the TA.
2. Any copy of the test report is invalid if not re-marked with the “exclusive stamp for the test report” or the stamp of TA.
3. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
4. The test report is invalid if there is any evidence of erasure and/or falsification.
5. If there is any dissidence for the test report, please file objection to the test center within 15 days from the date of receiving the test report.
6. Normally, entrust test is only responsible for the samples that have undergone the test.
7. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permissions of TA.

Address: Room4, No.399, Cailun Rd, Zhangjiang Hi-Tech Park, Pudong Shanghai, China

Post code: 201203

Telephone: +86-021-50791141/2/3 **Fax :** +86-021-50791141/2/3-8000

Website: <http://www.ta-shanghai.com>


E-mail: service@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 3 of 81

GENERAL SUMMARY

Product	CDMA 1X Digital Mobile Telephone	Model	HUAWEI C2809
Client	Huawei Technologies Co., Ltd.	Type of test	Entrusted
Manufacturer	Huawei Technologies Co., Ltd.	Arrival Date of sample	March 30 th , 2009
Place of sampling	(Blank)	Carrier of the samples	Yaohui Gu
Quantity of the samples	One	Date of product	(Blank)
Base of the samples	(Blank)	Items of test	SAR
Series number	XT9MAB1931700110		
Standard(s)	<p>ANSI C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.</p> <p>IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques.</p> <p>OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.</p> <p>IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).</p> <p>IEC 62209-2:2008(106/162/CDV): Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body .(frequency rang of 30MHz to 6GHz)</p>		
Conclusion	<p>Localized Specific Absorption Rate (SAR) of this portable wireless equipment has been measured in all cases requested by the relevant standards cited in Clause 7.2 of this test report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 7.1 of this test report.</p> <p>General Judgment: Pass</p> <div style="text-align: right; margin-top: 20px;"> <p>(Stamp)</p> <p>Date of issue: April 1st, 2009</p> </div>		
Comment	The test result only responds to the measured sample.		

Approved by 杨伟中

Weizhong Yang

Revised by 凌敏宝

Minbao Ling

Performed by 李金昌

Jinchang Li

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 4 of 81

TABLE OF CONTENT

1. COMPETENCE AND WARRANTIES	6
2. GENERAL CONDITIONS	6
3. DESCRIPTION OF EUT	7
3.1. ADDRESSING INFORMATION RELATED TO EUT	7
3.2. CONSTITUENTS OF EUT	7
3.3. GENERAL DESCRIPTION	7
3.4. TEST ITEM	8
4. OPERATIONAL CONDITIONS DURING TEST	9
4.1. TEST TO BE PERFORMED	9
4.2. INFORMATION FOR THE MEASUREMENT OF CDMA 1X DEVICES	9
4.2.1. Output Power Verification	9
4.2.2 Head SAR measurement	9
4.2.3 Body SAR measurement	10
5. SAR MEASUREMENTS SYSTEM CONFIGURATION	11
5.1. SAR MEASUREMENT SET-UP	11
5.2. DASY4 E-FIELD PROBE SYSTEM	12
5.2.1. EX3DV4 Probe Specification	12
5.2.2. E-field Probe Calibration	13
5.3. OTHER TEST EQUIPMENT	13
5.3.1. Device Holder for Transmitters	13
5.3.2. Phantom	14
5.4. SCANNING PROCEDURE	14
5.5. DATA STORAGE AND EVALUATION	16
5.5.1. Data Storage	16
5.5.2. Data Evaluation by SEMCAD	16
5.6. SYSTEM CHECK	19
5.7. EQUIVALENT TISSUES	20
6. LABORATORY ENVIRONMENT	20
7. CHARACTERISTICS OF THE TEST	21
7.1. APPLICABLE LIMIT REGULATIONS	21
7.2. APPLICABLE MEASUREMENT STANDARDS	21
8. CONDUCTED OUTPUT POWER MEASUREMENT	22
8.1. SUMMARY	22
8.2. CONDUCTED POWER RESULTS	22
9. TEST RESULTS	23
9.1. DIELECTRIC PERFORMANCE	23
9.2. SYSTEM CHECKING RESULTS	23
9.3. SUMMARY OF MEASUREMENT RESULTS	24
9.4. CONCLUSION	24
10. MEASUREMENT UNCERTAINTY	25

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 5 of 81

11. MAIN TEST INSTRUMENTS.....	26
12. TEST PERIOD.....	26
13. TEST LOCATION	26
ANNEX A : TEST LAYOUT	27
ANNEX B : SYSTEM CHECK RESULTS.....	29
ANNEX C : GRAPH RESULTS.....	31
ANNEX D : PROBE CALIBRATION CERTIFICATE.....	55
ANNEX E : D835V2 DIPOLE CALIBRATION CERTIFICATE	64
ANNEX F : DAE4 CALIBRATION CERTIFICATE	73
ANNEX G : THE EUT APPEARANCES AND TEST CONFIGURATION.....	78

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-0365

Page 6 of 81

1. COMPETENCE AND WARRANTIES

TA Technology (Shanghai) Co., Ltd. is a test laboratory competent to carry out the tests described in this test report.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test.

2. GENERAL CONDITIONS

This report only refers to the item that has undergone the test.

This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This document is only valid if complete; no partial reproduction can be made without written approval of **TA Technology (Shanghai) Co., Ltd.**

This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 7 of 81

3. DESCRIPTION OF EUT

3.1. Addressing Information Related to EUT

Table 1: Applicant (The Client)

Name or Company	Huawei Technologies Co., Ltd.
Address/Post	Bantian, Longgang District
City	Shenzhen
Postal Code	518129
Country	P.R. China
Telephone	0755-28780808
Fax	0755-28780808

Table 2: Manufacturer

Name or Company	Huawei Technologies Co., Ltd.
Address/Post	Bantian, Longgang District
City	Shenzhen
Postal Code	518129
Country	P.R. China
Telephone	0755-28780808
Fax	0755-28780808

3.2. Constituents of EUT

Table 3: Constituents of Samples

Description	Model	Serial Number	Manufacturer
Handset	HUAWEI C2809	XT9MAB1931700110	HUAWEI Techonologies CO.,Ltd
Lithium Battery	HBL6A	BAA8C29XC4800750	HUAWEI Techonologies CO.,Ltd
AC/DC Adapter	HS-050040U2	HKA7C350446	HUAWEI Techonologies CO.,Ltd

Note:

The EUT appearances see ANNEX G.

3.3. General Description

Equipment Under Test (EUT) is a model of CDMA 1X Digital Mobile Telephone with internal antenna. The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in Table 3. SAR is tested for CDMA Cellular only.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 8 of 81

3.4. Test item

Table 4: Test item of EUT

Device type :	portable device	
Exposure category:	uncontrolled environment / general population	
Device operating configurations :		
Operating mode(s):	CDMA Cellular	
Operating frequency range(s)	transmitter frequency range	receiver frequency range
CDMA Cellular	824.7 MHz ~ 848.31 MHz	869.7 MHz ~ 893.31MHz
Test channel (Low –Middle –High)	1013 -384 – 777 (CDMA Cellular)	
Hardware version:	Ver.C	
Software version:	C2809C58B110	
Antenna type:	integrated antenna	

4. OPERATIONAL CONDITIONS DURING TEST

4.1. Test to be performed

A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular. The EUT is commanded to operate at maximum transmitting power.

Under the loop back mode between mobile station and E5515C, the transmitter continuously emits with maximum power more strong than voice mode, so the SAR test was done with loop back mode. To make the mobile emits maximum power; the output power of E5515C would be adjusted to minimum power with the sensitivity of the mobile station to build steady connection with mobile station. The power level control parameter “all up” and it means that requires mobile station to emit with maximum power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2. Information for the measurement of CDMA 1x devices

4.2.1. Output Power Verification

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2

Parameter	Units	Value
I or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3 (FW RC3, RVS RC3, SO55) as the worst case for SAR test.

4.2.2 Head SAR measurement

SAR is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

4.2.3 Body SAR measurement

SAR is measured in RC3 with the EUT configured to transmit at full rate using TDSO/SO32, transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH+SCHn) is not required when the maximum average output of each RF channel is less than 0.25dB higher than measured with FCH only.

Body SAR in RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate using the body exposure configuration that results in the highest SAR for that channel in RC3.

Test communication setup meet as followings:

Communication standard between mobile station and base station simulator	3GPP2 C.S0011-B
Radio configuration	RC3 (Supporting CDMA 1X)
Spreading Rate	SR1
Data Rate	9600bps
Service Options	SO55 (loop back mode)
Service Options	SO32 (test data service mode)
Multiplex Options	The mobile station does not support this service.

5. SAR MEASUREMENTS SYSTEM CONFIGURATION

5.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

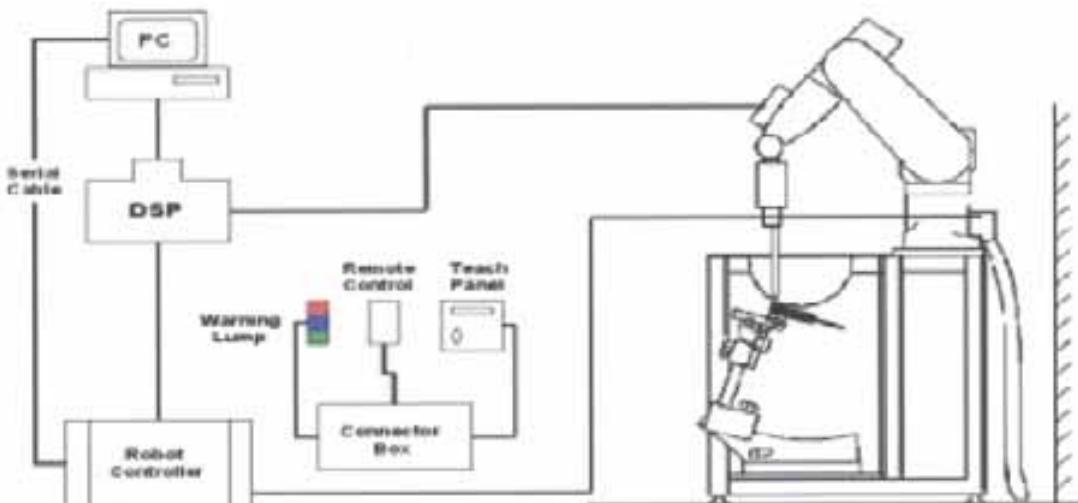


Figure 1. SAR Lab Test Measurement Set-up

5.2. Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

5.2.1. EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 900 and HSL 1750 Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2. EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

5.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than $\pm 0.25\text{dB}$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
 C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.
Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m^3).

5.3. Other Test Equipment

5.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\tan \delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the

Figure 4. Device Holder

inference of the clamp on the test results could thus be lowered.

5.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0.1 mm
Filling Volume	Approx. 20 liters
Dimensions	810 x 1000 x 500 mm (H x L x W)
Available	Special

Figure 5.Generic Twin Phantom

5.4. Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. $\pm 5\%$.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 15 of 81

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

5.5. Data Storage and Evaluation

5.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 17 of 81

the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_{cp_i}$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

d_{cp_i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

TA Technology (Shanghai) Co., Ltd.
Test Report

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

5.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 11.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY 4 system.

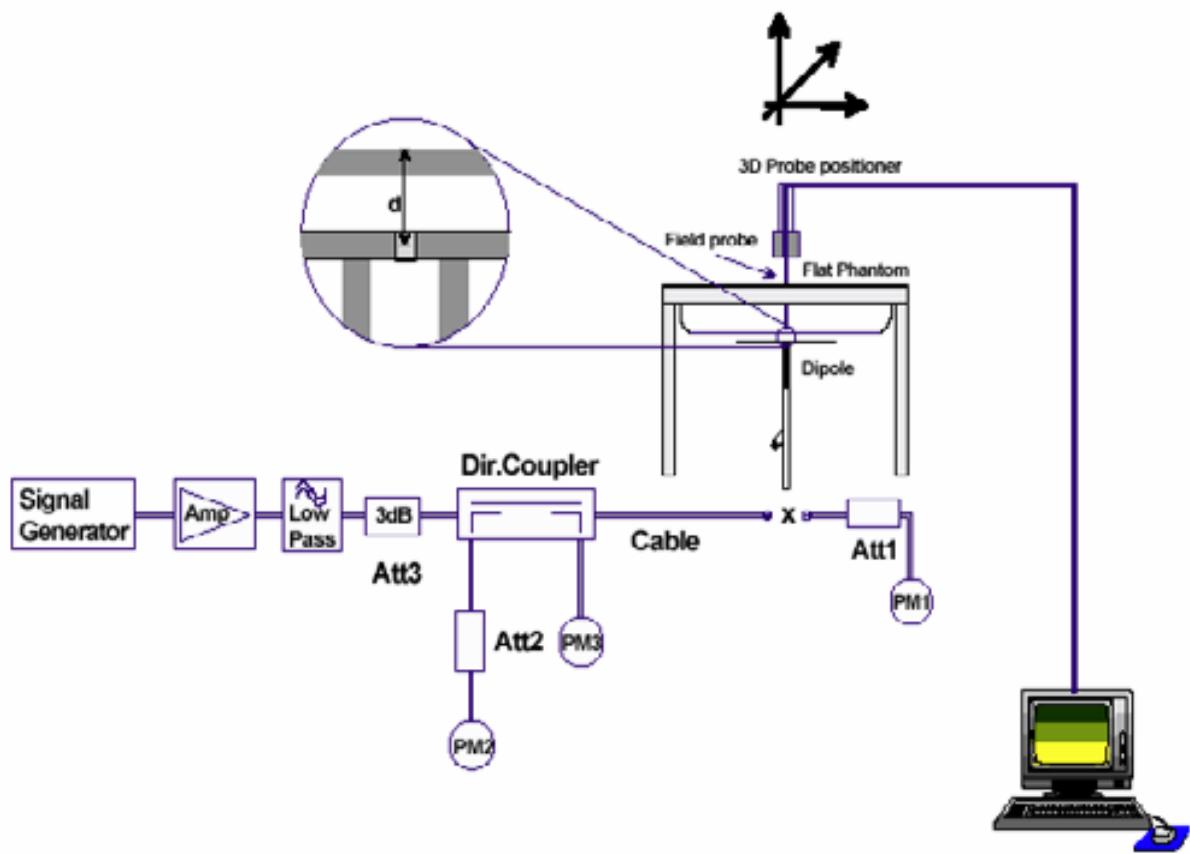


Figure 6. System Check Set-up

5.7. Equivalent Tissues

The liquid is consisted of water, sugar, salt, Preventol, Glycol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 5 and Table 6 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 5: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz
Water	41.45
Sugar	56
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=41.5$ $\sigma=0.9$

Table 6: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body)835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=55.2$ $\sigma=0.97$

6. LABORATORY ENVIRONMENT

Table 7: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards.
 Reflection of surrounding objects is minimized and in compliance with requirement of standards.

7. CHARACTERISTICS OF THE TEST

7.1. Applicable Limit Regulations

ANSI C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

7.2. Applicable Measurement Standards

IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human head Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEC 62209-2:2008(106/162/CDV): Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body .(frequency range of 30MHz to 6GHz)

8. CONDUCTED OUTPUT POWER MEASUREMENT

8.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

8.2. Conducted Power Results

Table 8: Conducted Power Measurement Results

CDMA Cellular (RC3)	Conducted Power		
	Channel 777 (848.31MHz)	Channel 384 (836.52MHz)	Channel 1013 (824.7MHz)
Before test (dBm)	24.1	24.2	24.2
After test (dBm)	24.1	24.2	24.1
CDMA Cellular (RC1)	Conducted Power		
	Channel 777 (848.31MHz)	Channel 384 (836.52MHz)	Channel 1013 (824.7MHz)
Before test (dBm)	24.1	24.2	24.2
After test (dBm)	24.1	24.2	24.1

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 23 of 81

9. TEST RESULTS

9.1. Dielectric Performance

Table 9: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp
		ϵ_r	$\sigma(\text{s/m})$	
835MHz (head)	Target value $\pm 5\%$ window	41.5 39.43 — 43.58	0.90 0.86 — 0.95	/
	Measurement value 2009-3-31	43.03	0.93	

Table 10: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp
		ϵ_r	$\sigma(\text{s/m})$	
835MHz (body)	Target value $\pm 5\%$ window	55.20 52.44 — 57.96	0.97 0.92 — 1.02	/
	Measurement value 2009-3-31	55.62	0.98	

9.2. System Checking Results

Table 11: System Checking for Head tissue simulant

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp
		10g	1g	ϵ_r	$\sigma(\text{s/m})$	
835MHz	Recommended result $\pm 10\%$ window	1.52 1.37--1.67	2.30 2.07--2.53	40.90	0.89	/
	Measurement value 2009-3-31	1.50	2.30	43.03	0.93	

Note : 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 24 of 81

9.3. Summary of Measurement Results

Table 12: SAR Values (CDMA Cellular)

Liquid Temperature: 22.5						
Limit of SAR (W/kg)		10 g Average	1 g Average	Power Drift (dB)	Graph Results	
		2.0	1.6	± 0.21		
Different Test Position	Channel	Measurement Result(W/kg)		Power Drift(dB)		
		10 g Average	1 g Average			
Test position of Head						
Left hand, Touch cheek	High	0.577	0.849	0.033	Figure 9	
	Middle	0.760	1.110	-0.098	Figure 11	
	Low	0.745	1.090	0.032	Figure 13	
Left hand, Tilt 15 Degree	Middle	0.355	0.504	-0.011	Figure 15	
Right hand, Touch cheek	High	0.621	0.933	0.179	Figure 17	
	Middle	0.855	1.260	-0.132	Figure 19	
	Low	0.779	1.150	-0.190	Figure 21	
Right hand, Tilt 15 Degree	Middle	0.385	0.546	0.095	Figure 23	
Test position of Body (Distance 15mm)						
Towards Ground	High	0.511	0.728	-0.007	Figure 25	
	Middle	0.639	0.908	0.018	Figure 27	
	Low	0.732	1.040	-0.006	Figure 29	
Towards Phantom	Middle	0.433	0.614	0.120	Figure 31	

Note: 1. The value with blue color is the maximum SAR Value of test case of head and body in each test band.

2. Upper and lower frequencies were measured at the worst position.
3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR_{1g} limit ($< 0.8W/kg$), testing at the high and low channels is optional.
4. Tests in body position were performed with 15 mm air gap between DUT and Phantom to simulate the use of a non-metallic belt-clip or holster.

9.4. Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 7.2 of this report. Maximum localized SAR_{1g} are 1.26 W/kg (head) and 1.04W/kg (body) that are below exposure limits specified in the relevant standards cited in Clause 7.1 of this test report.

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 25 of 81

10. MEASUREMENT UNCERTAINTY

No.	a	Type	c	d	e=f(d, k)	f	h=cxf / e	k
	Uncertainty Component		Tol. (±%)	Prob. Dist	Div.	c ₁ (1g)	1g u (± %)	v ₁
1	System repetivity	A	0.5	N	1	1	0.5	9
Measurement system								
2	Probe Calibration	B	5	N	2	1	2.5	∞
3	Axial isotropy	B	4.7	R	$\sqrt{3}$	$(1-cp)_{1/2}$	4.3	∞
4	Hemisphere Isotropy	B	9.4	R	$\sqrt{3}$	$\sqrt{C_p}$		∞
5	Boundary Effect	B	0.4	R	$\sqrt{3}$	1	0.23	∞
6	Linearity	B	4.7	R	$\sqrt{3}$	1	2.7	∞
7	System Detection Limits	B	1.0	R	$\sqrt{3}$	1	0.6	∞
8	Readout Electronics	B	1.0	N	1	1	1.0	∞
9	RF Ambient Conditions	B	3.0	R	$\sqrt{3}$	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	B	0.4	R	$\sqrt{3}$	1	0.2	∞
11	Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1.7	∞
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	B	3.9	R	$\sqrt{3}$	1	2.3	∞
Test Sample Related								
13	Test Sample Positioning	A	4.9	N	1	1	4.9	N-1
14	Device Holder Uncertainty	A	6.1	N	1	1	6.1	N-1
15	Output Power Variation-SAR drift measurement	B	5.0	R	$\sqrt{3}$	1	2.9	∞
Phantom and Tissue Parameters								
16	Phantom Uncertainty(shape and thickness tolerances)	B	1.0	R	$\sqrt{3}$	1	0.6	∞
17	Liquid Conductivity-deviation from target values	B	5.0	R	$\sqrt{3}$	0.64	1.7	∞
18	Liquid Conductivity-measurement uncertainty	B	5.0	N	1	0.64	1.7	M
19	Liquid Permittivity-deviation from target values	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
20	Liquid Permittivity- measurement uncertainty	B	5.0	N	1	0.6	1.7	M
Combined Standard Uncertainty					RSS			
Expanded Uncertainty (95 % CONFIDENCE INTERVAL)					K=2			
</td								

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 26 of 81

11. MAIN TEST INSTRUMENTS

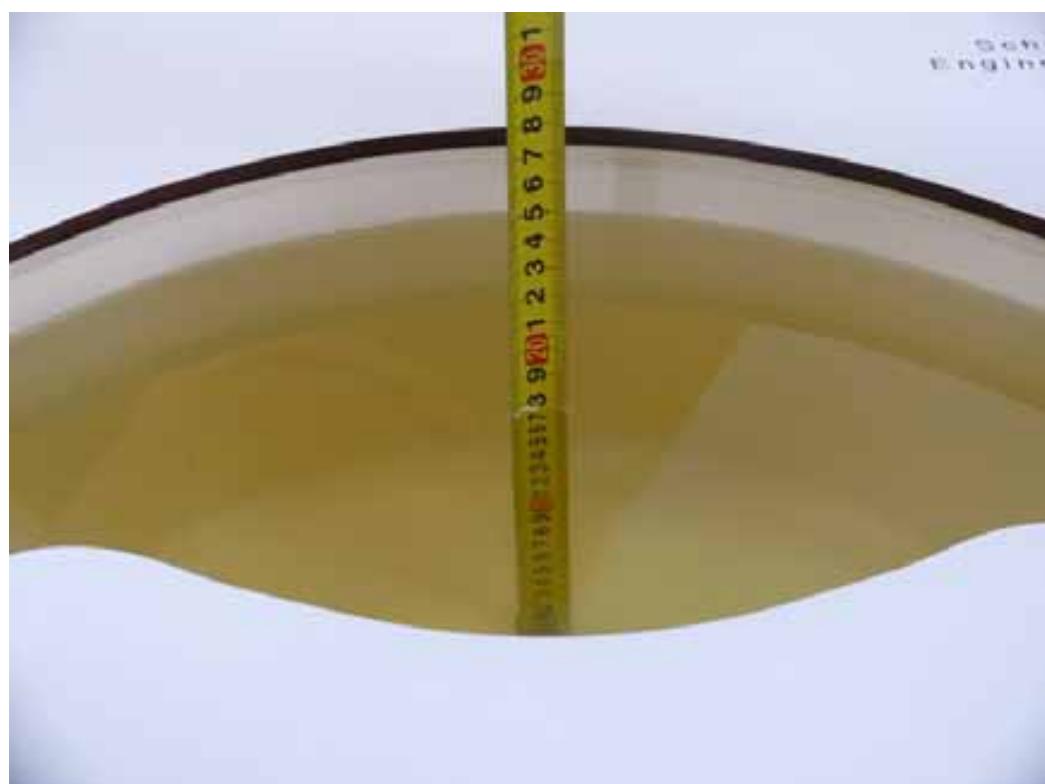
Table 13: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 14, 2008	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 14, 2009	One year
04	Power sensor	Agilent 8481H	MY41091316	March 14, 2009	One year
05	Signal Generator	HP 8341B	2730A00804	September 14, 2008	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	BTS	E5515C	GB46490218	September 14, 2008	One year
08	E-field Probe	EX3DV4	3660	September 3, 2008	One year
09	DAE	DAE4	452	November 18, 2008	One year
10	Validation Kit 835MHz	D835V2	4d020	July 21, 2008	One year

12. TEST PERIOD

The test is performed in March 31 2009.

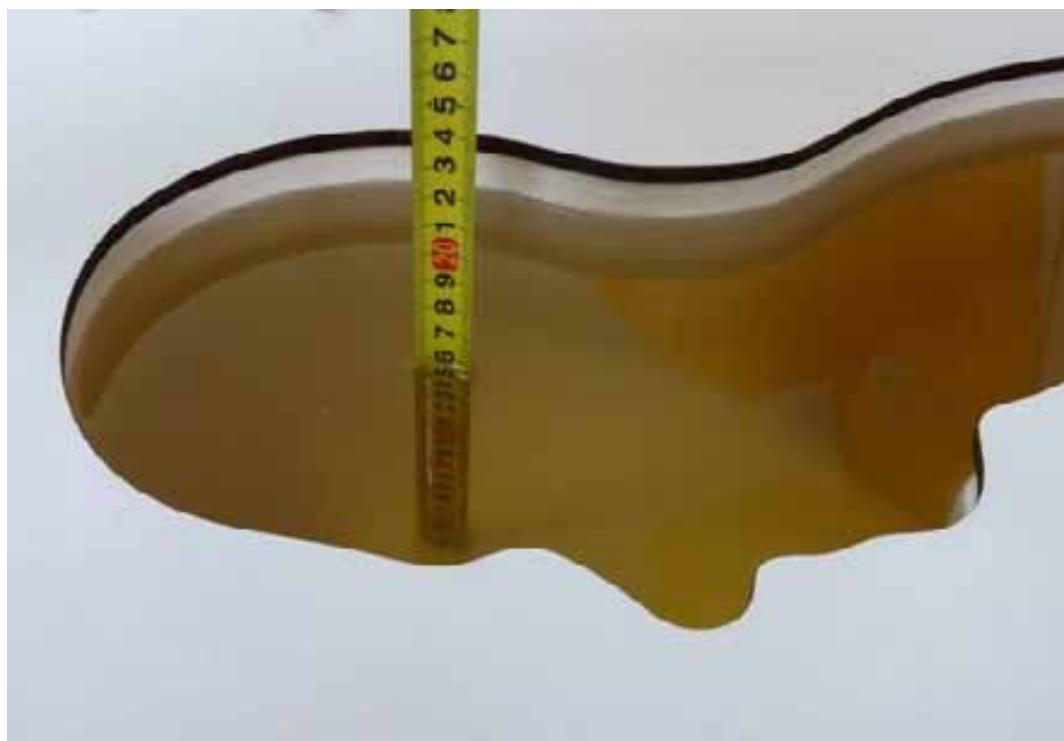
13. TEST LOCATION


The test is performed at TA Technology (Shanghai) Co., Ltd.

*****END OF REPORT BODY*****

ANNEX A : TEST LAYOUT

Picture 1: Specific Absorption Rate Test Layout



Picture 2: Liquid depth in the Flat Phantom (835 MHz)

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 28 of 81

Picture 3: Liquid depth in the head Phantom (835 MHz)

ANNEX B : SYSTEM CHECK RESULTS

Date/Time: 3/31/2009 0:14:58 AM

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d020

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

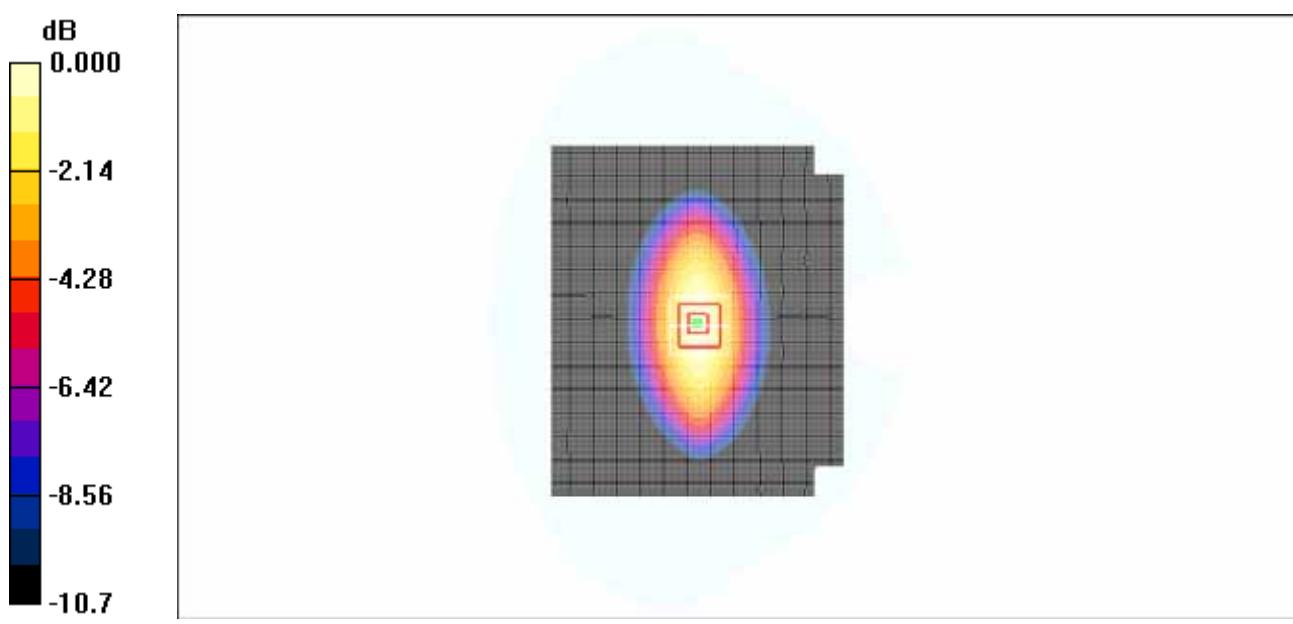
Medium parameters used: $f = 835$ MHz; $\sigma = 0.93$ mho/m; $\epsilon_r = 43.03$; $\rho = 1000$ kg/m³

Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19);

Electronics: DAE4 Sn452;

d=15mm, Pin=250mW/Area Scan (101x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.81 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.8 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 3.50 W/kg

SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.5 mW/g

Maximum value of SAR (measured) = 2.83 mW/g

0 dB = 2.83mW/g

Figure 7 System Performance Check 835MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 30 of 81

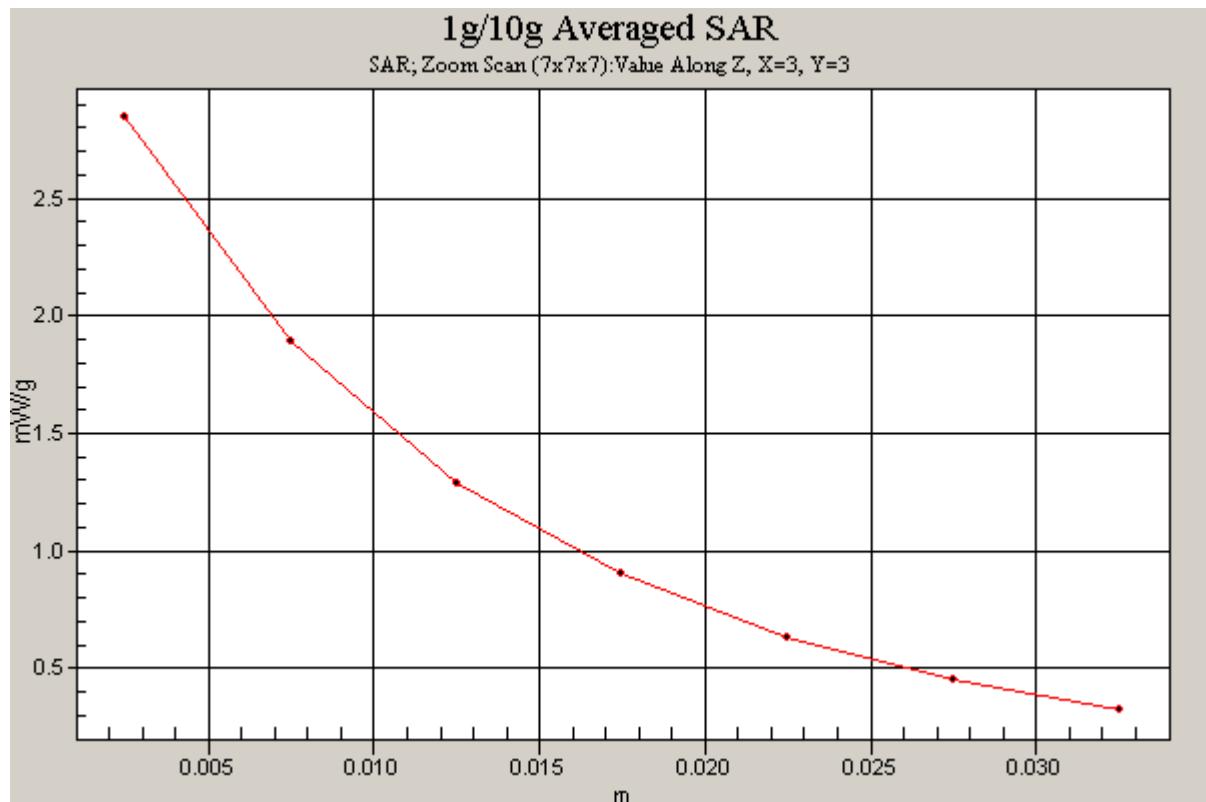


Figure 8 Z-Scan at power reference point (system check at 835 MHz dipole)

ANNEX C : GRAPH RESULTS

Date/Time: 3/31/2009 7:23:18 AM

CDMA Cellular Left Cheek High

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 848.31$ MHz; $\sigma = 0.945$ mho/m; $\epsilon_r = 42.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.05 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.849 mW/g; SAR(10 g) = 0.577 mW/g

Maximum value of SAR (measured) = 0.998 mW/g

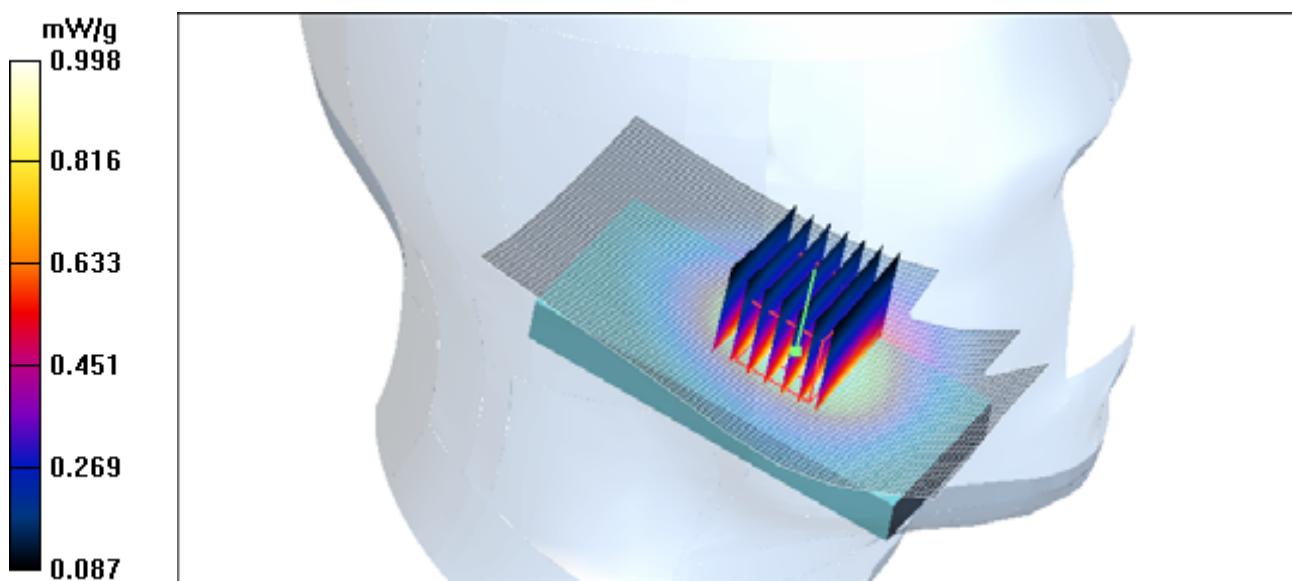
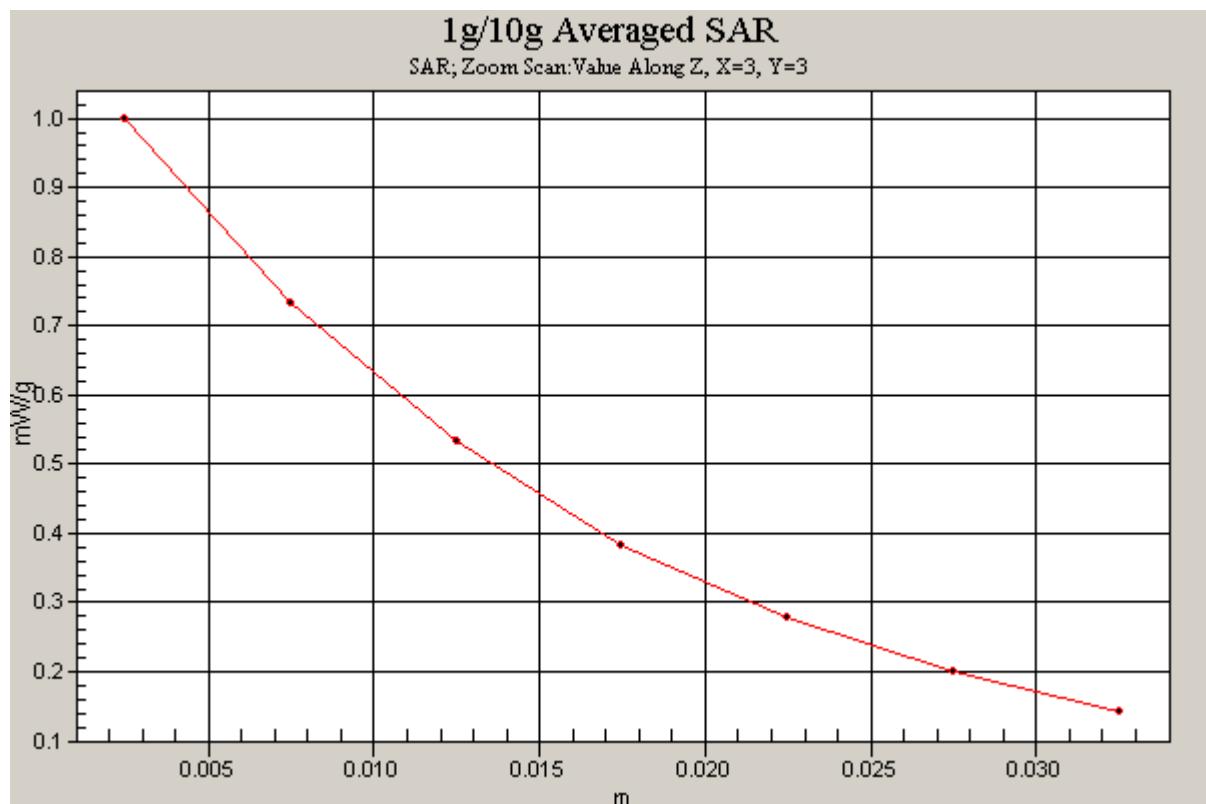



Figure 9 Left Hand Touch Cheek CDMA Cellular Channel 777

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 32 of 81

Figure 10 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 777)

Date/Time: 3/31/2009 6:45:15 AM

CDMA Cellular Left Cheek Middle

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.935$ mho/m; $\epsilon_r = 43$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.33 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.098 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.760 mW/g

Maximum value of SAR (measured) = 1.30 mW/g

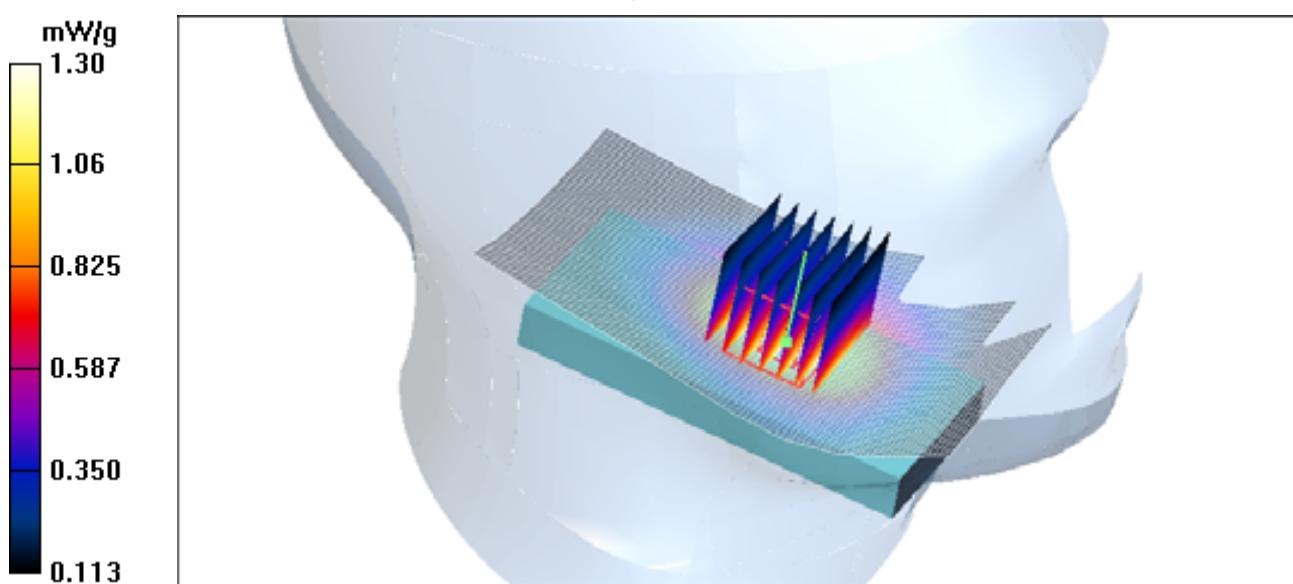
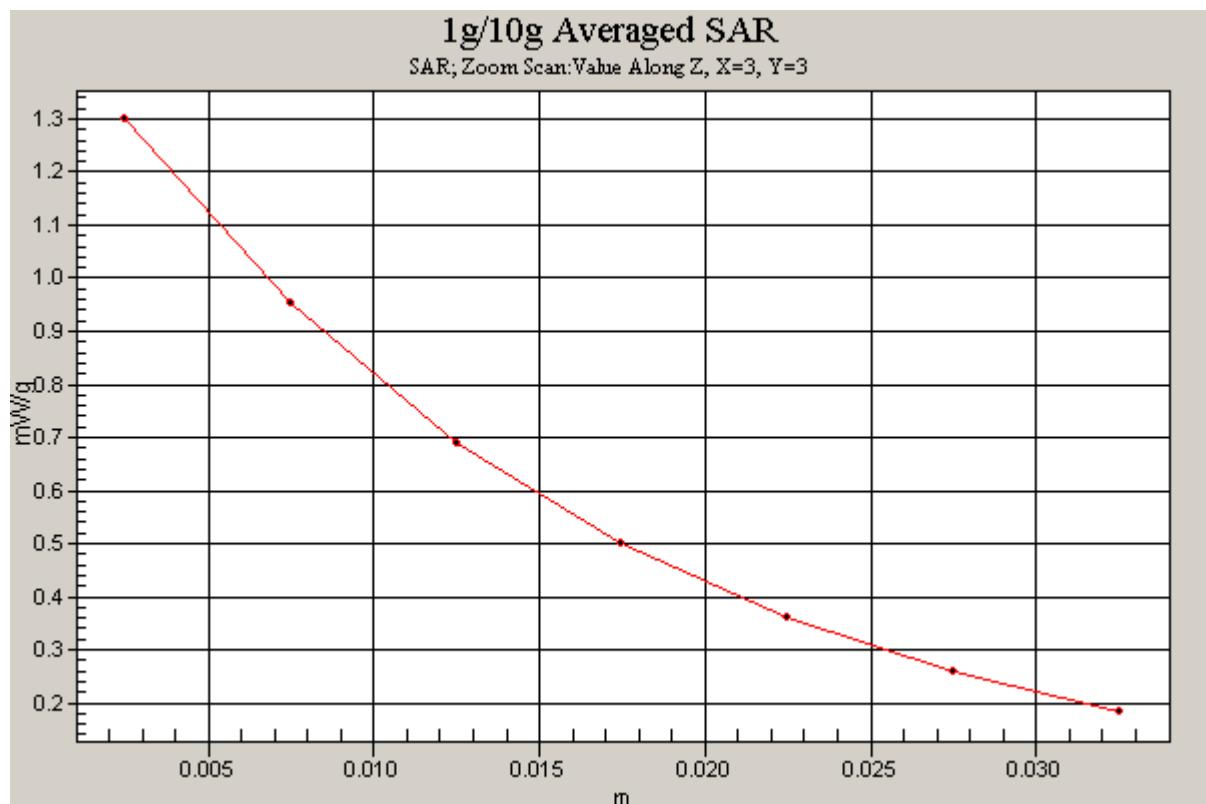



Figure 11 Left Hand Touch Cheek CDMA Cellular Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 34 of 81

Figure 12 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 384)

Date/Time: 3/31/2009 7:05:17 AM

CDMA Cellular Left Cheek Low

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 825$ MHz; $\sigma = 0.916$ mho/m; $\epsilon_r = 43.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.26 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.745 mW/g

Maximum value of SAR (measured) = 1.27 mW/g

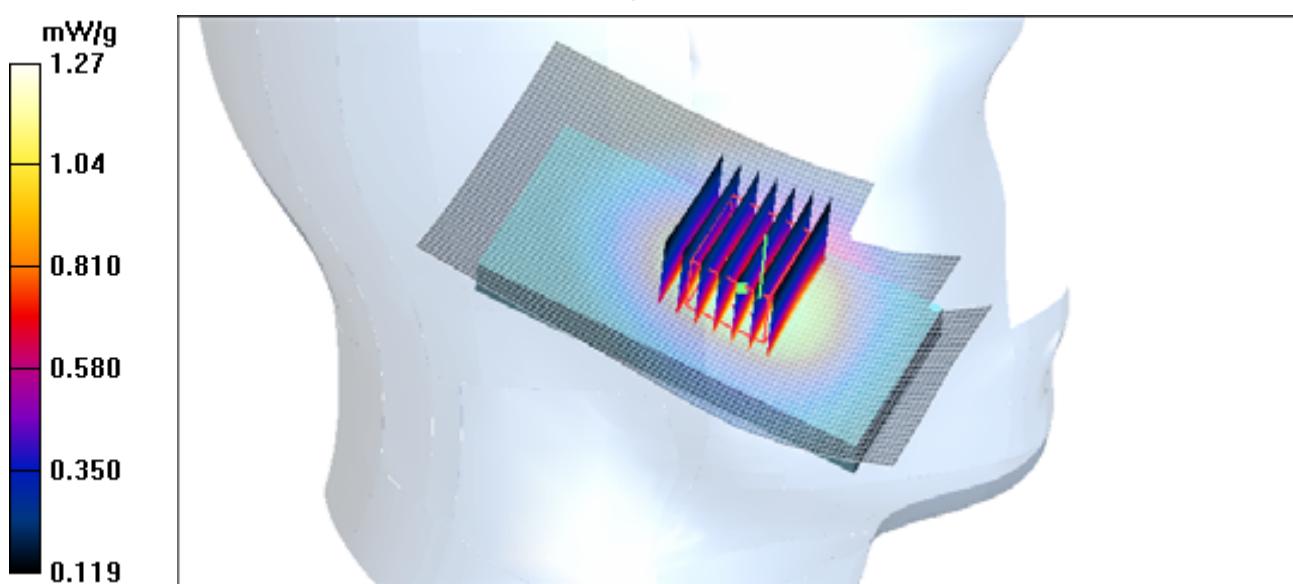
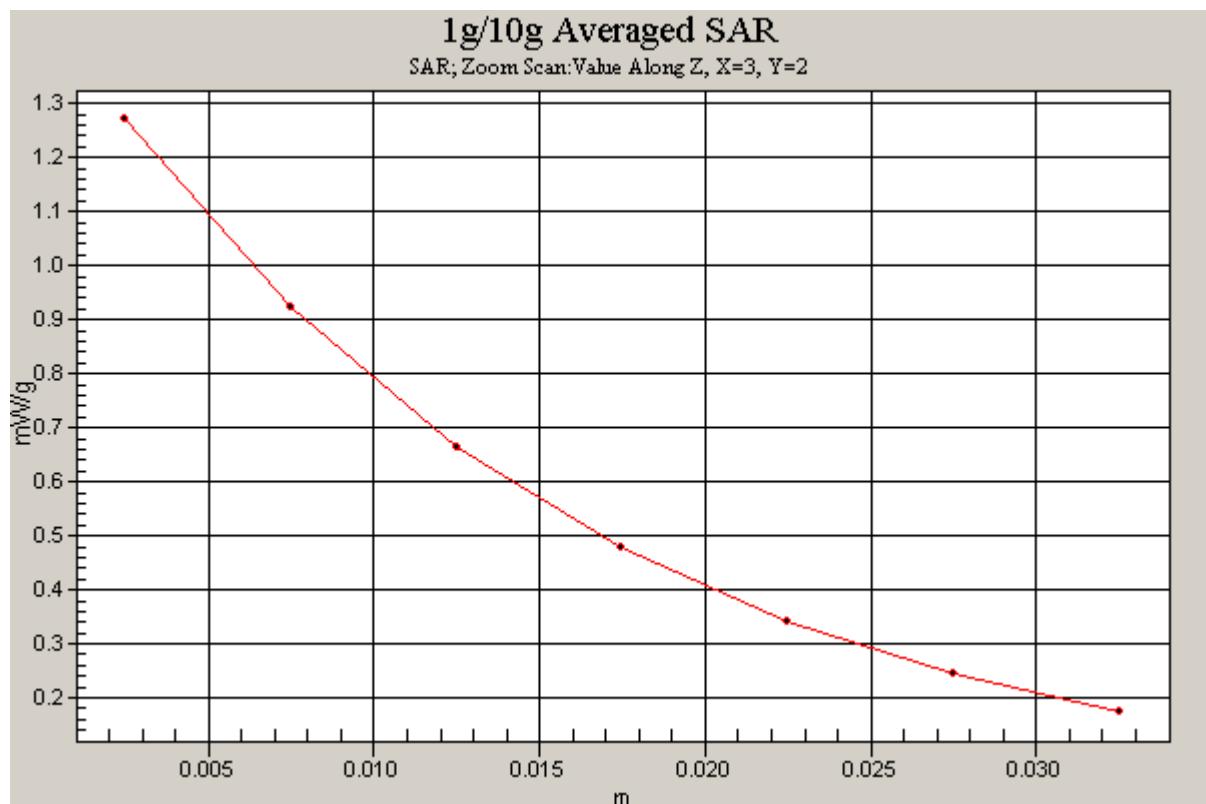



Figure 13 Left Hand Touch Cheek CDMA Cellular Channel 1013

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 36 of 81

Figure 14 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 1013)

Date/Time: 3/31/2009 6:26:35 AM

CDMA Cellular Left Tilt Middle

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.935$ mho/m; $\epsilon_r = 43$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.590 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.1 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.695 W/kg

SAR(1 g) = 0.504 mW/g; SAR(10 g) = 0.355 mW/g

Maximum value of SAR (measured) = 0.591 mW/g

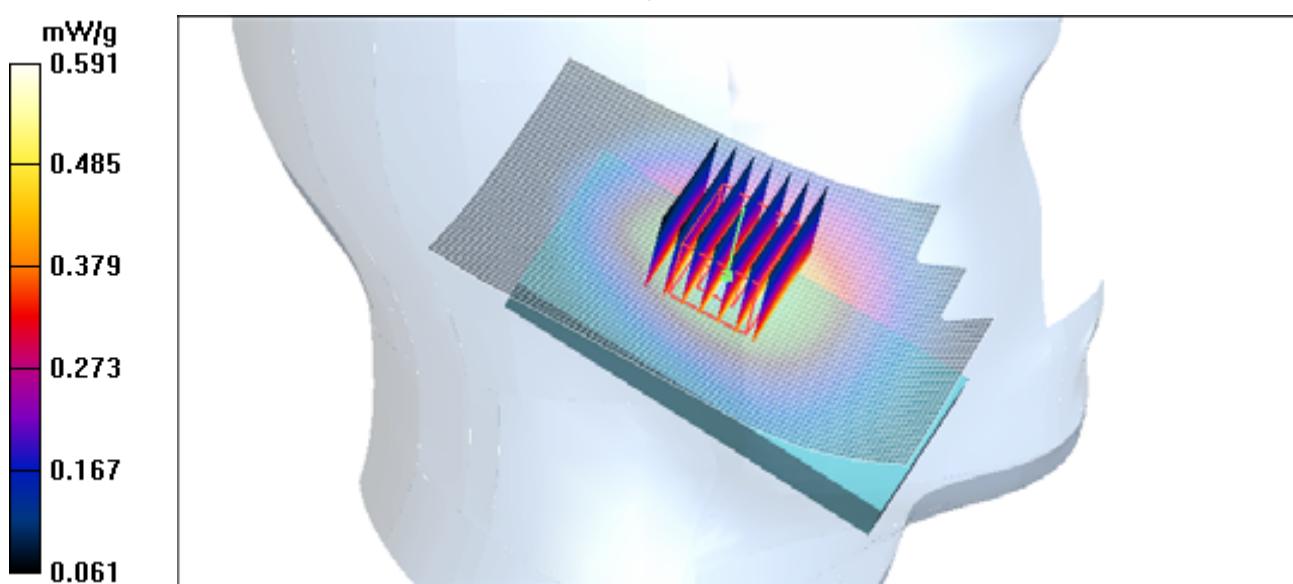



Figure 15 Left Hand Tilt 15° CDMA Cellular Channel 384

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 38 of 81

Figure 16 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 384)

Date/Time: 3/31/2009 5:38:48 AM

CDMA Cellular Right Cheek High

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 848.31$ MHz; $\sigma = 0.945$ mho/m; $\epsilon_r = 42.9$; $\rho = 1000$ kg/m³

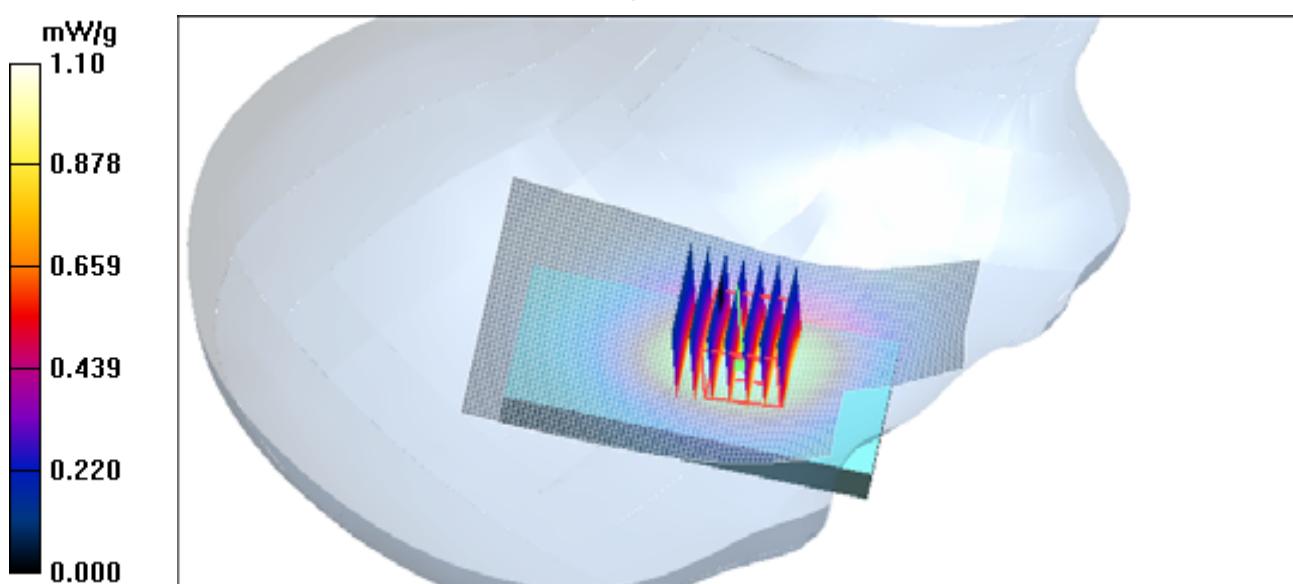
Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.09 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = 0.179 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.933 mW/g; SAR(10 g) = 0.621 mW/g

Maximum value of SAR (measured) = 1.10 mW/g

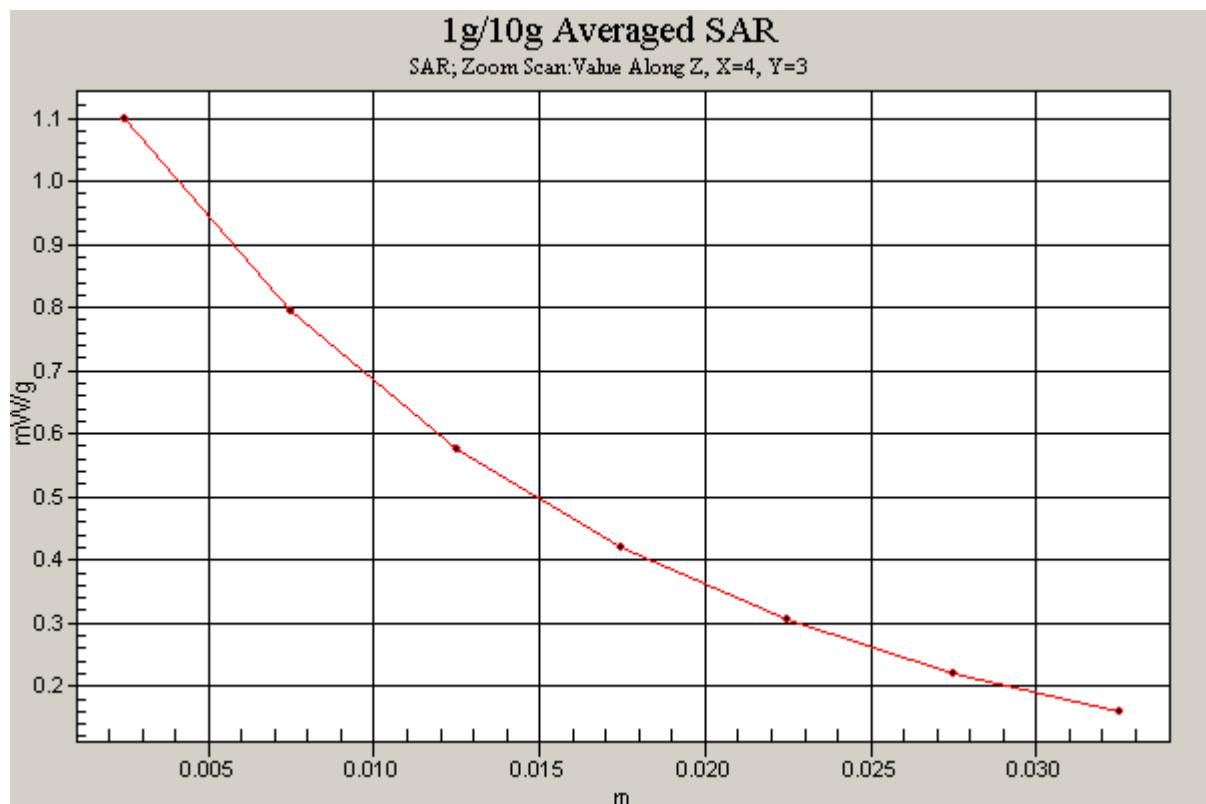


Figure 17 Right Hand Touch Cheek CDMA Cellular Channel 777

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 40 of 81

Figure 18 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 777)

Date/Time: 3/31/2009 4:56:51 AM

CDMA Cellular Right Cheek Middle

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.935$ mho/m; $\epsilon_r = 43$; $\rho = 1000$ kg/m³

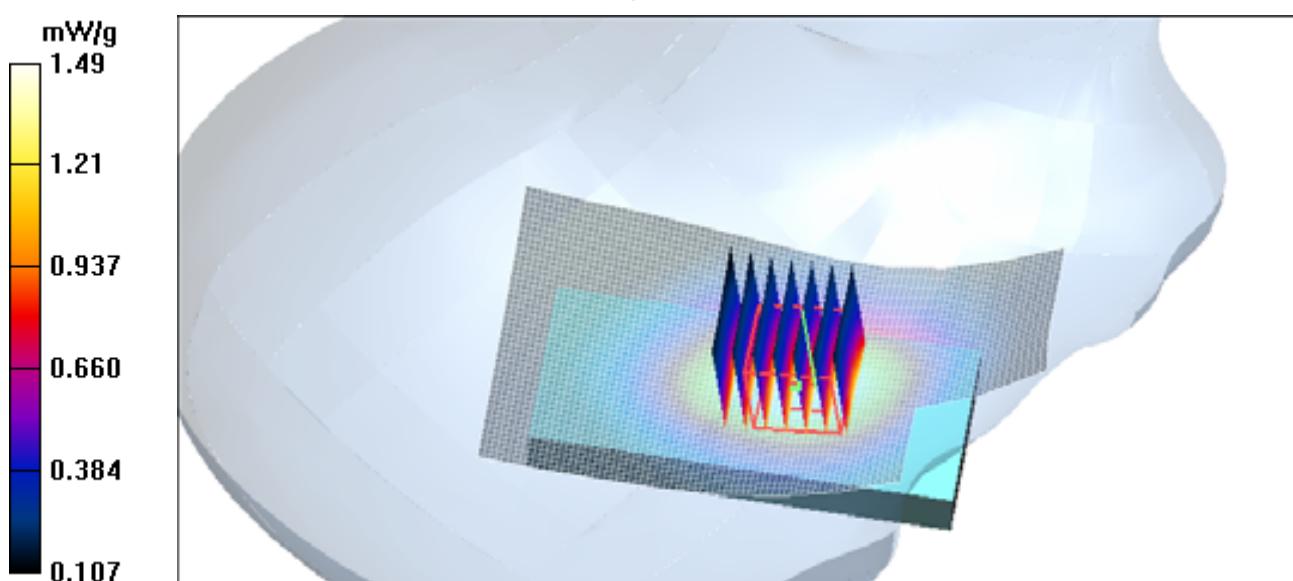
Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.70 mW/g


Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.855 mW/g

Maximum value of SAR (measured) = 1.49 mW/g

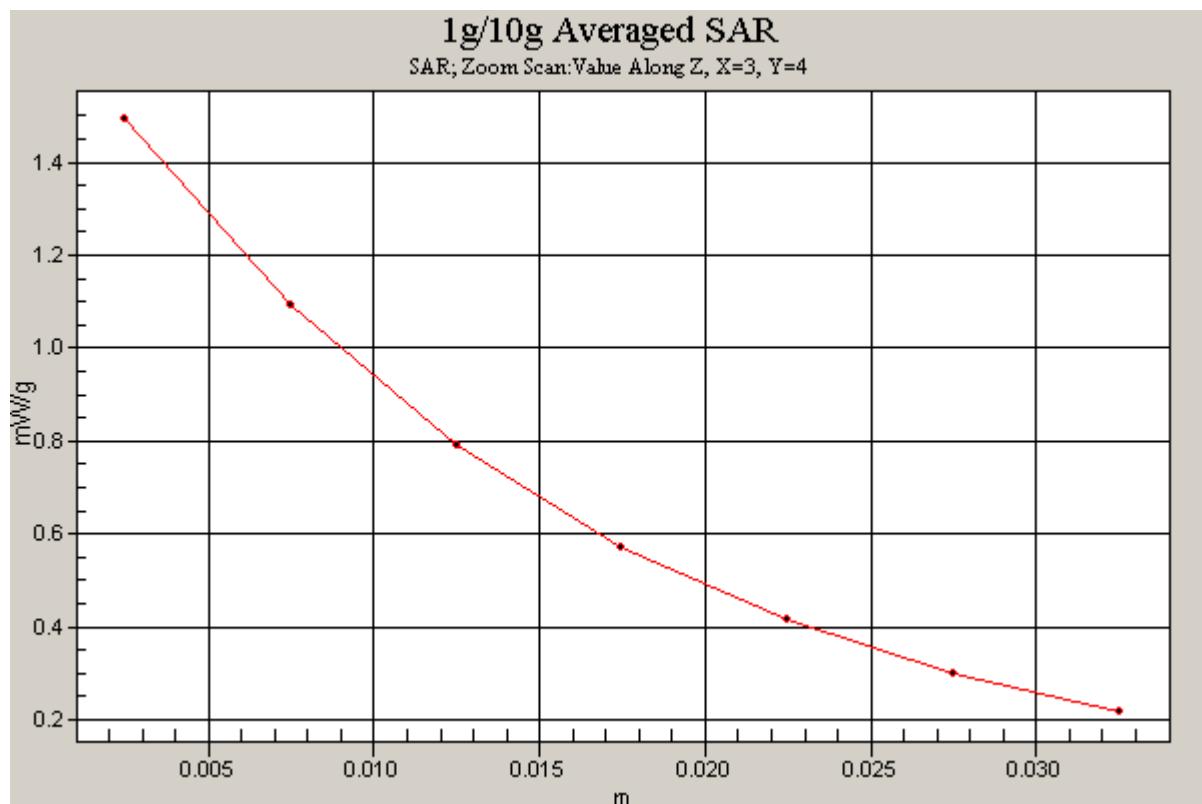


Figure 19 Right Hand Touch Cheek CDMA Cellular Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 42 of 81

Figure 20 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 384)

Date/Time: 3/31/2009 5:15:28 AM

CDMA Cellular Right Cheek Low

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 825$ MHz; $\sigma = 0.916$ mho/m; $\epsilon_r = 43.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.43 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.190 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.779 mW/g

Maximum value of SAR (measured) = 1.34 mW/g

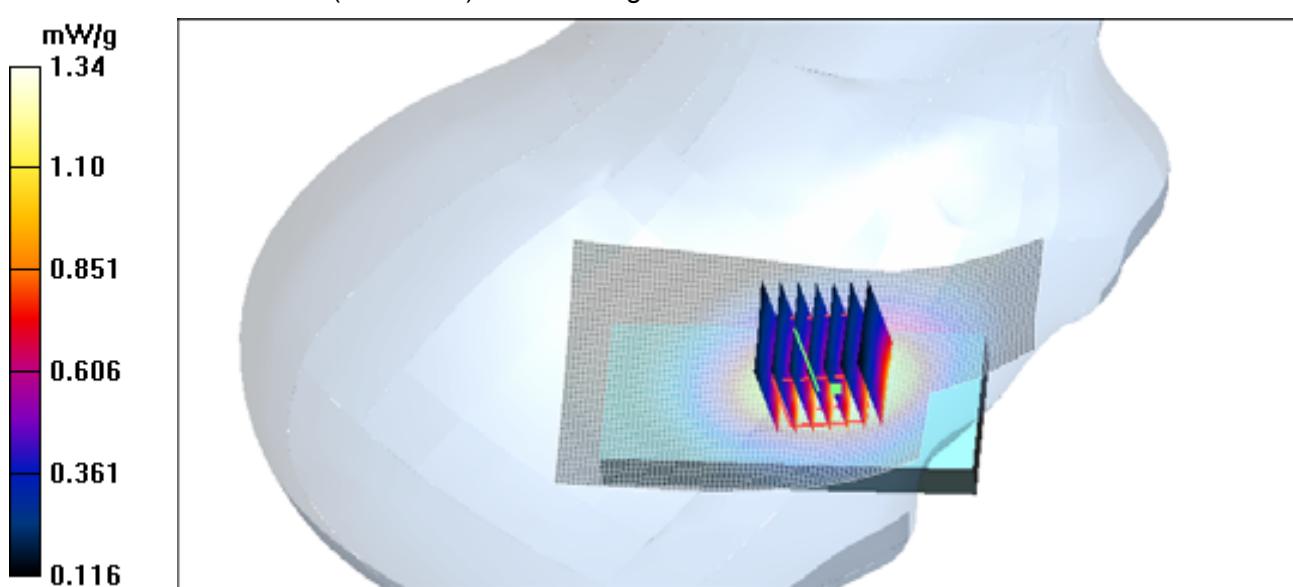
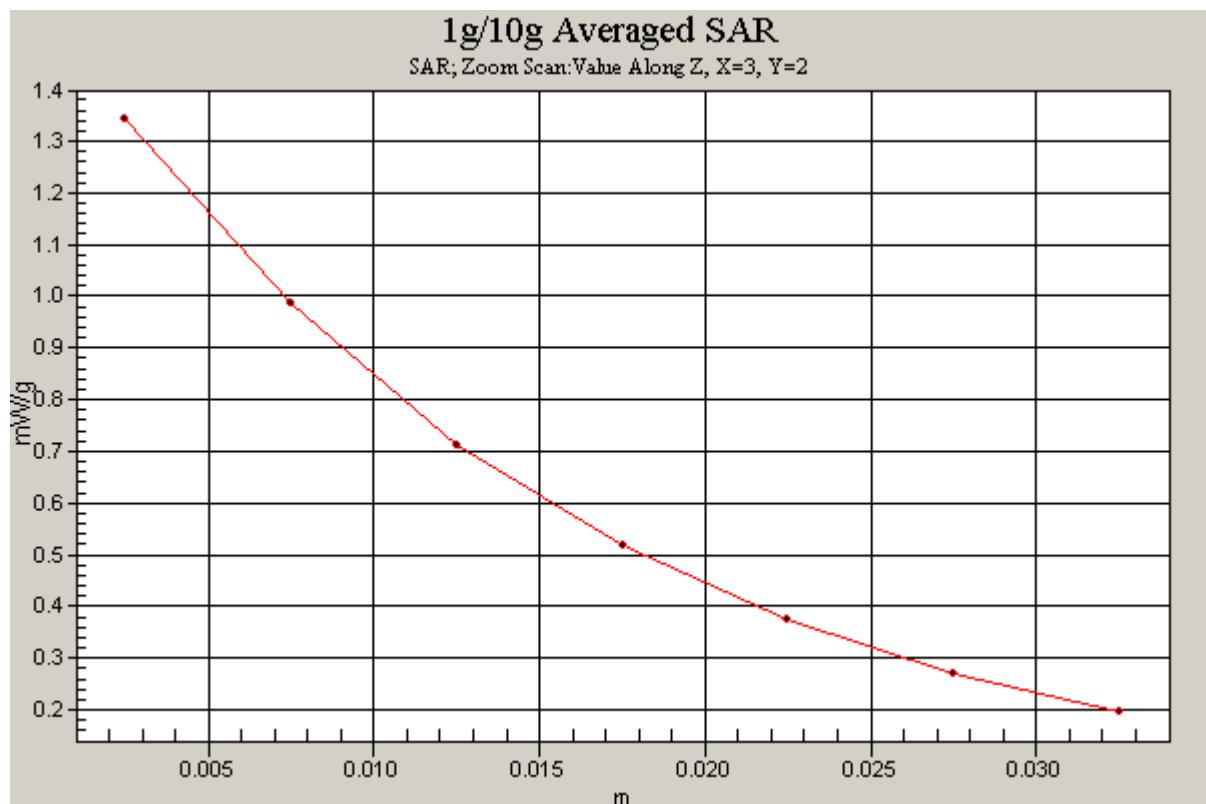



Figure 21 Right Hand Touch Cheek CDMA Cellular Channel 1013

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 44 of 81

Figure 22 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 1013)

Date/Time: 3/31/2009 6:00:35 AM

CDMA Cellular Right Tilt Middle

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.935$ mho/m; $\epsilon_r = 43$; $\rho = 1000$ kg/m³

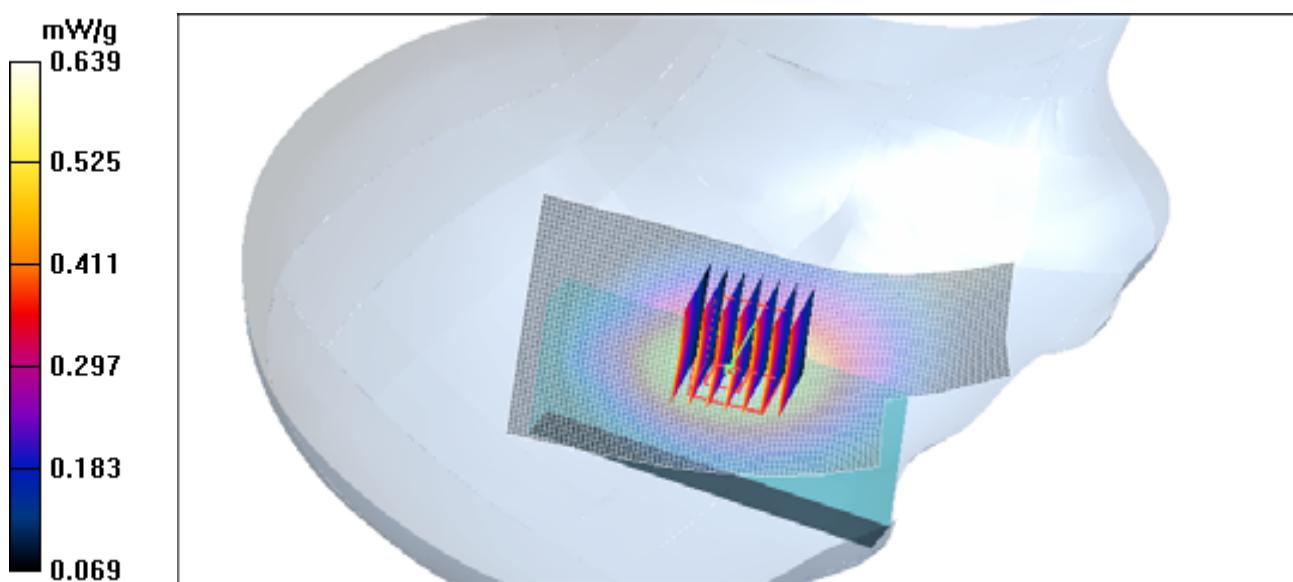
Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.648 mW/g


Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = 0.095 dB

Peak SAR (extrapolated) = 0.746 W/kg

SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.385 mW/g

Maximum value of SAR (measured) = 0.639 mW/g

Figure 23 Right Hand Tilt 15° CDMA Cellular Channel 384

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 46 of 81

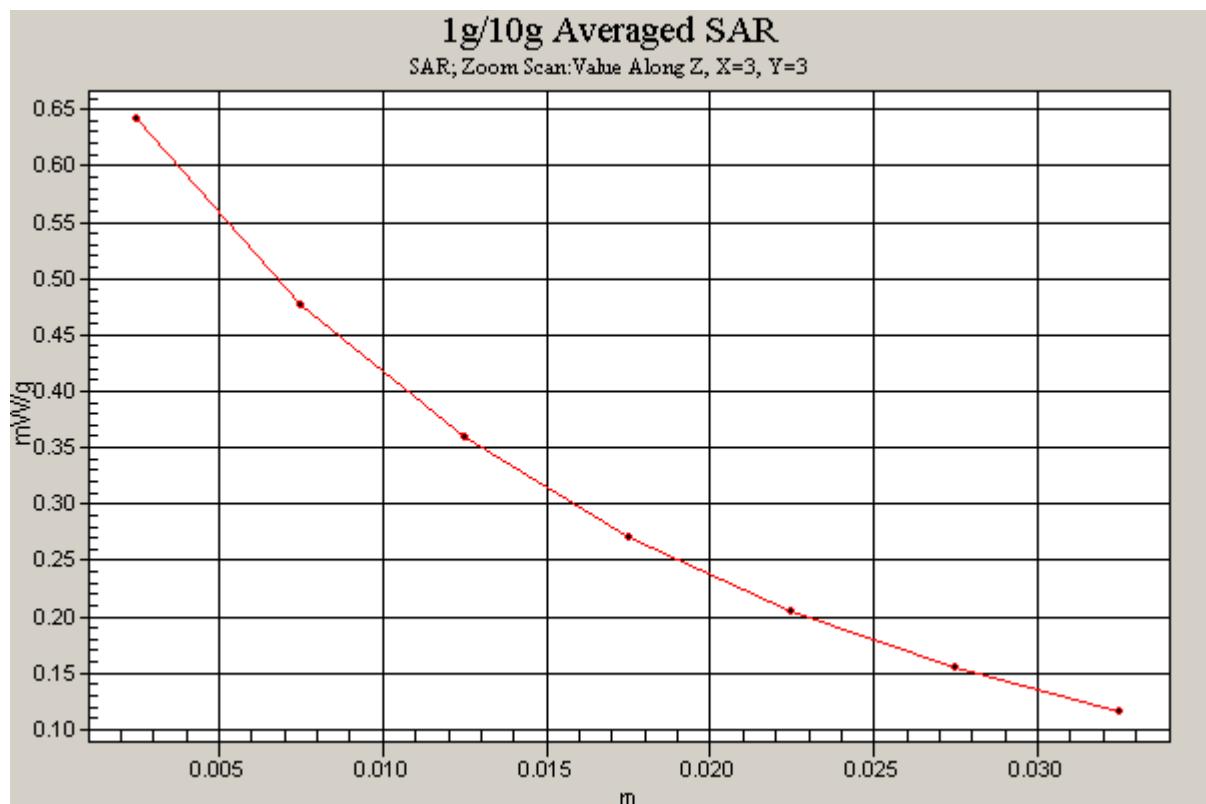


Figure 24 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 384)

Date/Time: 3/31/2009 2:16:36 AM

CDMA Cellular Towards Ground High

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 848.31$ MHz; $\sigma = 0.998$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.774 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.9 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 0.995 W/kg

SAR(1 g) = 0.728 mW/g; SAR(10 g) = 0.511 mW/g

Maximum value of SAR (measured) = 0.776 mW/g

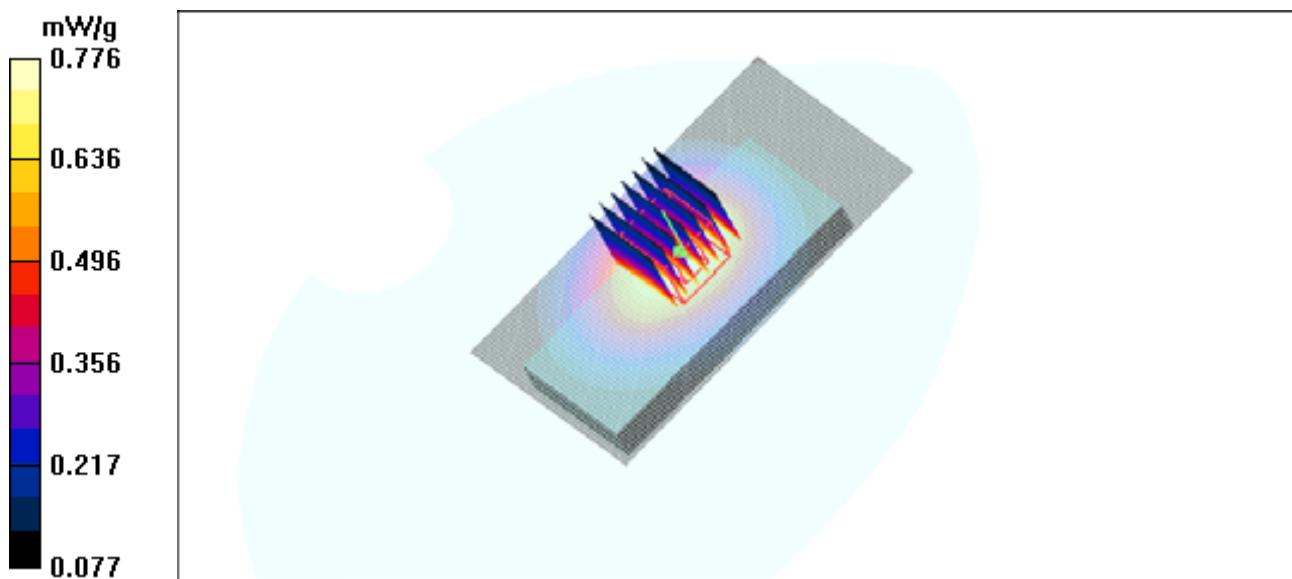
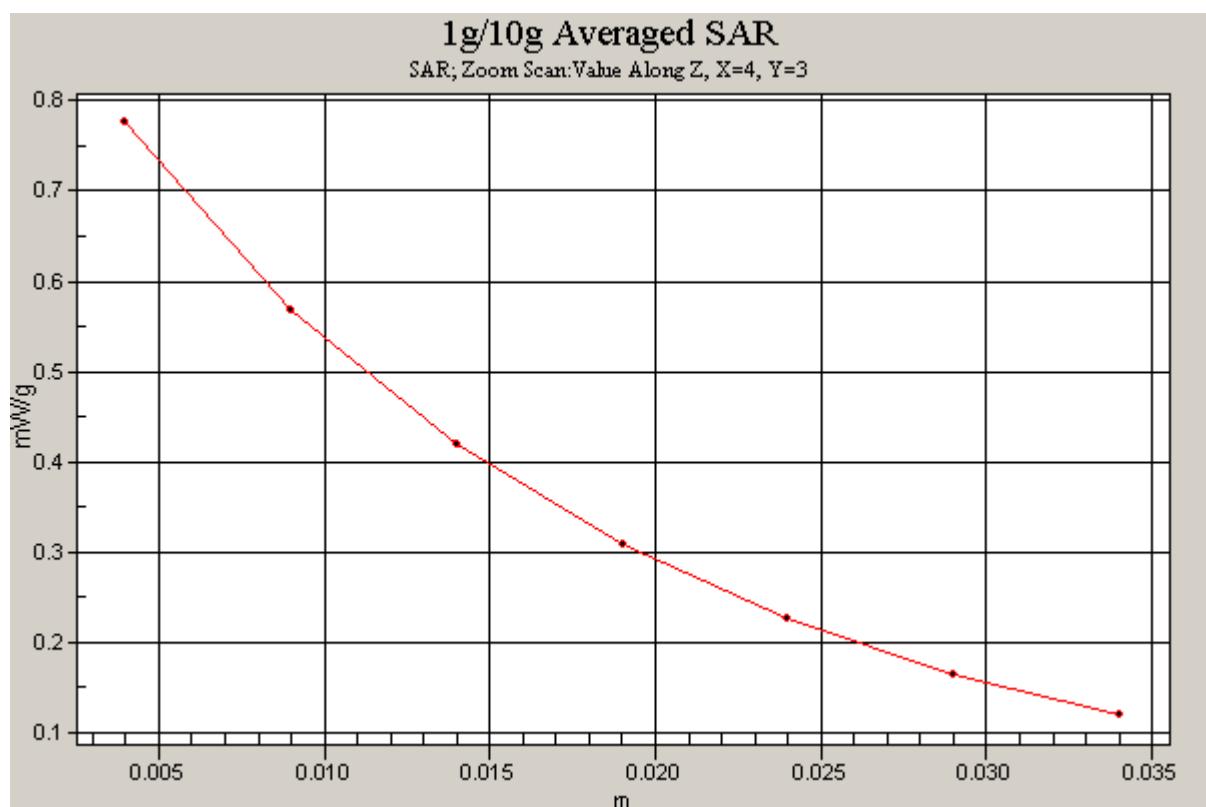



Figure 25 Body, Towards Ground, CDMA Cellular Channel 777

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 48 of 81

Figure 26 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 777)

Date/Time: 3/31/2009 1:59:02 AM

CDMA Cellular Towards Ground Middle

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.986$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.986 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.908 mW/g; SAR(10 g) = 0.639 mW/g

Maximum value of SAR (measured) = 0.966 mW/g

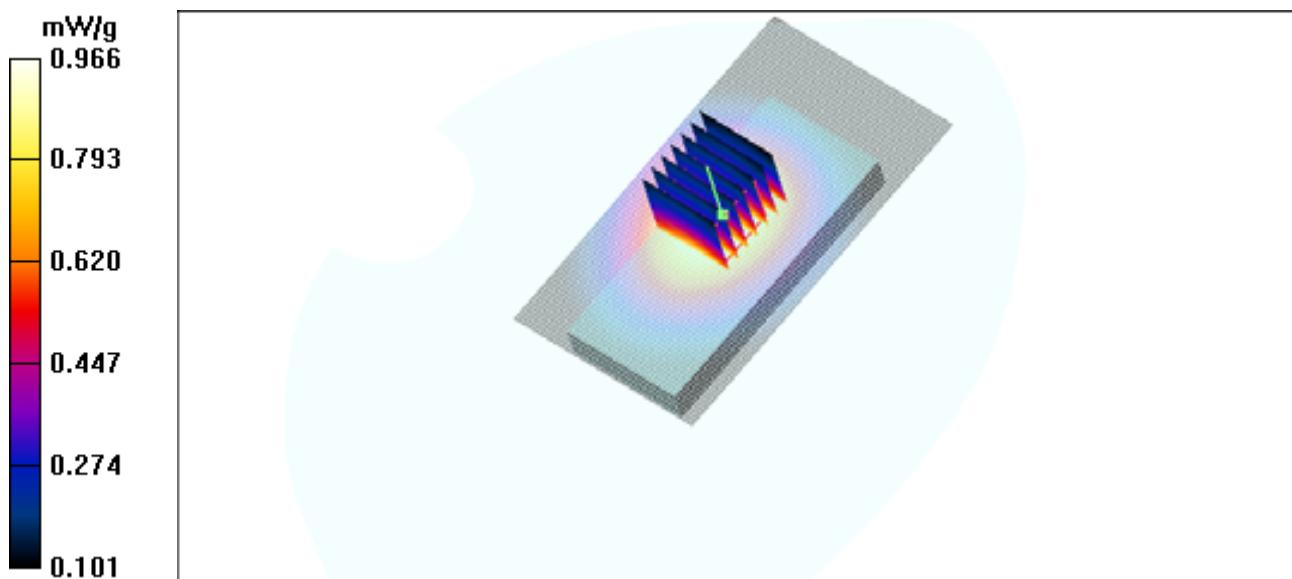
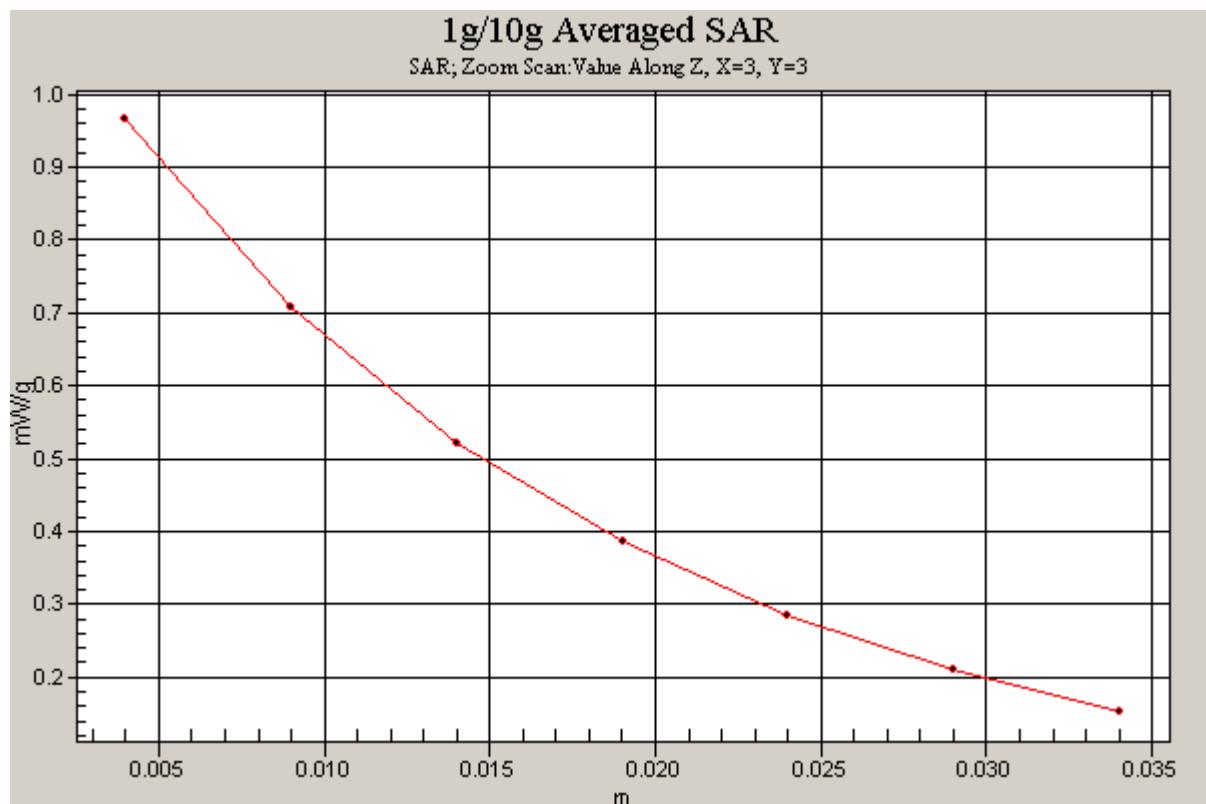



Figure 27 Body, Towards Ground, CDMA Cellular Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 50 of 81

Figure 28 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 384)

Date/Time: 3/31/2009 2:34:09 AM

CDMA Cellular Towards Ground Low

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 825$ MHz; $\sigma = 0.973$ mho/m; $\epsilon_r = 55.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.14 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.732 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

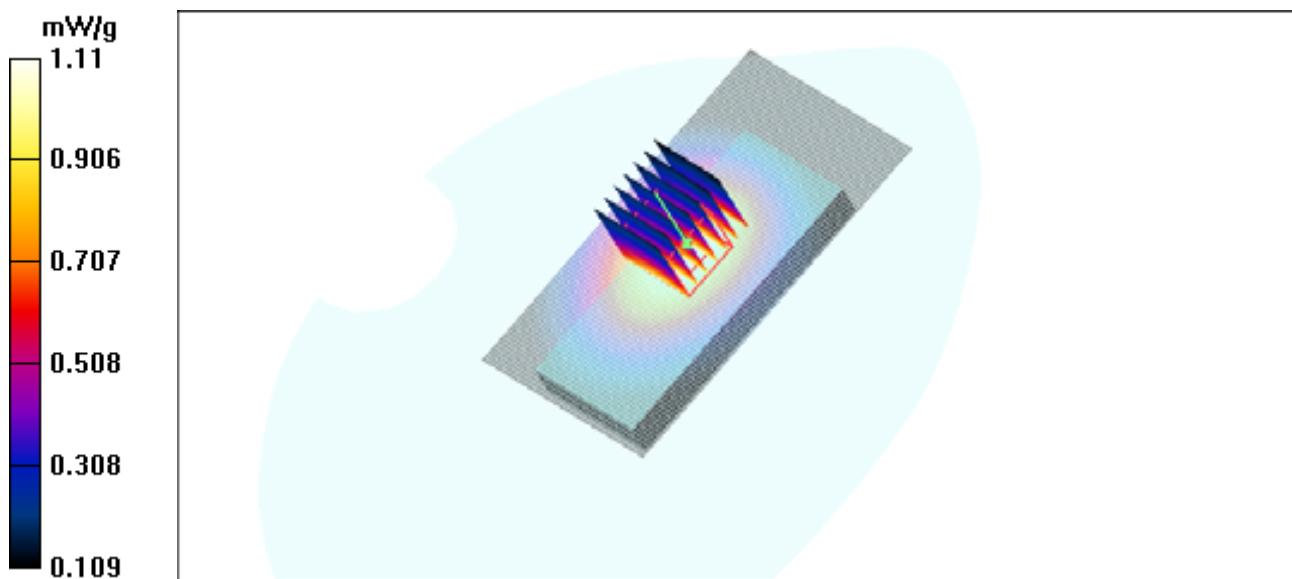
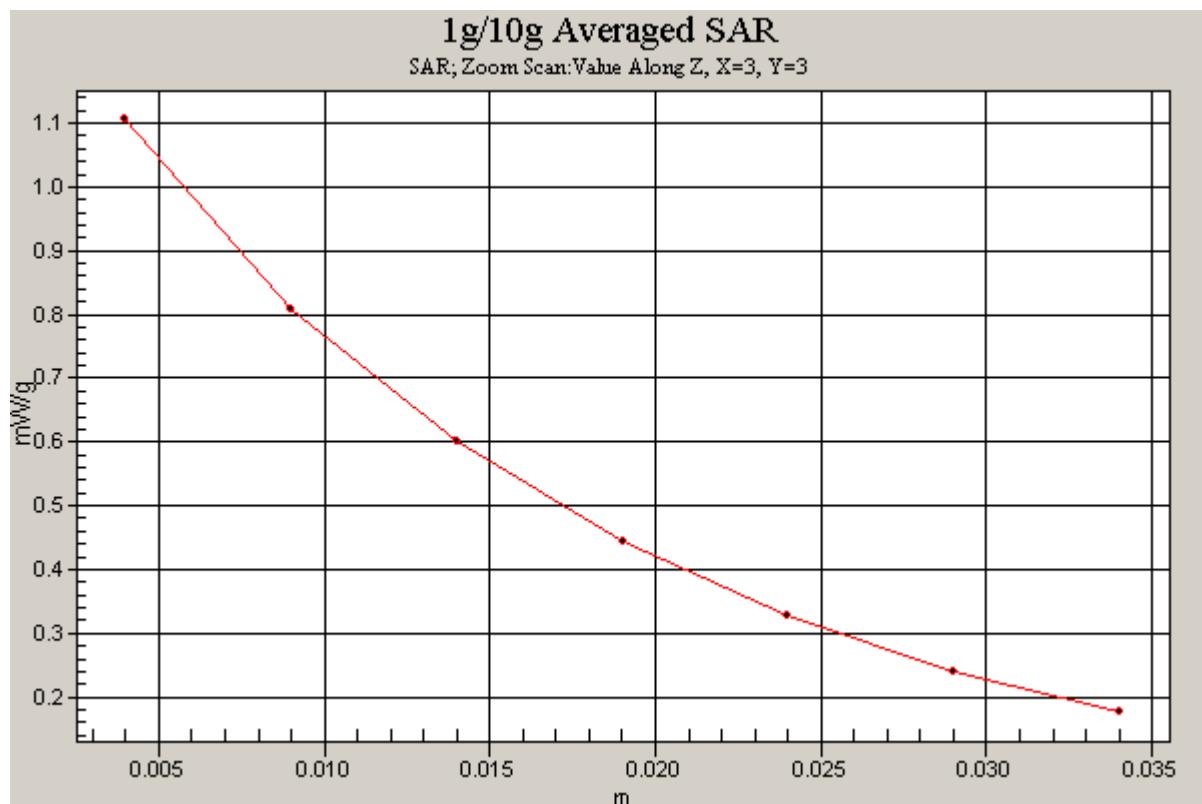



Figure 29 Body, Towards Ground, CDMA Cellular Channel 1013

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 52 of 81

Figure 30 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 1013)

Date/Time: 3/31/2009 1:40:11 AM

CDMA Cellular Towards Phantom Middle

Ambient Temperature: 23.3

Liquid Temperature: 22.5

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.986$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³

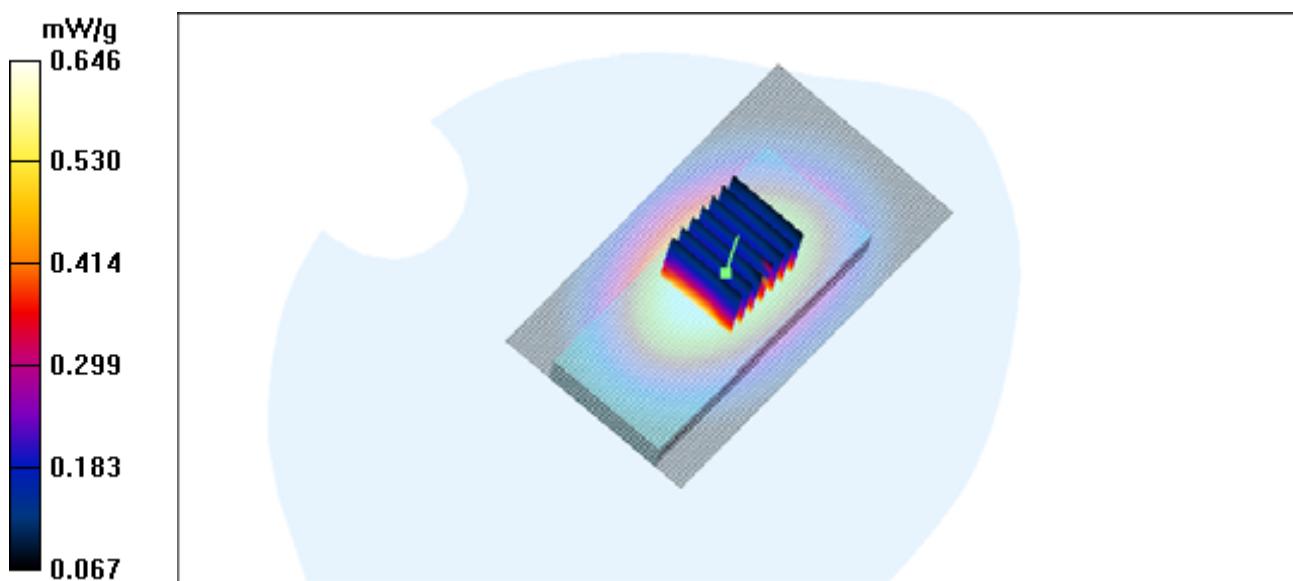
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.766 mW/g


Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.614 mW/g; SAR(10 g) = 0.433 mW/g

Maximum value of SAR (measured) = 0.646 mW/g

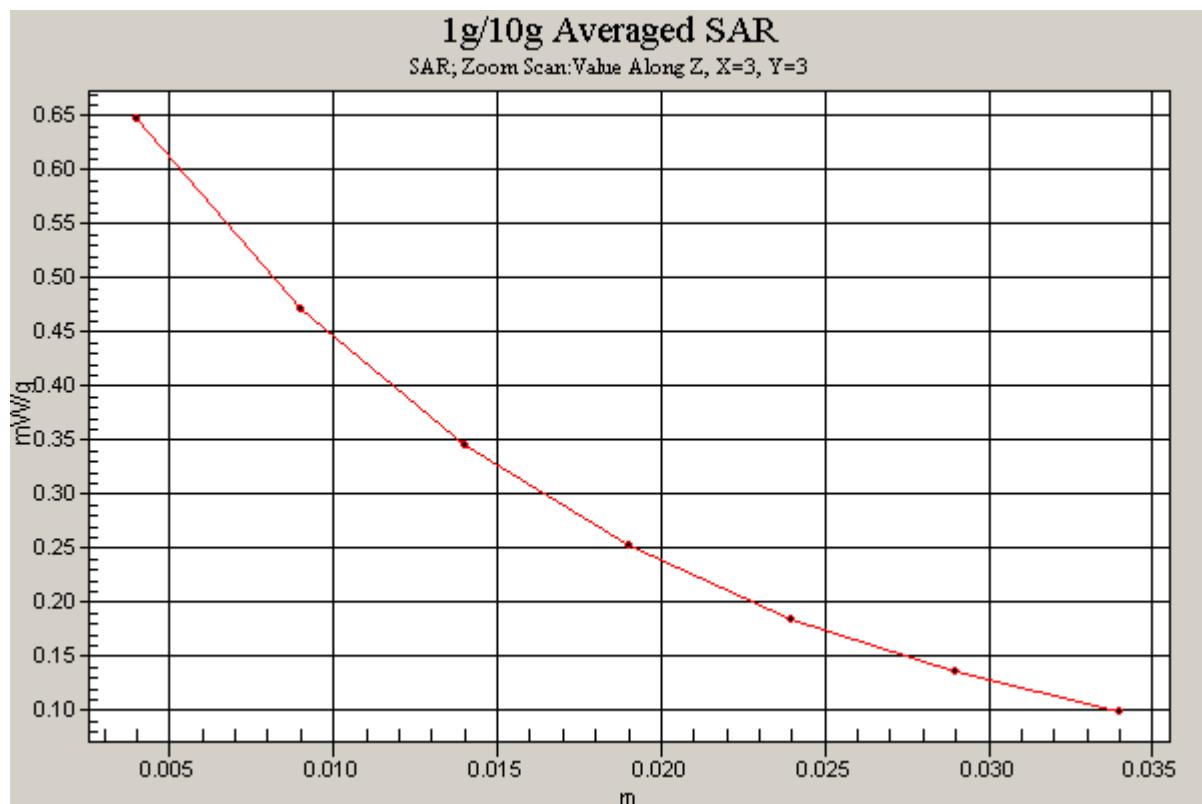


Figure 31 Body, Towards Phantom, CDMA Cellular Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

No. RZA2009-0365

Page 54 of 81

Figure 32 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Channel 384)

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 55 of 81

ANNEX D : PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA (Auden)

Certificate No: EX3-3660_Sep08

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3660		
Calibration procedure(s)	QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes		
Calibration date:	September 3, 2008		
Condition of the calibrated item	In Tolerance		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293574	1-Apr-08 (No. 217-00786)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00786)	Apr-09
Power sensor E4412A	MY41496087	1-Apr-08 (No. 217-00786)	Apr-09
Reference 3 dB Attenuator	SN: 85054 (3a)	1-Jul-08 (No. 217-00905)	Jul-09
Reference 20 dB Attenuator	SN: 85006 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: 85129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. EB3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
Calibrated by:	Name Kaiju Pelewitt	Function Technical Manager	Signature
Approved by:	Rin Bonholt	R&D Director	
Issued: September 3, 2008			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 56 of 81

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of a power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 57 of 81

EX3DV4 SN:3660

September 3, 2008

Probe EX3DV4

SN:3660

Manufactured:

April 29, 2008

Calibrated:

September 3, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 58 of 81

EX3DV4 SN:3660

September 3, 2008

DASY - Parameters of Probe: EX3DV4 SN:3660

Sensitivity in Free Space^A

NormX	0.44 ± 10.1%	µV/(V/m) ²
NormY	0.42 ± 10.1%	µV/(V/m) ²
NormZ	0.45 ± 10.1%	µV/(V/m) ²

Diode Compression^B

DCP X	88 mV
DCP Y	85 mV
DCP Z	89 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR ₉₉ [%]	Without Correction Algorithm	0.5 5.2
SAR ₉₉ [%]	With Correction Algorithm	0.4 0.1

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR ₉₉ [%]	Without Correction Algorithm	7.6 3.8
SAR ₉₉ [%]	With Correction Algorithm	0.2 0.1

Sensor Offset

Probe Tip to Sensor Center 1.0 mm

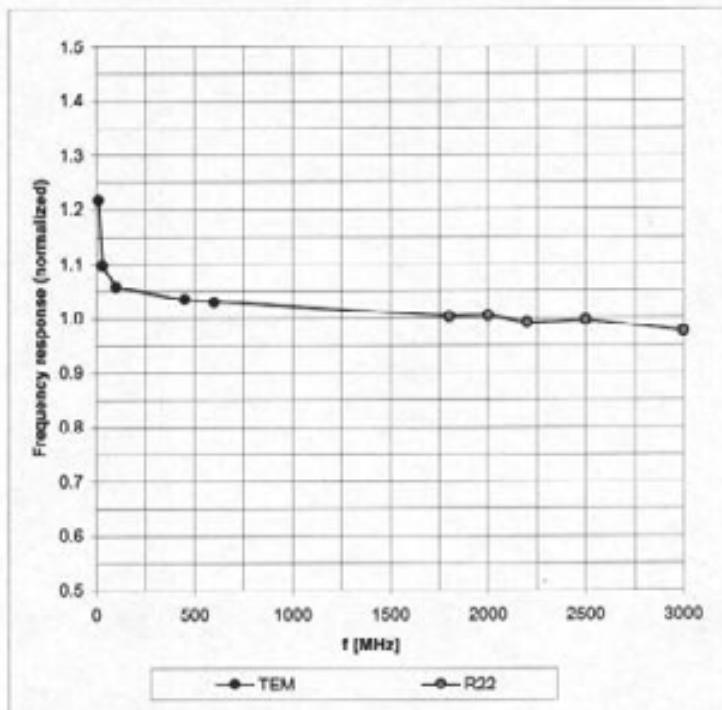
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365


Page 59 of 81

EX3DV4 SN:3660

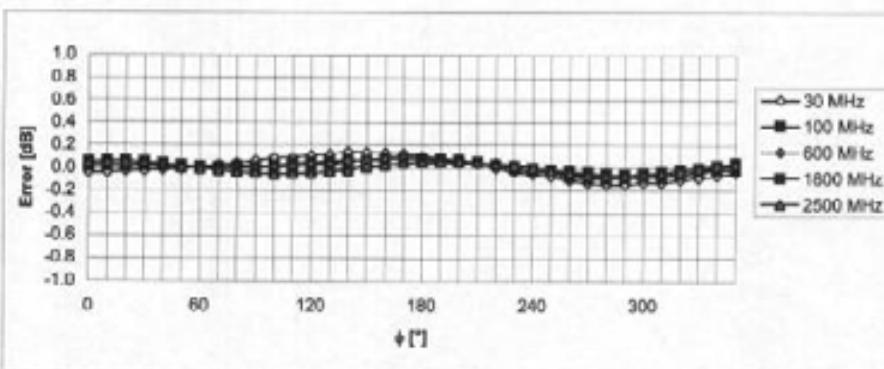
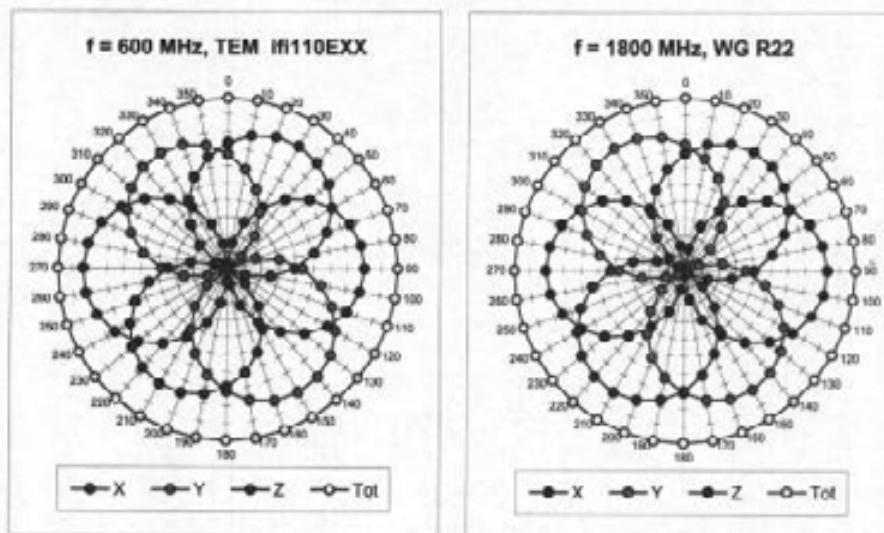
September 3, 2008

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report



No. RZA2009-0365

Page 60 of 81

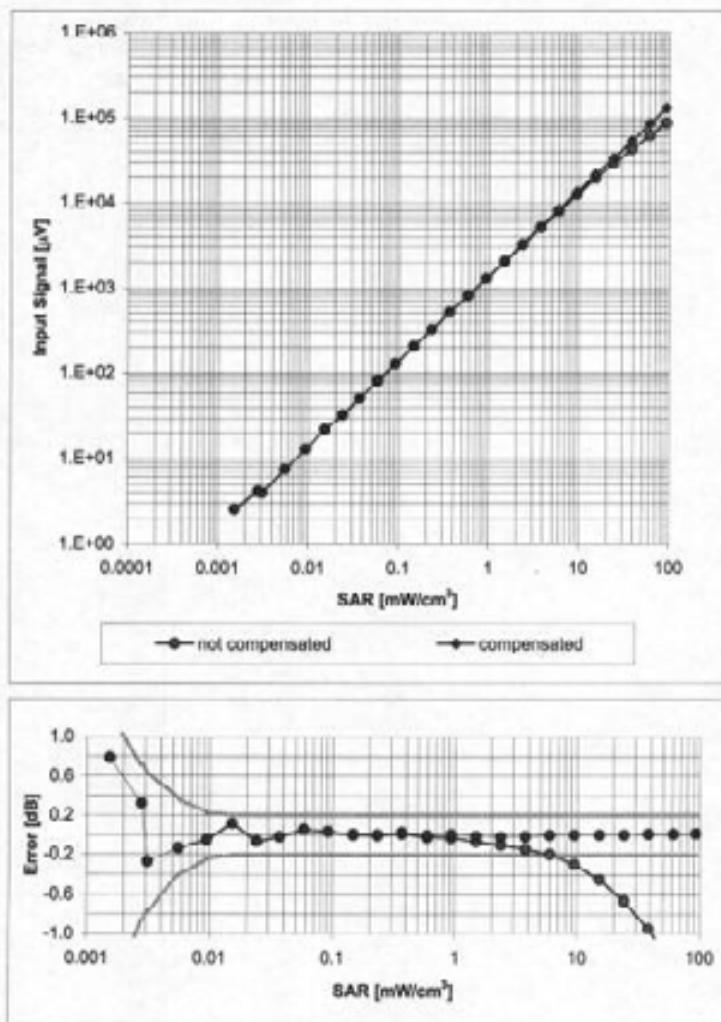
EX3DV4 SN:3660

September 3, 2008

Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


No. RZA2009-0365

Page 61 of 81

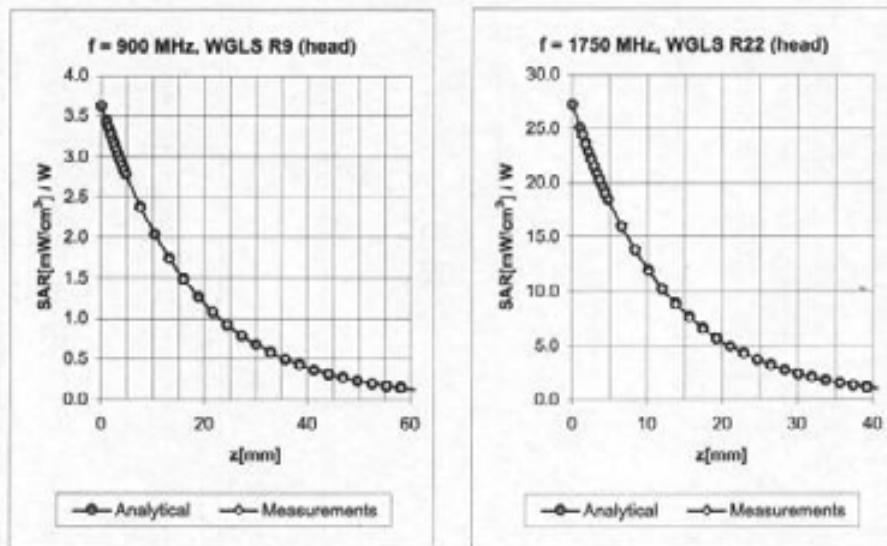
EX3DV4 SN:3660

September 3, 2008

Dynamic Range $f(\text{SAR}_{\text{head}})$
(Waveguide R22, $f = 1800$ MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


No. RZA2009-0365

Page 62 of 81

EX3DV4 SN:3660

September 3, 2008

Conversion Factor Assessment

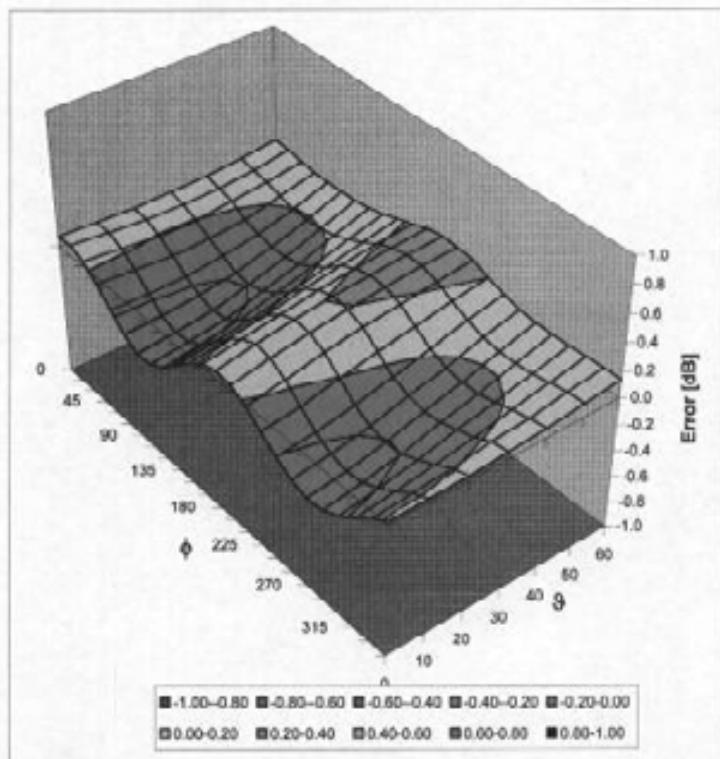
f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.49	0.76	9.19	± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.43	0.83	8.84	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.68	0.63	7.79	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.31	0.80	7.35	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.32	0.86	6.94	± 11.0% (k=2)

835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.63	0.71	9.10	± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.30	1.06	8.76	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.34	0.66	7.55	± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.60	0.67	7.45	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.30	1.15	6.75	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DABY v4.4 and higher (see Page 2). The uncertainty is the R88 of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365


Page 63 of 81

EX3DV4 SN:3660

September 3, 2008

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 64 of 81

ANNEX E : D835V2 DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Auden

Certificate No: D835V2-4d020_Jul08

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d020

Calibration procedure(s) QA CAL-05.v7
Calibration procedure for dipole validation kits

Calibration date: July 21, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	14-Mar-08 (No. DAE4-601_Mar08)	Mar-09

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100006	4-Aug-09 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37300585 84206	18-Oct-01 (in house check Oct-07)	In house check: Oct-08

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: July 21, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 65 of 81

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1526-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65
- d) EN 50361, "Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001

Additional Documentation:

- e) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 66 of 81

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.0 \pm 6 %	0.89 mho/m \pm 6 %
Head TSL temperature during test	(21.6 \pm 0.2) °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.30 mW / g
SAR normalized	normalized to 1W	9.20 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.20 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.52 mW / g
SAR normalized	normalized to 1W	6.08 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.07 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 67 of 81

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.0 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	—	—

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.28 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.59 mW / g
SAR normalized	normalized to 1W	6.38 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.19 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 68 of 81

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω -3.7 $j\Omega$
Return Loss	-25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4 Ω -5.1 $j\Omega$
Return Loss	-25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.390 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 69 of 81

DASY4 Validation Report for Head TSL

Date/Time: 21.07.2008 10:08:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d020

Communication System: CW-835, Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

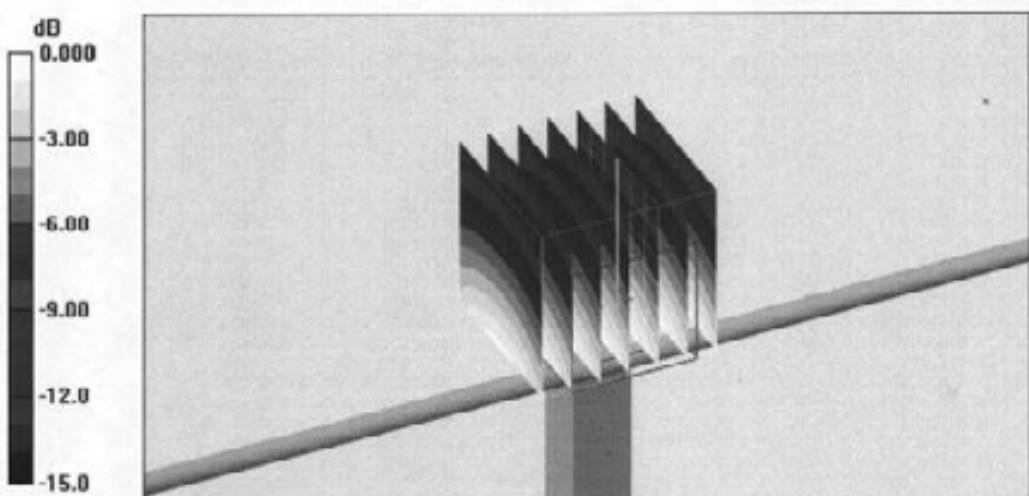
Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $c_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 4.9L, Type: QD000P49AA, ;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

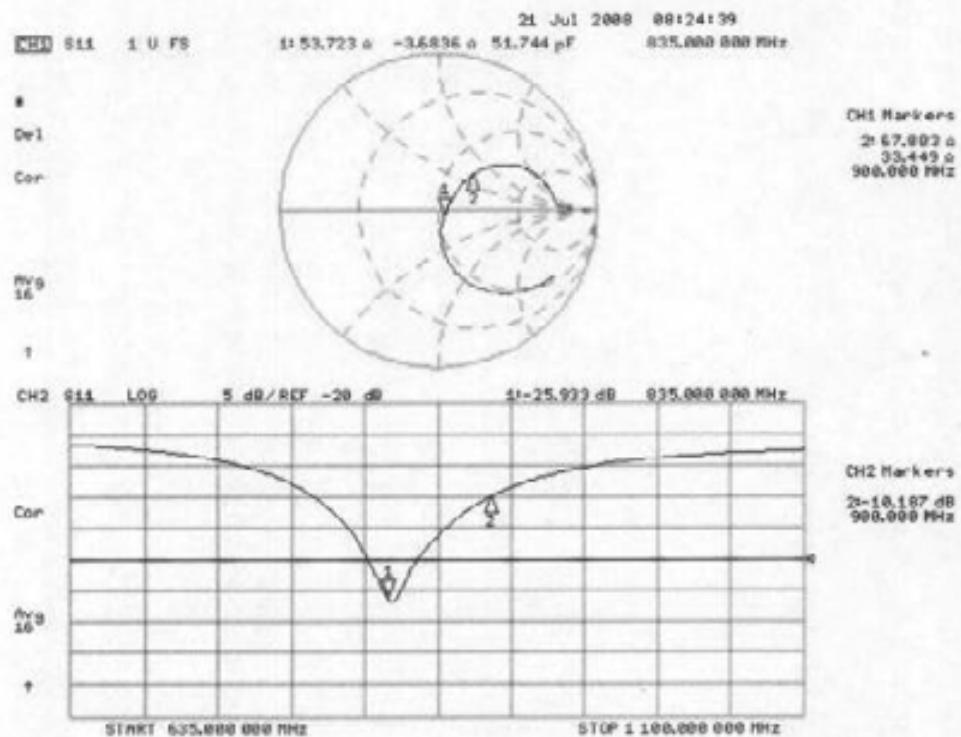

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.4 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.61 mW/g


0 dB = 2.61 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 70 of 81

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 71 of 81

DASY4 Validation Report for Body TSL

Date/Time: 14.07.2008 09:46:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d020

Communication System: CW, Frequency: 835 MHz, Duty Cycle: 1:1

Medium: MSL900;

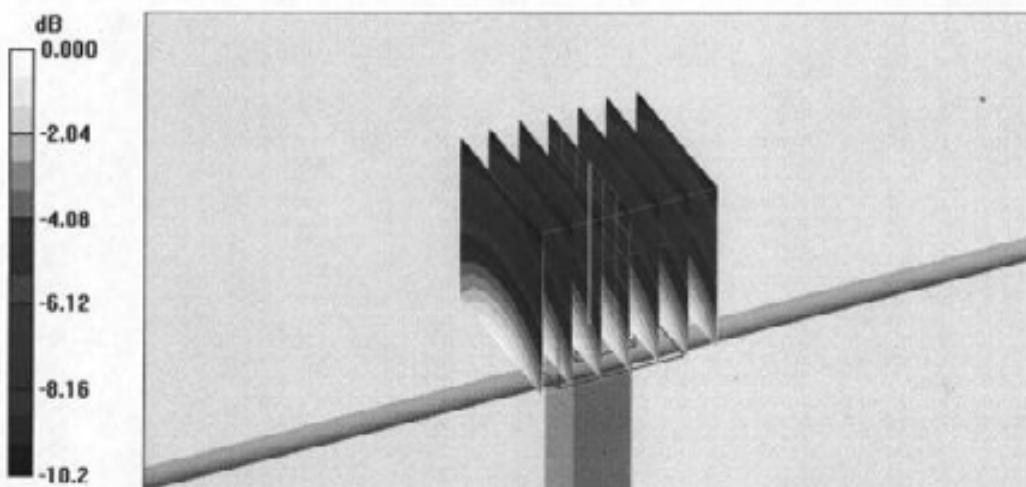
Medium parameters used: $f = 835$ MHz; $\sigma = 1$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.05.2008
- Phantom: Flat Phantom 4.9L, Type: QD000P49AA, ,
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

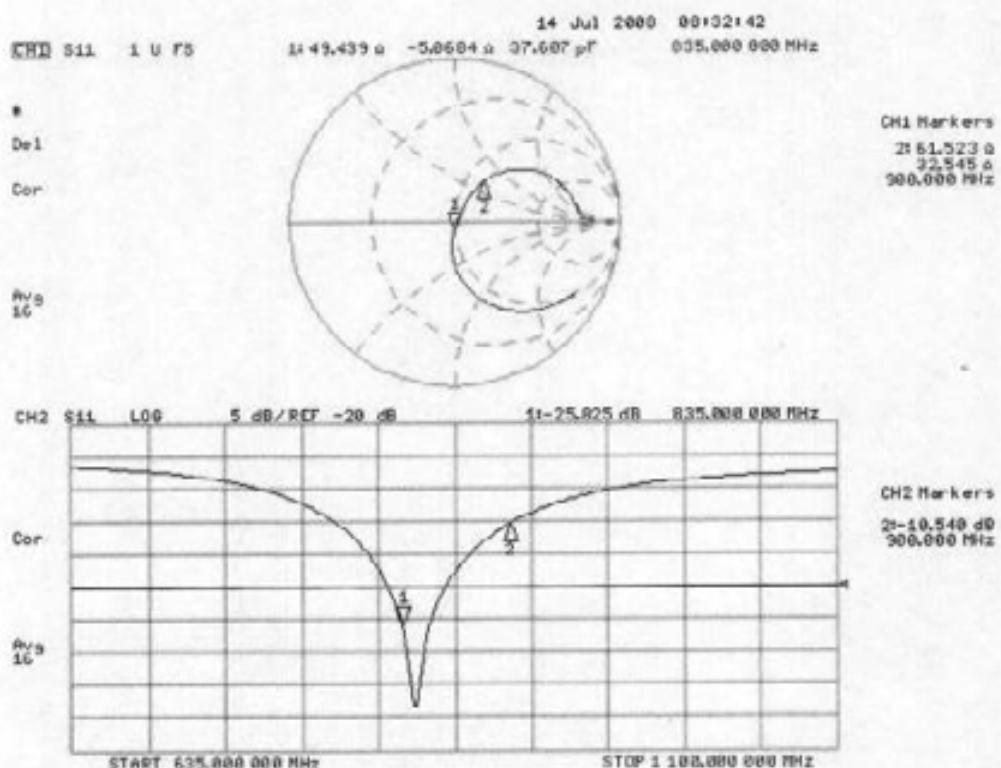

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.3 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 3.49 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.73 mW/g


0 dB = 2.73mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 72 of 81

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 73 of 81

ANNEX F : DAE4 CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **Auden**

Certificate No: **DAE4-452_Nov08**

CALIBRATION CERTIFICATE

Object **DAE4 - SD 000 D04 BJ - SN: 452**

Calibration procedure(s) **QA CAL-06.v12**
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **November 18, 2008**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	30-Sep-08 (No: 7673)	Sep-09
Keithley Multimeter Type 2001	SN: 0810278	30-Sep-08 (No: 7670)	Sep-09
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	06-Jun-08 (in house check)	In house check: Jun-09

Calibrated by: **Dominique Steffen** **Technician**

Approved by: **Fin Bomholt** **R&D Director**

Issued: November 18, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 74 of 81

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 75 of 81

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100...+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.585 \pm 0.1\% \text{ (k=2)}$	$404.416 \pm 0.1\% \text{ (k=2)}$	$404.565 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.97854 \pm 0.7\% \text{ (k=2)}$	$3.95135 \pm 0.7\% \text{ (k=2)}$	$3.98063 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$148^\circ \pm 1^\circ$
---	-------------------------

TA Technology (Shanghai) Co., Ltd.
Test Report

No. RZA2009-0365

Page 76 of 81

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000	0.00
Channel X	+ Input	20000	20006.89	0.03
Channel X	- Input	20000	-20003.71	0.02
Channel Y	+ Input	200000	200000.5	0.00
Channel Y	+ Input	20000	20008.05	0.04
Channel Y	- Input	20000	-20006.61	0.03
Channel Z	+ Input	200000	199999.6	0.00
Channel Z	+ Input	20000	20006.84	0.03
Channel Z	- Input	20000	-20004.66	0.02

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	2000	2000	0.00
Channel X	+ Input	200	200.19	0.09
Channel X	- Input	200	-199.99	0.00
Channel Y	+ Input	2000	2000	0.00
Channel Y	+ Input	200	199.38	-0.31
Channel Y	- Input	200	-200.73	0.36
Channel Z	+ Input	2000	2000.1	0.00
Channel Z	+ Input	200	199.25	-0.38
Channel Z	- Input	200	-201.52	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	2.99	1.90
	-200	-1.54	-1.85
Channel Y	200	-8.82	-8.73
	-200	6.90	6.96
Channel Z	200	9.94	10.21
	-200	-13.53	-13.21

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	1.31	-0.98
Channel Y	200	1.52	-	2.97
Channel Z	200	-1.16	0.18	-

TA Technology (Shanghai) Co., Ltd.

Test Report

No. RZA2009-0365

Page 77 of 81

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16123	16646
Channel Y	15886	16452
Channel Z	16175	16346

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	0.53	-0.80	1.64	0.33
Channel Y	-1.51	-2.67	-0.89	0.35
Channel Z	-1.99	-3.07	-1.43	0.29

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (M Ω)	Measuring (M Ω)
Channel X	0.1999	198.3
Channel Y	0.1999	200.1
Channel Z	0.1999	199.3

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9