

FCC Radio Test Report

FCC ID: QISBG2-U03

This report concerns (check on	e): ⊠Original Grant □Class I Change □Class II Change
Equipment : H Model Name : B Applicant : H Address : A	707C204 IUAWEI MediaPad T3 7 IG2-U03 Iuawei Technologies Co.,Ltd. Idministration Building, Headquarters of Huawei Iechnologies Co., Ltd., Bantian, Longgang District Ishenzhen China
Date of Test : July 18 : J	ul. 24, 2017 ul. 24, 2017 ~ Aug. 09, 2017 aug. 10, 2017 BTL Inc.
Testing Engineer	: Paul Li (Paul Li)
Technical Manager	: David Mao (David Mao)
Authorized Signatory	: Seenen las

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

(Steven Lu)

TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Report No.: BTL-FCCP-3-1707C204 Page 1 of 141

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: BTL-FCCP-3-1707C204 Page 2 of 141

Table of Contents	Page
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	9 11
3.2 DESCRIPTION OF TEST MODES 3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	13
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TE	
3.5 DESCRIPTION OF SUPPORT UNITS	13
	-
4 . EMC EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST PROCEDURE	14 14
4.1.3 DEVIATION FROM TEST STANDARD	14
4.1.4 TEST SETUP	15
4.1.5 EUT OPERATING CONDITIONS	15 15
4.1.6 EUT TEST CONDITIONS 4.1.7 TEST RESULTS	15
4.2 RADIATED EMISSION MEASUREMENT	16
4.2.1 RADIATED EMISSION LIMITS	16
4.2.2 TEST PROCEDURE	17
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	17 18
4.2.5 EUT OPERATING CONDITIONS	20
4.2.6 EUT TEST CONDITIONS	20
4.2.7 TEST RESULTS (9KHZ TO 30MHZ)	20
4.2.8 TEST RESULTS (30MHZ TO 1000MHZ) 4.2.9 TEST RESULTS (ABOVE 1000MHZ)	20 20
·	
5 . BANDWIDTH TEST	21
5.1 APPLIED PROCEDURES 5.1.1 TEST PROCEDURE	21 21
5.1.2 DEVIATION FROM STANDARD	21
5.1.3 TEST SETUP	21
5.1.4 EUT OPERATION CONDITIONS	21
5.1.5 EUT TEST CONDITIONS 5.1.6 TEST RESULTS	21 21
6 . MAXIMUM PEAK CONDUCTED OUTPUT POWER TEST	22

Report No.: BTL-FCCP-3-1707C204

Table of Contents	Page
6.1 APPLIED PROCEDURES / LIMIT 6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP 6.1.4 EUT OPERATION CONDITIONS 6.1.5 EUT TEST CONDITIONS 6.1.6 TEST RESULTS	22 22 22 22 22 22 22
7 . ANTENNA CONDUCTED SPURIOUS EMISSION	23
7.1 APPLIED PROCEDURES / LIMIT 7.1.1 TEST PROCEDURE 7.1.2 DEVIATION FROM STANDARD 7.1.3 TEST SETUP 7.1.4 EUT OPERATION CONDITIONS 7.1.5 EUT TEST CONDITIONS 7.1.6 TEST RESULTS	23 23 23 23 23 23 23
8 . POWER SPECTRAL DENSITY TEST	24
8.1 APPLIED PROCEDURES / LIMIT 8.1.1 TEST PROCEDURE 8.1.2 DEVIATION FROM STANDARD 8.1.3 TEST SETUP 8.1.4 EUT OPERATION CONDITIONS 8.1.5 EUT TEST CONDITIONS 8.1.6 TEST RESULTS	24 24 24 24 24 24 24
9 . MEASUREMENT INSTRUMENTS LIST	25
APPENDIX A - CONDUCTED EMISSION	27
APPENDIX B - RADIATED EMISSION (9KHZ TO 30MHZ)	34
APPENDIX C - RADIATED EMISSION (30MHZ TO 1000MHZ)	47
APPENDIX D - RADIATED EMISSION (ABOVE 1000MHZ)	60
APPENDIX E - BANDWIDTH	107
APPENDIX F - MAXIMUM PEAK CONDUCTED OUTPUT POWER	114
APPENDIX G - ANTENNA CONDUCTED SPURIOUS EMISSION	116
APPENDIX H - POWER SPECTRAL DENSITY	135

Report No.: BTL-FCCP-3-1707C204 Page 4 of 141

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-3-1707C204	Original Issue.	Aug. 10, 2017

Report No.: BTL-FCCP-3-1707C204 Page 5 of 141

1. CERTIFICATION

Equipment: HUAWEI MediaPad T3 7

Brand Name: HUAWEI Model Name: BG2-U03

Applicant : Huawei Technologies Co.,Ltd. Manufacturer : Huawei Technologies Co.,Ltd.

Address : Administration Building, Headquarters of Huawei Technologies Co., Ltd.,

Bantian, Longgang District Shenzhen China

Date of Test : Jul. 24, 2017 ~ Aug. 09, 2017

Test Sample: Engineering Sample

Standard(s) : FCC Part15, Subpart C:(15.247) / ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-3-1707C204) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test results included in this report is only for the WLAN 2.4G part.

Report No.: BTL-FCCP-3-1707C204 Page 6 of 141

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247), Subpart C				
Standard(s) Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247(d)	Antenna conducted Spurious Emission	PASS		
15.247(a)(2)	6dB Bandwidth	PASS		
15.247(b)(3)	Peak Output Power	PASS		
15.247(e)	Power Spectral Density	PASS		
15.203	Antenna Requirement	PASS		
15.247(d)/ 15.205/ 15.209	Transmitter Radiated Emissions	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

Report No.: BTL-FCCP-3-1707C204 Page 7 of 141

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150 KHz ~ 30MHz	2.32

B. Radiated Measurement:

Test Site	Method Measurement Frequency Range		Ant. H / V	U, (dB)
		9KHz~30MHz	V	3.79
		9KHz~30MHz	Н	3.57
		30MHz ~ 200MHz	V	3.82
	CISPR	30MHz ~ 200MHz	Н	3.78
DG-CB03		200MHz ~ 1,000MHz	V	4.10
DG-CB03		200MHz ~ 1,000MHz	Н	4.06
		1GHz~18GHz	V	3.12
		1GHz~18GHz	Н	3.68
		18GHz~40GHz	V	4.15
		18GHz~40GHz	Н	4.14

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Report No.: BTL-FCCP-3-1707C204 Page 8 of 141

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	HUAWEI MediaPad T3 7		
Brand Name	HUAWEI		
Model Name	BG2-U03		
Model Difference	N/A		
Power Source	#1 DC voltage supplied from AC/DC adapter. #2 Supplied from battery. #3 Supplied from USB port.		
Power Rating	#1 Input: 100-240V~50/60Hz 0.2A Output: 5V 1A #2 DC 3.7V #3 EUT I/P: DC 5V		
HW Version	Bg2-3G V1.0		
	Operation Frequency	2412~2462 MHz	
	Modulation Technology	802.11b:DSSS 802.11g:OFDM 802.11n:OFDM	
Product Description	Bit Rate of Transmitter	802.11b: 11/5.5/2/1 Mbps 802.11g: 54/48/36/24/18/12/9/6 Mbps 802.11n up to 150 Mbps	
	Output Power (Max.)	802.11b: 21.1dBm 802.11g: 25.01dBm 802.11n(20MHz): 24.63dBm	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. The EUT contains following accessory devices

Item	Mfr/Brand	Model.
	HUIZHOU BYD ELECTRONIC CO.,LTD	
Adapter	SHENZHEN HUNTKEY ELECTRIC CO.,LTD	HW-050100U01
,	DONGGUAN PHITEK ELECTRONICS CO.,LTD	
	HONGLIN TECHNOLOGY CO.,LTD	130-26654
USB Cable	FOXCONN INTERCONNECT TECHNOLOGY LIMITED	CUBB01M-HC208-DH
	Luxshare Precision Industry Co., Ltd	L99U2013-CS-H
	Harbin Coslight Power Co., Ltd	HB3G1
Battery	SCUD (FUJIAN) Electronics Co., Ltd	HB3G1
	Sunwoda Electronic Co., LTD	HB4269B6EAW

Report No.: BTL-FCCP-3-1707C204 Page 9 of 141

3. Channel List:

	CH01 – CH11 for 802.11b, 802.11g, 802.11n(20MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

4. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Internal	N/A	0.31

Report No.: BTL-FCCP-3-1707C204 Page 10 of 141

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	
Mode 4	TX Mode	

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test		
Final Test Mode	Description	
Mode 4	TX Mode	

For Radiated Test		
Final Test Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	

For Band Edge Test		
Final Test Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	

Report No.: BTL-FCCP-3-1707C204 Page 11 of 141

6dB Spectrum Bandwidth		
Final Test Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	

Maximum Conducted Output Power		
Final Test Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	

Power Spectral Density		
Final Test Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	

Note:

(1) The measurements are performed at the high, middle, low available channels.

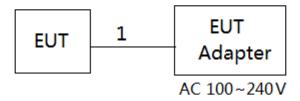
(2) 802.11b mode: DBPSK (1Mbps) 802.11g mode: OFDM (6Mbps)

802.11n HT20 mode: BPSK (6.5Mbps)

For radiated emission tests, the highest output powers were set for final test.

- (3) For radiated below 1G test, the 802.11b is found to be the worst case and recorded.
- (4) The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

Report No.: BTL-FCCP-3-1707C204 Page 12 of 141



3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version	NA		
Frequency (MHz)	2412	2437	2462
802.11b	14	24	14
802.11g	12	24	12
802.11n (20MHz)	11	24	11

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.2m	USB Cable

Report No.: BTL-FCCP-3-1707C204 Page 13 of 141

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

Fraguency of Emission (MHz)	Conducted Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 -0.50	66 to 56*	56 to 46*	
0.50 -5.0	56	46	
5.0 -30.0	60	50	

Note:

(1) The limit of " * " decreases with the logarithm of the frequency

(2) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor
Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)
Margin Level = Measurement Value - Limit Value

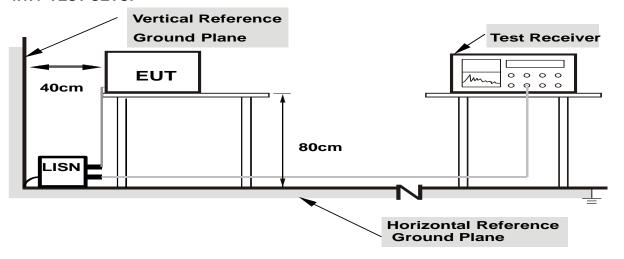
The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD


No deviation

Report No.: BTL-FCCP-3-1707C204 Page 14 of 141

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was placed on the test table and programmed in normal function.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Appendix A.

Report No.: BTL-FCCP-3-1707C204

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9KHz-1000MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	Band edge at 3	3m (dBµV/m)	Harmonic at 1.5m (dBµV/m)		
	Peak	Average	Peak	Average	
Above 1000	74	54	80 (Note 5)	60(Note 5)	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

(5)
$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

20log d limit/d measure=20log 3/1.5=6dB.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

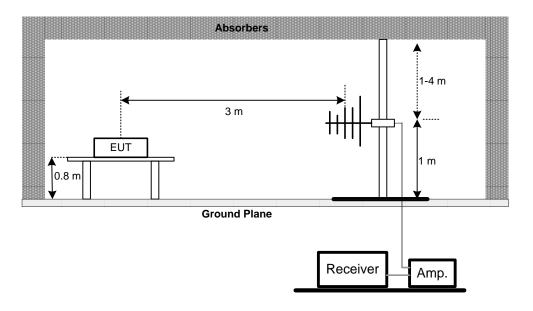
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (below 1GHz)
- b. The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

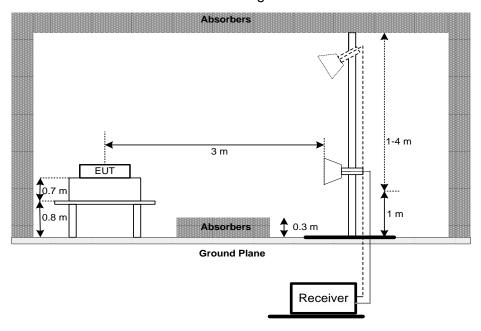
4.2.3 DEVIATION FROM TEST STANDARD

No deviation

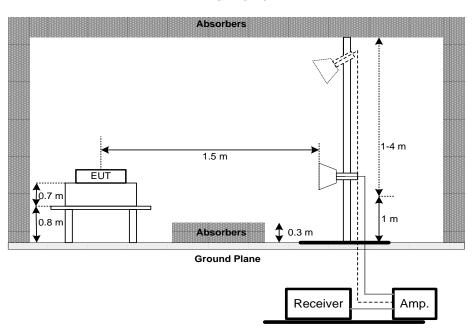

Report No.: BTL-FCCP-3-1707C204 Page 17 of 141

4.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

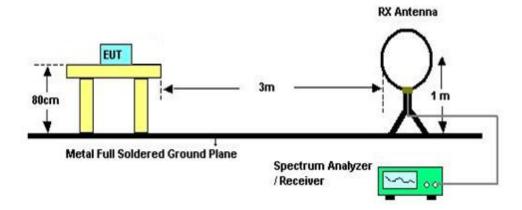


Report No.: BTL-FCCP-3-1707C204



(B) Radiated Emission Test Set-Up Frequency Above 1 GHz Band edge

Harmonic



Report No.: BTL-FCCP-3-1707C204 Page 19 of 141

(C) For Radiated Emissions Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Appendix B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (30MHZ TO 1000MHZ)

Please refer to the Appendix C.

4.2.9 TEST RESULTS (ABOVE 1000MHZ)

Please refer to the Appendix D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Report No.: BTL-FCCP-3-1707C204 Page 20 of 141

5. BANDWIDTH TEST

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C				
Section Test Item Frequency Range (MHz) Result				
15.247(a)(2)	Bandwidth	2400-2483.5	PASS	

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT		SPECTRUM	
		ANALYZER	

5.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

5.1.6 TEST RESULTS

Please refer to the Appendix E.

Report No.: BTL-FCCP-3-1707C204 Page 21 of 141

6. MAXIMUM PEAK CONDUCTED OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 Watt or 30dBm	2400-2483.5	PASS

6.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

EUT	Power Meter
	1 OWEL WELL

6.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS

Please refer to the Appendix F.

Report No.: BTL-FCCP-3-1707C204 Page 22 of 141

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

EUT		SPECTRUM	
		ANALYZER	

7.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

7.1.6 TEST RESULTS

Please refer to the Appendix G.

Report No.: BTL-FCCP-3-1707C204 Page 23 of 141

8. POWER SPECTRAL DENSITY TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10KHz, Sweep time = Auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

8.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

8.1.6 TEST RESULTS

Please refer to the Appendix H.

Report No.: BTL-FCCP-3-1707C204 Page 24 of 141

9. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EMI Test Receiver	R&S	ESCI	100382	Mar. 26, 2018		
2	LISN	EMCO	3816/2	52765	Mar. 26, 2018		
3	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 26, 2018		
4	TWO-LINE V-NETWORK	R&S	ENV216	101447	Mar. 26, 2018		
5	Cable	N/A	RG223	12m	Oct. 20, 2017		
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

	Radiated Emission Below 1GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 26, 2018		
2	Amplifier	HP	8447D	2944A09673	Oct. 20, 2017		
3	Receiver	Agilent	N9038A	MY52130039	Sep. 04, 2017		
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	Jun. 26, 2018		
5	Controller	CT	SC100	N/A	N/A		
6	Controller	MF	MF-7802	MF780208416	N/A		
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
8	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Sep. 06, 2017		

Report No.: BTL-FCCP-3-1707C204 Page 25 of 141

		Radiated E	Emission Above 1G	Hz	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double Ridged Guide Antenna	ETS	3115	75789	Mar. 26, 2018
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 08, 2018
3	Amplifier	Agilent	8449B	3008A02274	May. 16, 2018
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 26, 2018
5	Receiver	Agilent	N9038A	MY52130039	Sep. 04, 2017
6	Antenna	EM	EM-6876-1	230	Jul. 07, 2018
7	Controller	СТ	SC100	N/A	N/A
8	Controller	MF	MF-7802	MF780208416	N/A
9	Cable	emci	EMC104-SM-SM-1 2000(12m)	N/A	Jun. 26, 2018
10	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

	6dB Bandwidth									
Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated u										
1	Spectrum Analyzer	R&S	FSP40	100185	Sep. 04, 2017					

	Peak Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Power Meter	ANRITSU	ML2495A	1128009	Mar. 26, 2018					
2	Pulse Power Sensor	ANRITSU	MA 2411B	1027500	Mar. 26, 2018					

	Antenna Conducted Spurious Emission									
Item Kind of Equipment Manufacturer Type No. Serial No. Calib										
1 Spectrum Analyzer R&S FSP40 100185 Sep. 0										

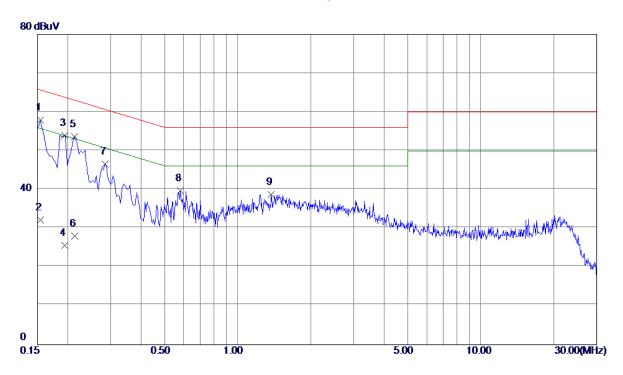
	Power Spectral Density									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Spectrum Analyzer	R&S	FSP40	100185	Sep. 04, 2017					

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

Report No.: BTL-FCCP-3-1707C204 Page 26 of 141

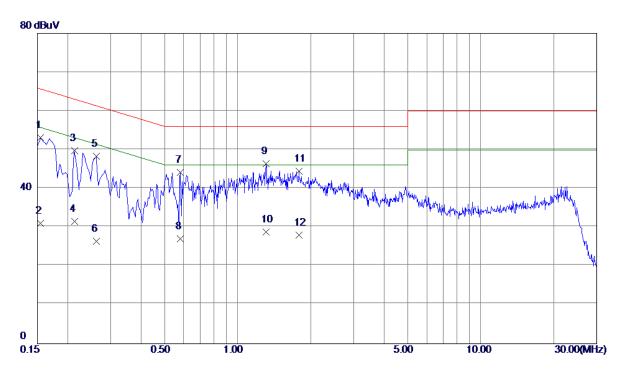
APPENDIX A - CONDUCTED EMISSION	


Report No.: BTL-FCCP-3-1707C204 Page 27 of 141

Test Mode : TX Mode_Adapter: HUNTKEY

Line

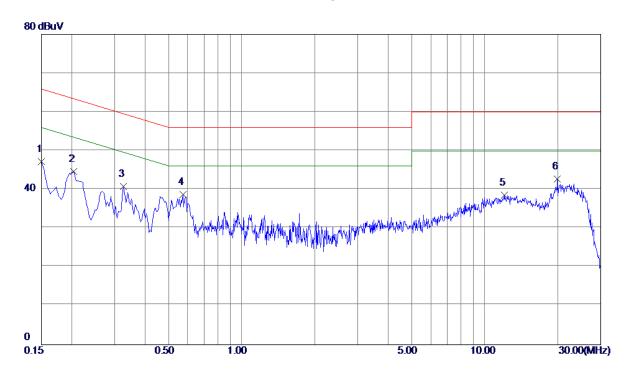
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0. 1545	48. 11	9. 79	57. 90	65.75	-7.85	Peak	
2	0. 1545	22.40	9. 79	32. 19	55. 75	-23. 56	AVG	
3	0.1949	44. 15	9. 76	53.91	63.83	-9. 92	Peak	
4	0. 1949	15. 90	9. 76	25. 66	53.83	-28. 17	AVG	
5	0.2130	43.85	9. 76	53.61	63.09	-9.48	Peak	
6	0.2130	18. 20	9. 76	27.96	53. 0 9	-25. 13	AVG	
7	0. 2850	36. 87	9. 76	46.63	60.67	-14.04	Peak	
8	0.5820	29. 95	9.81	39. 76	56. 00	-16. 24	Peak	
9	1. 3740	28. 77	9. 89	38.66	56.00	-17. 34	Peak	


Report No.: BTL-FCCP-3-1707C204 Page 28 of 141

Test Mode : TX Mode_Adapter: HUNTKEY

Neutral

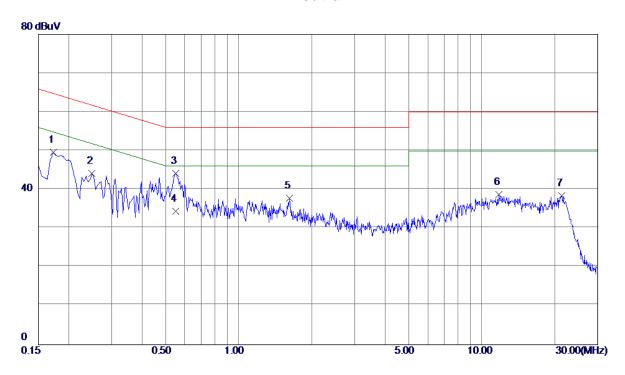
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
0. 1545	43.45	9. 68	53. 13	65. 75	-12.62	Peak	
0.1545	21.40	9. 68	31.08	55. 75	-24.67	AVG	
0.2130	40.00	9. 69	49. 69	63.09	-13.40	Peak	
0.2130	21. 79	9. 69	31.48	53.09	-21.61	AVG	
0.2625	38. 65	9. 67	48. 32	61.35	-13.03	Peak	
0.2625	16.70	9. 67	26. 37	51.35	-24.98	AVG	
0.5820	34. 52	9.71	44. 23	56.00	-11.77	Peak	
0.5820	17. 30	9.71	27.01	46.00	-18. 99	AVG	
1.3065	36. 70	9. 76	46. 46	56.00	-9.54	Peak	
1.3065	19. 10	9. 76	28.86	46.00	-17.14	AVG	
1.7880	34.63	9.82	44. 45	56.00	-11. 55	Peak	
1.7880	18. 21	9.82	28. 03	46.00	-17.97	AVG	
	MHz 0. 1545 0. 1545 0. 2130 0. 2130 0. 2625 0. 2625 0. 5820 0. 5820 1. 3065 1. 3065 1. 7880	MHz dBuV 0. 1545 43. 45 0. 1545 21. 40 0. 2130 40. 00 0. 2130 21. 79 0. 2625 38. 65 0. 2625 16. 70 0. 5820 34. 52 0. 5820 17. 30 1. 3065 36. 70 1. 7880 34. 63	MHz dBuV dB 0.1545 43.45 9.68 0.1545 21.40 9.68 0.2130 40.00 9.69 0.2130 21.79 9.69 0.2625 38.65 9.67 0.2625 16.70 9.67 0.5820 34.52 9.71 0.5820 17.30 9.71 1.3065 36.70 9.76 1.7880 34.63 9.82	MHz dBuV dB dBuV 0. 1545 43. 45 9. 68 53. 13 0. 1545 21. 40 9. 68 31. 08 0. 2130 40. 00 9. 69 49. 69 0. 2130 21. 79 9. 69 31. 48 0. 2625 38. 65 9. 67 48. 32 0. 2625 16. 70 9. 67 26. 37 0. 5820 34. 52 9. 71 44. 23 0. 5820 17. 30 9. 71 27. 01 1. 3065 36. 70 9. 76 46. 46 1. 3065 19. 10 9. 76 28. 86 1. 7880 34. 63 9. 82 44. 45	MHz dBuV dB dBuV dBuV 0. 1545 43. 45 9. 68 53. 13 65. 75 0. 1545 21. 40 9. 68 31. 08 55. 75 0. 2130 40. 00 9. 69 49. 69 63. 09 0. 2130 21. 79 9. 69 31. 48 53. 09 0. 2625 38. 65 9. 67 48. 32 61. 35 0. 2625 16. 70 9. 67 26. 37 51. 35 0. 5820 34. 52 9. 71 44. 23 56. 00 0. 5820 17. 30 9. 71 27. 01 46. 00 1. 3065 36. 70 9. 76 46. 46 56. 00 1. 7880 34. 63 9. 82 44. 45 56. 00	MHz dBuV dB dBuV dBuV dB 0. 1545 43. 45 9. 68 53. 13 65. 75 -12. 62 0. 1545 21. 40 9. 68 31. 08 55. 75 -24. 67 0. 2130 40. 00 9. 69 49. 69 63. 09 -13. 40 0. 2130 21. 79 9. 69 31. 48 53. 09 -21. 61 0. 2625 38. 65 9. 67 48. 32 61. 35 -13. 03 0. 2625 16. 70 9. 67 26. 37 51. 35 -24. 98 0. 5820 34. 52 9. 71 44. 23 56. 00 -11. 77 0. 5820 17. 30 9. 71 27. 01 46. 00 -18. 99 1. 3065 36. 70 9. 76 46. 46 56. 00 -9. 54 1. 7880 34. 63 9. 82 44. 45 56. 00 -11. 55	MHz dBuV dB dBuV dBuV dB Detector 0.1545 43.45 9.68 53.13 65.75 -12.62 Peak 0.1545 21.40 9.68 31.08 55.75 -24.67 AVG 0.2130 40.00 9.69 49.69 63.09 -13.40 Peak 0.2130 21.79 9.69 31.48 53.09 -21.61 AVG 0.2625 38.65 9.67 48.32 61.35 -13.03 Peak 0.2625 16.70 9.67 26.37 51.35 -24.98 AVG 0.5820 34.52 9.71 44.23 56.00 -11.77 Peak 0.5820 17.30 9.71 27.01 46.00 -18.99 AVG 1.3065 36.70 9.76 28.86 46.00 -9.54 Peak 1.7880 34.63 9.82 44.45 56.00 -11.55 Peak


Report No.: BTL-FCCP-3-1707C204 Page 29 of 141

Test Mode : TX Mode_Adapter: BYD

Line

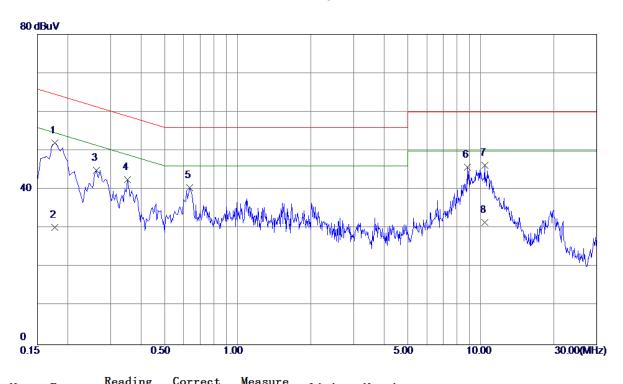
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	37.40	9.79	47. 19	66.00	-18.81	Peak	
2	0.2040	34.88	9. 76	44.64	63.45	-18.81	Peak	
3	0.3255	30.96	9.77	40.73	59. 57	-18.84	Peak	
4 *	0.5730	28. 96	9.81	38. 77	56.00	-17. 23	Peak	
5	12.0570	28. 17	10.44	38. 61	60.00	-21. 39	Peak	
6	19.8645	32. 12	10.65	42.77	60.00	-17. 23	Peak	


Report No.: BTL-FCCP-3-1707C204 Page 30 of 141

Test Mode : TX Mode_Adapter: BYD

Neutral

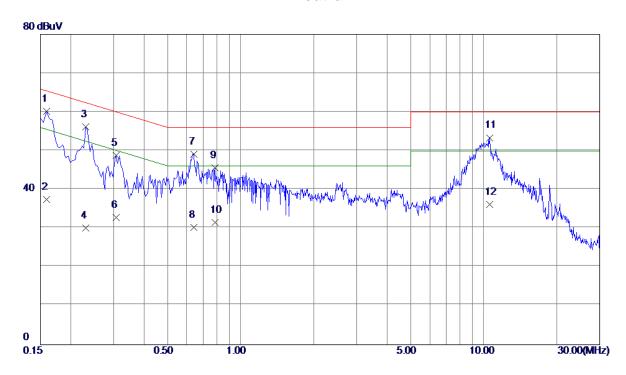
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1725	39.90	9. 68	49. 58	64.84	-15. 26	Peak	
2	0.2490	34.45	9. 67	44. 12	61.79	-17.67	Peak	
3	0.5505	34.46	9. 70	44. 16	56.00	-11.84	Peak	
4 *	0. 5505	24.71	9. 70	34.41	46.00	-11. 59	AVG	
5	1.6215	28. 02	9.80	37.82	56. 00	-18. 18	Peak	
6	11. 7555	28. 26	10.40	38. 66	60.00	-21. 34	Peak	
7	21. 3090	27.60	10.80	38. 40	60.00	-21.60	Peak	


Report No.: BTL-FCCP-3-1707C204 Page 31 of 141

Test Mode : TX Mode_Adapter: PHITEK

Line

No.	Freq.	Keading Level	Correct Factor	measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0. 1770	42. 23	9. 78	52. 01	64.63	-12.62	Peak	
2	0. 1770	20.40	9. 78	30. 18	54.63	-24.45	AVG	
3	0. 2625	35. 18	9. 76	44.94	61.35	-16.41	Peak	
4	0.3525	32.70	9. 79	42.49	58.90	-16.41	Peak	
5	0.6360	30.64	9.81	40.45	56.00	-15. 55	Peak	
6	8.8170	35. 52	10. 26	45. 78	60.00	-14. 22	Peak	
7	10. 3920	35. 87	10. 34	46. 21	60.00	-13.79	Peak	
8	10. 3920	21. 20	10. 34	31. 54	50.00	-18. 46	AVG	


Report No.: BTL-FCCP-3-1707C204 Page 32 of 141

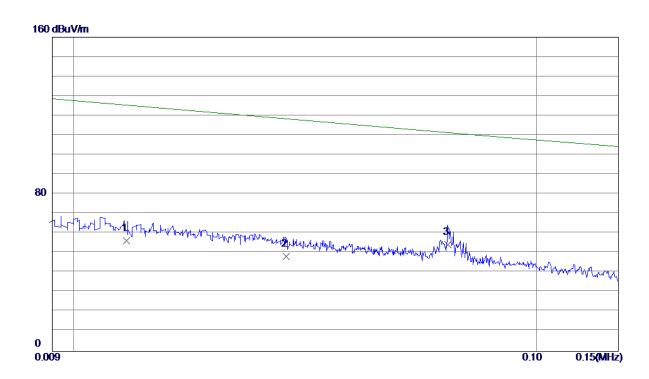
Test Mode : TX Mode_Adapter: PHITEK

Neutral

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0. 1590	50.48	9. 68	60. 16	65. 52	-5. 36	Peak	
2	0.1590	27.80	9. 68	37.48	55. 52	-18 . 0 4	AVG	
3	0.2310	46. 53	9. 68	56. 21	62.41	-6. 20	Peak	
4	0.2310	20.40	9. 68	30.08	52.41	-22. 33	AVG	
5	0.3075	39. 19	9. 68	48. 87	60.04	-11. 17	Peak	
6	0.3075	23. 12	9. 68	32.80	50.04	-17.24	AVG	
7	0.6405	39. 38	9.71	49.09	56.00	-6. 91	Peak	
8	0.6405	20. 50	9.71	30. 21	46.00	-15. 79	AVG	
9	0.7845	35. 90	9.72	45.62	56.00	-10. 38	Peak	
10	0.7845	21.80	9. 72	31. 52	46.00	-14.48	AVG	
11	10.6125	43.05	10. 31	53. 36	60.00	-6. 64	Peak	
12	10.6125	25. 90	10. 31	36. 21	50.00	-13.79	AVG	

Report No.: BTL-FCCP-3-1707C204 Page 33 of 141

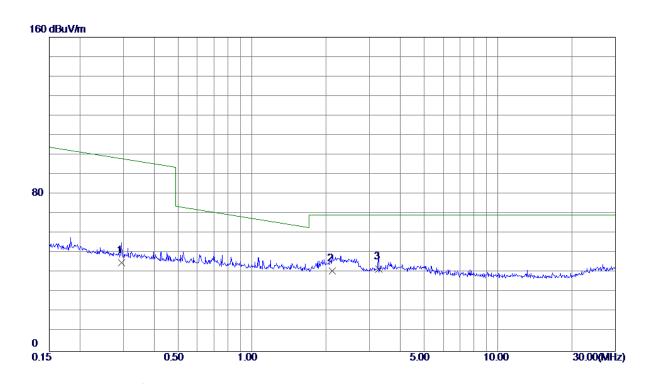
APPENDIX B - RADIATED EMISSION (9KHZ TO 30MHZ)


Report No.: BTL-FCCP-3-1707C204 Page 34 of 141

Test Mode: TX B MODE CHANNEL 01_Adapter: HUNTKEY

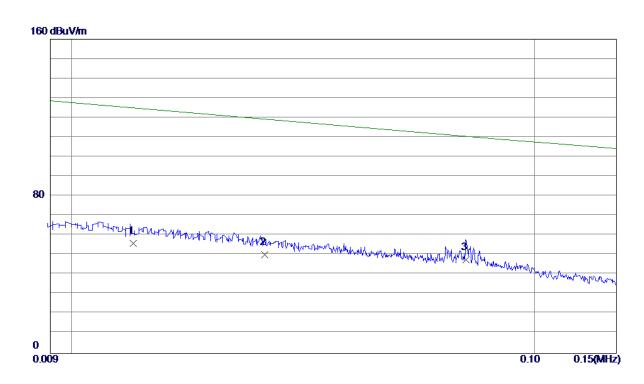
Ant 0°

No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0130	35. 88	20. 53	56. 41	127.51	-71. 10	AVG	
2	0.0288	28. 97	19. 36	48. 33	123.61	-75. 28	AVG	
3 *	0.0643	35. 88	18. 44	54.32	114.84	-60. 52	AVG	


Report No.: BTL-FCCP-3-1707C204 Page 35 of 141

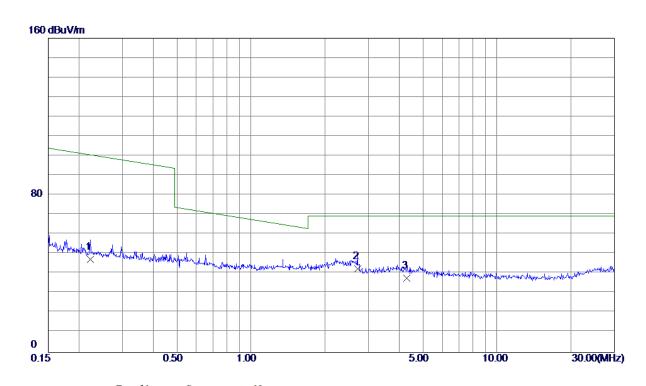
Test Mode: TX B MODE CHANNEL 01_Adapter: HUNTKEY

Ant 0°


No.	Freq.	keading Level	Correct Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0. 2955	28. 57	16. 62	45. 19	100.44	-55. 25	AVG	
2	2. 1213	25. 50	15. 48	40. 98	69. 54	-28. 56	QP	
3 *	3. 2756	26. 68	15. 15	41.83	69. 54	-27.71	QP	

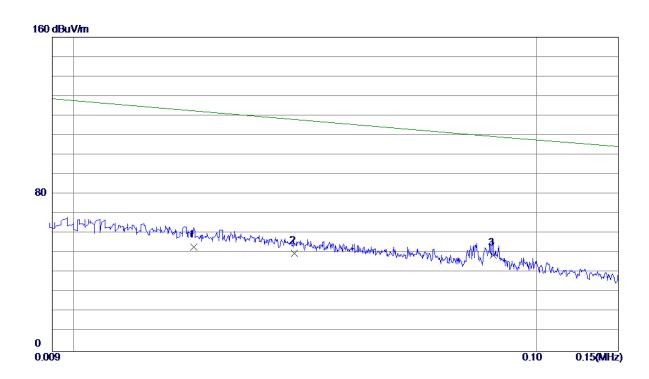
Report No.: BTL-FCCP-3-1707C204 Page 36 of 141

Ant 90°


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0136	35. 47	20.45	55. 92	127.36	-71.44	AVG	
2	0.0261	30.85	19. 44	50. 29	124. 27	-73. 98	AVG	
3 *	0.0711	29.49	18. 30	47.79	113. 16	-65. 37	AVG	

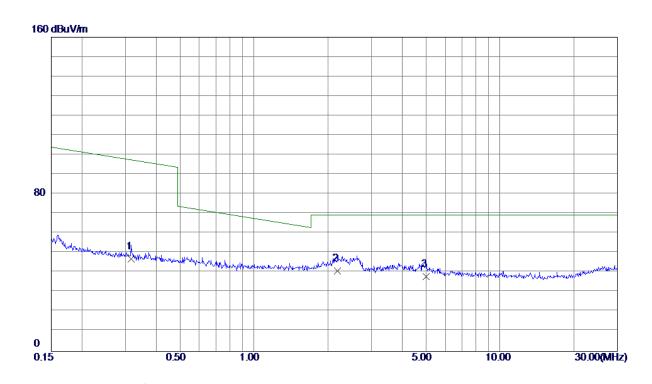
Report No.: BTL-FCCP-3-1707C204 Page 37 of 141

Ant 90°


No.	Freq.	Keading Level	Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0. 2220	30. 49	16. 74	47. 23	102.95	-55. 72	AVG	
2 *	2.7212	27. 13	15. 31	42.44	69. 54	-27. 10	QP	
3	4. 2918	22. 89	14. 78	37.67	69. 54	-31.87	QP	

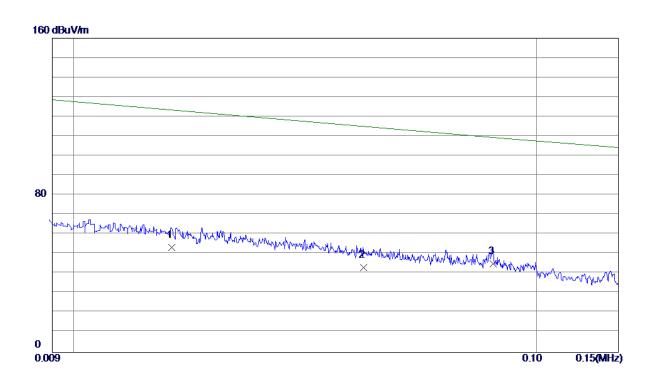
Report No.: BTL-FCCP-3-1707C204 Page 38 of 141

Ant 0°


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0182	33. 22	19.85	53. 07	126. 22	-73. 15	AVG	
2	0.0300	30. 49	19. 32	49.81	123. 31	−73. 50	AVG	
3 *	0.0805	30.75	18. 09	48.84	110.84	-62.00	AVG	

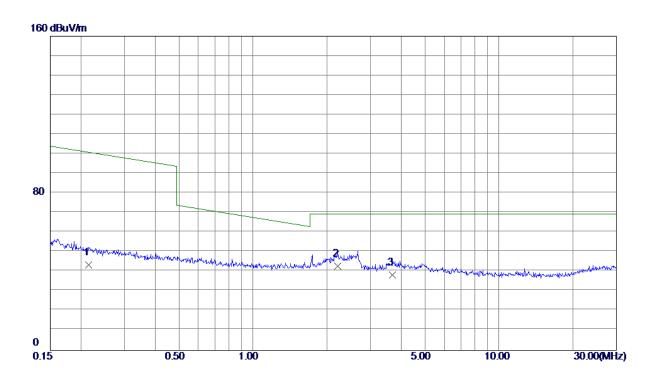
Report No.: BTL-FCCP-3-1707C204 Page 39 of 141

Ant 0°


No.	Freq.	Keading Level	Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.3166	30. 36	16. 61	46. 97	99.72	-52. 75	AVG	
2 *	2. 1898	25. 51	15. 46	40. 97	69. 54	-28. 57	QP	
3	5.0046	23.68	14. 37	38. 05	69. 54	-31. 49	QP	

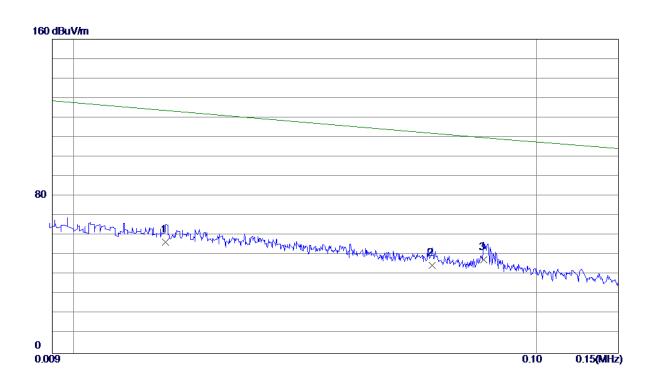
Report No.: BTL-FCCP-3-1707C204 Page 40 of 141

Ant 90°


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0163	33. 32	20. 10	53.42	126.69	-73. 27	AVG	
2	0.0423	24. 36	18. 95	43. 31	120. 27	-76. 96	AVG	
3 *	0.0805	26. 98	18. 09	45. 07	110.84	-65. 77	AVG	

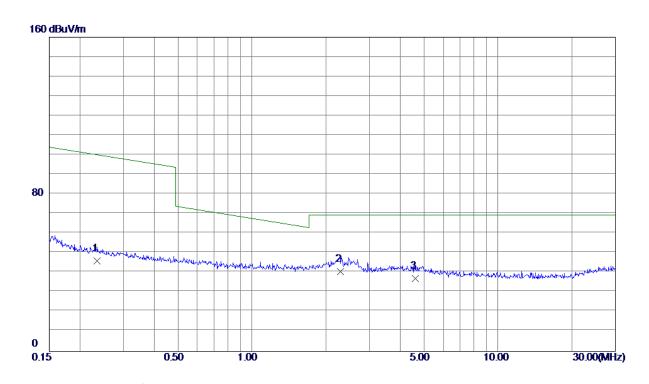
Report No.: BTL-FCCP-3-1707C204 Page 41 of 141

Ant 90°


No.	Freq.	Keading Level	Correct Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0. 2151	26. 64	16. 76	43.40	103. 19	-59. 79	AVG	
2 *	2. 2132	27.34	15. 45	42.79	69. 54	-26. 75	QP	
3	3.7001	23. 31	15. 03	38. 34	69. 54	-31. 20	QP	

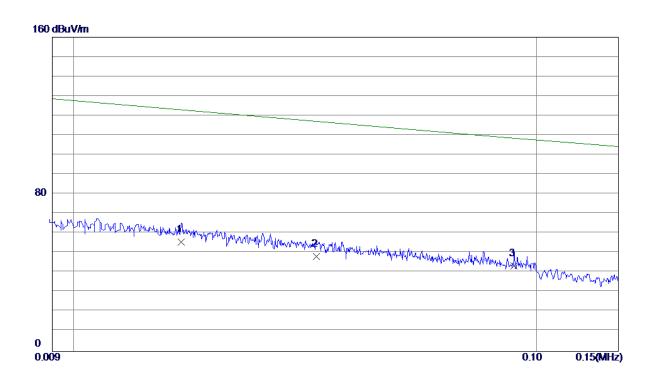
Report No.: BTL-FCCP-3-1707C204 Page 42 of 141

Ant 0°


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0158	36. 51	20. 17	56. 68	126.82	−70. 14	AVG	
2	0.0594	26. 33	18. 54	44.87	116.05	-71. 18	AVG	
3 *	0.0768	29. 35	18. 18	47. 53	111.75	-64. 22	AVG	

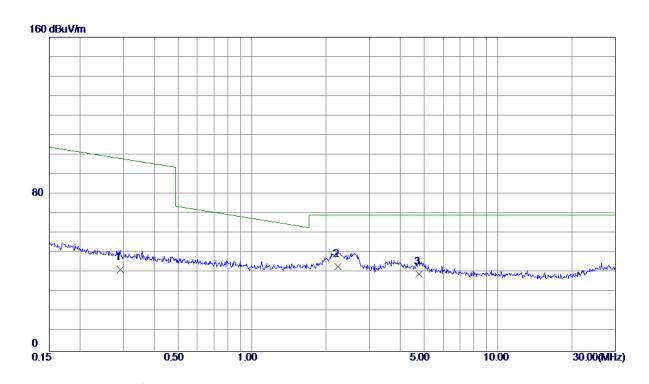
Report No.: BTL-FCCP-3-1707C204 Page 43 of 141

Ant 0°


No.	Freq.	keading Level	Correct Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0. 2353	29. 45	16. 70	46. 15	102.50	-56. 35	AVG	
2 *	2. 2847	25. 31	15. 43	40.74	69. 54	-28.80	QP	
3	4.6223	22.41	14. 59	37.00	69. 54	-32. 54	QP	

Report No.: BTL-FCCP-3-1707C204 Page 44 of 141

Ant 90°

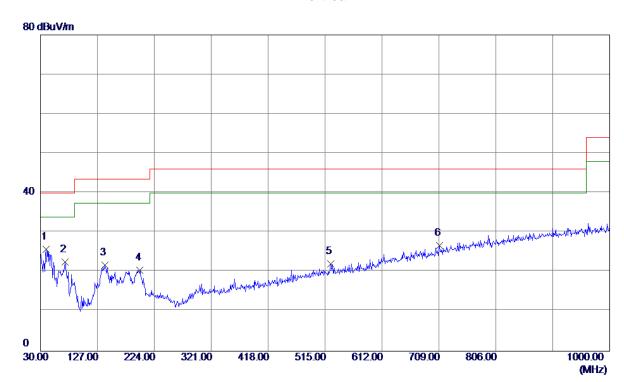

No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0171	35. 64	20.00	55. 64	126. 50	-70.86	AVG	
2	0.0335	29. 12	19. 22	48. 34	122.45	-74. 11	AVG	
3 *	0.0894	25. 68	17.88	43. 56	108.64	−65. 08	AVG	

Report No.: BTL-FCCP-3-1707C204 Page 45 of 141

Ant 90°

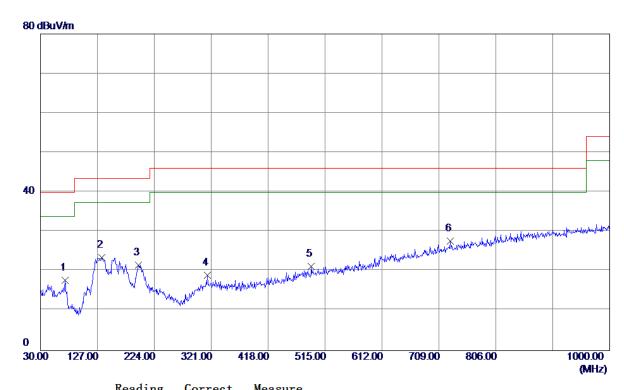
No.	Freq.	keading Level	Correct Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0. 2924	24.98	16. 62	41.60	100. 55	-58. 95	AVG	
2 *	2. 2367	27.68	15. 44	43. 12	69. 54	-26. 42	QP	
3	4.7716	24.96	14. 50	39. 46	69. 54	-30.08	QP	

Report No.: BTL-FCCP-3-1707C204 Page 46 of 141


APPENDIX C - RADIATED EMISSION (30MHZ TO 1000MHZ)

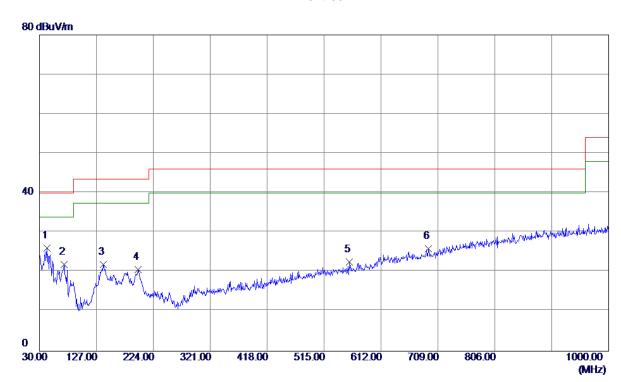
Report No.: BTL-FCCP-3-1707C204 Page 47 of 141

Vertical


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	39.7000	39. 72	-14.00	25.72	40.00	-14.28	Peak	
2	71.7100	39. 33	-16.71	22.62	40.00	-17. 38	Peak	
3	139.6100	35. 98	-14. 24	21.74	43. 50	-21.76	Peak	
4	199. 7500	34. 23	-13. 73	20. 50	43. 50	-23.00	Peak	
5	524.7000	30. 34	-8. 22	22. 12	46.00	-23.88	Peak	
6	709. 9699	30. 30	-3. 64	26. 66	46.00	-19. 34	Peak	

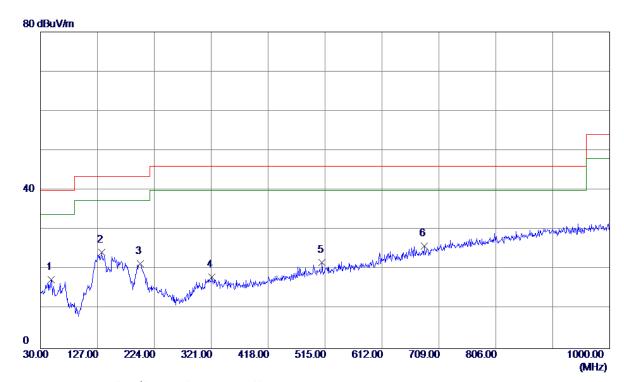
Report No.: BTL-FCCP-3-1707C204 Page 48 of 141

Horizontal


No.	Freq.	Keading Level	Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	71.7100	34. 52	-16.71	17.81	40.00	-22. 19	Peak	
2	134.7600	38. 01	-14.47	23. 54	43.50	-19.96	Peak	
3	196.8400	35. 04	-13.46	21. 58	43.50	-21. 92	Peak	
4	314. 2100	31. 56	-12. 58	18. 98	46.00	-27.02	Peak	
5	491.7200	30. 19	-8. 92	21. 27	46.00	-24.73	Peak	
6 *	728. 4000	30.74	-3.09	27.65	46.00	-18. 35	Peak	

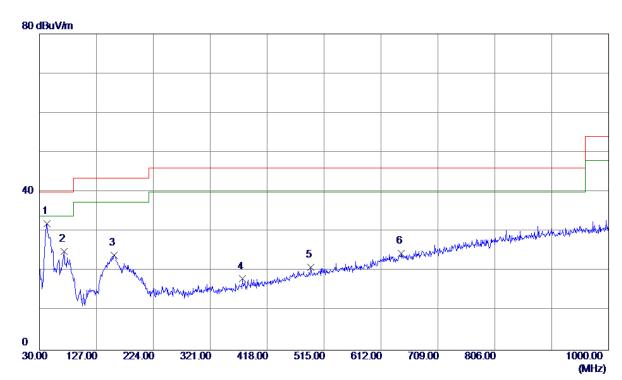
Report No.: BTL-FCCP-3-1707C204 Page 49 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	42.6100	39.61	-13.60	26. 01	40.00	-13.99	Peak	
2	71.7100	38.68	-16.71	21. 97	40.00	-18.03	Peak	
3	138.6400	36. 16	-14. 28	21.88	43.50	-21.62	Peak	
4	197.8100	34. 16	-13. 55	20.61	43.50	-22.89	Peak	
5	557.6800	30. 01	-7.52	22.49	46.00	-23. 51	Peak	
6	692. 5100	30. 14	-4. 17	25. 97	46.00	-20.03	Peak	

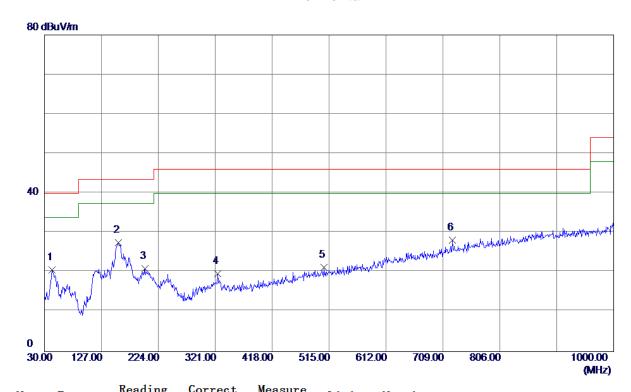
Report No.: BTL-FCCP-3-1707C204 Page 50 of 141

Horizontal


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	48. 4300	30. 76	-13. 28	17.48	40.00	-22.52	Peak	
2 *	134.7600	38.84	-14.47	24. 37	43.50	-19. 13	Peak	
3	200.7200	35. 23	-13.77	21.46	43.50	-22.04	Peak	
4	321.9700	30. 58	-12.45	18. 13	46.00	-27.87	Peak	
5	510. 1500	30. 27	-8. 52	21.75	46.00	-24. 25	Peak	
6	683. 7800	30. 31	-4.44	25. 87	46.00	-20. 13	Peak	

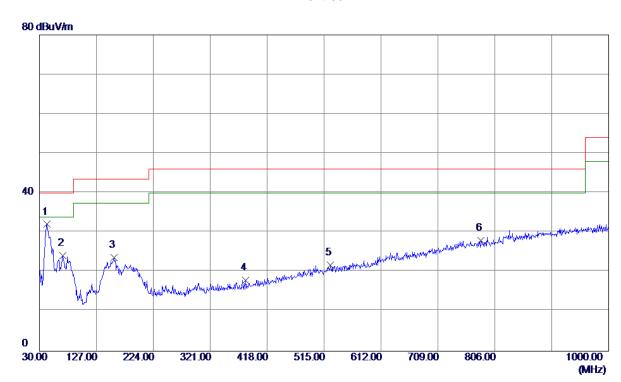
Report No.: BTL-FCCP-3-1707C204 Page 51 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	42.6100	45. 56	-13. 60	31. 96	40.00	-8. 04	Peak	
2	71.7100	41.71	-16.71	25.00	40.00	-15.00	Peak	
3	157.0700	37. 10	-13. 10	24.00	43.50	-19. 50	Peak	
4	376. 2900	29. 64	-11.64	18. 00	46.00	-28.00	Peak	
5	492.6900	29.81	-8. 90	20.91	46.00	-25.09	Peak	
6	646. 9200	29. 96	-5. 53	24. 43	46.00	-21.57	Peak	

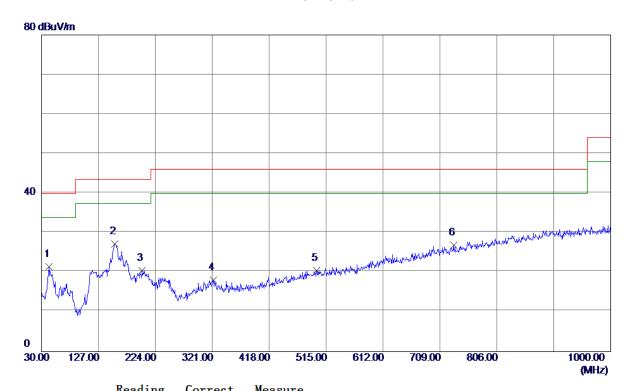
Report No.: BTL-FCCP-3-1707C204

Horizontal


No.	Freq.	Level	Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	42.6100	34. 18	-13. 60	20. 58	40.00	-19.42	Peak	
2 *	156. 1000	40.65	-13. 16	27.49	43.50	-16.01	Peak	
3	201.6900	34.76	-13. 79	20. 97	43.50	-22.53	Peak	
4	324.8800	32. 12	-12. 39	19. 73	46.00	-26. 27	Peak	
5	506. 2700	29.82	-8. 59	21. 23	46.00	-24.77	Peak	
6	725. 4900	31. 29	-3. 18	28. 11	46.00	-17.89	Peak	

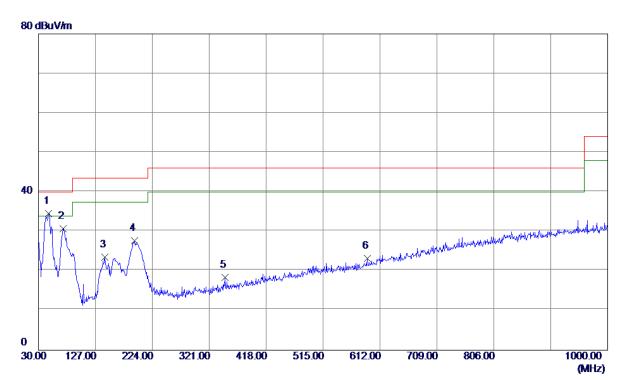
Report No.: BTL-FCCP-3-1707C204 Page 53 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	42.6100	45.68	-13. 60	32.08	40.00	-7. 92	Peak	
2	69.7699	40.63	-16. 46	24. 17	40.00	-15.83	Peak	
3	157.0700	36.85	-13. 10	23.75	43.50	-19.75	Peak	
4	381. 1400	29. 57	-11. 58	17. 99	46.00	-28.01	Peak	
5	525.6700	29. 99	-8. 20	21.79	46.00	-24.21	Peak	
6	782. 7199	29.74	-1.74	28.00	46.00	-18.00	Peak	

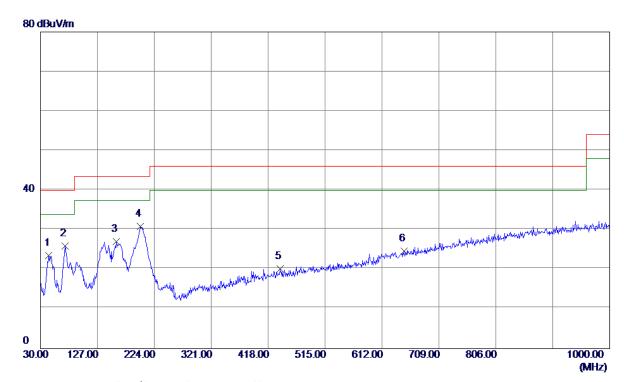
Report No.: BTL-FCCP-3-1707C204

Horizontal


No.	Freq.	Level	Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	42.6100	35. 05	-13. 60	21.45	40.00	-18.55	Peak	
2 *	155. 1300	40.40	-13. 22	27. 18	43.50	-16. 32	Peak	
3	201.6900	34. 27	-13. 79	20.48	43.50	-23.02	Peak	
4	322. 9400	30.49	-12.43	18.06	46.00	-27.94	Peak	
5	498. 5100	29. 17	-8. 76	20.41	46.00	-25. 59	Peak	
6	732. 2800	29.82	-2.97	26.85	46.00	-19. 15	Peak	

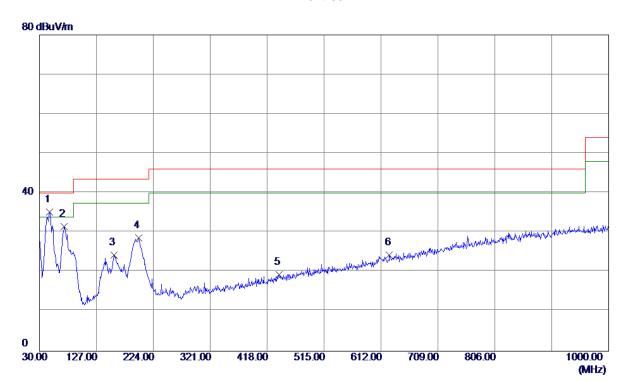
Report No.: BTL-FCCP-3-1707C204 Page 55 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	47.4600	47.64	-13. 12	34. 52	40.00	-5. 48	Peak	
2	71.7100	47. 50	-16.71	30. 79	40.00	-9. 21	Peak	
3	143. 4900	37.46	-13. 97	23.49	43.50	-20.01	Peak	
4	193. 9299	40.81	-13. 20	27.61	43.50	-15.89	Peak	
5	348. 1600	30.44	-11.99	18. 45	46.00	-27.55	Peak	
6	590. 6599	29. 93	-6. 66	23. 27	46.00	-22.73	Peak	

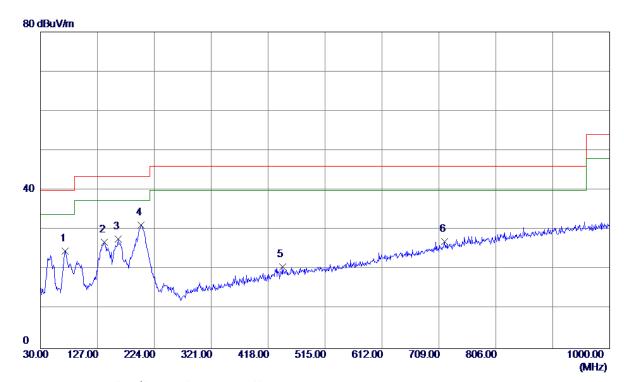
Report No.: BTL-FCCP-3-1707C204 Page 56 of 141

Horizontal


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	44.5500	36.81	-13. 36	23. 45	40.00	-16. 55	Peak	
2	71.7100	42. 56	-16.71	25.85	40.00	-14. 15	Peak	
3	159.0100	39. 99	-12.99	27.00	43.50	-16. 50	Peak	
4 *	200.7200	44.64	-13.77	30. 87	43.50	-12.63	Peak	
5	438. 3700	30.40	-10. 27	20. 13	46.00	-25.87	Peak	
6	649.8300	30. 09	-5. 48	24.61	46.00	-21. 39	Peak	

Report No.: BTL-FCCP-3-1707C204 Page 57 of 141

Vertical

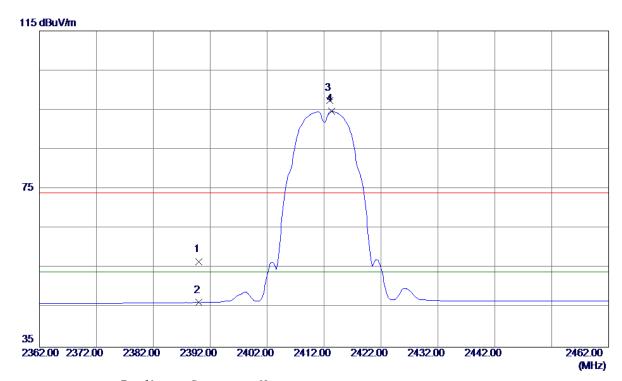

No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	47.4600	48. 29	-13. 12	35. 17	40.00	-4.83	Peak	
2	71.7100	48. 28	-16.71	31. 57	40.00	-8. 43	Peak	
3	157.0700	37.47	-13. 10	24. 37	43.50	-19. 13	Peak	
4	198. 7800	42.32	-13.64	28.68	43.50	-14.82	Peak	
5	438. 3700	29. 60	-10. 27	19. 33	46.00	-26. 67	Peak	
6	626. 5500	30. 25	-5. 92	24. 33	46.00	-21.67	Peak	

Report No.: BTL-FCCP-3-1707C204 Page 58 of 141

Horizontal

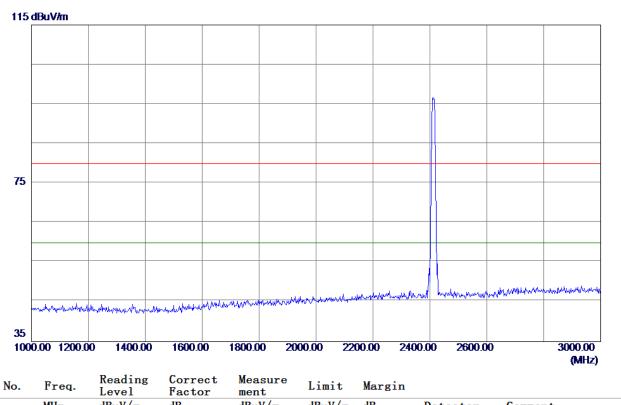
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	71.7100	41.42	-16.71	24.71	40.00	-15. 29	Peak	
2	138.6400	41.11	-14. 28	26.83	43.50	-16. 67	Peak	
3	162.8900	40. 45	-12.76	27.69	43.50	-15.81	Peak	
4 *	201.6900	44.95	-13. 79	31. 16	43.50	-12.34	Peak	
5	442. 2500	30.74	-10. 16	20. 58	46.00	-25.42	Peak	
6	718. 7000	30. 43	-3. 38	27. 05	46.00	-18. 95	Peak	

Report No.: BTL-FCCP-3-1707C204 Page 59 of 141


APPENDIX D - RADIATED EMISSION (ABOVE 1000MHZ)

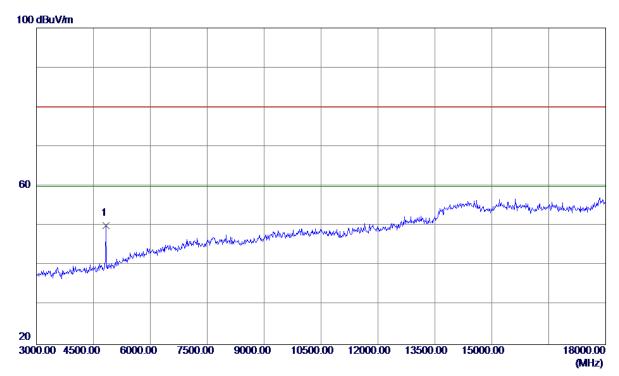
Report No.: BTL-FCCP-3-1707C204 Page 60 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	23. 57	33. 06	56. 63	74.00	-17.37	Peak	
2	2390.0000	13. 22	33. 06	46. 28	54.00	-7.72	AVG	
3	2413.0000	64. 26	33. 14	97.40	74.00	23.40	Peak	No Limit
4 *	2413. 3000	61. 52	33. 14	94.66	54.00	40.66	AVG	No Limit

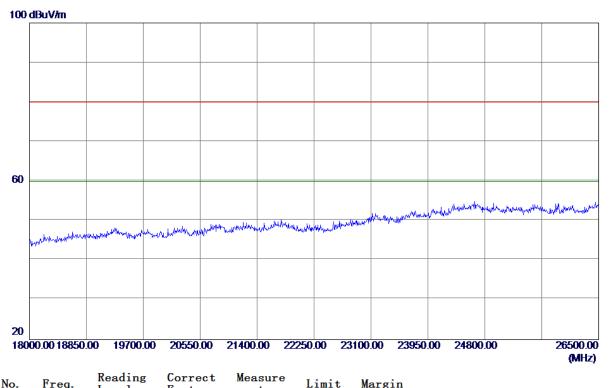
Report No.: BTL-FCCP-3-1707C204 Page 61 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

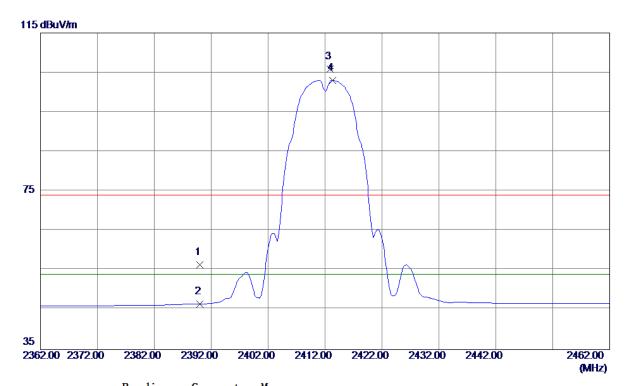
Report No.: BTL-FCCP-3-1707C204 Page 62 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4830. 0000	43.82	6. 33	50 . 15	80.00	-29.85	Peak	

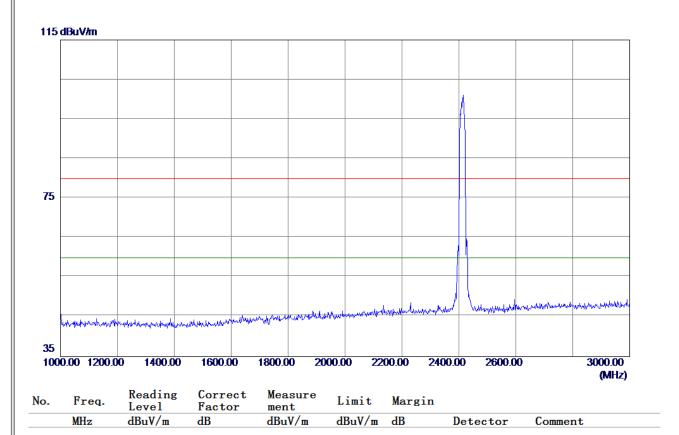
Report No.: BTL-FCCP-3-1707C204 Page 63 of 141

Vertical


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

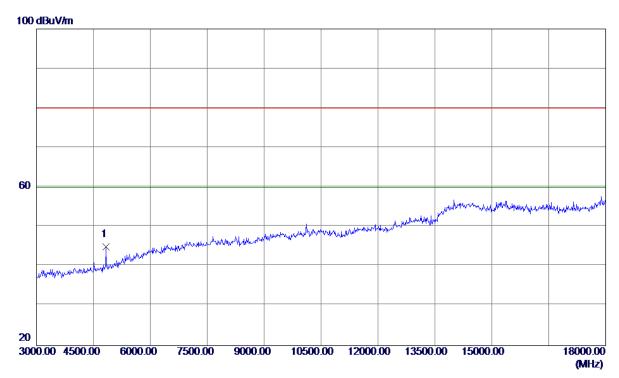
Report No.: BTL-FCCP-3-1707C204

Horizontal


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	23. 32	33. 06	56. 38	74.00	-17.62	Peak	
2	2390.0000	13.49	33. 06	46. 55	54.00	-7.45	AVG	
3	2412. 9000	72.70	33. 14	105.84	74.00	31.84	Peak	No Limit
4 *	2413. 3000	69. 94	33. 14	103. 08	54.00	49.08	AVG	No Limit

Report No.: BTL-FCCP-3-1707C204 Page 65 of 141

Horizontal



Report No.: BTL-FCCP-3-1707C204 Page 66 of 141

Horizontal


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4830, 0000	38, 65	6. 33	44. 98	80.00	-35. 02	Peak	

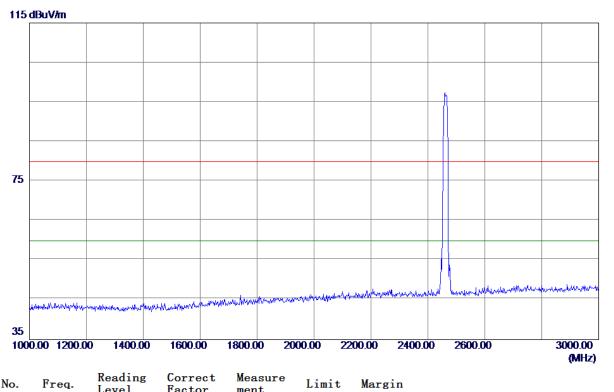
Report No.: BTL-FCCP-3-1707C204 Page 67 of 141

Horizontal

No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

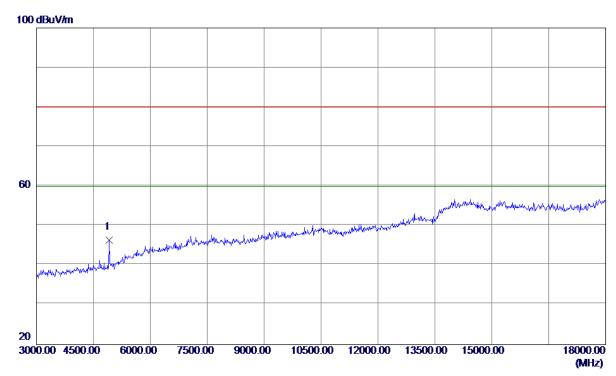
Report No.: BTL-FCCP-3-1707C204 Page 68 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2460.8000	63. 34	33. 32	96. 66	54.00	42.66	AVG	No Limit
2	2461. 2000	66. 02	33. 32	99. 34	74.00	25. 34	Peak	No Limit
3	2483. 5000	23. 18	33. 41	56. 59	74.00	-17.41	Peak	
4	2483. 5000	13. 23	33. 41	46. 64	54.00	-7. 36	AVG	

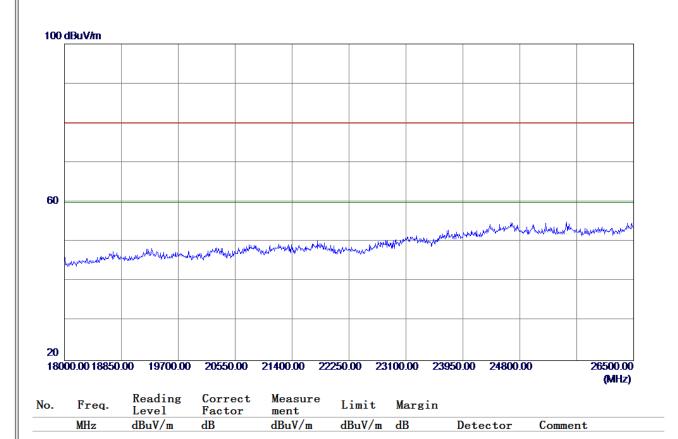
Report No.: BTL-FCCP-3-1707C204 Page 69 of 141

Vertical

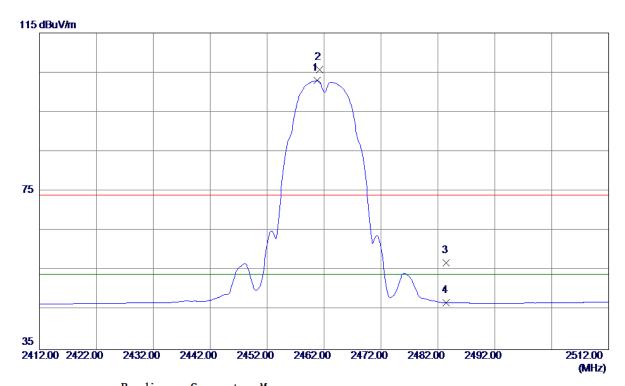

No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Report No.: BTL-FCCP-3-1707C204 Page 70 of 141

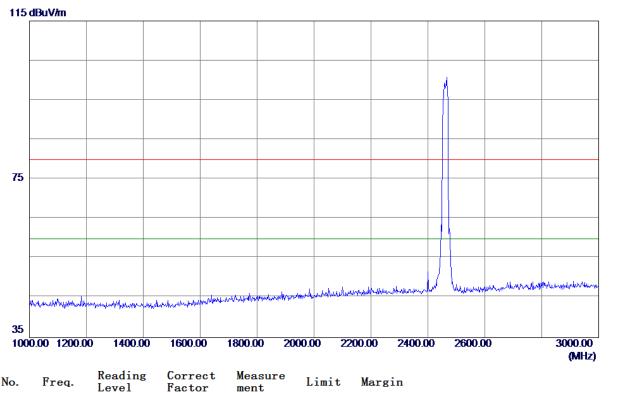
Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4920.0000	39. 92	6. 56	46. 48	80.00	-33. 52	Peak	

Report No.: BTL-FCCP-3-1707C204 Page 71 of 141

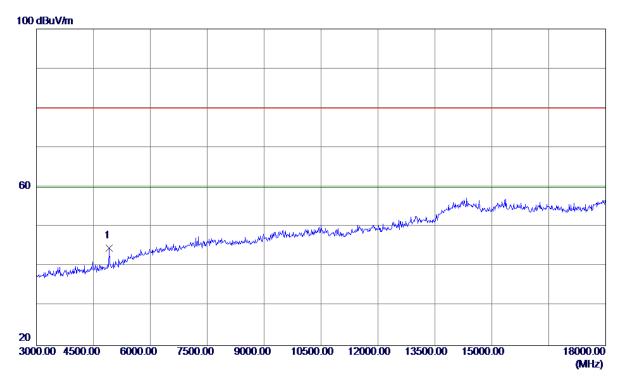

Vertical

Horizontal


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2460.8000	69. 62	33. 32	102.94	54.00	48.94	AVG	No Limit
2	2461. 2000	72. 38	33. 32	105. 70	74.00	31.70	Peak	No Limit
3	2483. 5000	23.44	33.41	56. 85	74.00	-17. 15	Peak	
4	2483. 5000	13. 38	33.41	46. 79	54.00	-7.21	AVG	

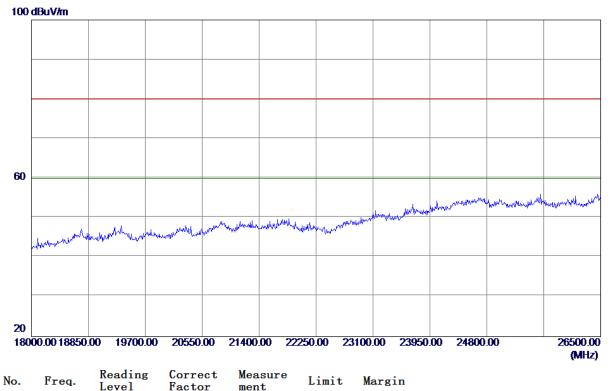
Report No.: BTL-FCCP-3-1707C204 Page 73 of 141

Horizontal



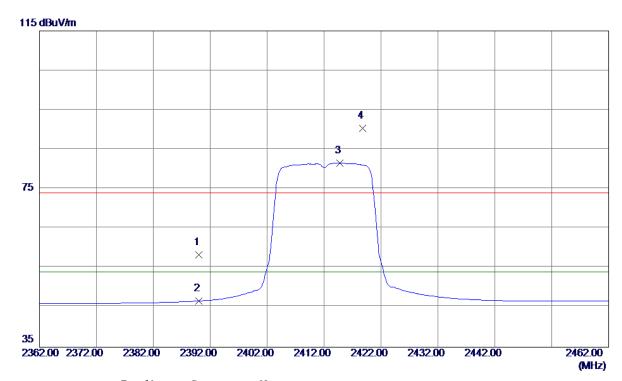
No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Horizontal


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4920, 0000	38. 09	6. 56	44.65	80.00	-35, 35	Peak	

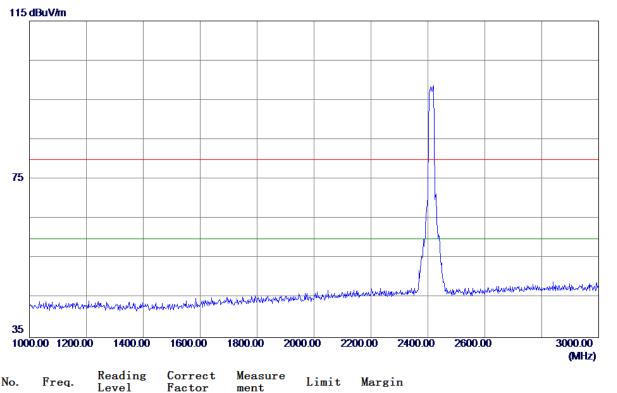
Report No.: BTL-FCCP-3-1707C204 Page 75 of 141

Horizontal



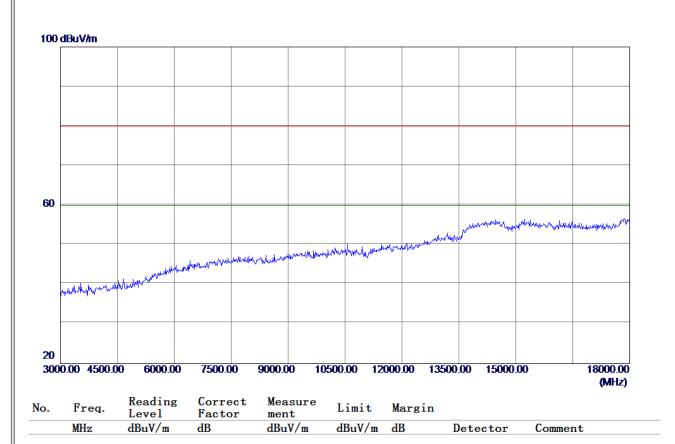
No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Vertical

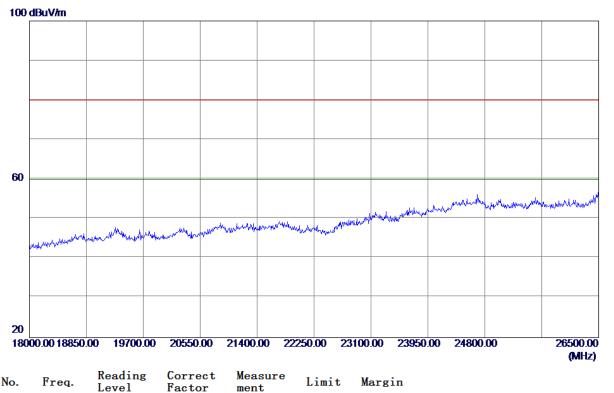

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	25. 25	33. 06	58. 31	74.00	-15.69	Peak	
2	2390.0000	13.62	33. 06	46.68	54.00	-7. 32	AVG	
3 *	2414. 8000	48. 47	33. 15	81. 62	54.00	27.62	AVG	No Limit
4	2418. 8000	57. 25	33. 16	90.41	74.00	16. 41	Peak	No Limit

Report No.: BTL-FCCP-3-1707C204 Page 77 of 141

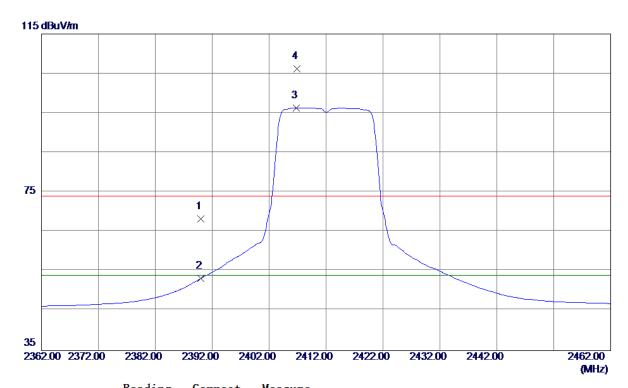
Vertical


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Orthogonal Axis:	x
Test Mode :	TX G MODE 2412MHz

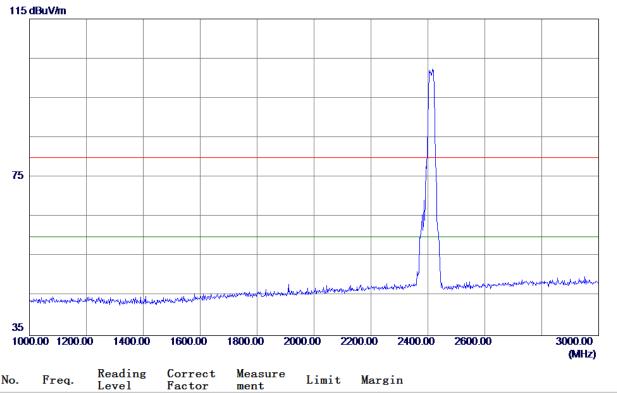

Vertical

Vertical



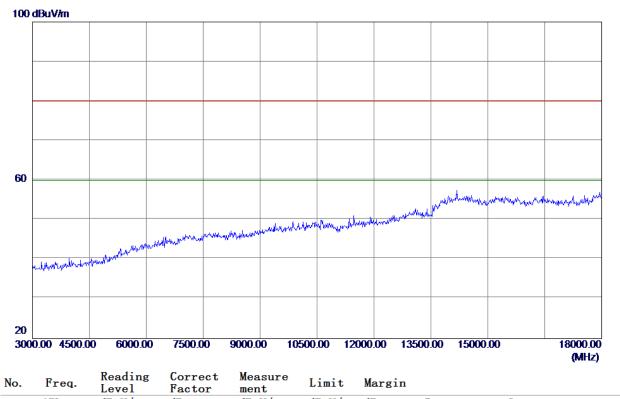
No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Horizontal


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	35. 20	33.06	68. 26	74.00	-5.74	Peak	
2	2390.0000	20. 18	33. 06	53. 24	54.00	-0.76	AVG	
3 *	2406.8000	63. 23	33. 12	96. 35	54.00	42.35	AVG	No limit
4	2406. 9000	73.00	33. 12	106. 12	74.00	32. 12	Peak	No limit

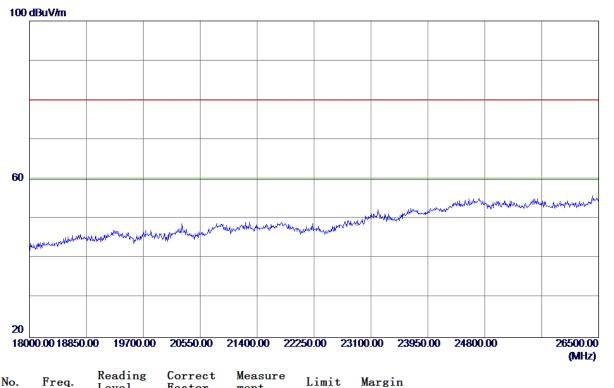
Report No.: BTL-FCCP-3-1707C204 Page 81 of 141

Horizontal



No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Horizontal

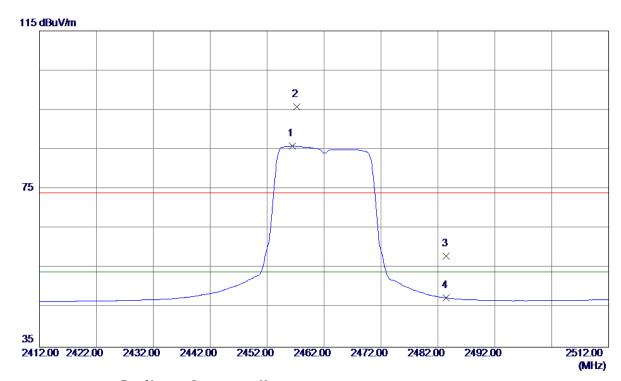

	No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Report No.: BTL-FCCP-3-1707C204 Page 83 of 141

Horizontal

No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

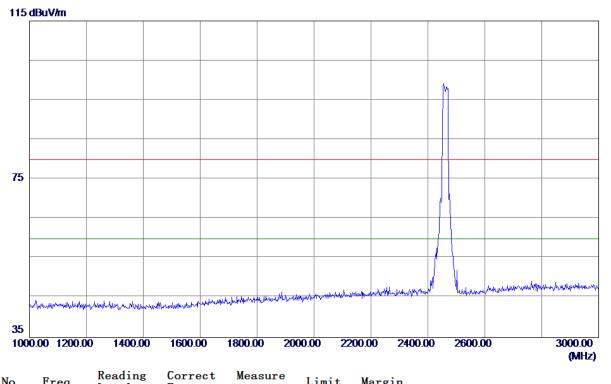
Report No.: BTL-FCCP-3-1707C204 Page 84 of 141



Page 85 of 141

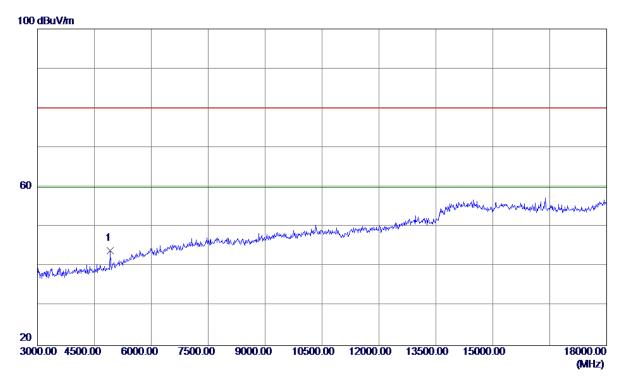
Orthogonal Axis: X
Test Mode: TX G MODE 2462MHz

Vertical



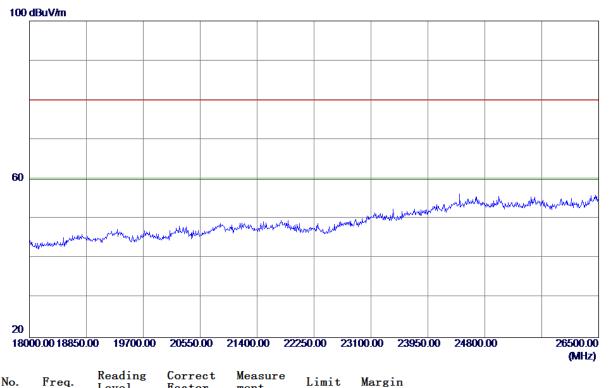
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2456. 4000	52. 51	33. 31	85.82	54.00	31.82	AVG	No Limit
2	2457. 2000	62. 54	33. 31	95. 85	74.00	21.85	Peak	No Limit
3	2483. 5000	24.61	33. 41	58. 0 2	74.00	-15. 98	Peak	
4	2483. 5000	14.05	33.41	47.46	54.00	-6. 54	AVG	

Vertical



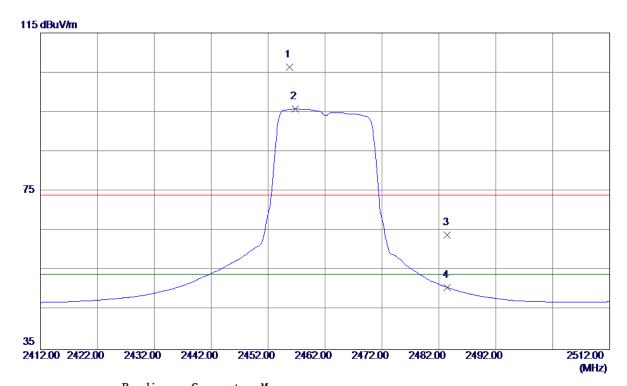
No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4920. 0000	37. 45	6. 56	44. 01	80.00	-35. 99	Peak	

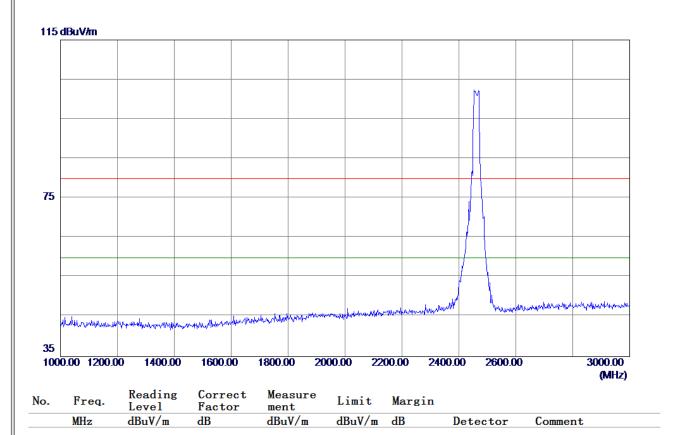
Report No.: BTL-FCCP-3-1707C204 Page 87 of 141

Vertical


No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

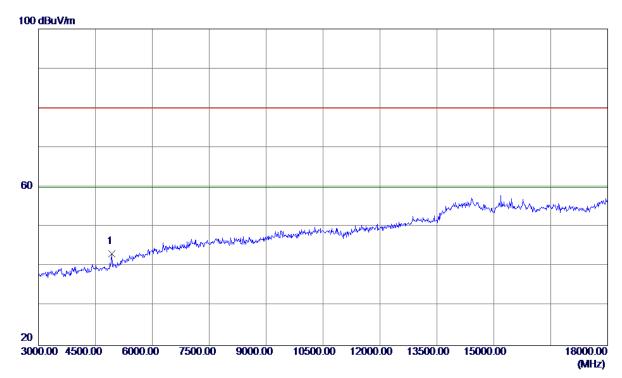
Report No.: BTL-FCCP-3-1707C204 Page 88 of 141

Horizontal


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2455.8000	73.09	33. 30	106. 39	74.00	32. 39	Peak	No limit
2 *	2456.8000	62.44	33. 31	95. 75	54.00	41.75	AVG	No limit
3	2483. 5000	30. 57	33.41	63. 98	74.00	-10.02	Peak	
4	2483. 5000	17. 29	33.41	50.70	54.00	-3. 30	AVG	

Report No.: BTL-FCCP-3-1707C204 Page 89 of 141

Horizontal



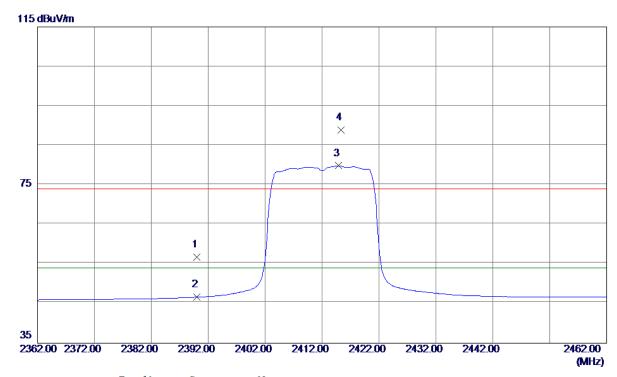
Report No.: BTL-FCCP-3-1707C204 Page 90 of 141

Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4935. 0000	36. 57	6. 60	43. 17	80.00	-36. 83	Peak	

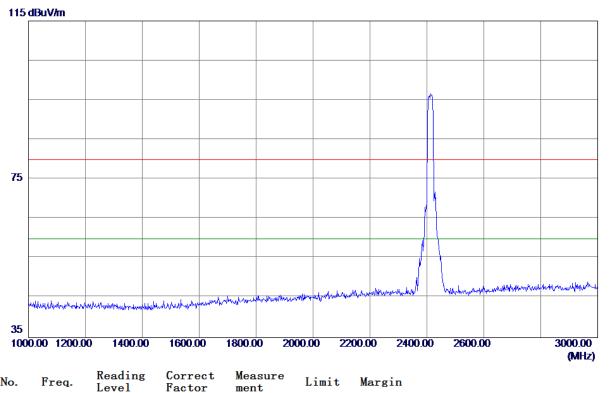
Report No.: BTL-FCCP-3-1707C204 Page 91 of 141

Horizontal


No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

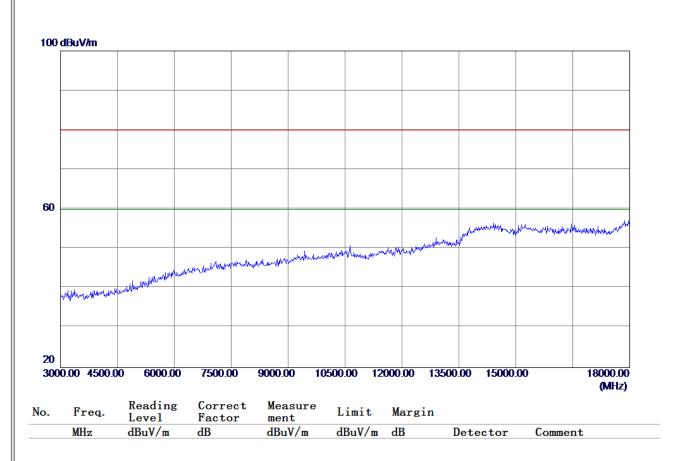
Report No.: BTL-FCCP-3-1707C204 Page 92 of 141

Vertical

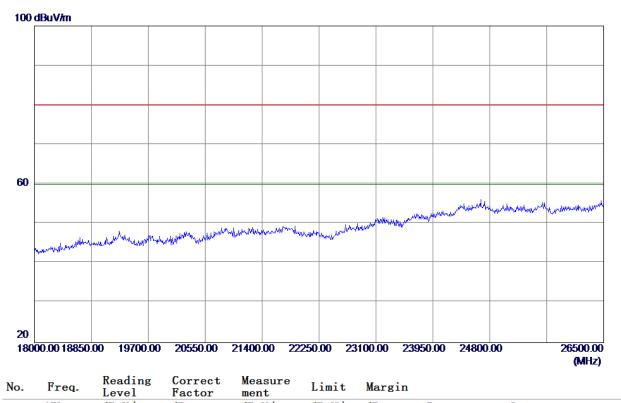

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	23. 76	33. 06	56.82	74.00	-17. 18	Peak	
2	2390.0000	13. 57	33. 06	46.63	54.00	-7.37	AVG	
3 *	2414.9000	46. 73	33. 15	79.88	54.00	25. 88	AVG	No Limit
4	2415. 3000	55. 84	33. 15	88. 99	74.00	14. 99	Peak	No Limit

Report No.: BTL-FCCP-3-1707C204 Page 93 of 141

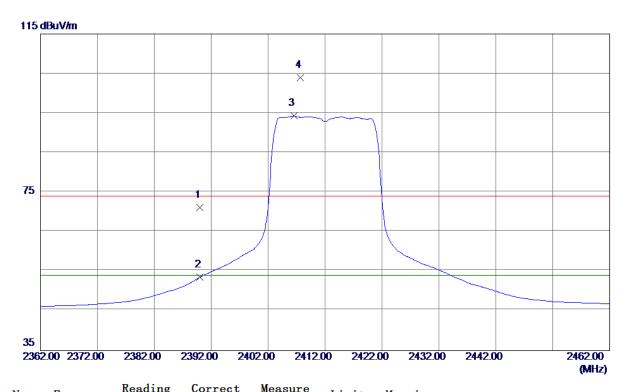
Vertical



No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

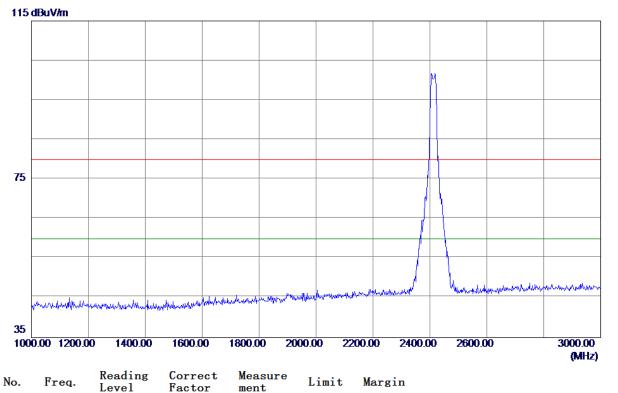

Vertical

Vertical



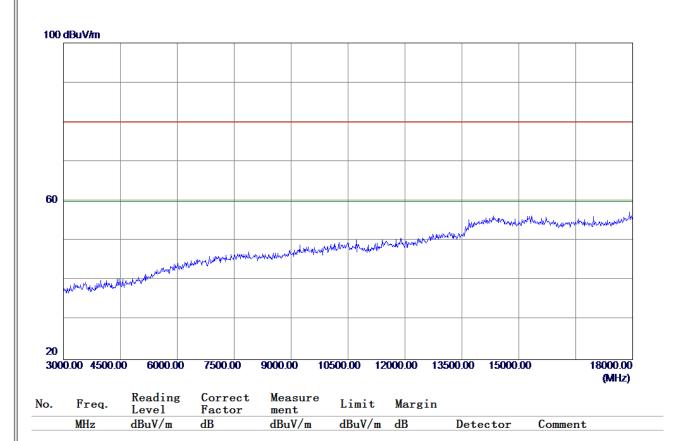
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Horizontal

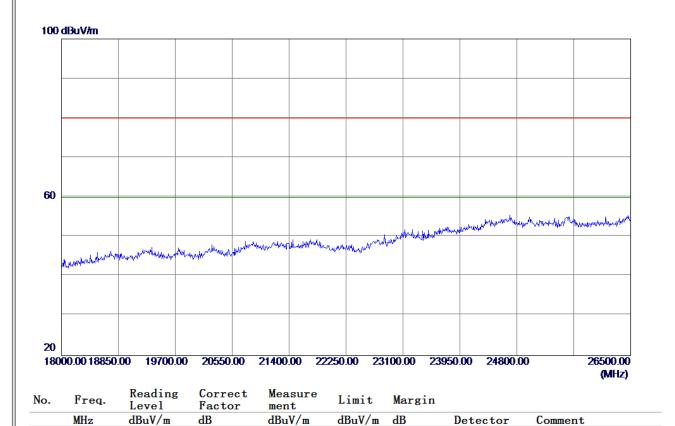

No.	Freq.	Keading Level	Correct Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	38. 16	33. 06	71. 22	74.00	-2.78	Peak	
2	2390.0000	20.45	33. 06	53. 51	54.00	-0.49	AVG	
3 *	2406. 5000	61. 17	33. 12	94. 29	54.00	40. 29	AVG	No limit
4	2407.7000	70.81	33. 12	103. 93	74.00	29. 93	Peak	No limit

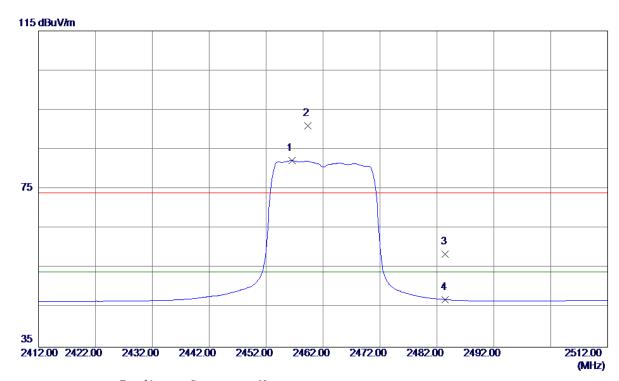
Report No.: BTL-FCCP-3-1707C204 Page 97 of 141

Horizontal

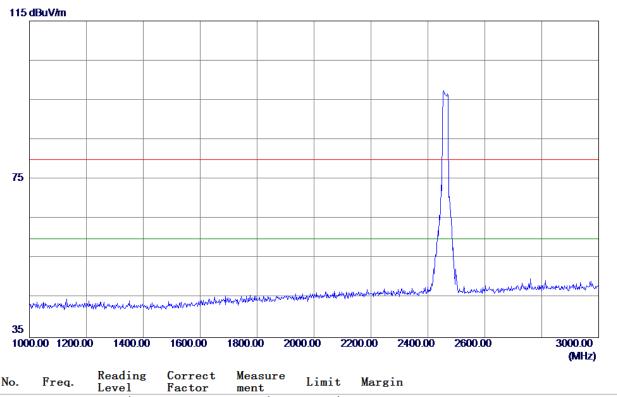


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	


Horizontal

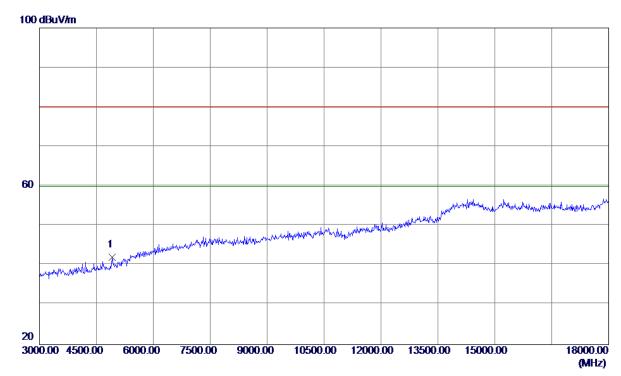

Horizontal

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2456. 5000	48.89	33. 31	82. 20	54.00	28. 20	AVG	No Limit
2	2459. 3000	57.74	33. 32	91.06	74.00	17.06	Peak	No Limit
3	2483. 5000	25. 05	33.41	58. 46	74.00	-15.54	Peak	
4	2483. 5000	13.62	33. 41	47.03	54.00	-6. 97	AVG	

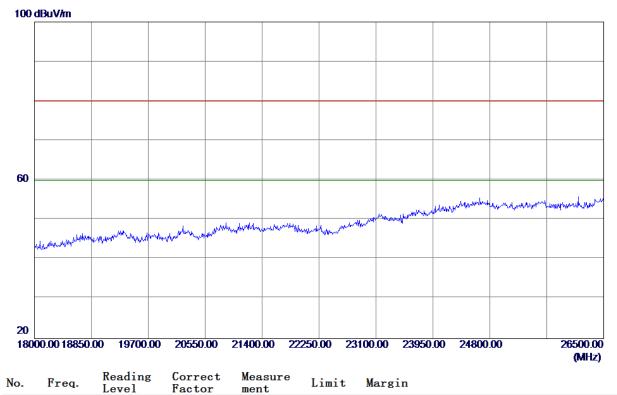
Report No.: BTL-FCCP-3-1707C204 Page 101 of 141

Vertical


No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

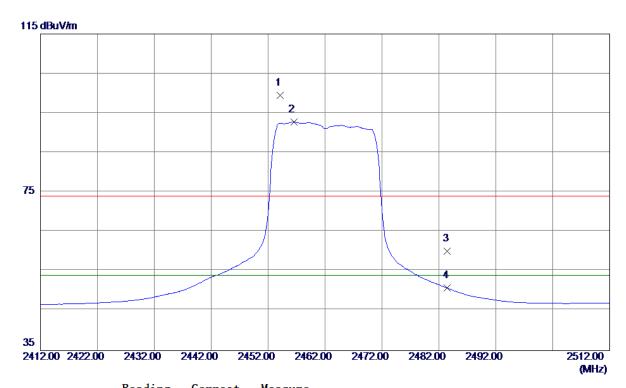
Report No.: BTL-FCCP-3-1707C204 Page 102 of 141

Vertical


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4920.0000	35. 49	6. 56	42.05	80. 00	-37. 95	Peak	

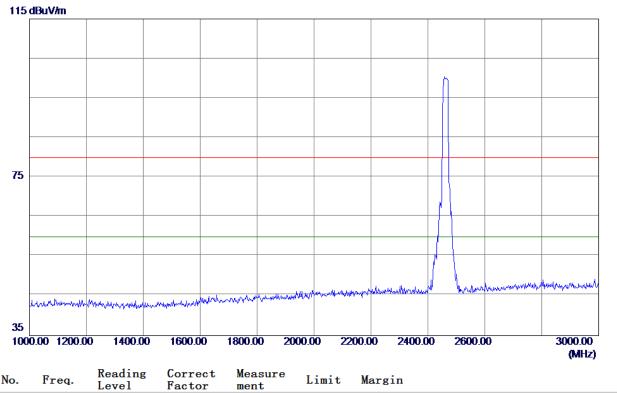
Report No.: BTL-FCCP-3-1707C204 Page 103 of 141

Vertical


No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Report No.: BTL-FCCP-3-1707C204 Page 104 of 141

Horizontal


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2454. 1000	66. 13	33. 30	99. 43	74.00	25. 43	Peak	No limit
2 *	2456. 5000	59. 46	33. 31	92.77	54.00	38.77	AVG	No limit
3	2483. 5000	26. 67	33.41	60.08	74.00	-13.92	Peak	
4	2483. 5000	17.40	33.41	50.81	54.00	-3. 19	AVG	

Report No.: BTL-FCCP-3-1707C204 Page 105 of 141

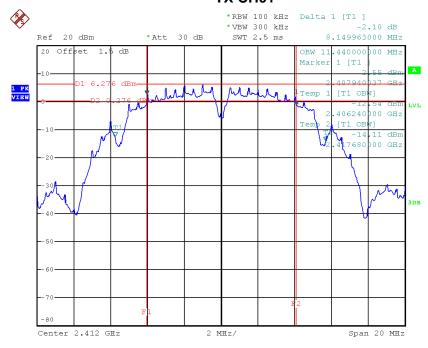
Horizontal

No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	

Report No.: BTL-FCCP-3-1707C204 Page 106 of 141

APPENDIX E - BANDWIDTH

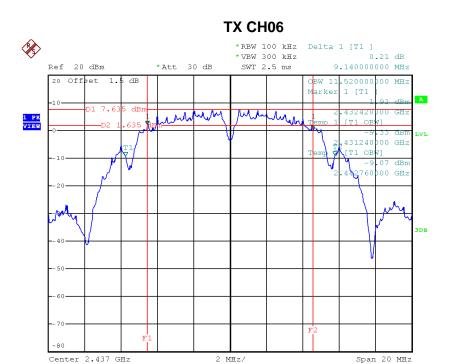
Report No.: BTL-FCCP-3-1707C204 Page 107 of 141



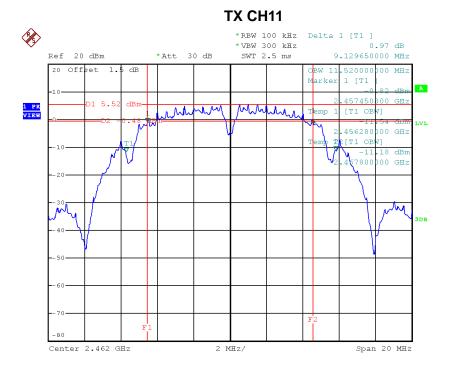
Test Mode: TX B Mode_CH01/06/11

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2412	8.15	11.44	500	Complies
2437	9.14	11.52	500	Complies
2462	9.13	11.52	500	Complies

TX CH01

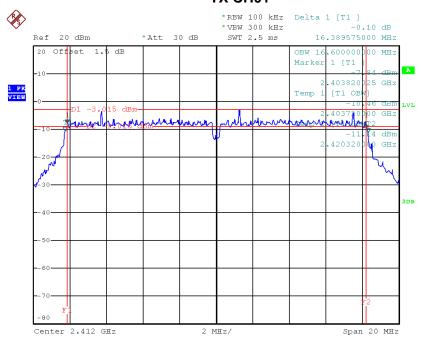


Date: 26.JUL.2017 11:33:30


Report No.: BTL-FCCP-3-1707C204 Page 108 of 141

Date: 26.JUL.2017 11:35:07

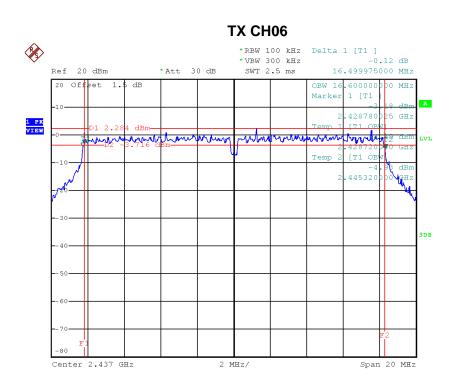
Date: 26.JUL.2017 11:36:35



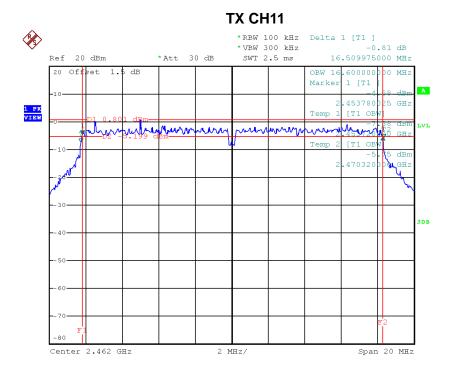
Test Mode: TX G Mode_CH01/06/11

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2412	16.39	16.60	500	Complies
2437	16.50	16.60	500	Complies
2462	16.51	16.60	500	Complies

TX CH01

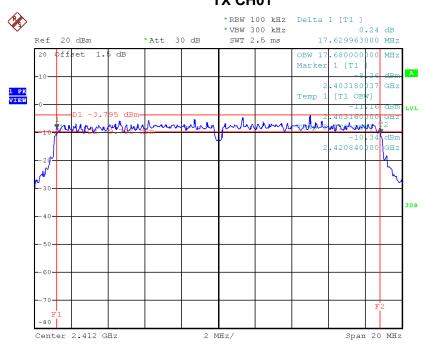


Date: 26.JUL.2017 11:38:10


Report No.: BTL-FCCP-3-1707C204 Page 110 of 141

Date: 26.JUL.2017 11:39:27

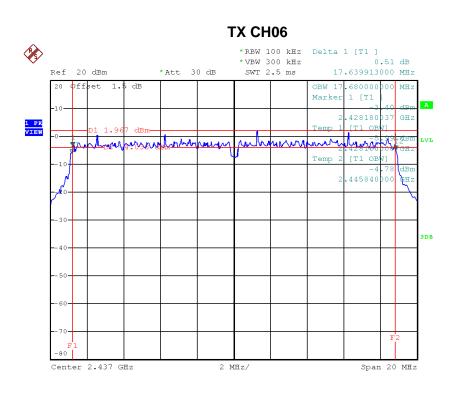
Date: 26.JUL.2017 11:40:36



Test Mode: TX N-20MHz Mode_CH01/06/11

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2412	17.63	17.68	500	Complies
2437	17.64	17.68	500	Complies
2462	17.67	17.72	500	Complies

TX CH01



Date: 26.JUL.2017 11:42:07

Report No.: BTL-FCCP-3-1707C204 Page 112 of 141

Date: 26.JUL.2017 11:44:11

Date: 26.JUL.2017 11:46:27

APPENDIX F - MAXIMUM PEAK CONDUCTED OUTPUT POWER

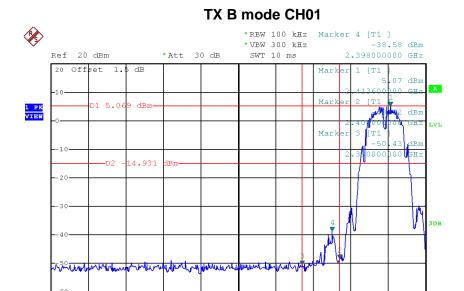
Report No.: BTL-FCCP-3-1707C204 Page 114 of 141

	Test Mode :TX B Mode_CH01/06/11					
Frequency	Conducted	Conducted	Max. Limit	Max. Limit	Result	
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	Result	
2412	17.77	0.06	30.00	1.00	Complies	
2437	21.10	0.13	30.00	1.00	Complies	
2462	17.61	0.06	30.00	1.00	Complies	

Test Mode :TX G Mode_CH01/06/11					
Frequency	Conducted	Conducted	Max. Limit	Max. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	Result
2412	21.73	0.15	30.00	1.00	Complies
2437	25.01	0.32	30.00	1.00	Complies
2462	21.66	0.15	30.00	1.00	Complies

Test Mode :TX N20 Mode_CH01/06/11					
Frequency	Conducted	Conducted	Max. Limit	Max. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	Result
2412	20.53	0.11	30.00	1.00	Complies
2437	24.63	0.29	30.00	1.00	Complies
2462	21.25	0.13	30.00	1.00	Complies

Report No.: BTL-FCCP-3-1707C204 Page 115 of 141

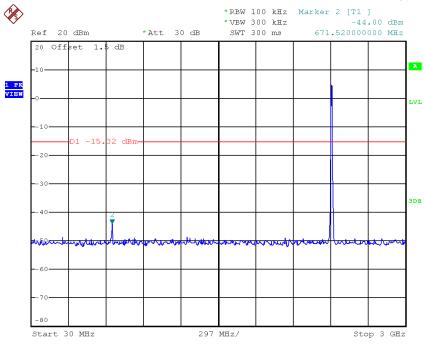

APPENDIX G - ANTENNA CONDUCTED SPURIOUS EMISSION

Report No.: BTL-FCCP-3-1707C204 Page 116 of 141

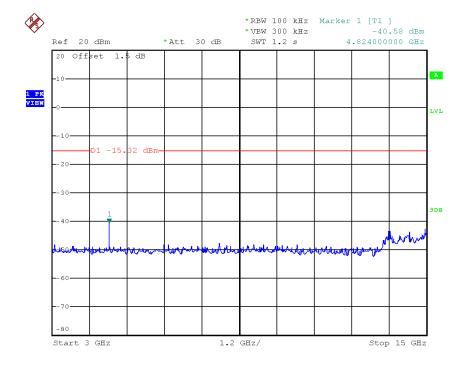
Stop 2.423 GHz

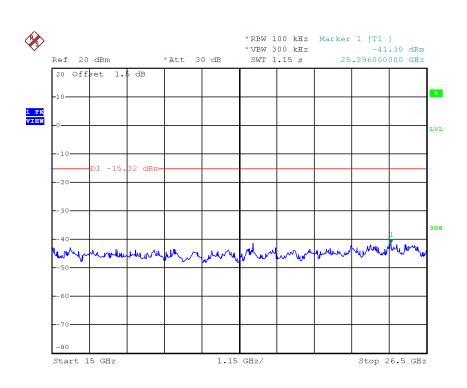
Date: 26.JUL.2017 11:34:07

Start 2.323 GHz

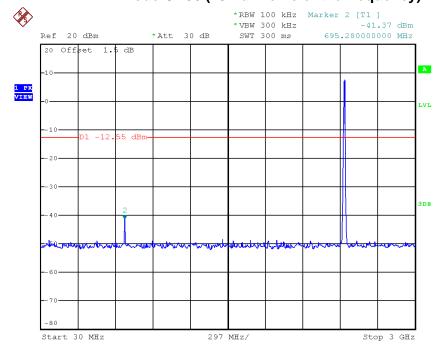

TX B mode CH11 **%** *RBW 100 kHz Marker 4 [T1] *VBW 300 kHz -48. -48.44 dBm Ref 20 dBm *Att 30 dB SWT 10 ms 2.504400000 GHz 20 Offset 1.5 dB Marker 1 PK VIEW 00 dBm GH2 3 [T1 4.517 Mary Wall Company Comp Start 2.448 GHz Stop 2.548 GHz 10 MHz/

Date: 26.JUL.2017 11:37:12

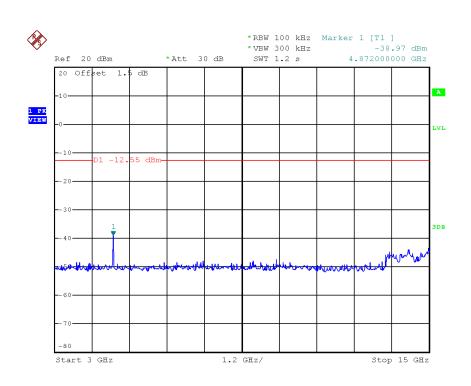


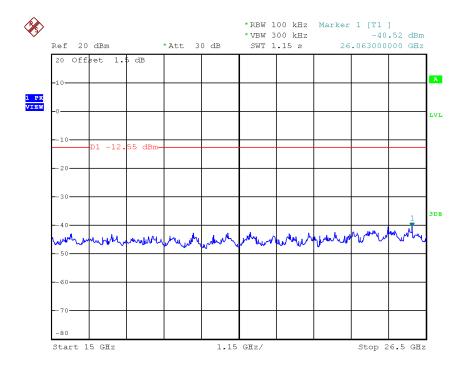

Date: 26.JUL.2017 11:33:44

Date: 26.JUL.2017 11:33:51

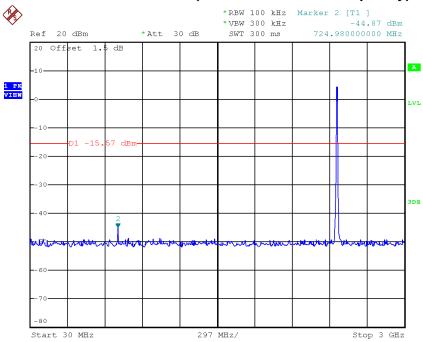


Date: 26.JUL.2017 11:33:59

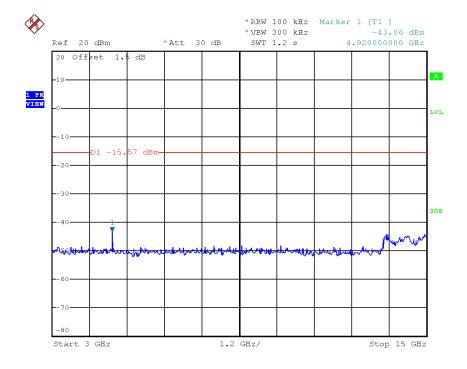

TX B mode CH06 (10 Harmonic of the frequency)

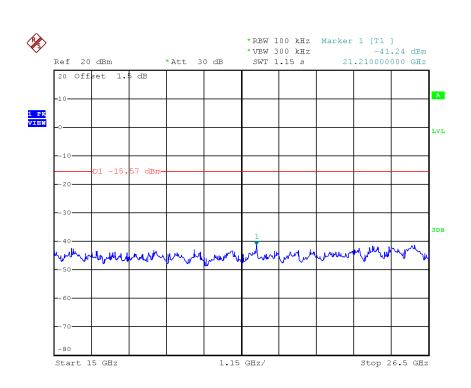

Date: 26.JUL.2017 11:35:22

Date: 26.JUL.2017 11:35:30



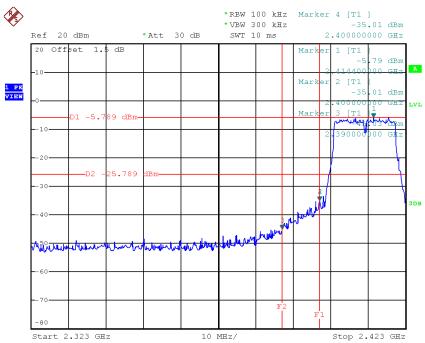
Date: 26.JUL.2017 11:35:37

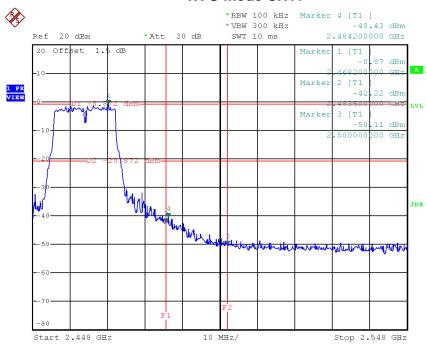



Date: 26.JUL.2017 11:36:49

Date: 26.JUL.2017 11:36:57

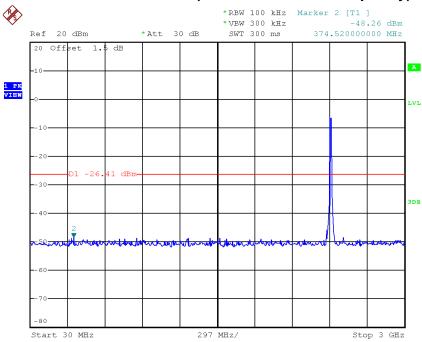
Date: 26.JUL.2017 11:37:05


Report No.: BTL-FCCP-3-1707C204

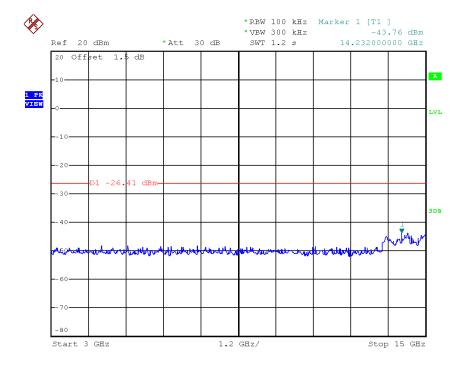

Test Mode: TX G Mode

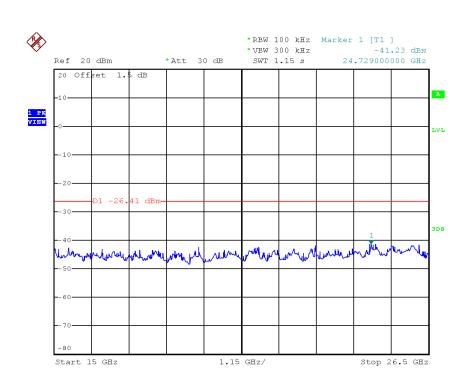
Date: 26.JUL.2017 11:38:47

TX G mode CH11

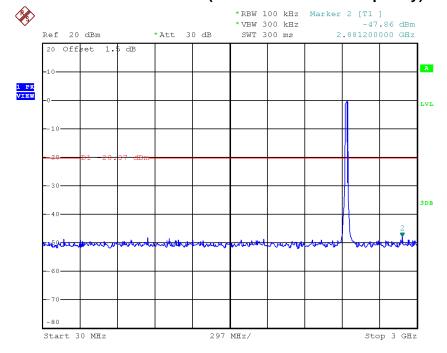


Date: 26.JUL.2017 11:41:13

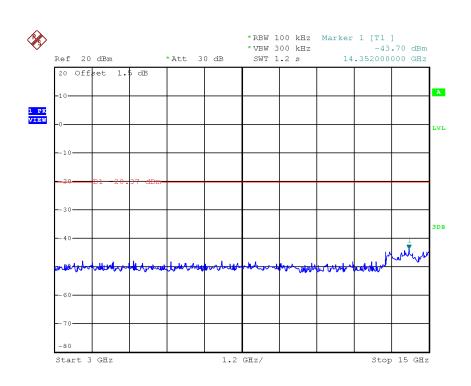


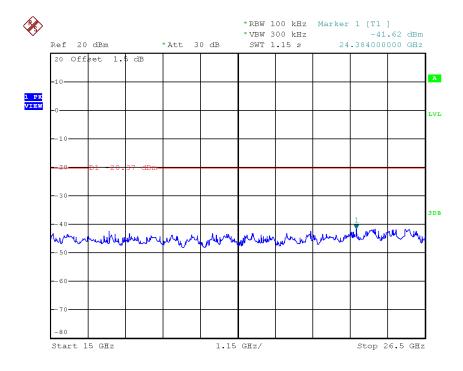

Date: 26.JUL.2017 11:38:24

Date: 26.JUL.2017 11:38:32

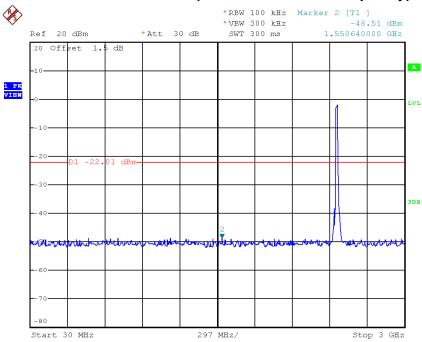


Date: 26.JUL.2017 11:38:40

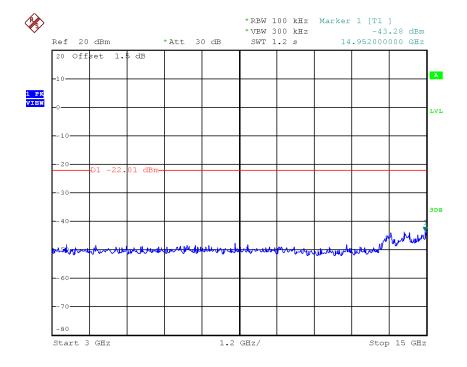

TX G mode CH06 (10 Harmonic of the frequency)


Date: 26.JUL.2017 11:39:41

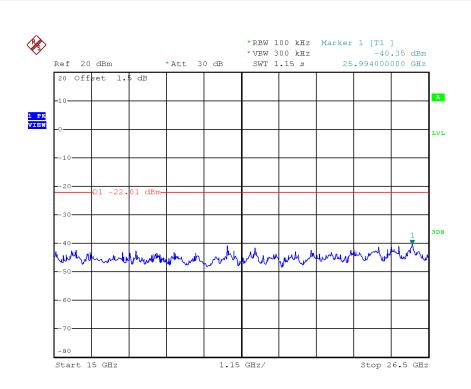
Date: 26.JUL.2017 11:39:48



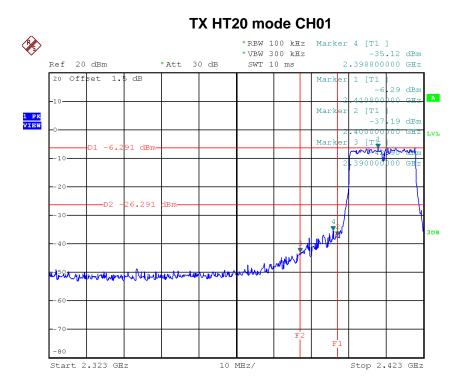
Date: 26.JUL.2017 11:39:56



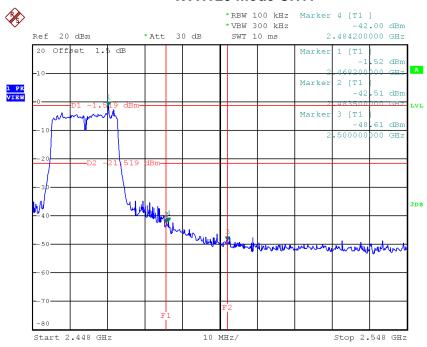
TX G mode CH11 (10 Harmonic of the frequency)


Date: 26.JUL.2017 11:40:50

Date: 26.JUL.2017 11:40:58

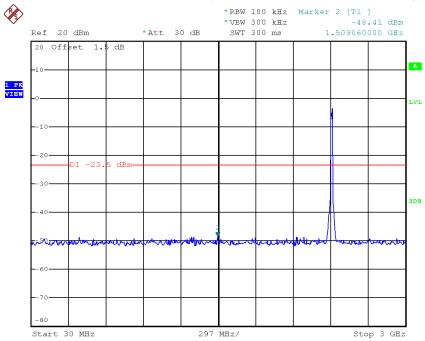

Date: 26.JUL.2017 11:41:06

Report No.: BTL-FCCP-3-1707C204

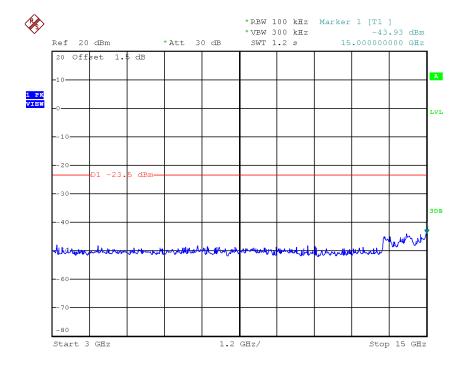


Date: 26.JUL.2017 11:42:45

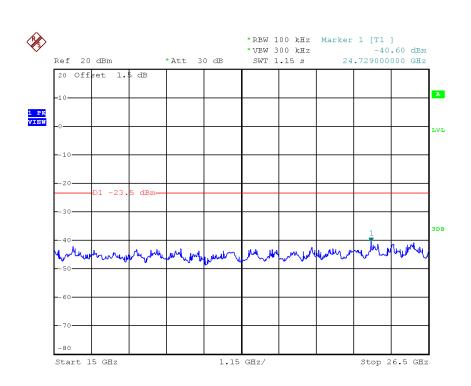
TX HT20 mode CH11



Date: 26.JUL.2017 11:47:04

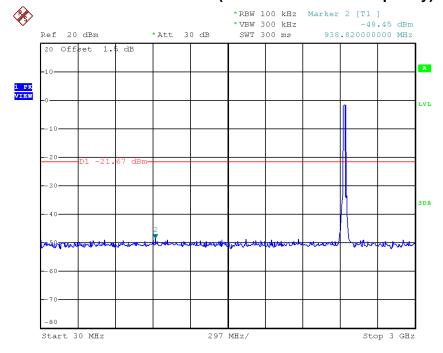


Date: 26.JUL.2017 11:42:21

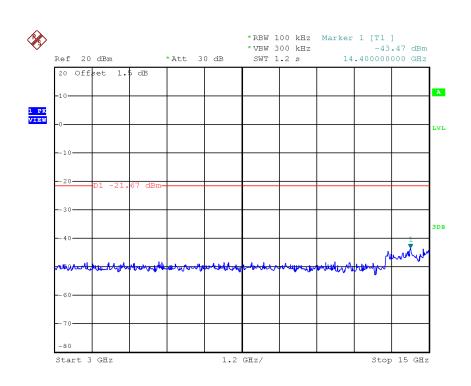


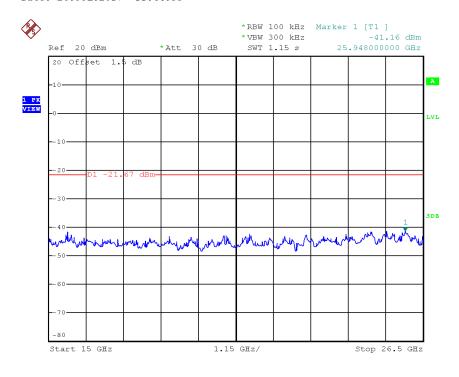
Date: 26.JUL.2017 11:42:29

Report No.: BTL-FCCP-3-1707C204

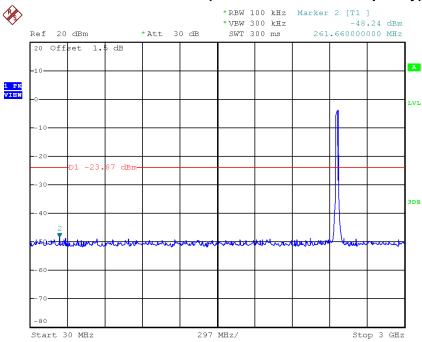


Date: 26.JUL.2017 11:42:38

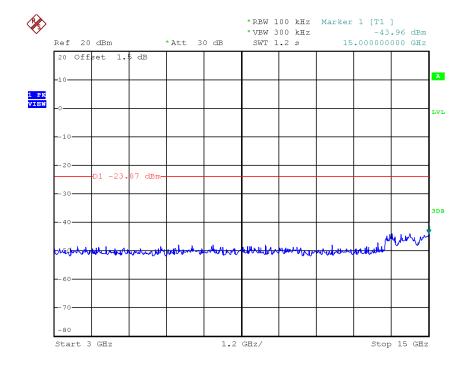

TX HT20 mode CH06 (10 Harmonic of the frequency)


Date: 26.JUL.2017 11:44:25

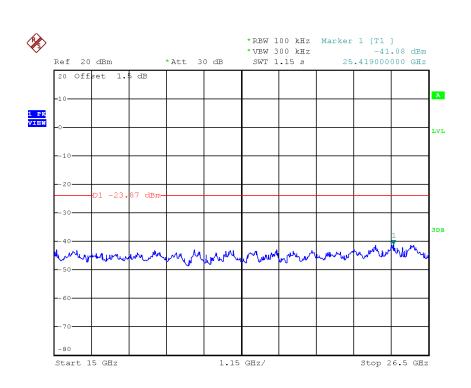
Date: 26.JUL.2017 11:44:33



Date: 26.JUL.2017 11:44:41



Date: 26.JUL.2017 11:46:41



Date: 26.JUL.2017 11:46:49

Report No.: BTL-FCCP-3-1707C204

Date: 26.JUL.2017 11:46:57

Report No.: BTL-FCCP-3-1707C204

 <u> </u>	
APPENDIX H - POWER SPECTRAL DENSITY	

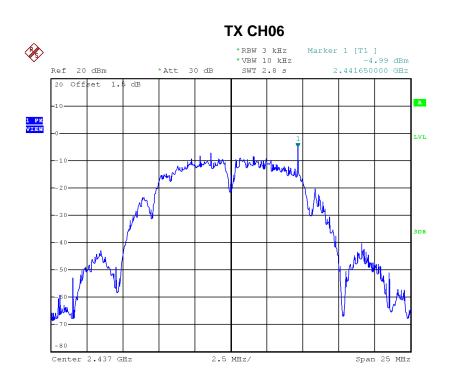
Report No.: BTL-FCCP-3-1707C204 Page 135 of 141



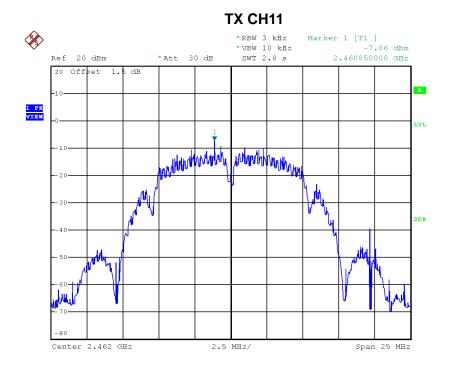
Test Mode :TX B Mode_CH01/06/11

Frequency (MHz)	Power Density (dBm/3kHz)	Power Density (mW/3kHz)	Max. Limit (dBm/3kHz)	Result
2412	-4.88	0.3251	8.00	Complies
2437	-4.99	0.3170	8.00	Complies
2462	-7.06	0.1968	8.00	Complies

TX CH01

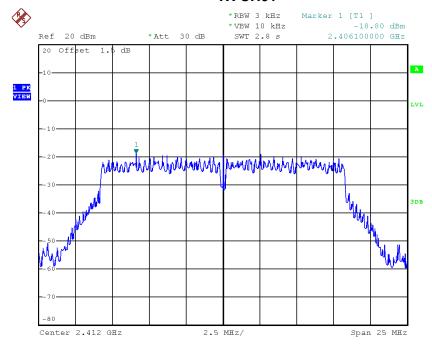


Date: 26.JUL.2017 11:34:16


Report No.: BTL-FCCP-3-1707C204 Page 136 of 141

Date: 26.JUL.2017 11:35:47

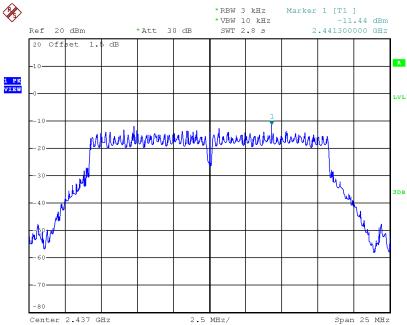
Date: 26.JUL.2017 11:37:22



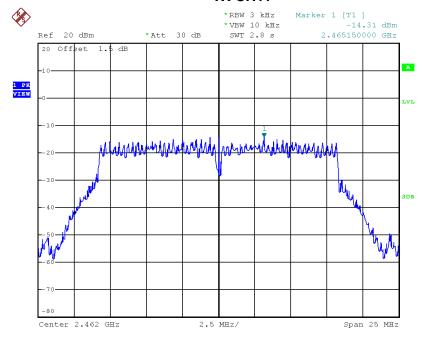
Test Mode :TX G Mode_CH01/06/11

Frequency (MHz)	Power Density (dBm/3kHz)	Power Density (mW/3kHz)	Max. Limit (dBm/3kHz)	Result
2412	-18.80	0.0132	8.00	Complies
2437	-11.44	0.0718	8.00	Complies
2462	-14.31	0.0371	8.00	Complies

TX CH01


Date: 26.JUL.2017 11:38:57

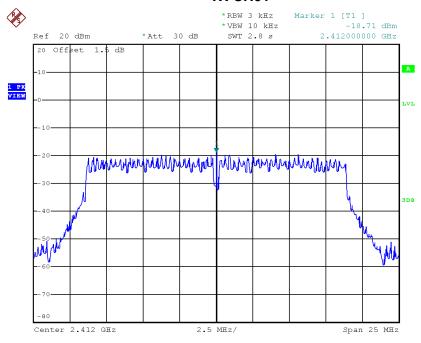
Report No.: BTL-FCCP-3-1707C204 Page 138 of 141



Date: 26.JUL.2017 11:40:06

TX CH11

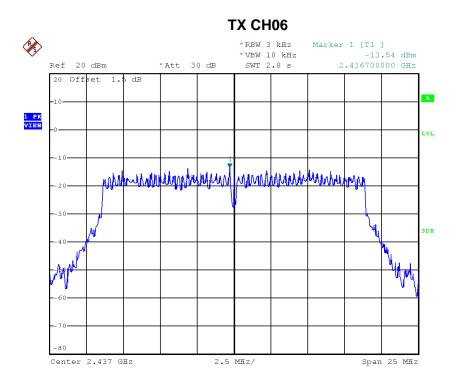
Date: 26.JUL.2017 11:41:23



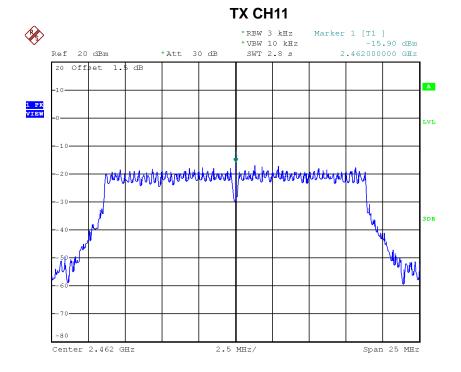
Test Mode: TX N-20M Mode_CH01/06/11

Frequency (MHz)	Power Density (dBm/3kHz)	Power Density (mW/3kHz)	Max. Limit (dBm/3kHz)	Result
2412	-18.71	0.0135	8.00	Complies
2437	-13.54	0.0443	8.00	Complies
2462	-15.90	0.0257	8.00	Complies

TX CH01



Date: 26.JUL.2017 11:42:55


Report No.: BTL-FCCP-3-1707C204 Page 140 of 141

Date: 26.JUL.2017 11:44:50

Date: 26.JUL.2017 11:47:14