

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0)

 Fax:
 +86 (0)

 Email:
 ee.shen

+86 (0) 755 2601 2053 +86 (0) 755 2671 0594 ee.shenzhen@sgs.com

Report No.: SZEM170300176004 Page: 1 of 256

### **FCC REPORT**

| Application No:  | SZEM1703001760RG                                                                  |
|------------------|-----------------------------------------------------------------------------------|
| Applicant:       | Huawei Technologies Co.,Ltd.                                                      |
| Manufacturer:    | Huawei Technologies Co.,Ltd.                                                      |
| Factory:         | Huawei Technologies Co.,Ltd.                                                      |
| Product Name:    | HUAWEI MediaPad M3 Lite 10 (MediaPad M3 Lite 10 for short)                        |
| Model No.(EUT):  | BAH-W09                                                                           |
| Trade Mark::     | HUAWEI                                                                            |
| FCC ID:          | QISBAH-W09                                                                        |
| Standards:       | 47 CFR Part 15, Subpart E (2015)                                                  |
| Test Method      | KDB 789033 D02 General U-NII Test Procedures New Rules v01r03<br>ANSI C63.10 2013 |
| Date of Receipt: | 2017-03-20                                                                        |
| Date of Test:    | 2017-03-22 to 2017-04-10                                                          |
| Date of Issue:   | 2017-04-11                                                                        |
| Test Result:     | PASS *                                                                            |

.\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derde yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sqs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sqs.com/en/Terms-and-ConditionsTerms-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the ime of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is any be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM170300176004 Page: 2 of 256

### 2 Version

| Revision Record |         |            |          |          |
|-----------------|---------|------------|----------|----------|
| Version         | Chapter | Date       | Modifier | Remark   |
| 01              |         | 2017-04-11 |          | Original |
|                 |         |            |          |          |
|                 |         |            |          |          |

| Authorized for issue by: |                                |            |
|--------------------------|--------------------------------|------------|
| Tested By                | Mike Mu                        | 2017-04-11 |
|                          | (David Chen) /Project Engineer | Date       |
| Checked By               | John Hong                      | 2017-04-11 |
|                          | (Jim Huang) /Reviewer          | Date       |



Report No.: SZEM170300176004 Page: 3 of 256

### **3 Test Summary**

| Test Item                                                               | Test Requirement                    | Test method       | Result |
|-------------------------------------------------------------------------|-------------------------------------|-------------------|--------|
| Antenna Requirement                                                     | 47 CFR Part 15<br>Section 15.203    | ANSI C63.10: 2013 | PASS   |
| AC Power Line<br>Conducted<br>Emission                                  | 47 CFR Part 15<br>Section 15.407(b) | ANSI C63.10: 2013 | PASS   |
| Conducted Output<br>Power                                               | 47 CFR Part 15<br>Section 15.407(a) | ANSI C63.10: 2013 | PASS   |
| 26 dB Emission Bandwidth<br>& 99% Occupied Bandwidth                    | 47 CFR Part 15<br>Section 15.407(a) | ANSI C63.10: 2013 | PASS   |
| 6dB Occupied<br>Bandwidth                                               | 47 CFR Part 15<br>Section 15.407(e) | ANSI C63.10: 2013 | PASS   |
| Power Spectral Density                                                  | 47 CFR Part 15<br>Section 15.407(a) | ANSI C63.10: 2013 | PASS   |
| Radiated Spurious<br>Emissions                                          | 47 CFR Part 15<br>Section 15.407(b) | ANSI C63.10: 2013 | PASS   |
| Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | 47 CFR Part 15<br>Section 15.407(b) | ANSI C63.10: 2013 | PASS   |



Report No.: SZEM170300176004 Page: 4 of 256

### 4 Contents

| 1 | CO/            | /ER PAGE                                                                           |   |
|---|----------------|------------------------------------------------------------------------------------|---|
| 2 | VEF            | SION                                                                               | 2 |
| 3 | TES            | T SUMMARY                                                                          |   |
| 4 | 100            | ITENTS                                                                             |   |
| 5 | GEN            | IERAL INFORMATION                                                                  | 5 |
|   | 5.1            | CLIENT INFORMATION                                                                 | 5 |
|   | 5.2            | GENERAL DESCRIPTION OF EUT                                                         | 5 |
|   | 5.3            | TEST ENVIRONMENT AND MODE                                                          |   |
|   | 5.4            | DESCRIPTION OF SUPPORT UNITS                                                       |   |
|   | 5.5            | TEST LOCATION                                                                      |   |
|   | 5.6            | TEST FACILITY                                                                      |   |
|   | 5.7            | DEVIATION FROM STANDARDS                                                           |   |
|   | 5.8            | ABNORMALITIES FROM STANDARD CONDITIONS                                             |   |
|   | 5.9            | OTHER INFORMATION REQUESTED BY THE CUSTOMER                                        |   |
|   | 5.10           | MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)                               |   |
|   | 5.11           | EQUIPMENT LIST                                                                     |   |
| 6 | TES            | T RESULTS AND MEASUREMENT DATA                                                     |   |
|   | 6.1            | ANTENNA REQUIREMENT                                                                |   |
|   | 6.2            | CONDUCTED EMISSIONS                                                                |   |
|   | 6.3            | CONDUCTED OUTPUT POWER                                                             |   |
|   | 6.4            | 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH                                 |   |
|   | 6.5            | 6DB OCCUPY BANDWIDTH                                                               |   |
|   | 6.6            | Power Spectral Density                                                             |   |
|   | 6.7            | RADIATED SPURIOUS EMISSIONS                                                        |   |
|   | 6.7.1<br>6.7.1 |                                                                                    |   |
|   | 6.8            | 2 Transmitter emission above 1GHZ<br>RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY |   |
|   |                |                                                                                    |   |
| 7 | PHC            | TOGRAPHS - EUT TEST SETUP DETAILS                                                  |   |



Report No.: SZEM170300176004 Page: 5 of 256

### **5** General Information

### 5.1 Client Information

| Applicant:               | Huawei Technologies Co.,Ltd.                                                                                                |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C |
| Manufacturer:            | Huawei Technologies Co.,Ltd.                                                                                                |
| Address of Manufacturer: | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C |
| Factory:                 | Huawei Technologies Co.,Ltd.                                                                                                |
| Address of Factory:      | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C |

### 5.2 General Description of EUT

| Product Name:        | HUAWEI MediaPad M3 Lite 10 (MediaPad M3 Lite 10 for short)                                                                                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:           | BAH-W09                                                                                                                                                                                                                                                  |
| Trade Mark:          | HUAWEI                                                                                                                                                                                                                                                   |
| Operation Frequency: | IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5150MHz to 5250MHz<br>IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5250MHz to 5350MHz<br>IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5470MHz to 5725MHz<br>IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5725MHz to 5850MHz |
|                      | * The 5600-5650MHz can not be used.                                                                                                                                                                                                                      |
| Type of Modulation:  | IEEE 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)<br>IEEE 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM)<br>IEEE 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)                                                                                                             |
| Sample Type:         | Portable production                                                                                                                                                                                                                                      |
| Antenna Type:        | PIFA                                                                                                                                                                                                                                                     |
| Antenna Gain:        | -2dBi                                                                                                                                                                                                                                                    |
| EUT Power Supply:    | DC3.85V (1 x 3.8V Rechargeable battery) 6500mAh<br>Battery: Charge by DC 4.35V                                                                                                                                                                           |
| AC adaptor:          | Model:HW-050200U01<br>Input: AC100-240V 50/60Hz 0.5A<br>Output:DC5.0V 2A                                                                                                                                                                                 |



Report No.: SZEM170300176004 Page: 6 of 256

Note:

In FCC 15.31, for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table, and the selected channel to perform the test as below:

| Frequency Range of       | Number of Measurement | Location of Measurement Frequency |
|--------------------------|-----------------------|-----------------------------------|
| Operation Operating      | Frequencies Required  | in Band of Operation              |
| Frequency Range (in each |                       |                                   |
| Band)                    |                       |                                   |
| 1 MHz or less            | 1                     | centre                            |
| 1 MHz to 10 MHz          | 2                     | 1 near high end, 1 near low end   |
| Greater than 10 MHz      | 3                     | 1 near high end, 1 near centre    |

For UNII Band I:

| Mode                    | Channel             | Frequency(MHz) |
|-------------------------|---------------------|----------------|
| IEEE 802.11a/n/ac 20MHz | The Lowest channel  | 5180           |
|                         | The Middle channel  | 5220           |
|                         | The Highest channel | 5240           |
| IEEE 802.11n/ac 40MHz   | The Lowest channel  | 5190           |
|                         | The Highest channel | 5230           |
| IEEE 802.11ac 80MHz     | The Middle channel  | 5210           |

For UNII Band II-A:

| Mode                    | Channel             | Frequency(MHz) |
|-------------------------|---------------------|----------------|
| IEEE 802.11a/n/ac 20MHz | The Lowest channel  | 5260           |
|                         | The Middle channel  | 5300           |
|                         | The Highest channel | 5320           |
| IEEE 802.11n/ac 40MHz   | The Lowest channel  | 5270           |
|                         | The Highest channel | 5310           |
| IEEE 802.11ac 80MHz     | The Middle channel  | 5290           |



Report No.: SZEM170300176004 Page: 7 of 256

For UNII Band II-C:

| Mode                    | Channel             | Frequency(MHz) |
|-------------------------|---------------------|----------------|
| IEEE 802.11a/n/ac 20MHz | The Lowest channel  | 5500           |
|                         | The Middle channel  | 5600           |
|                         | The Highest channel | 5700           |
| IEEE 802.11n/ac 40MHz   | The Lowest channel  | 5510           |
|                         | The Middle channel  | 5590           |
|                         | The Highest channel | 5670           |
| IEEE 802.11ac 80MHz     | The Lowest channel  | 5530           |
|                         | The Highest channel | 5610           |

For UNII Band III:

| Mode                    | Channel             | Frequency(MHz) |
|-------------------------|---------------------|----------------|
| IEEE 802.11a/n/ac 20MHz | The Lowest channel  | 5745           |
|                         | The Middle channel  | 5785           |
|                         | The Highest channel | 5825           |
| IEEE 802.11n/ac 40MHz   | The Lowest channel  | 5755           |
|                         | The Highest channel | 5795           |
| IEEE 802.11ac 80MHz     | The Middle channel  | 5775           |



Report No.: SZEM170300176004 Page: 8 of 256

### 5.3 Test Environment and Mode

| Operating Environment: |                                                                                          |
|------------------------|------------------------------------------------------------------------------------------|
| Temperature:           | 25.0 °C                                                                                  |
| Humidity:              | 50 % RH                                                                                  |
| Atmospheric Pressure:  | 1010 mbar                                                                                |
| Test mode:             |                                                                                          |
| Transmitting mode:     | Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. |

### 5.4 Description of Support Units

The EUT has been tested independent unit.

### 5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document to suonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM170300176004 Page: 9 of 256

### 5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### • A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

#### • VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

#### • FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

#### • Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

### 5.7 Deviation from Standards

None.

### 5.8 Abnormalities from Standard Conditions

None.

### 5.9 Other Information Requested by the Customer

None



Report No.: SZEM170300176004 Page: 10 of 256

### 5.10 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Total RF power, conducted       | 0.75dB                  |
| 2   | RF power density, conducted     | 2.84dB                  |
| 3   | Spurious emissions, conducted   | 0.75dB                  |
|     |                                 | 4.5dB (30MHz-1GHz)      |
| 4   | Radiated Spurious emission test | 4.8dB (1GHz-25GHz)      |
| 5   | Conduct emission test           | 3.12 dB(9KHz- 30MHz)    |
| 6   | Temperature test                | 1°C                     |
| 7   | Humidity test                   | 3%                      |
| 8   | DC and low frequency voltages   | 0.5%                    |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.sgs">http://www.sgs.com/en/Terms-and-Conditions.sgs</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits to Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction for exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM170300176004 Page: 11 of 256

### 5.11 Equipment List

|      | Conducted Emission |                                       |                     |               |                           |                               |  |
|------|--------------------|---------------------------------------|---------------------|---------------|---------------------------|-------------------------------|--|
| Item | Test Equipment     | Manufacturer                          | Model No.           | Inventory No. | Cal. Date<br>(yyyy-mm-dd) | Cal. Due date<br>(yyyy-mm-dd) |  |
| 1    | Shielding Room     | ZhongYu Electron                      | GB-88               | SEM001-06     | 2016-05-13                | 2017-05-13                    |  |
| 2    | LISN               | Rohde & Schwarz                       | ENV216              | SEM007-01     | 2016-10-09                | 2017-10-09                    |  |
| 3    | LISN               | ETS-LINDGREN                          | 3816/2              | SEM007-02     | 2016-04-25                | 2017-04-25                    |  |
| 4    | 8 Line ISN         | Fischer Custom<br>Communications Inc. | FCC-TLISN-T8-<br>02 | EMC0120       | 2016-09-28                | 2017-09-28                    |  |
| 5    | 4 Line ISN         | Fischer Custom<br>Communications Inc. | FCC-TLISN-T4-<br>02 | EMC0121       | 2016-09-28                | 2017-09-28                    |  |
| 6    | 2 Line ISN         | Fischer Custom<br>Communications Inc. | FCC-TLISN-T2-<br>02 | EMC0122       | 2016-09-28                | 2017-09-28                    |  |
| 7    | EMI Test Receiver  | Rohde & Schwarz                       | ESCI                | SEM004-02     | 2016-04-25                | 2017-04-25                    |  |
| 8    | DC Power Supply    | Zhao Xin                              | RXN-305D            | SEM011-02     | 2016-10-09                | 2017-10-09                    |  |

|      | RF connected test |                         |           |               |                           |                              |
|------|-------------------|-------------------------|-----------|---------------|---------------------------|------------------------------|
| Item | Test Equipment    | Manufacturer            | Model No. | Inventory No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | DC Power Supply   | ZhaoXin                 | RXN-305D  | SEM011-02     | 2016-10-09                | 2017-10-09                   |
| 2    | Spectrum Analyzer | Rohde &<br>Schwarz      | FSP       | SEM004-06     | 2016-10-17                | 2017-10-17                   |
| 3    | Signal Generator  | Rohde &<br>Schwarz      | SML03     | SEM006-02     | 2016-04-25                | 2017-04-25                   |
| 4    | Power Meter       | Agilent<br>Technologies | N1914A    | W008-02       | 2016-06-27                | 2017-06-27                   |
| 5    | Power Sensor      | Agilent<br>Technologies | U2021XA   | SEM009-01     | 2016-10-09                | 2017-10-09                   |



Report No.: SZEM170300176004 Page: 12 of 256

|      | RE in Chamber                     |                         |           |               |                           |                               |
|------|-----------------------------------|-------------------------|-----------|---------------|---------------------------|-------------------------------|
| ltem | Test Equipment                    | Manufacturer            | Model No. | Inventory No. | Cal. Date<br>(yyyy-mm-dd) | Cal. Due date<br>(yyyy-mm-dd) |
| 1    | 3m Semi-Anechoic<br>Chamber       | ETS-LINDGREN            | N/A       | SEM001-01     | 2016-05-13                | 2017-05-13                    |
| 2    | EMI Test Receiver                 | Agilent<br>Technologies | N9038A    | SEM004-05     | 2016-09-16                | 2017-09-16                    |
| 3    | BiConiLog Antenna<br>(26-3000MHz) | ETS-LINDGREN            | 3142C     | SEM003-01     | 2014-11-01                | 2017-11-01                    |
| 4    | Double-ridged horn<br>(1-18GHz)   | ETS-LINDGREN            | 3117      | SEM003-11     | 2015-10-17                | 2018-10-17                    |
| 5    | Horn Antenna<br>(18-26GHz)        | ETS-LINDGREN            | 3160      | SEM003-12     | 2014-11-24                | 2017-11-24                    |
| 6    | Pre-amplifier<br>(0.1-1300MHz)    | Agilent<br>Technologies | 8447D     | SEM005-01     | 2016-04-25                | 2017-04-25                    |
| 7    | Band filter                       | Amindeon                | Asi 3314  | SEM023-01     | N/A                       | N/A                           |
| 8    | DC Power Supply                   | Zhao Xin                | RXN-305D  | SEM011-02     | 2016-10-09                | 2017-10-09                    |
| 9    | Loop Antenna                      | Beijing Daze            | ZN30401   | SEM003-09     | 2015-05-13                | 2018-05-13                    |

|      | RE in Chamber                         |                         |           |               |                           |                               |
|------|---------------------------------------|-------------------------|-----------|---------------|---------------------------|-------------------------------|
| Item | Test Equipment                        | Manufacturer            | Model No. | Inventory No. | Cal. Date<br>(yyyy-mm-dd) | Cal. Due date<br>(yyyy-mm-dd) |
| 1    | 10m Semi-Anechoic<br>Chamber          | SAEMC                   | FSAC1018  | SEM001-03     | 2016-05-13                | 2017-05-13                    |
| 2    | EMI Test Receiver<br>(9k-7GHz)        | Rohde & Schwarz         | ESR       | SEM004-03     | 2016-04-25                | 2017-04-25                    |
| 3    | Trilog-Broadband<br>Antenna(30M-1GHz) | Schwarzbeck             | VULB9168  | SEM003-18     | 2016-06-29                | 2019-06-29                    |
| 4    | Pre-amplifier                         | Sonoma Instrument<br>Co | 310N      | SEM005-03     | 2016-07-06                | 2017-07-06                    |
| 5    | .Loop Antenna                         | ETS-Lindgren            | 6502      | SEM003-08     | 2015-08-14                | 2018-08-14                    |



Report No.: SZEM170300176004 Page: 13 of 256

|      | RE in Chamber                     |                         |                           |                  |                           |                              |
|------|-----------------------------------|-------------------------|---------------------------|------------------|---------------------------|------------------------------|
| Item | Test Equipment                    | Manufacturer            | Model No.                 | Inventory<br>No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | 3m Semi-Anechoic<br>Chamber       | AUDIX                   | N/A                       | SEM001-02        | 2016-05-13                | 2017-05-13                   |
| 2    | EMI Test Receiver                 | Rohde & Schwarz         | ESIB26                    | SEM004-04        | 2016-04-25                | 2017-04-25                   |
| 3    | BiConiLog Antenna<br>(26-3000MHz) | ETS-Lindgren            | 3142C                     | SEM003-02        | 2014-11-15                | 2017-11-15                   |
| 4    | Amplifier<br>(0.1-1300MHz)        | HP                      | 8447D                     | SEM005-02        | 2016-10-09                | 2017-10-09                   |
| 5    | Horn Antenna<br>(1-18GHz)         | Rohde & Schwarz         | HF907                     | SEM003-07        | 2015-06-14                | 2018-06-14                   |
| 6    | Low Noise Amplifier               | Black Diamond<br>Series | BDLNA-<br>0118-<br>352810 | SEM005-05        | 2016-10-09                | 2017-10-09                   |
| 7    | Band filter                       | Amindeon                | Asi 3314                  | SEM023-01        | N/A                       | N/A                          |



Report No.: SZEM170300176004 Page: 14 of 256

### 6 Test results and Measurement Data

### 6.1 Antenna Requirement

Test Requirement: 47 CFR Part 15 Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The antenna is integrated antenna and no consideration of replacement. The best case gain of the antenna is -2dBi.



Report No.: SZEM170300176004 Page: 15 of 256

#### Test Requirement: 47 CFR Part 15 Section 15.407(b) Test Method: ANSI C63.10: 2013 Test Frequency Range: 150kHz to 30MHz Limit: Limit (dBuV) Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56\* 56 to 46\* 0.5-5 46 56 5-30 60 50 \* Decreases with the logarithm of the frequency. Test Procedure: 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + $5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Test Setup: Shielding Room Test Receiver EUT solum AC Mar LISN1 LISN2 AC

### 6.2 Conducted Emissions

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-an

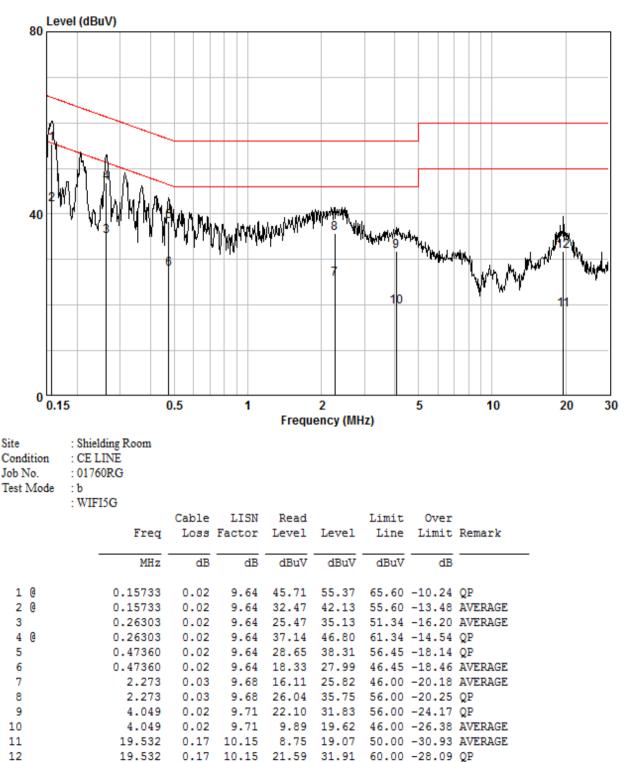
Ground Reference Plane



Report No.: SZEM170300176004 Page: 16 of 256

| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Final Test Mode:       | Through Pre-scan, find the 6Mbps of rate of 802.11a at lowest channel is the worst case.<br>Only the worst case is recorded in the report. |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                          |
| Test Results:          | Pass                                                                                                                                       |

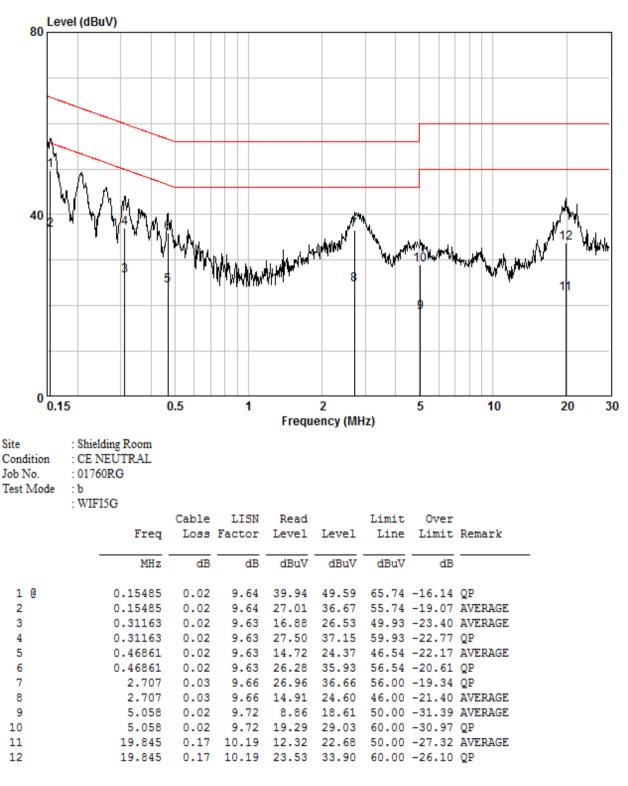
#### Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Report No.: SZEM170300176004 Page: 17 of 256


Live Line:





Report No.: SZEM170300176004 Page: 18 of 256

Neutral Line:



Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



Report No.: SZEM170300176004 Page: 19 of 256

### 6.3 Conducted Output Power

| Test Requirement:      | 47 CFR Part 15 Sect                                                                           | ion 15.407(a)                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10: 2013                                                                             |                                                                                                                                                                                                                                                                     |
| Test Setup:            |                                                                                               | E.U.T                                                                                                                                                                                                                                                               |
| Test Instruments:      | Refer to section 5.10                                                                         | for details                                                                                                                                                                                                                                                         |
|                        |                                                                                               |                                                                                                                                                                                                                                                                     |
| Exploratory Test Mode: | ŭ                                                                                             | ind of modulations, data rates                                                                                                                                                                                                                                      |
| Final Test Mode:       | MCS0 of rate is the v<br>case of 802.11n(HT4<br>MCS0 of rate is the w<br>case of 802.11ac(HT8 | d the 6Mbps of rate is the worst case of 802.11a;<br>worst case of 802.11n(HT20); MCS0 of rate is the worst<br>0); MCS0 of rate is the worst case of 802.11ac(HT20);<br>worst case of 802.11ac(HT40); MCS0 of rate is the worst<br>80)<br>s recorded in the report. |
| Limit:                 | Frequency Band                                                                                | Limit                                                                                                                                                                                                                                                               |
|                        | 5150-5250MHz                                                                                  | Not exceed 250mW(24dBm)                                                                                                                                                                                                                                             |
|                        | 5250-5350MHz                                                                                  | The lesser of 250mW(24dBm) or 11+ 10logB                                                                                                                                                                                                                            |
|                        | 5470-5725MHz                                                                                  | The lesser of 250mW(24dBm) or 11+ 10logB                                                                                                                                                                                                                            |
|                        | 5725-5850MHz                                                                                  | Not exceed 1W(30dBm)                                                                                                                                                                                                                                                |
|                        | *Where B is the 26dB                                                                          | emission bandwidth in MHz                                                                                                                                                                                                                                           |
| Test Results:          | Pass                                                                                          |                                                                                                                                                                                                                                                                     |



Report No.: SZEM170300176004 Page: 20 of 256

#### **Measurement Data:**

| 802.11a mode    |                              |             |        |  |
|-----------------|------------------------------|-------------|--------|--|
| Frequency (MHz) | Conducted Output Power (dBm) | Limit (dBm) | Result |  |
| 5180            | 17.31                        | 24.00       | Pass   |  |
| 5220            | 17.35                        | 24.00       | Pass   |  |
| 5240            | 17.34                        | 24.00       | Pass   |  |
| 5260            | 17.32                        | 24.00       | Pass   |  |
| 5300            | 17.28                        | 24.00       | Pass   |  |
| 5320            | 17.30                        | 24.00       | Pass   |  |
| 5500            | 17.20                        | 24.00       | Pass   |  |
| 5600            | 17.05                        | 24.00       | Pass   |  |
| 5700            | 17.16                        | 24.00       | Pass   |  |
| 5745            | 17.10                        | 30.00       | Pass   |  |
| 5785            | 17.04                        | 30.00       | Pass   |  |
| 5825            | 16.95                        | 30.00       | Pass   |  |

|                 | 802.11n(HT20) mode           |             |        |
|-----------------|------------------------------|-------------|--------|
| Frequency (MHz) | Conducted Output Power (dBm) | Limit (dBm) | Result |
| 5180            | 17.36                        | 24.00       | Pass   |
| 5220            | 17.25                        | 24.00       | Pass   |
| 5240            | 17.30                        | 24.00       | Pass   |
| 5260            | 17.27                        | 24.00       | Pass   |
| 5300            | 17.25                        | 24.00       | Pass   |
| 5320            | 17.29                        | 24.00       | Pass   |
| 5500            | 17.12                        | 24.00       | Pass   |
| 5600            | 17.08                        | 24.00       | Pass   |
| 5700            | 17.04                        | 24.00       | Pass   |
| 5745            | 16.92                        | 30.00       | Pass   |
| 5785            | 16.85                        | 30.00       | Pass   |
| 5825            | 16.88                        | 30.00       | Pass   |



Report No.: SZEM170300176004 Page: 21 of 256

| 802.11ac(HT20) mode |                              |             |        |  |
|---------------------|------------------------------|-------------|--------|--|
| Frequency (MHz)     | Conducted Output Power (dBm) | Limit (dBm) | Result |  |
| 5180                | 17.17                        | 24.00       | Pass   |  |
| 5220                | 17.12                        | 24.00       | Pass   |  |
| 5240                | 17.08                        | 24.00       | Pass   |  |
| 5260                | 17.11                        | 24.00       | Pass   |  |
| 5300                | 17.12                        | 24.00       | Pass   |  |
| 5320                | 17.08                        | 24.00       | Pass   |  |
| 5500                | 16.91                        | 24.00       | Pass   |  |
| 5600                | 16.96                        | 24.00       | Pass   |  |
| 5700                | 16.98                        | 24.00       | Pass   |  |
| 5745                | 16.93                        | 30.00       | Pass   |  |
| 5785                | 16.81                        | 30.00       | Pass   |  |
| 5825                | 16.87                        | 30.00       | Pass   |  |

|                 | 802.11 n(HT40) mode                            | -     |      |  |  |  |
|-----------------|------------------------------------------------|-------|------|--|--|--|
| Frequency (MHz) | (MHz) Conducted Output Power (dBm) Limit (dBm) |       |      |  |  |  |
| 5190            | 16.67                                          | 24.00 | Pass |  |  |  |
| 5230            | 16.65                                          | 24.00 | Pass |  |  |  |
| 5270            | 16.60                                          | 24.00 | Pass |  |  |  |
| 5310            | 16.67                                          | 24.00 | Pass |  |  |  |
| 5510            | 16.50                                          | 24.00 | Pass |  |  |  |
| 5590            | 16.49                                          | 24.00 | Pass |  |  |  |
| 5670            | 16.43                                          | 24.00 | Pass |  |  |  |
| 5755            | 16.39                                          | 30.00 | Pass |  |  |  |
| 5795            | 16.29                                          | 30.00 | Pass |  |  |  |



Report No.: SZEM170300176004 Page: 22 of 256

|                 | 802.11 ac(HT40) mode         |             |        |
|-----------------|------------------------------|-------------|--------|
| Frequency (MHz) | Conducted Output Power (dBm) | Limit (dBm) | Result |
| 5190            | 16.57                        | 24.00       | Pass   |
| 5230            | 16.66                        | 24.00       | Pass   |
| 5270            | 16.64                        | 24.00       | Pass   |
| 5310            | 16.52                        | 24.00       | Pass   |
| 5510            | 16.46                        | 24.00       | Pass   |
| 5590            | 16.60                        | 24.00       | Pass   |
| 5670            | 16.45                        | 24.00       | Pass   |
| 5755            | 16.39                        | 30.00       | Pass   |
| 5795            | 16.29                        | 30.00       | Pass   |

|                 | 802.11 ac(HT80) mode                         |       |      |  |  |
|-----------------|----------------------------------------------|-------|------|--|--|
| Frequency (MHz) | Frequency (MHz) Conducted Output Power (dBm) |       |      |  |  |
| 5210            | 15.47                                        | 24.00 | Pass |  |  |
| 5290            | 15.31                                        | 24.00 | Pass |  |  |
| 5530            | 15.23                                        | 24.00 | Pass |  |  |
| 5610            | 15.12                                        | 24.00 | Pass |  |  |
| 5775            | 15.29                                        | 24.00 | Pass |  |  |



Report No.: SZEM170300176004 Page: 23 of 256

### 6.4 26dB Emission Bandwidth and 99% Occupied Bandwidth

| Test Requirement:      | 47 CFR Part 15 Section 15.407(a)                                                                                                                                                                                                                                                                                                                                                            |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:           | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                                 |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                                                                                                                                                                                                                                       |  |  |
| Final Test Mode:       | Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11a;<br>MCS0 of rate is the worst case of 802.11n(HT20); MCS0 of rate is the worst<br>case of 802.11n(HT40); MCS0 of rate is the worst case of 802.11ac(HT20);<br>MCS0 of rate is the worst case of 802.11ac(HT40); MCS0 of rate is the<br>worst case of 802.11ac(HT80)<br>Only the worst case is recorded in the report. |  |  |
| Limit:                 | No restriction limits                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                        |  |  |



Report No.: SZEM170300176004 Page: 24 of 256

#### **Measurement Data:**

|                 | 802.11a mode                  |                              |  |  |
|-----------------|-------------------------------|------------------------------|--|--|
| Frequency (MHz) | 26dB Emission Bandwidth (MHz) | 99% Occupied Bandwidth (MHz) |  |  |
| 5180            | 22.62                         | 17.42                        |  |  |
| 5220            | 22.66                         | 17.38                        |  |  |
| 5240            | 22.54                         | 17.30                        |  |  |
| 5260            | 22.50                         | 17.38                        |  |  |
| 5300            | 22.38                         | 17.38                        |  |  |
| 5320            | 22.54                         | 17.34                        |  |  |
| 5500            | 22.46                         | 17.38                        |  |  |
| 5600            | 22.66                         | 17.38                        |  |  |
| 5700            | 22.50                         | 17.38                        |  |  |
| 5745            | 22.54                         | 17.38                        |  |  |
| 5785            | 22.54                         | 17.34                        |  |  |
| 5825            | 22.62                         | 17.38                        |  |  |

|                 | 802.11n(HT20) mode            |                              |  |  |
|-----------------|-------------------------------|------------------------------|--|--|
| Frequency (MHz) | 26dB Emission Bandwidth (MHz) | 99% Occupied Bandwidth (MHz) |  |  |
| 5180            | 22.86                         | 18.30                        |  |  |
| 5220            | 23.02                         | 18.30                        |  |  |
| 5240            | 22.70                         | 18.30                        |  |  |
| 5260            | 22.74                         | 18.26                        |  |  |
| 5300            | 23.02                         | 18.30                        |  |  |
| 5320            | 22.82                         | 18.30                        |  |  |
| 5500            | 22.90                         | 18.30                        |  |  |
| 5600            | 22.74                         | 18.26                        |  |  |
| 5700            | 22.90                         | 18.22                        |  |  |
| 5745            | 22.90                         | 18.30                        |  |  |
| 5785            | 23.02                         | 18.26                        |  |  |
| 5825            | 22.78                         | 18.30                        |  |  |



Report No.: SZEM170300176004 Page: 25 of 256

|                 | 802.11ac(HT20) mode           |                              |  |  |
|-----------------|-------------------------------|------------------------------|--|--|
| Frequency (MHz) | 26dB Emission Bandwidth (MHz) | 99% Occupied Bandwidth (MHz) |  |  |
| 5180            | 22.38                         | 18.14                        |  |  |
| 5220            | 22.38                         | 18.14                        |  |  |
| 5240            | 22.42                         | 18.14                        |  |  |
| 5260            | 22.30                         | 18.14                        |  |  |
| 5300            | 22.34                         | 18.18                        |  |  |
| 5320            | 22.50                         | 18.18                        |  |  |
| 5500            | 22.34                         | 18.18                        |  |  |
| 5600            | 22.34                         | 18.18                        |  |  |
| 5700            | 22.38                         | 18.18                        |  |  |
| 5745            | 22.34                         | 18.18                        |  |  |
| 5785            | 22.34                         | 18.18                        |  |  |
| 5825            | 22.38                         | 18.18                        |  |  |

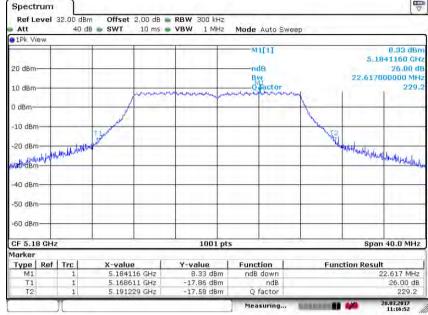
| 802.11n(HT40) mode |                               |                              |  |
|--------------------|-------------------------------|------------------------------|--|
| Frequency (MHz)    | 26dB Emission Bandwidth (MHz) | 99% Occupied Bandwidth (MHz) |  |
| 5190               | 44.84                         | 36.52                        |  |
| 5230               | 44.36                         | 36.52                        |  |
| 5270               | 44.20                         | 36.52                        |  |
| 5310               | 44.36                         | 36.52                        |  |
| 5510               | 44.20                         | 36.52                        |  |
| 5590               | 44.44                         | 36.52                        |  |
| 5670               | 44.12                         | 36.52                        |  |
| 5755               | 44.36                         | 36.52                        |  |
| 5795               | 44.52                         | 36.60                        |  |



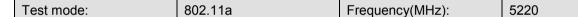
Report No.: SZEM170300176004 Page: 26 of 256

|                 | 802.11ac(HT40) mode           |                              |  |  |
|-----------------|-------------------------------|------------------------------|--|--|
| Frequency (MHz) | 26dB Emission Bandwidth (MHz) | 99% Occupied Bandwidth (MHz) |  |  |
| 5190            | 43.64                         | 36.52                        |  |  |
| 5230            | 43.64                         | 36.52                        |  |  |
| 5270            | 43.64                         | 36.52                        |  |  |
| 5310            | 43.56                         | 36.52                        |  |  |
| 5510            | 43.72                         | 36.52                        |  |  |
| 5590            | 43.64                         | 36.52                        |  |  |
| 5670            | 43.72                         | 36.52                        |  |  |
| 5755            | 43.88                         | 36.52                        |  |  |
| 5795            | 43.88                         | 36.52                        |  |  |

| 802.11ac(HT80) mode |                               |                              |  |
|---------------------|-------------------------------|------------------------------|--|
| Frequency (MHz)     | 26dB Emission Bandwidth (MHz) | 99% Occupied Bandwidth (MHz) |  |
| 5210                | 86.31                         | 74.81                        |  |
| 5290                | 85.67                         | 74.81                        |  |
| 5530                | 85.67                         | 74.81                        |  |
| 5610                | 85.83                         | 74.81                        |  |
| 5775                | 85.51                         | 74.97                        |  |




Report No.: SZEM170300176004 Page: 27 of 256

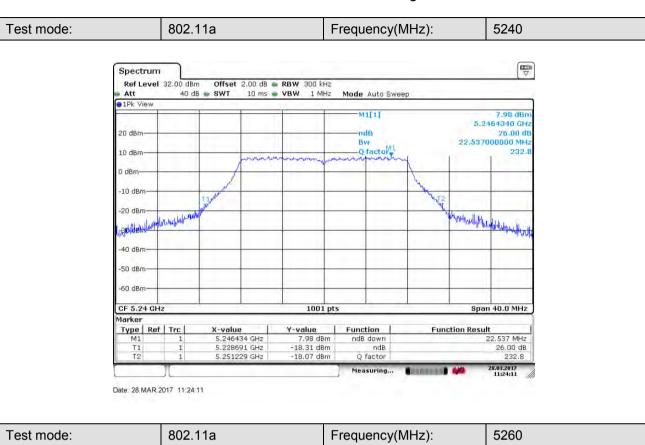

#### 26dB Emission Bandwidth

#### Test plot as follows:

| Test mode: | 802.11a | Frequency(MHz): | 5180 |  |
|------------|---------|-----------------|------|--|
| _          |         |                 |      |  |



Date: 28.MAR.2017 11:16:52



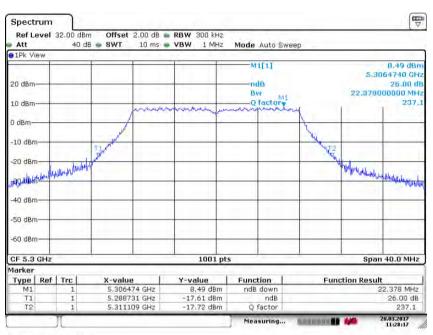

|           |        | 40 dt         | 8 🖝 SWT 10 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns 🖷 VBW 🛛 1 MHz | Mode Auto Sw | eep   |                                      |
|-----------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------|--------------------------------------|
| 1Pk Vie   | W      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
|           |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | M1[1]        |       | 8.01 dB                              |
| 20 dBm-   |        | 1.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ode          |       | 5.2245550 GF<br>26.00 c              |
| 20 ubin-  | 100    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                | Bw           |       | 22.657000000 MH                      |
| 10 dBm-   | _      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | O factor     |       | 230                                  |
| 10 0011   |        |               | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | warmed and a     | emphasis     | in    | 1 1                                  |
| 0 dBm-    | -      |               | - A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              | 1     |                                      |
|           |        |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              | 1     |                                      |
| -10 dBm   | -      |               | and the second s |                  |              | N. A. |                                      |
|           |        |               | 1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | 12    |                                      |
| -20 dBm   |        | Whethreetster | 1 Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |              |       | State -                              |
| the work! | 4Hollo | Manage        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       | and text way when the stand with the |
| HAO GBM   |        | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       | The Local West                       |
| -40 dBm   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | -     |                                      |
| -40 0Bm   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
| -50 dBm   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
| -50 0010  |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
| -60 dBm   | _      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
|           |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
| CF 5.22   | GHZ    |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1001 pt          | 5            |       | Span 40.0 MH                         |
| Marker    | 1.1    |               | and service and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |       |                                      |
| Type      | Ref    | Trc           | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value          | Function     | Fun   | nction Result                        |
| M1        |        | 1             | 5.224555 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | ndB down     |       | 22,657 MH                            |
| T1        |        | 1             | 5.208571 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | ndB          |       | 26.00 de                             |
| T2        |        | 1             | 5.231229 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18.06 dBm       | Q factor     |       | 230.6                                |

Date: 28 MAR 2017 11:21:53



Report No.: SZEM170300176004 Page: 28 of 256




| Ref Lo<br>Att          | evel  | 32.00 dBn<br>40 dB |                  | 2.00 dB 1 |                        | 100   | Mode Auto Swe   | ep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                             |
|------------------------|-------|--------------------|------------------|-----------|------------------------|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------|
| ●1Pk Vi                | ew    |                    |                  |           |                        |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                             |
| 20 dBm                 |       |                    |                  |           |                        |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 8.31 dBr<br>64740 GH<br>26.00 d<br>00000 MH |
| 10 dBm                 |       |                    |                  | manual    | mound                  | ment  | Q factor        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 234.                                        |
| 0 dBm-                 | +     | -                  |                  | 1         |                        |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |                                             |
| -10 dBm                | -     | _                  | The Alland       |           |                        | _     |                 | WHAT WAT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                             |
| on dam                 |       |                    | 5                | -         |                        |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1                                           |
| -andbill               | mall  | Manarillan         | <i>w</i>         |           |                        |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thanky normalistic | when he of                                  |
| Change de la constante |       |                    |                  | ii        |                        |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | A da vá                                     |
| -40 dBm                | -     |                    |                  |           |                        |       |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                             |
| -50 dBm                | +     | -                  |                  |           | -                      |       | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |                                             |
| -60 dBm                | -     |                    |                  |           |                        | _     | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                             |
| CF 5.2                 | 5 GHz | _                  | -                |           | 1001                   | pts   | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spar               | 40.0 MHz                                    |
| Marker                 | 1.00  |                    | and surger       |           |                        | -     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                                           |
| Type                   | Ref   |                    | X-value          |           | Y-value                | - 1-  | Function        | Fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Result        |                                             |
| M1<br>T1               | _     | 1                  | 5.2664<br>5.2486 |           | 8.31 dB<br>-18.21 dB   |       | ndB down<br>ndB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                  | 2,498 MHz<br>26.00 dB                       |
| 11<br>T2               |       | 1                  | 5.2486           |           | -18.21 dB<br>-18.08 dB |       | Q factor        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | 26.00 dB<br>234.1                           |
| 14                     | -     | 41                 | 3.2711           | as and I  | 10.00 00               | ant 1 | Measuring       | Concession in the local division in the loca | -                  | 28.03.2017                                  |

Date: 28 MAR 2017 11:25:43

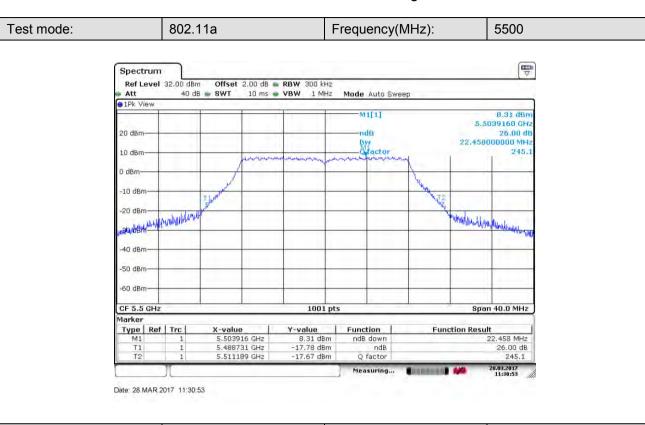


Report No.: SZEM170300176004 Page: 29 of 256





Date: 28 MAR 2017 11:28:18


| Test mode: 802.11a | Frequency(MHz): | 5320 |
|--------------------|-----------------|------|
|--------------------|-----------------|------|

| Ref Lev<br>Att | 61 32.0  |            | . SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 dB =<br>10 ms = |                                 | Mode Auto Sw | reep       |                    |            |
|----------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|--------------|------------|--------------------|------------|
| 1Pk Viev       | 1        | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 11.00                           |              |            |                    |            |
|                |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 | M1[1]        |            |                    | 7.92 dBn   |
| -              |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 | 10           |            | 5.322              | 26370 GH   |
| 20 dBm-        | -        | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 | ndB<br>Bw    |            | 00 50700           | 26.00 dt   |
| 10 dBm-        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 | M1 O factor  |            | 22.00700           | 236.       |
| TO ODIII-      |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mann                 | and a manufacture of the second | momente      | June       | 1 1                | 200.       |
| 0 dBm-         |          | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              | 1          |                    |            |
| e sipiri       |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                 |              | 20         | · · ·              |            |
| -10 dBm-       | -        | _          | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                 |              | The second |                    |            |
|                |          |            | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                 |              | MAN T2     |                    |            |
| -20 dBm-       | -        | 11         | A Contraction of the second se |                      |                                 |              |            |                    |            |
| -20 dBm-       | Linkland | htter have | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                 |              |            | Wither Higher Like | diam'r     |
| -BR-DBH        | HUN DI   | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -                               |              | -          | Hanhard warded     | MARKAR BUR |
|                |          |            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |                                 |              |            |                    |            |
| -40 dBm-       | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              |            |                    |            |
|                |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              |            |                    |            |
| -50 dBm—       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              |            |                    |            |
| -60 dBm-       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              |            |                    |            |
| -00 ubili      | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              |            |                    |            |
| CF 5.32        | GHz      | -          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 1001 pt                         | 5            |            | Span               | 40.0 MHz   |
| Marker         | 13 L.    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |              |            |                    |            |
| Type   F       | ef   Tr  | c          | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                    | Y-value                         | Function     | Fun        | ction Result       |            |
| M1             | - 10-    | 1          | 5.3226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 7.92 dBm                        | ndB down     |            | 22                 | .537 MHz   |
| T1             | _        | 1          | 5.3087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | -18.17 dBm                      | ndB          |            |                    | 26.00 dB   |
| T2             |          | 1          | 5.3312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59 GHz               | -18.21 dBm                      | Q factor     |            |                    | 236.2      |

Date: 28 MAR 2017 11:29:19



Report No.: SZEM170300176004 Page: 30 of 256



| st mode: | 802.11a                            | Frequenc                                           | y(MHz):           | 5600                    |
|----------|------------------------------------|----------------------------------------------------|-------------------|-------------------------|
|          |                                    |                                                    |                   | _                       |
| -        | pectrum                            | 11.0. P. P                                         |                   |                         |
|          |                                    | D dB 🖮 RBW 300 kHz<br>D ms 🖷 VBW 1 MHz Mode Auto S | Sweep             |                         |
| • 1      | 1Pk View                           |                                                    |                   | 7.00.00                 |
| 5        |                                    | M1[1]                                              | 5                 | 7.91 dBm<br>6033170 GHz |
| 20       | D dBm-                             | ndê                                                | 22.65             | 26.00 dB<br>7000000 MHz |
| 10       | D dBm-                             | Bw<br>Mo factor                                    | and I             | 247.3                   |
| 0        | dBm-                               |                                                    |                   |                         |
|          | .0 dBm                             |                                                    | 1                 |                         |
| 0        | T. June                            |                                                    | 15                |                         |
| -2       | 20 dBm                             |                                                    | hit all all all a | No.                     |
| 4pa      | to leight million and and a second |                                                    |                   | England under grade     |
| -4       | O dBm                              |                                                    |                   |                         |
| .5       | 50 dBm                             |                                                    |                   |                         |
|          | 56                                 |                                                    |                   |                         |
| -6       | i0 dBm                             |                                                    |                   |                         |
| C        | F 5.6 GHz                          | 1001 pts                                           | Sp                | an 40.0 MHz             |

Date: 28 MAR 2017 11:32:08

M

T2

5.603317 GHz 5.588611 GHz 5.611269 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.apx">http://www.sgs.com/en/Terms-and-Conditions.apx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-

7.91 dBm 18.32 dBm

-18.40 dBm

ndB down

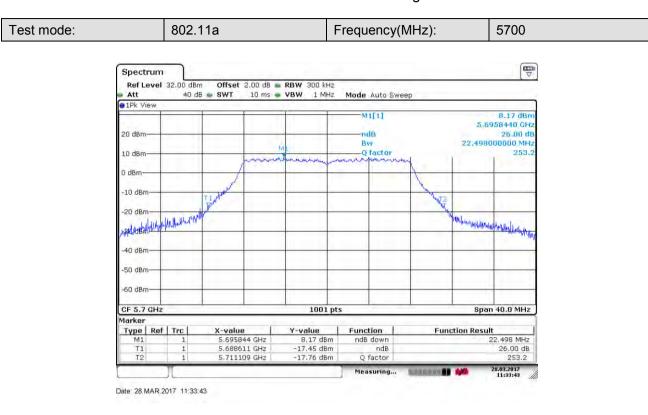
Q factor

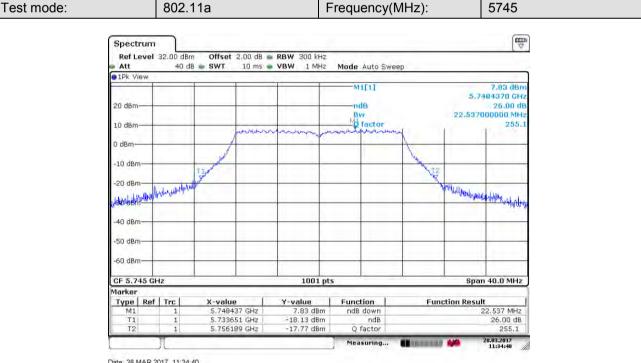
ndB

Measuring...

Canada and A

22,657 MHz

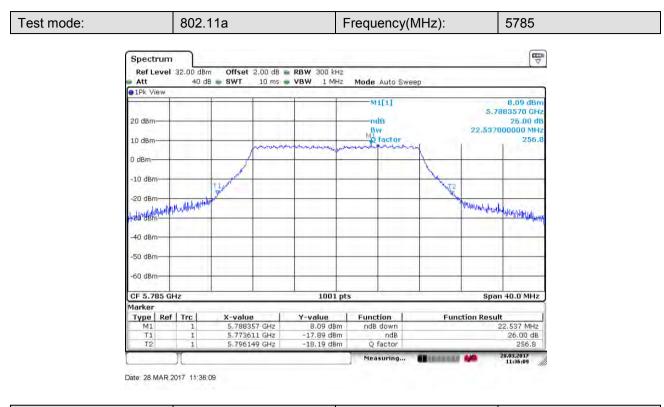

28.03.2017 11:32:07


26.00 dB

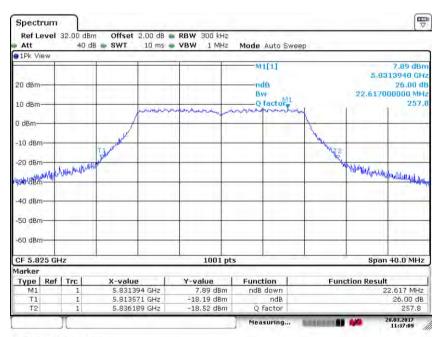
247.3



Report No.: SZEM170300176004 31 of 256 Page:





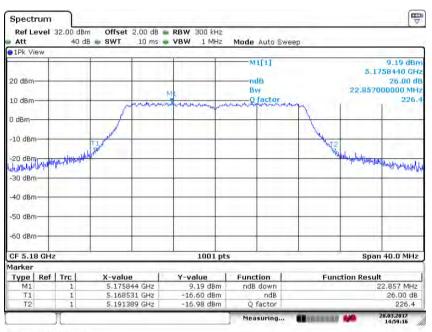


Date: 28 MAR 2017 11:34:40



Report No.: SZEM170300176004 Page: 32 of 256







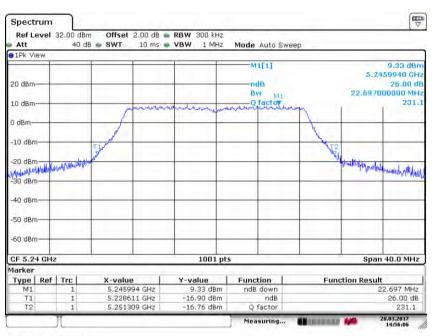

Date: 28.MAR.2017 11:37:10



Report No.: SZEM170300176004 Page: 33 of 256






Date: 28.MAR.2017 14:59:17

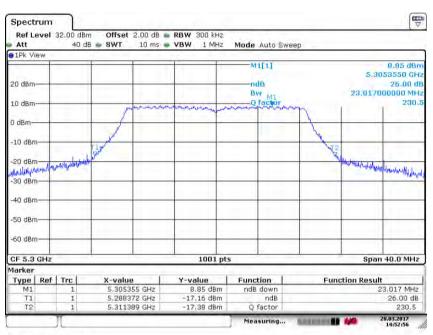
| le:             | 802.11n(HT20) |                                         | F                         | requency(                                    | 5220     |                                                                 |  |
|-----------------|---------------|-----------------------------------------|---------------------------|----------------------------------------------|----------|-----------------------------------------------------------------|--|
| the start       |               |                                         | RBW 300 kHz<br>VBW 1 MHz  | Mode Auto Sw                                 | eep      |                                                                 |  |
| 20 dB<br>10 dB  |               | Junine                                  | mange                     | M1[1]<br>ndB<br>Bw <sub>M1</sub><br>Q fortor | 23       | 8.77 dBn<br>5.2247550 GH<br>26.00 dl<br>1.017000000 MH<br>227.1 |  |
| 0 dBm<br>-10 dB | 8m            | and |                           |                                              | WT2      |                                                                 |  |
| -40 de          |               |                                         |                           |                                              |          | Wilder Andra Daristan Isa                                       |  |
| -50 de          |               |                                         |                           |                                              |          |                                                                 |  |
| CF 5.           | 22 GHz        |                                         | 1001 pts                  | · · · · ·                                    |          | Span 40.0 MHz                                                   |  |
| Marke           |               |                                         |                           |                                              |          |                                                                 |  |
| Туре            | Ref Trc       | X-value<br>5.224755 GHz                 | Y-value<br>8.77 dBm       | Function<br>ndB down                         | Function | 23.017 MHz                                                      |  |
| T               | 1 1           | 5.208492 GHz<br>5.231508 GHz            | -16.83 dBm<br>-17.02 dBm  | ndB<br>Q factor                              |          | 26.00 dB<br>227.0                                               |  |
| -               | T             | 0.000000.000                            | oreason and a strice upin |                                              |          | a contraction                                                   |  |



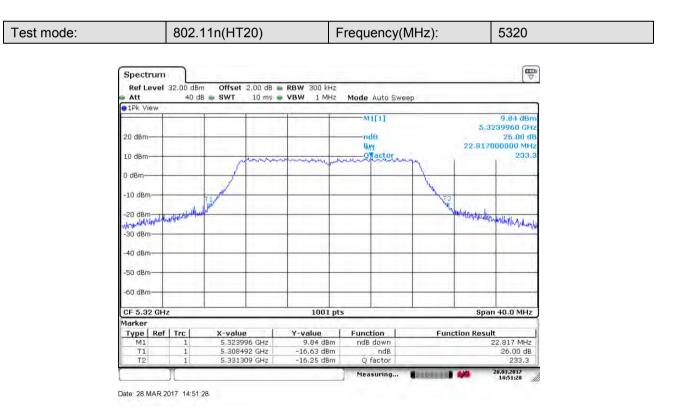
Report No.: SZEM170300176004 Page: 34 of 256






Date: 28 MAR 2017 14:56:05

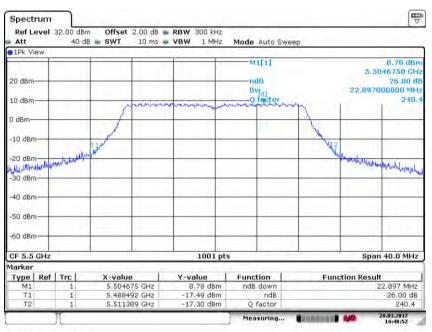
| t mode:                       | 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | Fre                                   | equency(l                               | 5260         |                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|-----------------------------------------|--------------|------------------------------------------------------------------|
| Spectru<br>Ref Lev<br>Att     | vel 32.00 dBm Offse<br>40 dB 🖷 SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 2.00 dB 🛥 RBW<br>10 ms 🕳 VBW |                                       | ode Auto Swe                            | ер           |                                                                  |
| 20 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mi.                            | m                                     | M1[1]<br>—nd8<br>Bw<br>—Q factor        | 22           | 8.86 dBm<br>5.2527270 GHz<br>26.00 dB<br>.737000000 MHz<br>231.0 |
| 0 dBm                         | Han a set that a for the set of t |                                |                                       |                                         | NT2          | adjument and her out of the                                      |
| -40 dBm-<br>-50 dBm-          | Hard and a set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                       |                                         |              | a natural natural for                                            |
| -60 dBm-                      | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 1001 pts                              |                                         |              | Span 40.0 MHz                                                    |
| Marker                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                       |                                         |              |                                                                  |
| <b>Type</b><br>M1<br>T1<br>T2 | 1 5.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2727 GHz 8<br>3571 GHz -16     | lue    <br>86 dBm<br>68 dBm<br>61 dBm | ndB down<br>ndB down<br>ndB<br>Q factor | Function I   | Result 22.737 MHz<br>26.00 dB<br>231.0                           |
| Date: 28 Mu                   | AR 2017 14:55:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                       | Measuring                               | 5.05.000 🖬 🦇 | 28.03.2017<br>14:55:01                                           |




Report No.: SZEM170300176004 Page: 35 of 256






Date: 28 MAR 2017 14:52:57

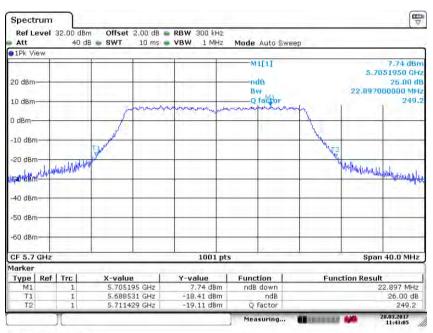




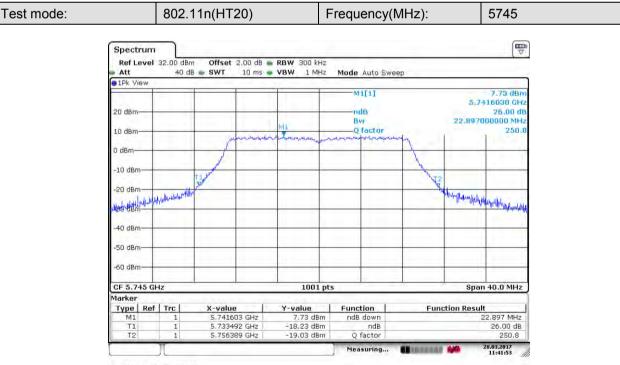
Report No.: SZEM170300176004 Page: 36 of 256






Date: 28 MAR 2017 14:48:52

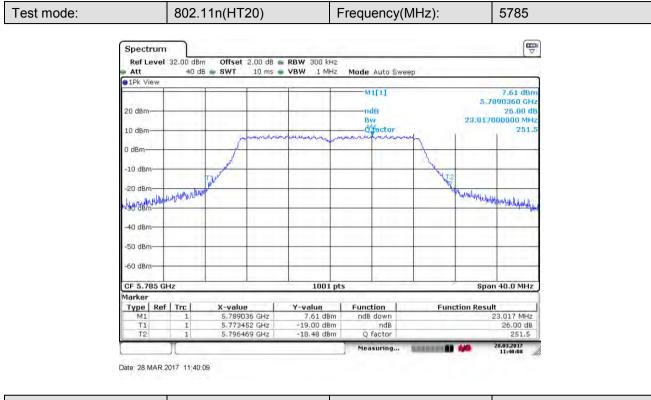
| ode:     | 802.                                                                                            | 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | requency(                               | 5600          |                                                              |
|----------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------|--------------------------------------------------------------|
| R<br>A   | ectrum<br>ef Level 32.00 dB<br>tt 40 d                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBW 300 kHz<br>VBW 1 MHz                        | Mode Auto Swi                           | еер           |                                                              |
| 20       | dBm                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | M1[1]<br>ndB<br>Bw<br>Q¥actor           | 22.           | 8.91 dBn<br>5.6041160 GH<br>26.00 df<br>737000000 MH<br>246. |
| o d      |                                                                                                 | Carlon Carlon and Carl |                                                 |                                         | 12            |                                                              |
| -30      | dBm<br>Lyhi trenhyhlikkhild<br>dBm                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                         | A Mathematica | homani orrisonahalanan                                       |
| -50      | dBm                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                         |               |                                                              |
| 1        | 5.6 GHz                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 pts                                        |                                         |               | Span 40.0 MHz                                                |
| Ту       | pe         Ref         Trc           M1         1           T1         1           T2         1 | X-value<br>5.604116 GHz<br>5.588611 GHz<br>5.611349 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value<br>8,91 dBm<br>-17,41 dBm<br>-17,14 dBm | Function<br>ndB down<br>ndB<br>Q factor | Function R    | 22.737 MHz<br>26.00 dB<br>246.5                              |
| <u> </u> | JL                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Measuring                               | Constant 🚧    | 28.03.2017<br>14:47:22                                       |

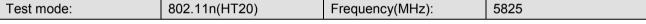


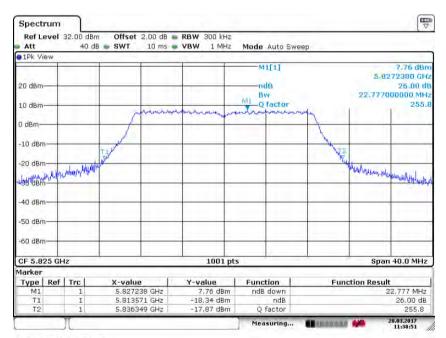

Report No.: SZEM170300176004 Page: 37 of 256






Date: 28.MAR.2017 11:43:06





Date: 28 MAR 2017 11:41:54



Report No.: SZEM170300176004 Page: 38 of 256







Date: 28.MAR.2017 11:38:52



Report No.: SZEM170300176004 Page: 39 of 256

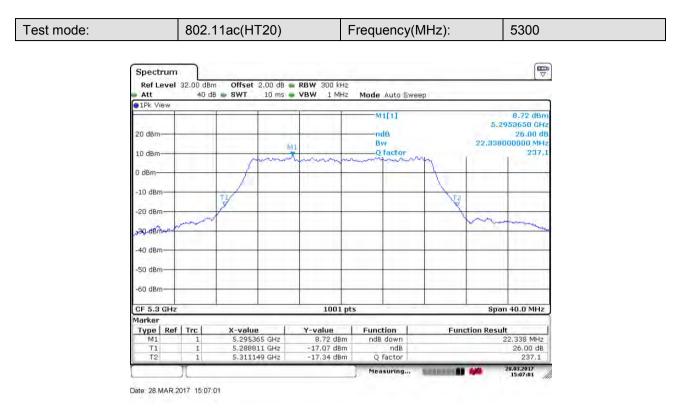
| Test mode:        | 802.11ac(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency(MHz):                                            | 5180                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|
| Spectro           | and the second sec |                                                            |                                       |
| Ref Lev<br>Att    | vel 32.00 dBm Offset 2.00 dB =<br>40 dB = SWT 10 ms =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                       |
| e 1Pk Vie         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                       |
| 20 dBm-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1[1]<br>ndB                                               | 8.76 dBm<br>5.1754050 GHz<br>26.00 dB |
| 10 dBm            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 22.378000000 MHz<br>231.3             |
| 0 dBm             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                       |
| -20 dBm-          | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12<br>T2                                                   | man                                   |
| ~-90°dBm-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                       |
| -40 dBm-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                       |
| -50 dBm-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                       |
| -60 dBm-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                       |
| CF 5.18<br>Marker | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 pts                                                   | Span 40.0 MHz                         |
| Type              | Ref Trc X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            | ction Result                          |
| M1<br>T1<br>T2    | 1 5.175405 GHz<br>1 5.168811 GHz<br>1 5.191189 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.76 dBm ndB down<br>-17.27 dBm ndB<br>-17.51 dBm Q factor | 22.378 MHz<br>26.00 dB<br>231.3       |
|                   | Л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measuring 🚺 👔 🗤 🗤                                          | 28.03.2017<br>15:01:04                |
| Date: 28 MA       | AR.2017 15:01:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                       |
| Test mode:        | 802.11ac(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency(MHz):                                            | 5220                                  |

| Ref L              | evel  | 32.00 dBr<br>40 d |                                              | B = RBW 300<br>s = VBW 1 | kHz<br>MHz | Mode Auto Sw                     | eep        | 1.                                                             |
|--------------------|-------|-------------------|----------------------------------------------|--------------------------|------------|----------------------------------|------------|----------------------------------------------------------------|
| • 1Pk Vi           | ew    |                   |                                              |                          |            |                                  |            |                                                                |
| 20 dBm<br>10 dBm   |       |                   | mun                                          | MI                       | ~~~        | MI[1]<br>—ndB<br>Bw<br>—Q factor | my         | 8.75 dBr<br>5.2153650 GH<br>26.00 d<br>22.378000000 MH<br>233. |
| 0 dBm-<br>-10 dBn  | ,     |                   | V                                            |                          | -          |                                  | 12         |                                                                |
| -20 dBn            |       | m                 |                                              |                          |            |                                  |            | man                                                            |
| -40 dBn<br>-50 dBn |       |                   |                                              |                          | -          |                                  |            |                                                                |
| -60 dBn            | 1     |                   |                                              |                          |            |                                  |            |                                                                |
| CF 5.2             | 2 GHz |                   | · · · · · ·                                  | 100                      | 11 pts     | 6                                |            | Span 40.0 MHz                                                  |
| Marker<br>Type     | Ref   | Trc               | X-value                                      | Y-value                  | 1          | Function                         | Func       | tion Result                                                    |
| M1<br>T1<br>T2     |       | 1 1               | 5.215365 GHz<br>5.208811 GHz<br>5.231189 GHz | -17.28                   | dBm        | ndB down<br>ndB<br>O factor      |            | 22.378 MHz<br>26.00 dB<br>233.1                                |
|                    | -     | T                 |                                              |                          | -          | Measuring                        | (Constant) | a court of the                                                 |

Date: 28 MAR 2017 15:02:39



Report No.: SZEM170300176004 Page: 40 of 256




| 1Pk Vi             | ew.  |                  | and a second product of | the second second |                                  |      |                                                                 |
|--------------------|------|------------------|-------------------------|-------------------|----------------------------------|------|-----------------------------------------------------------------|
| 20 dBm·<br>10 dBm· |      |                  | moreno                  | 11<br>Lunnan mi   | MI[1]<br>—ndB<br>Bw<br>—Q factor | mh I | 8,81 dBn<br>5.2553650 GH<br>26.00 dl<br>22.298000000 MH<br>235. |
| 0 dBm—<br>10 dBm   |      |                  | TI                      |                   |                                  | 72   |                                                                 |
| 20 dBm<br>30 dBm   | - 12 | and the allowing |                         |                   |                                  | Y    | man                                                             |
| 40 dBm             | -    | -                |                         |                   |                                  |      |                                                                 |
| 50 dBm             |      | -                |                         |                   |                                  |      |                                                                 |
| 60 dBm             |      |                  |                         |                   |                                  |      |                                                                 |
| CF 5.20            | GHz  |                  | 4                       | 1001 pts          |                                  | P    | Span 40.0 MHz                                                   |
| larker<br>Type     | Ref  | Trc              | X-value                 | Y-value           | Function                         | Func | tion Result                                                     |
| M1                 |      | 1                | 5.255365 GHz            | 8.81 dBm          | ndB down                         |      | 22,298 MHz                                                      |
| T1                 |      | 1                | 5.248811 GHz            | -17.23 dBm        | ndB                              |      | 26.00 dB<br>235.7                                               |
|                    | Ref  | 1                | 5.255365 GHz            | 8.81 dBm          | ndB down                         | Func | tion Res                                                        |

Date: 28 MAR 2017 15:05:31



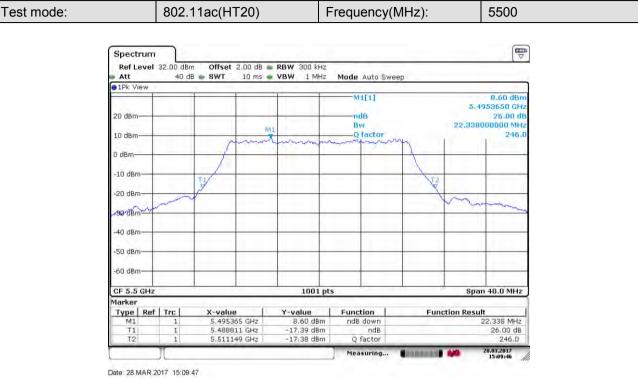
Report No.: SZEM170300176004 Page: 41 of 256



| st mode: |                      | 802.11ac(H            | T20)            | Frequency | (MHz): | 5320                                                    |
|----------|----------------------|-----------------------|-----------------|-----------|--------|---------------------------------------------------------|
|          | Spectrun<br>Ref Leve |                       | 2,00 dB 🖷 RBW 3 | 300 kHz   |        |                                                         |
|          | Att                  | 40 dB 💩 SWT           | 10 ms 🕳 VBW     |           | veep   |                                                         |
|          | 1Pk View             | and the second second |                 |           |        |                                                         |
|          | 20 dBm               |                       |                 |           | 22     | 8,83 dBm<br>5,3153650 GHz<br>26,00 dB<br>,498000000 MHz |
|          | 10 dBm               | (                     | MI              | Qfactor   |        | 236.3                                                   |
|          | 0 dBm                |                       | 1 1             |           |        |                                                         |
|          | +10 dBm              | TI                    | ······          |           | 12     |                                                         |

| M1<br>T1<br>T2 | Kei   | 1<br>1<br>1                             | 5.315365 GHz<br>5.308691 GHz<br>5.331189 GHz | -17.05 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndB      |      |           | 22.498 MH2<br>26.00 dB<br>236.3<br>28.03.2017                                                                   |
|----------------|-------|-----------------------------------------|----------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------|-----------------------------------------------------------------------------------------------------------------|
| Τ1             | Kei   | 1                                       | 5.308691 GHz                                 | -17.05 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndB      |      |           | 26.00 dB                                                                                                        |
|                | Rei   | 1                                       | 5.315365 GHz                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |           |                                                                                                                 |
|                | Rei   |                                         |                                              |            | - do de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ndB down |      | 22,498 N  |                                                                                                                 |
| Type           | Ref   | Trc                                     | X-value                                      | Y-value    | Functio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Fund | ction Res |                                                                                                                 |
| larker         |       |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |           |                                                                                                                 |
| CF 5.3         | 2 GHz |                                         | · · · · · · · · · · · · · · · · · · ·        | 1001 p     | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      | Sp        | an 40.0 MH:                                                                                                     |
|                |       |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |           |                                                                                                                 |
| -60 dBn        | n     | _                                       |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -    |           |                                                                                                                 |
| -30 Ubi        |       |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |           |                                                                                                                 |
| -50 dBn        |       |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _    |           |                                                                                                                 |
| -40 dBn        | n     |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -    | -         |                                                                                                                 |
| eou abii       |       |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |           |                                                                                                                 |
| -BO-dBn        | row   | provide a                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      | V + C     | and a second and a s |
| -20 dBn        | n     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1    | in        |                                                                                                                 |
|                |       |                                         | TI                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 12   |           |                                                                                                                 |
| -10 dBn        | n     |                                         |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1    |           |                                                                                                                 |
| 0 dBm-         |       |                                         | 1                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1    |           |                                                                                                                 |
| 1.00           |       |                                         | 1 mon                                        | munn       | and the second s |          |      |           |                                                                                                                 |

Date: 28 MAR 2017 15:08:14




Test mode:

# SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

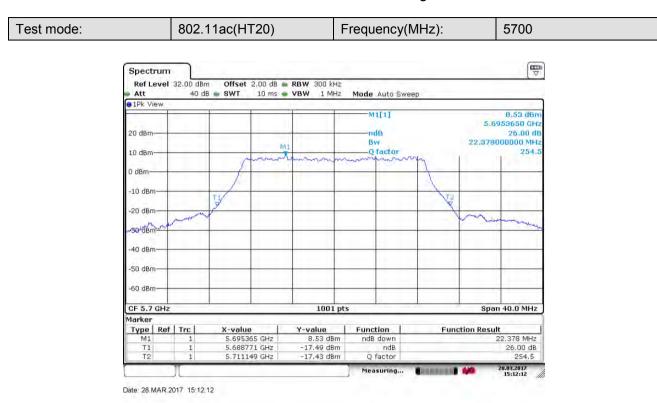
Report No.: SZEM170300176004 Page: 42 of 256

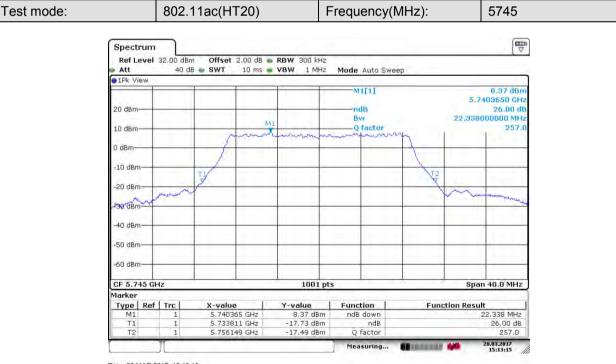
5600



Date: 28.MAR.2017 15:09.47

802.11ac(HT20)

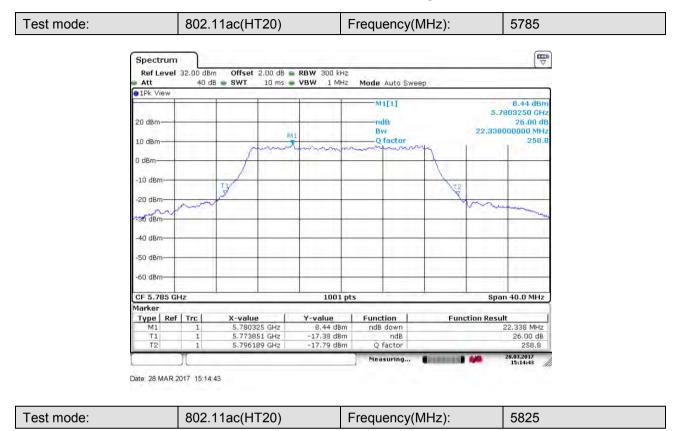

| Spect    |      |          |                | 1. C. |               |          |                             |
|----------|------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----------------------------|
|          | evel | 32.00 dB |                | 📾 RBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |          |                             |
| Att      | -    | 40 d     | IB 🖶 SWT 10 ms | VBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mode Auto Swe | ep       |                             |
| 1Pk Vi   | ew   |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
|          |      |          |                | 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1[1]         |          | 8.63 dBn                    |
|          |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10            |          | 5.5953650 GH                |
| 20 dBm   |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndB           |          | 26.00 dl<br>22,338000000 MH |
| 10.00    |      |          |                | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q factor      |          | 22.338000000 MH             |
| 10 dBm   |      |          | nun            | Amonom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - mann        | mps I    | 250.                        |
| 0 dBm-   |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| U UBIII- |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| -10 dBn  |      |          | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| -10 000  |      |          | TI             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 12       |                             |
| -20 dBn  |      |          | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y        |                             |
| -20 000  |      | And      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          | manne                       |
| -30 den  | nd   |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          | and the second              |
| obe abil |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| -40 dBm  | -    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
|          |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| -50 dBn  | -    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | _        |                             |
|          |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| -60 dBm  | -+-  |          | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | -        |                             |
| 1.57.5   |      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| CF 5.6   | GHz  |          | 4 14           | 1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5             | 2 2      | Span 40.0 MHz               |
| Marker   | -    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          |                             |
| Type     | Ref  | Trc      | X-value        | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function      | Function | n Result                    |
| M1       |      | 1        | 5.595365 GHz   | 8.63 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB down      |          | 22,338 MHz                  |
| T1       |      | 1        | 5.588771 GHz   | -17,44 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ndB           |          | 26.00 dB                    |
| T2       |      | 1        | 5.611109 GHz   | -17.28 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q factor      |          | 250.5                       |

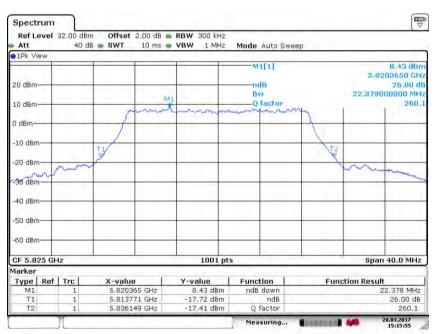

Frequency(MHz):

Date: 28 MAR 2017 15:10:44



Report No.: SZEM170300176004 Page: 43 of 256




Date: 28.MAR 2017 15:13:15



Report No.: SZEM170300176004 Page: 44 of 256



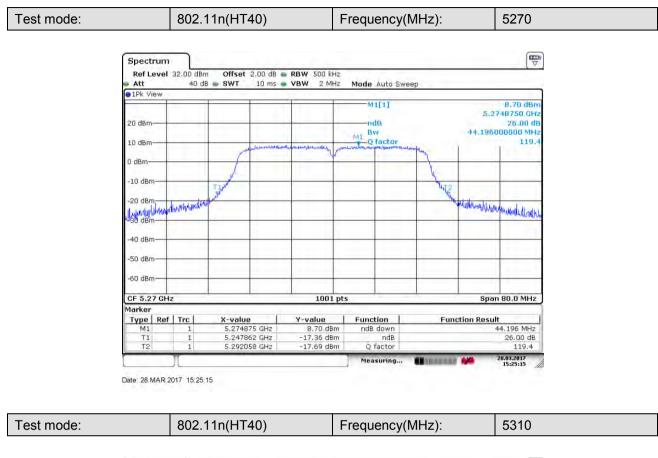



Date: 28 MAR 2017 15:15:56



Report No.: SZEM170300176004 Page: 45 of 256



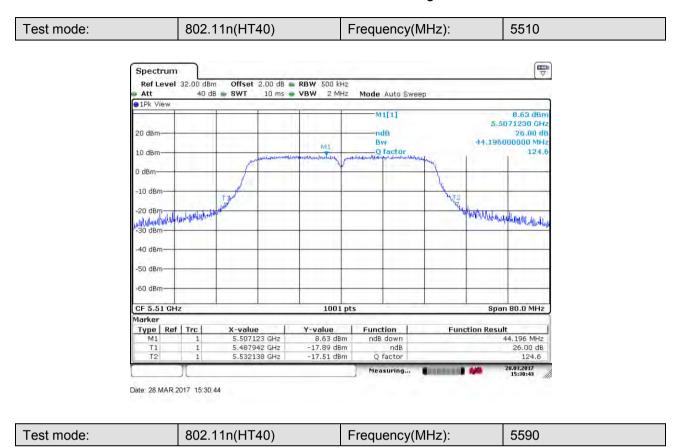



Date: 28 MAR 2017 15:22:12

| de: |                                | 802.1         | 1n(HT  | 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Frequenc  | y(MHz):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5230                         |
|-----|--------------------------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|     | Spectrum<br>Ref Level<br>Att   |               | Offset |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBW 500 kHz<br>VBW 2 MHz |           | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>m</b><br>⊽                |
|     | 1Pk View                       | _             | -      | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     |                                |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | M1[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.62 dBn<br>5.2170530 GH     |
| 3   | 20 dBm                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ode       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.00 di                     |
|     |                                |               |        | MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Bw        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.356000000 MH              |
| 1   | LO dBm                         |               |        | MIL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | helburtarenteranite      | Q factor  | the state of the s | 117.                         |
|     | 10                             |               | 1      | And and a state of the state of | A                        |           | monday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| 1   | ) dBm                          |               | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     | 10 dBm                         | _             | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|     |                                |               | TIM    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |           | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
|     | 20 dBm<br>Avylyr Avd<br>30 dBm | Lu al allan   | at the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           | 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | torola. Low provident radius |
| 0   | White we the former            | rtworth state |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a support of the support |
| 3   | 30 dBm                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     | 40 dBm                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     |                                |               |        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 9   | 50 dBm                         |               | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     |                                |               |        | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 1   | 60 dBm                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     | CF 5.23 GHz                    |               | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 p                   | ts        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 80.0 MHz                |
| 2   | larker                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|     | Type   Ref                     | Trc           | X-valu |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y-value                  | Function  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on Result                    |
| -   | M1                             | 1             |        | I53 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.62 dBm                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44,356 MHz                   |
| -   | T1<br>T2                       | 1             |        | 02 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -17.04 dBm<br>-17.11 dBm |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.00 dB<br>117.6            |
| -   |                                | T             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Measuring |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| L   |                                |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | measuring |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15:23:30                     |



Report No.: SZEM170300176004 Page: 46 of 256

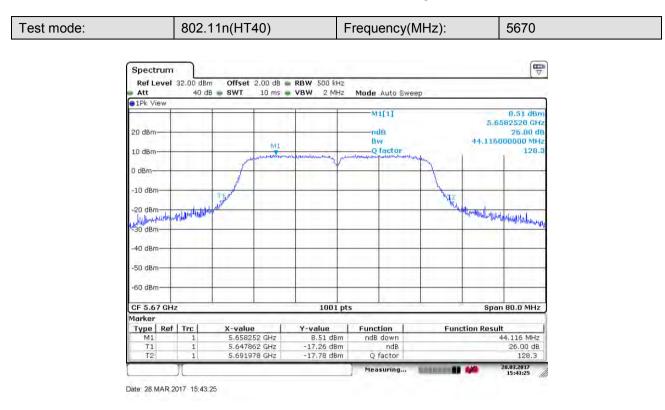



| Att                             | ever  | 32.00 dBr<br>40 d |                             | <ul> <li>RBW 500 kHz</li> <li>VBW 2 MHz</li> </ul> | Mode Auto Sw    | eep          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|-------|-------------------|-----------------------------|----------------------------------------------------|-----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🛛 1Pk Vi                        | ew    |                   |                             |                                                    | -               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 dBm                          |       |                   |                             |                                                    |                 |              | 8.97 dBn<br>5.3197500 GH<br>26.00 dl<br>44.356000000 MH<br>119,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 dBm                          |       |                   | an manufacture and          | minor manager the                                  | Q fartor        | malpine      | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 dBm-                          |       |                   |                             |                                                    | -               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -10 dBn                         |       |                   | 130                         |                                                    |                 | 12           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -20 dBn<br>Alla Alla<br>-30 dBn | N 1 1 | Alikalah          |                             |                                                    |                 |              | on an interlight of a state of the state of |
| -40 dBn                         | -     |                   |                             |                                                    |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -50 dBn                         |       |                   |                             | _                                                  |                 | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60 dBn                         | 1     | _                 |                             |                                                    |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CF 5.3                          | 1 GHz |                   | 1                           | 1001 pts                                           | 5               |              | Span 80.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Marker                          |       |                   |                             |                                                    |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Туре                            | Ref   | Trc               | X-value                     |                                                    |                 | ction Result |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M1<br>T1                        | -     | 1                 | 5.31975 GHz<br>5.287782 GHz | 8.97 dBm<br>-17.19 dBm                             | ndB down<br>ndB |              | 44.356 MHz<br>26.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T2                              | -     | 1                 | 5.332138 GHz                | -17.58 dBm                                         | 0 factor        |              | 119.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Date: 28 MAR 2017 15:26:56



Report No.: SZEM170300176004 Page: 47 of 256




| Ref Le        | vel    | 32.00 dE        | Sm Offset 2,00 c             | B 📾 RBW 500 k     | Hz       |                                |         |                |                   |
|---------------|--------|-----------------|------------------------------|-------------------|----------|--------------------------------|---------|----------------|-------------------|
| Att           | 22     | 40              | dB 💩 SWT 🛛 10 n              | ns 🕳 VBW 2 M      | IHz      | Mode Auto Swi                  | eep     |                |                   |
| 🛛 1Pk Vie     | ЭW     |                 |                              |                   |          |                                |         |                |                   |
|               |        |                 |                              |                   |          | M1[1]                          |         |                | 9.6B dBm          |
| 20 dBm-       |        |                 |                              |                   |          | -od0                           |         | 5.5            | 25.00 dB          |
| 20 dBm-       |        |                 |                              |                   |          | Bw                             |         | 44 4961        | 26.00 de          |
| 10 dBm-       |        |                 | M1.                          |                   |          | -O factor                      |         | 44.400         | 125.5             |
| TO OBU-       |        |                 | annew mereral                | uniterror and the | - and    | haranythan and the and and the | man     |                | 1 120.0           |
| 0 dBm-        |        |                 | (                            |                   | ¥.       |                                | 1       |                |                   |
| o upin        |        |                 |                              |                   |          |                                |         |                | 1.1               |
| -10 dBm       | _      |                 | 1                            |                   | <u> </u> |                                |         |                |                   |
| a contraction |        |                 | 13                           |                   |          |                                | had 22  | -              | 1                 |
| -20 dBm       |        | 12 motok        | in Mar                       |                   | -        |                                | - Color | tinte as a     |                   |
| -20 dBm       | W. mil | via ostanti ani |                              |                   |          |                                | _       | and the second | and wanted        |
| -30 dBm       |        |                 |                              |                   |          |                                | _       |                | and an adde       |
|               |        |                 |                              |                   |          |                                |         |                |                   |
| -40 dBm       | -      | _               |                              |                   |          |                                |         |                |                   |
|               |        |                 |                              | 1 11 11 111 1     |          |                                |         |                |                   |
| -50 dBm       |        |                 |                              |                   | -        |                                |         | -              | -                 |
|               |        |                 |                              |                   |          |                                |         |                |                   |
| -60 dBm       |        |                 | -                            |                   | -        |                                | -       |                | -                 |
|               |        |                 |                              |                   |          | -                              |         |                |                   |
| CF 5.59       | ) GHz  |                 | 4                            | 100               | 1 pts    | -                              |         | Spa            | n 80.0 MHz        |
| Marker        |        |                 |                              |                   |          |                                |         |                |                   |
| Type          | Ref    |                 | X-value                      | Y-value           |          | Function                       | Fun     | ction Resu     |                   |
| M1            |        | 1               | 5.575055 GHz                 |                   |          | ndB down                       |         |                | 44.436 MHz        |
| T1<br>T2      | -      | 1               | 5.567702 GHz<br>5.612138 GHz |                   |          | ndB<br>Q factor                |         | _              | 26.00 dB<br>125.5 |
|               |        |                 |                              |                   |          |                                |         |                |                   |

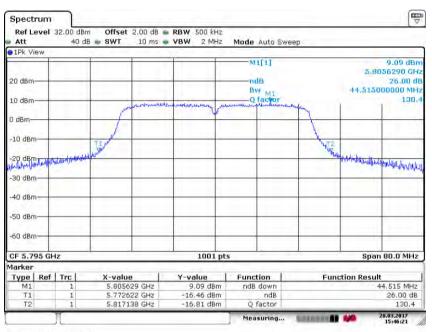
Date: 28 MAR 2017 15:41:20



Report No.: SZEM170300176004 Page: 48 of 256



| Test mode: | 802.11n(HT40) | Frequency(MHz): | 5755 |
|------------|---------------|-----------------|------|
|------------|---------------|-----------------|------|


| Att     |         | 40 d       | B 💩 SWT 🛛 10 n | ns 🕳 VBW 2 MH          | z Mode Auto Sv | veep    |                                     |
|---------|---------|------------|----------------|------------------------|----------------|---------|-------------------------------------|
| 91Pk Vi | ew      |            |                | A THE STATE OF         |                |         |                                     |
| 20 dBm  |         |            |                |                        |                |         | 8.90 dBr<br>5.7678670 CH<br>26.00 d |
|         |         |            |                |                        | Bwy M          | 1       | 44.35600000 MH                      |
| 10 dBm  |         |            | - unterinio    | mumming the mulder and | Q factory      | which . | 130.4                               |
| 0 dBm-  | +       | -          |                | Y                      |                | 1       |                                     |
| -10 dBn | -       | _          | Ind I          |                        |                | MATO.   |                                     |
|         |         | 1.1.1      |                |                        |                | WIL.    |                                     |
| -20 dBn | ndd fal | whichdraim |                |                        |                |         | man had monor and an and an a har   |
| -30 dBn |         |            |                |                        |                | -       |                                     |
| -40 dBn | -       |            |                |                        |                |         |                                     |
| -50 dBn | +       |            |                |                        |                | -       |                                     |
| -60 dBn |         |            |                |                        |                | _       |                                     |
| CF 5.7  | 55 GH   | 7          |                | 1001                   | nts            | _       | Span 80.0 MHz                       |
| Marker  |         |            |                |                        |                |         | -P Serve                            |
| Type    | Ref     | Trc        | X-value        | Y-value                | Function       | Fun     | ction Result                        |
| M1      |         | 1          | 5.767867 GH    | 8.90 dBn               |                |         | 44.356 MHz                          |
| T1      |         | 1          | 5.732622 GH    | -17.56 dBn             | n ndB          |         | 26.00 dB                            |
| T2      |         | 1          | 5.776978 GH    | -17.02 dBn             | n Q factor     |         | 130.0                               |

Date: 28.MAR.2017 15:44:31



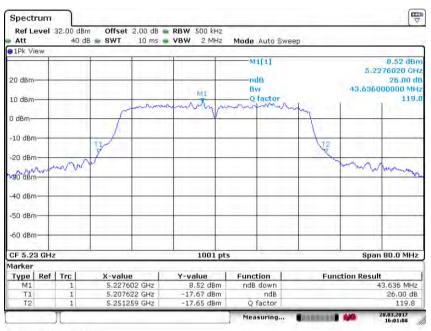
Report No.: SZEM170300176004 Page: 49 of 256





Date: 28.MAR.2017 15:46:21

| Test mode: | 802.11ac(HT40) | Frequency(MHz): | 5190 |
|------------|----------------|-----------------|------|
|            |                |                 |      |


| Ref Level<br>Att |        | 3m Offset 2.00 dB<br>dB <b>- SWT</b> 10 ms |            | Mode Auto Swe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ep   |                                                              |
|------------------|--------|--------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------|
| 1Pk View         |        |                                            | 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                              |
| 20 dBm           |        |                                            | M1         | M1[1]<br>—ndB<br>Bw<br>Q factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 8,51 dB<br>5,1876020 CF<br>26,00 d<br>43,636000000 MF<br>118 |
| 0 dBm            |        |                                            | munich     | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m    |                                                              |
| -10 dBm          | _      | TI                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12   |                                                              |
| -20 dBm-         | morph  | N I                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X    | mymm                                                         |
| -40 dBm          |        |                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                              |
| -50 dBm          | -      |                                            |            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    |                                                              |
| -60 d8m          |        |                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    |                                                              |
| CF 5.19 GH       | Iz     | 1 1                                        | 1001 pt    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Span 80.0 MH:                                                |
| larker           | i star | and surgers and the                        |            | and the second s |      |                                                              |
| Type   Re        |        | X-value                                    | Y-value    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fund | ction Result                                                 |
| M1               | 1      | 5.187602 GHz                               | 8.51 dBm   | ndB down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 43,636 MHz                                                   |
| T1<br>T2         | 1      | 5.167622 GHz                               | -17.32 dBm | ndB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 26.00 de<br>118.9                                            |
| 12               | 1      | 5.211259 GHz                               | -17.50 dBm | Q factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 28.03.2017                                                   |

Date: 28.MAR.2017 16:02:26



Report No.: SZEM170300176004 Page: 50 of 256

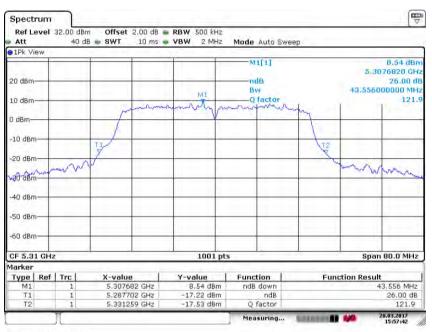




Date: 28 MAR 2017 16:01:09

| Test mode: | 802.11ac(HT40)                                                        | Frequency(MHz): | 5270     |  |
|------------|-----------------------------------------------------------------------|-----------------|----------|--|
| Sp         | ectrum                                                                |                 |          |  |
| R          | ef Level 32.00 dBm Offset 2.00 dB - RBW<br>tt 40 dB - SWT 10 ms - VBV |                 |          |  |
| 😑 1 F      | k View                                                                |                 |          |  |
|            |                                                                       | M1[1]           | 8.48 dBm |  |

| - T - T    | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | M1[1]    |     | 8.48 dBn<br>5.2676020 CH |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----|--------------------------|
| 20 dBm-    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          | ode      |     | 26.00 dt                 |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1         | Bw       |     | 43.636000000 MH;         |
| 10 dBm-    |     | ومحر النيجير                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mont in an | Q factor | 1   | 120.5                    |
| 0 dBm      |     | 1 Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          | my  |                          |
| 0 upm      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
| -10 dBm-   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
|            |     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          | 12  |                          |
| -20 dBm-   |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          |          | X   |                          |
|            | mon | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          | -   | mound                    |
| vad dBm    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          |          | -   |                          |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1      |          | 1 I |                          |
| -40 dBm-   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
| -50 dBm    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
| -30 060    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
| -60 dBm-   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
| Se and     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |     |                          |
| CF 5.27 GH | z   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1001 pts   | 5        |     | Span 80.0 MHz            |
| Marker     |     | and the second se |            |          |     |                          |
| Type   Ref | Trc | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y-value    | Function | Fun | ction Result             |
| M1         | 1   | 5.267602 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.48 dBm   | ndB down |     | 43,636 MHz               |
| T1         | 1   | 5.247622 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -17.56 dBm | ndB      |     | 26.00 dB                 |
| T2         | 1   | 5.291259 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -17.57 dBm | Q factor |     | 120.7                    |


Date: 28.MAR.2017 15:59:14



Report No.: SZEM170300176004 Page: 51 of 256

> 43,716 MHz 26.00 dB 126.0 28.03.2017

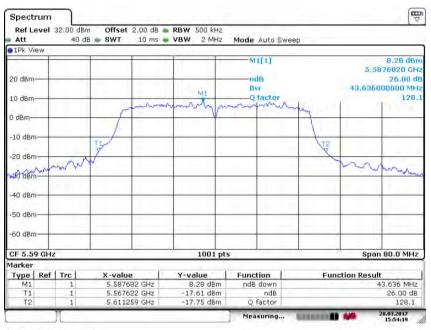




Date: 28.MAR.2017 15:57:42

| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level         32.00 dBm         Offset         2.00 dB         RBW         500 kHz           Matt         40 dB         SWT         10 ms         VBW         2 MHz         Mode         Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • 1Pk View               M1[1]             • 8.40 dB             5.5076820 GF             5.5076820 GF             5.5076820 GF             10 dBm            20 dBm               mdB             26.00 r             126            10 dBm               M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 dBm<br>-10 dBm<br>-20 d |

60 dBm 1001 pts Span 80.0 MHz CF 5,51 GHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 1 5.507682 GHz 5.487622 GHz 5.531339 GHz 8,40 dBm -17.81 dBm -17.81 dBm ndB down ndB Q factor Measuring... 


Date: 28.MAR.2017 15:55:55

50 dBr



Report No.: SZEM170300176004 Page: 52 of 256





Date: 28.MAR.2017 15:54:20

| Test mode: |            | 802.11ac(HT40)                                | F  | requency(MHz    | 5670      |                                    |
|------------|------------|-----------------------------------------------|----|-----------------|-----------|------------------------------------|
|            | 🕳 Att      | 32.00 dBm Offset 2.00 dB 40 dB 50 sWT 10 ms 5 |    | Mode Auto Sweep |           | ₹                                  |
|            | 9 1Pk View |                                               |    | M1[1]<br>       | 5         | 8.32 dBn<br>6676820 CH<br>26.00 dB |
|            | 10 dBm     | Manager                                       | MI | Bw<br>Q factor  | 43.71     | 6000000 MHz<br>129.6               |
|            | 0 dBm      |                                               |    | 1               |           |                                    |
|            | -20 dBm    | m                                             |    |                 | 120 March | whomas                             |
|            | -40 dBm    |                                               |    |                 |           |                                    |

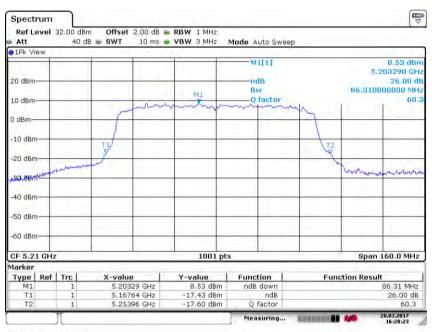
|         |       |              |                                  |            |                 | The second second | 28.03.2017 |  |  |  |
|---------|-------|--------------|----------------------------------|------------|-----------------|-------------------|------------|--|--|--|
| T2      | 1     | 5.691259 GHz | -17.72 dBm                       | Q factor   |                 | 129.6             |            |  |  |  |
| T1      |       | 1            | 5.647542 GHz                     | -17.83 dBm | ndB             |                   | 26.00 di   |  |  |  |
| M1      |       | 1            | 5.667682 GHz                     | 8.32 dBm   | ndB down        |                   | 43,716 MH  |  |  |  |
| Type    | Ref   | Trc          | X-value                          | Y-value    | Function        | Function Result   |            |  |  |  |
| Marker  | 1.5   |              | and service to service a service |            |                 |                   |            |  |  |  |
| CF 5.6  | 7 GHz |              | 4                                | 1001 pts   | ts Span 80.0 MH |                   |            |  |  |  |
| -60 dBn | n     |              |                                  |            |                 |                   |            |  |  |  |
| -50 dBn |       |              |                                  |            |                 |                   |            |  |  |  |
|         |       |              |                                  |            |                 |                   |            |  |  |  |

Date: 28 MAR 2017 15:51:32



Report No.: SZEM170300176004 Page: 53 of 256




| 1Pk Vi           | ew    |    | 1                            |              | The second second        |                               |           |                 |     |                                                          |
|------------------|-------|----|------------------------------|--------------|--------------------------|-------------------------------|-----------|-----------------|-----|----------------------------------------------------------|
| 20 dBm<br>10 dBm |       |    |                              | - marile mar | MI                       | M1[1]<br>ndB<br>Bw<br>Q facto | or<br>Mar | +~~             |     | 8.24 dBn<br>7926020 GH<br>26.00 df<br>000000 MH<br>132.0 |
| 0 dBm-           | -     |    |                              |              |                          |                               |           | 1               |     |                                                          |
| -10 dBm          | -     |    | TI                           |              |                          |                               | _         | 12              |     |                                                          |
| -20 dBm          |       |    | . 7                          |              |                          |                               |           | Y               |     | 1.1                                                      |
| 30 dBm           | when  | wh |                              |              |                          |                               |           | -               | mon | month                                                    |
| -40 dBm          | +     | -  |                              |              |                          |                               |           |                 | -   |                                                          |
| -50 dBm          | +     |    | -                            |              |                          |                               | _         |                 |     | -                                                        |
| -60 dBm          | +     |    |                              |              |                          |                               |           |                 |     |                                                          |
| CF 5.7           | 95 GH | z  | 1                            |              | 1001 pt                  | 5                             |           |                 | Spa | m 80.0 MHz                                               |
| Marker           | 1     |    |                              | _            |                          | and the second second         |           | _               |     |                                                          |
| Type             | Ref   |    | X-value                      |              | Y-value                  | Function                      |           | Function Result |     |                                                          |
| M1               | _     | 1  | 5.792602 GHz                 |              | 8.24 dBm                 | ndB down                      |           |                 |     | 43,876 MHz                                               |
| T1<br>T2         |       | 1  | 5.772463 GHz<br>5.816339 GHz |              | -17.75 dBm<br>-17.72 dBm | Q facto                       |           |                 |     | 26.00 dB<br>132.0                                        |
| -                | -     | Tr |                              |              |                          | Measurin                      |           | Concession in   |     | 28.03.2017<br>15:48:13                                   |

Date: 28 MAR 2017 15:48:13



Report No.: SZEM170300176004 Page: 54 of 256



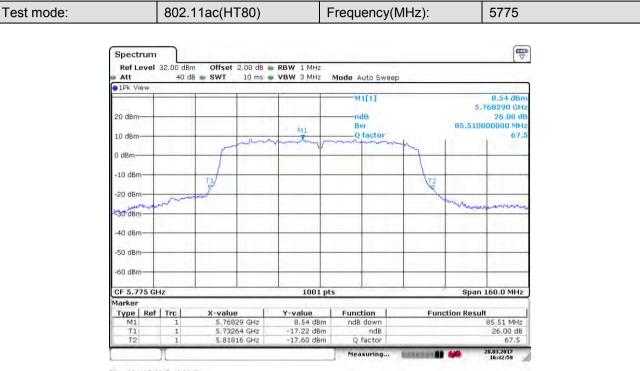


Date: 28 MAR 2017 16:20:24

| ode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 802.1           | 1ac(H         | Г80)             | F                                 | requency(                      | (MHz):     | 5290                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|---------------|------------------|-----------------------------------|--------------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| Re<br>At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dectrum<br>Ref Level 3<br>Att<br>Pk View |                 | Offset<br>SWT |                  | RBW 1 MHz<br>VBW 3 MHz            | Mode Auto Swee                 | ep         |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dBm                                      |                 |               | m                | MI                                | MI[1]<br>ndB<br>Bw<br>Q factor | 85.        | 8.57 dBn<br>5.283290 GH<br>26.00 dl<br>670000000 MH<br>61.                                                       |
| -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm                                      |                 | Ty I          |                  |                                   |                                | T2         |                                                                                                                  |
| 5 <b>7</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) dBm                                    | N-North Marriel | www.          |                  |                                   |                                |            | and the second |
| -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) dBm                                    |                 |               |                  |                                   |                                |            |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.29 GHz                                 |                 |               |                  | 1001 pt                           | 5                              | S          | pan 160.0 MHz                                                                                                    |
| and the second se | rker<br>ype Ref<br>M1<br>T1              | 1               | 5.247         | 29 GHz<br>54 GHz | Y-value<br>8.57 dBm<br>-17.45 dBm | Function<br>ndB down<br>ndB    | Function R | 85.67 MHz<br>26.00 dB                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T2                                       | 1               | 5.333         | 32 GHz           | -17.49 dBm                        | Q factor                       |            | 61.7                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 17 16:23:2      |               |                  |                                   | Measuring                      | (annon) 🚧  | 28.03.2017<br>16:23:28                                                                                           |



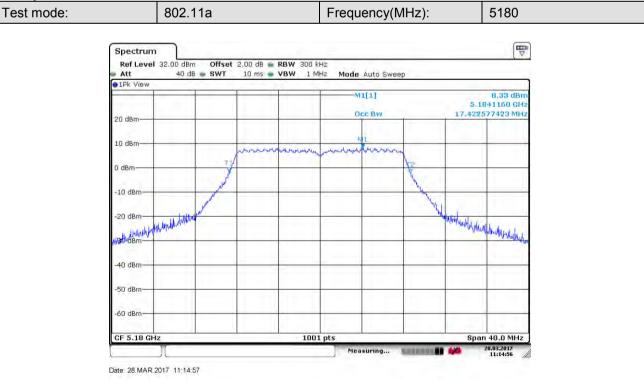
Report No.: SZEM170300176004 Page: 55 of 256




|            |          |                        |    |                   | M1[1]    |     |                                          | 5               | 8.35 dBn<br>603290 CH |
|------------|----------|------------------------|----|-------------------|----------|-----|------------------------------------------|-----------------|-----------------------|
| 20 dBm-    |          |                        | _  |                   | Bbn      |     |                                          |                 | 26.00 di              |
|            |          |                        |    | 1.1.1             | Bw       |     |                                          | 85.830          | 000000 MH             |
| 10 dBm     |          | - 0                    | m  | MI                | Q facto  | T   | e Le                                     |                 | 65.                   |
| 0 dBm-     |          | - T                    | _  | Y                 |          | -0  | N                                        |                 |                       |
|            |          |                        |    |                   |          |     | 1                                        |                 |                       |
| -10 dBm-   |          | 11/                    | -  |                   |          |     | 12                                       |                 |                       |
| -20 dBm-   |          | 7                      |    | 1 1 1 1 1 1       |          |     | Y                                        |                 |                       |
|            | monteres | which                  |    |                   |          |     | 1                                        | han             | 1745                  |
| RQ. dBm    | w        |                        | _  |                   |          |     |                                          | Thesense        | nonnon                |
| A          |          |                        |    | the second states |          |     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                 | 1.1.1.1               |
| -40 dBm    |          |                        |    |                   |          |     |                                          |                 |                       |
| -50 dBm    | -        |                        |    | _                 |          |     | _                                        | _               |                       |
|            |          |                        |    |                   |          |     | -                                        |                 |                       |
| -60 dBm    |          |                        |    |                   | -        |     |                                          |                 | -                     |
| CF 5.61 GH | 7        | 1                      |    | 1001 pt           |          | _   |                                          | Snan            | 160.0 MHz             |
| larker     |          |                        | -  |                   | -        |     |                                          | apan            |                       |
| Type   Ref | Trc      | X-value<br>5.60329 GHz |    | Y-value           | Function | 1   | Fun                                      | tion Resu       | t                     |
| M1         | 1        |                        |    | 8.35 dBm          | ndB down | n   |                                          | 100 A 100 A 100 | 85.83 MHz             |
| T1         | 1        | 5.56764 GH             | z  | -17.51 dBm        | ndi      |     |                                          |                 | 26.00 dB              |
| T2         | 1        | 5.65348 GH             | Iz | -17.89 dBm        | Q facto  | r 🗌 |                                          |                 | 65.3                  |

Date: 28 MAR 2017 16:31:11

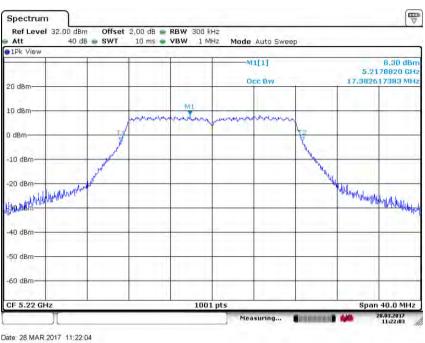



Report No.: SZEM170300176004 Page: 56 of 256

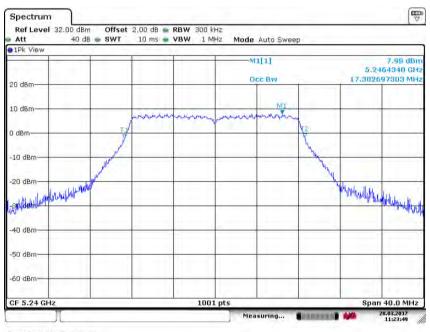


Date: 28 MAR 2017 16:32:59

#### 99% occupied bandwidth


#### Test plot as follows:



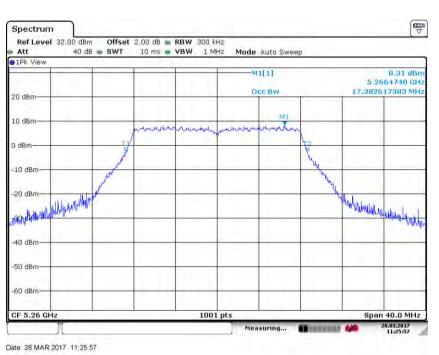



Report No.: SZEM170300176004 Page: 57 of 256

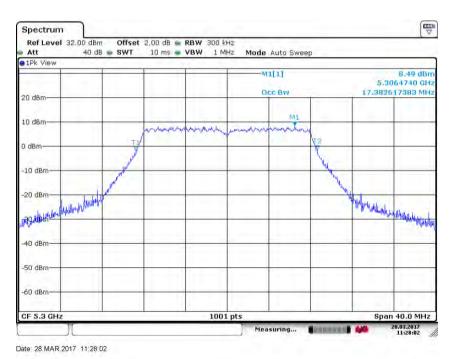








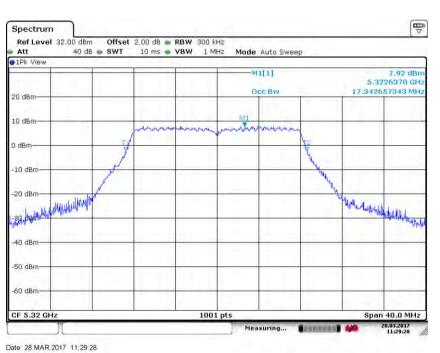

Date: 28 MAR 2017 11:23:50



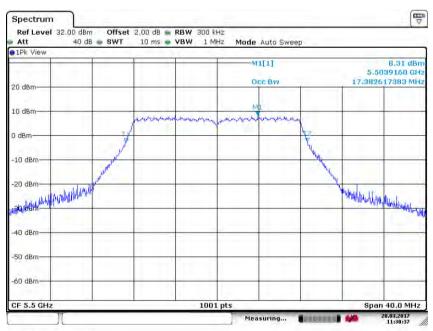

Report No.: SZEM170300176004 Page: 58 of 256









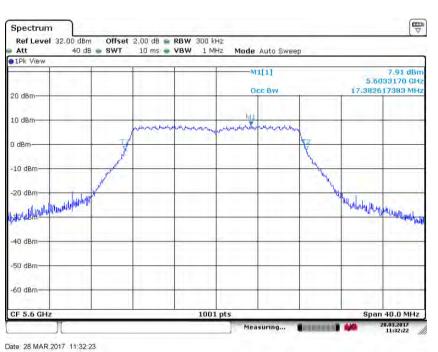




Report No.: SZEM170300176004 Page: 59 of 256

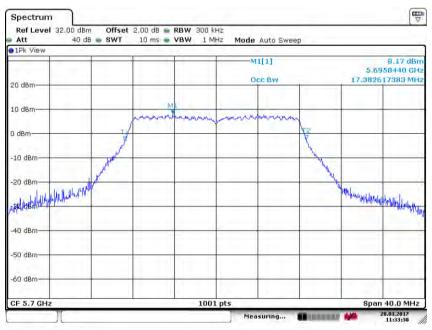








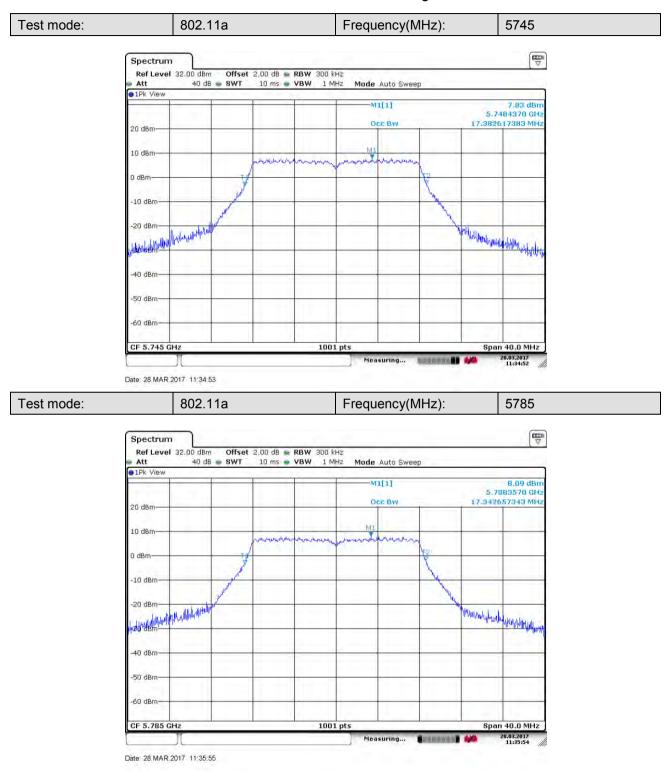

Date: 28 MAR 2017 11:30:37




Report No.: SZEM170300176004 Page: 60 of 256

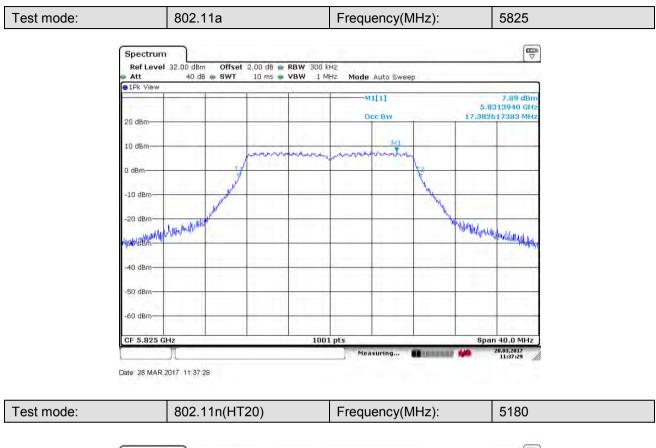









Date: 28 MAR 2017 11:33:31



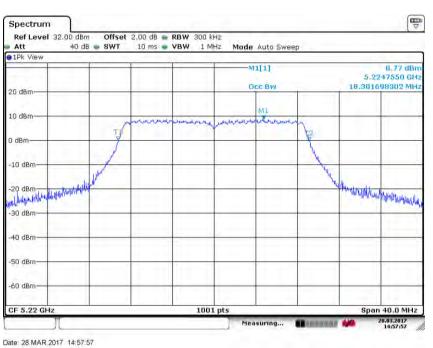

Report No.: SZEM170300176004 Page: 61 of 256





Report No.: SZEM170300176004 Page: 62 of 256






Date: 28.MAR.2017 14:59:41

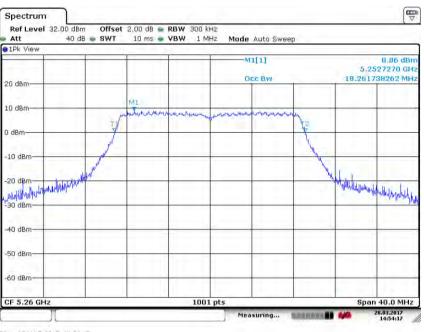



Report No.: SZEM170300176004 Page: 63 of 256










Date: 28 MAR 2017 14:56:18



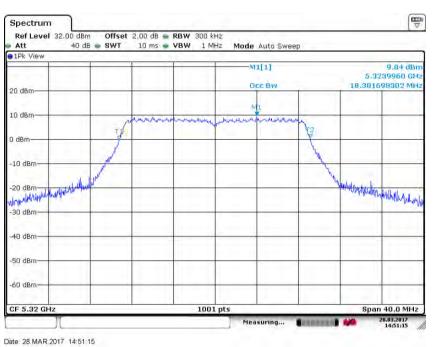
Report No.: SZEM170300176004 Page: 64 of 256

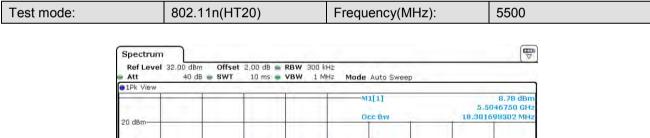


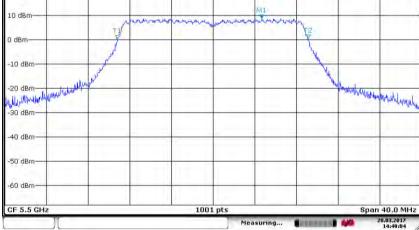


Date: 28.MAR.2017 14:54:17







Date: 28.MAR 2017 14:53:09




Report No.: SZEM170300176004 Page: 65 of 256









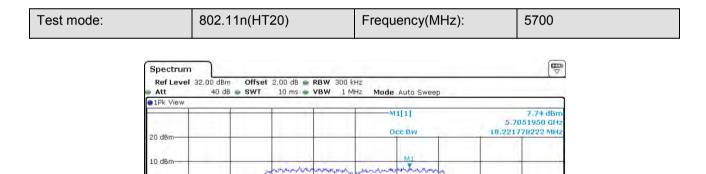
Date: 28.MAR.2017 14:49:04



Report No.: SZEM170300176004 66 of 256 Page:


William unally gul mundal

Span 40.0 MHz


100

28.03.2017 11:43:24



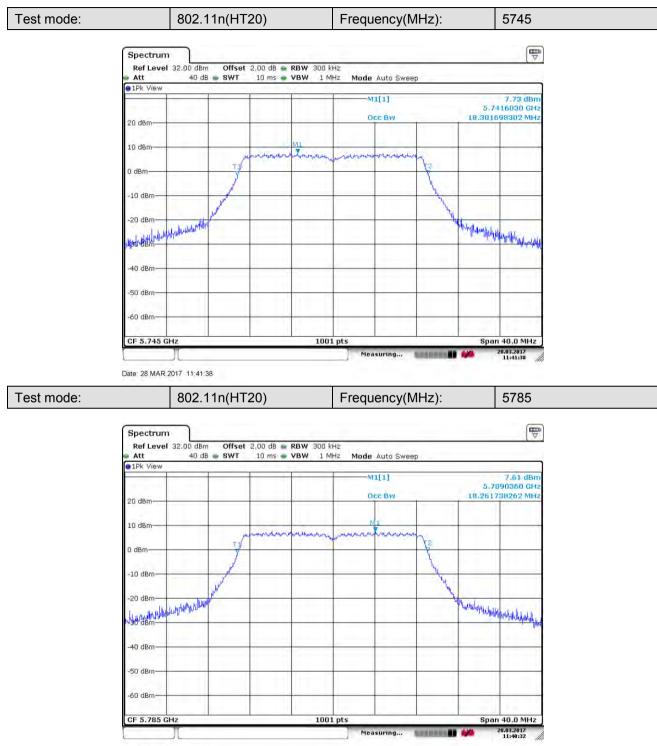


Date: 28.MAR.2017 14:46:46



S. M. M. March




mander

Date: 28 MAR 2017 11:43:24

0 dBm -10 dBm -20 dBm

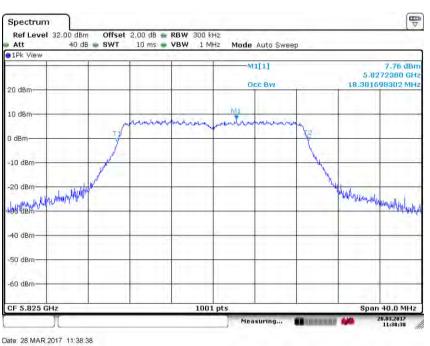


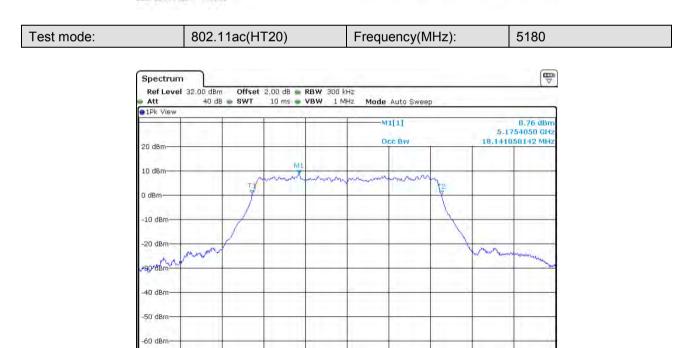
Report No.: SZEM170300176004 Page: 67 of 256



Date: 28.MAR.2017 11:40:33




Report No.: SZEM170300176004 Page: 68 of 256


Span 40.0 MHz

....

28.03.2017 15:00:47

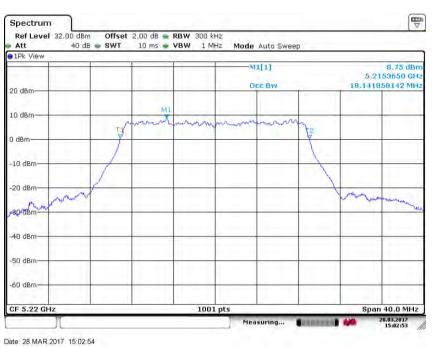


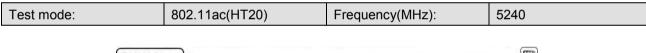




1001 pts

Measuring...


Date: 28.MAR.2017 15:00:48


CF 5.18 GHz

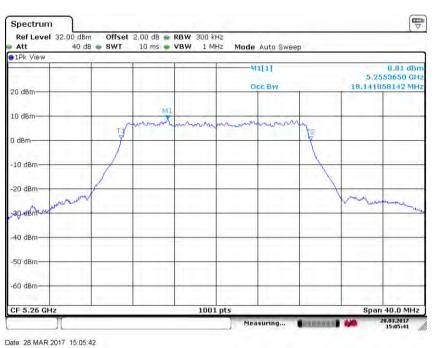


Report No.: SZEM170300176004 Page: 69 of 256

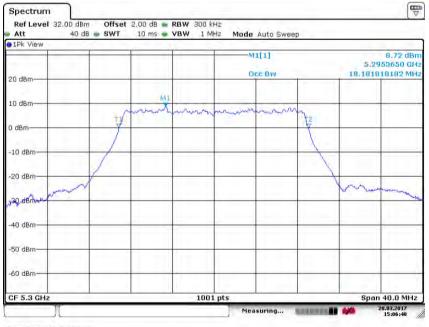









Date: 28.MAR 2017 15:03:57

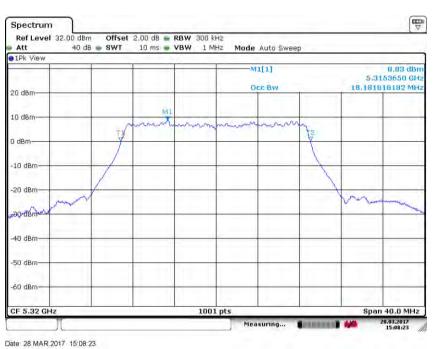



Report No.: SZEM170300176004 Page: 70 of 256



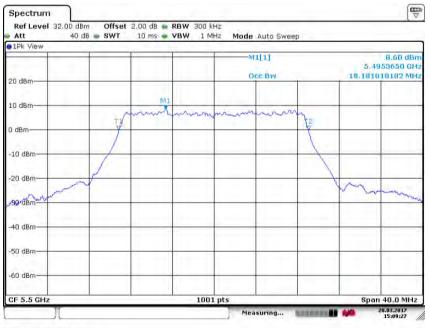








Date: 28.MAR 2017 15:06:41

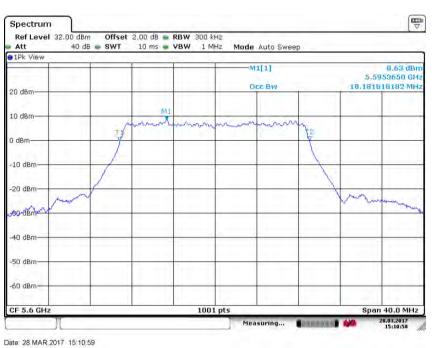


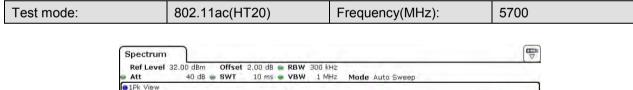

Report No.: SZEM170300176004 Page: 71 of 256











Date: 28 MAR 2017 15:09:27



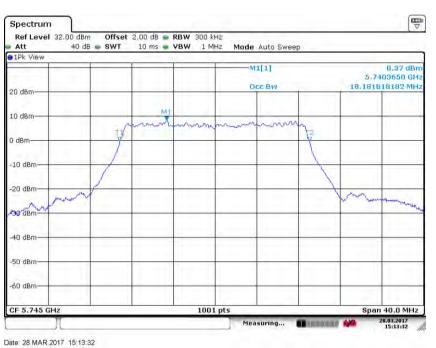
Report No.: SZEM170300176004 Page: 72 of 256










Date: 28 MAR 2017 15:11:58

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-ob-cument.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-ob-cument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

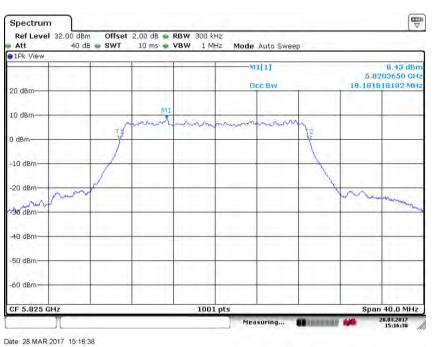


Report No.: SZEM170300176004 Page: 73 of 256

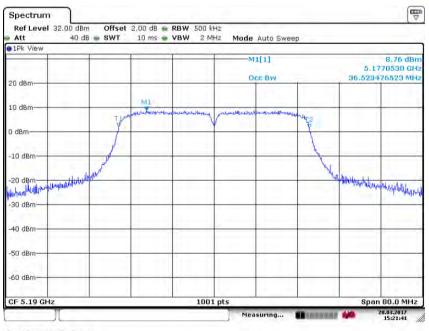









Date: 28 MAR 2017 15:14:30




Report No.: SZEM170300176004 Page: 74 of 256









Date: 28.MAR.2017 15:21:42



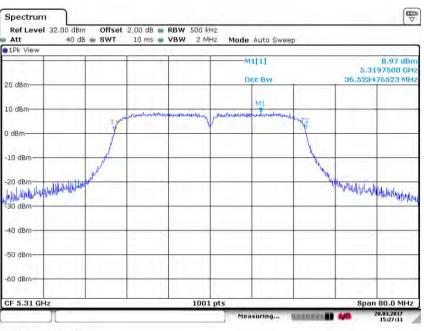
Report No.: SZEM170300176004 Page: 75 of 256





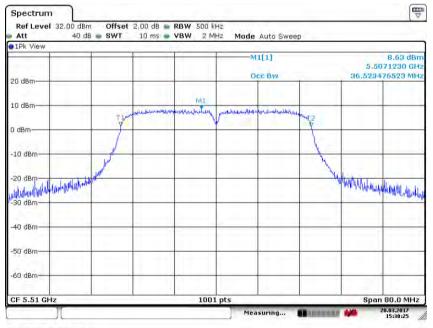
Date: 28 MAR 2017 15:23:46






Date: 28.MAR 2017 15:24:57



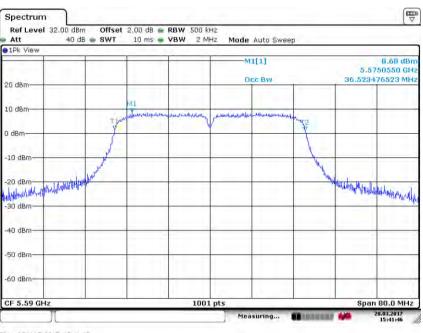

Report No.: SZEM170300176004 Page: 76 of 256



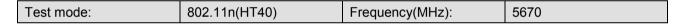


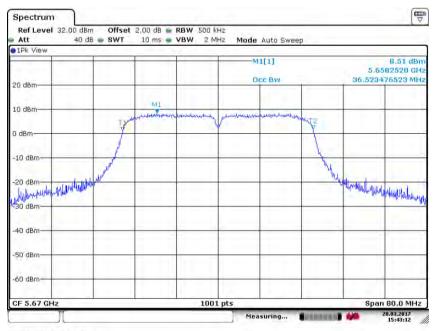
Date: 28.MAR.2017 15:27:12






Date: 28 MAR 2017 15:30:25



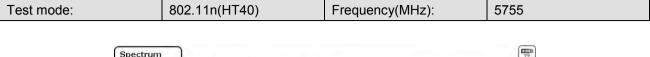


Report No.: SZEM170300176004 Page: 77 of 256

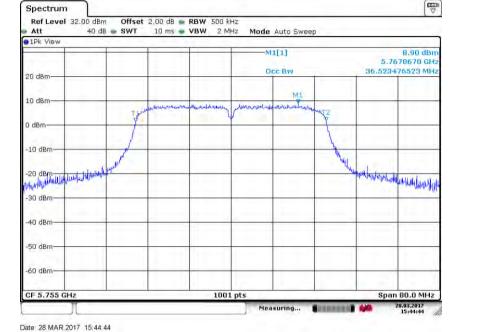




Date: 28.MAR.2017 15:41:47







Date: 28 MAR 2017 15:43:12



Report No.: SZEM170300176004 Page: 78 of 256


5795





Frequency(MHz):

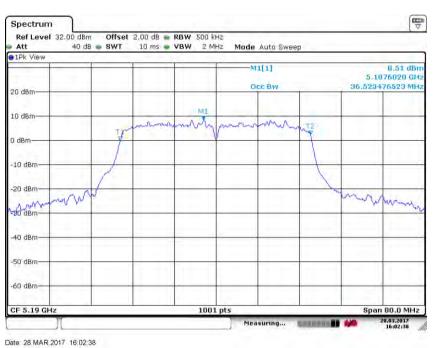


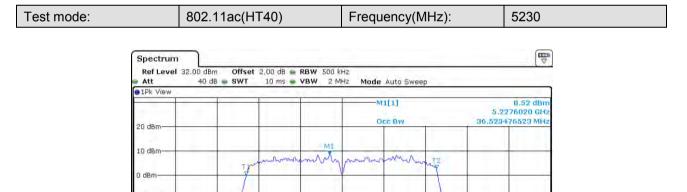


Date: 28.MAR.2017 15:46:02

802.11n(HT40)




Report No.: SZEM170300176004 Page: 79 of 256


N

Span 80.0 MHz

28.03.2017 16:00:47







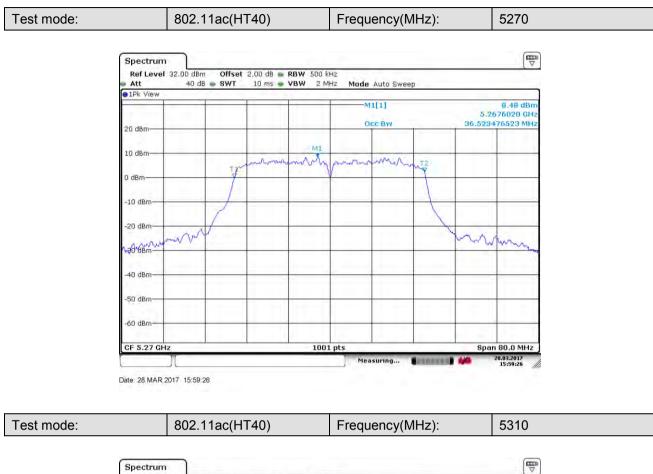
Date: 28 MAR 2017 16:00:47

CF 5.23 GHz

mon man

10 dBm

-40 dBm--50 dBm--60 dBm-

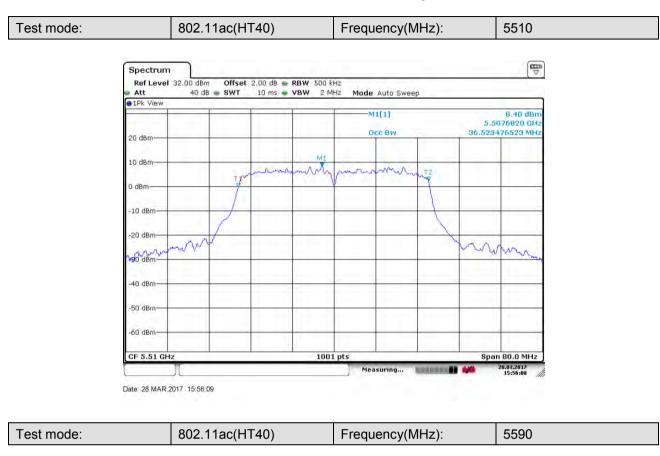

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-an

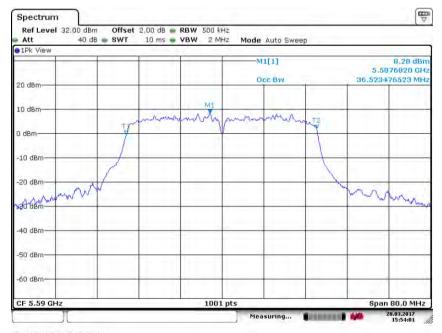
1001 pts

Measuring...



Report No.: SZEM170300176004 Page: 80 of 256

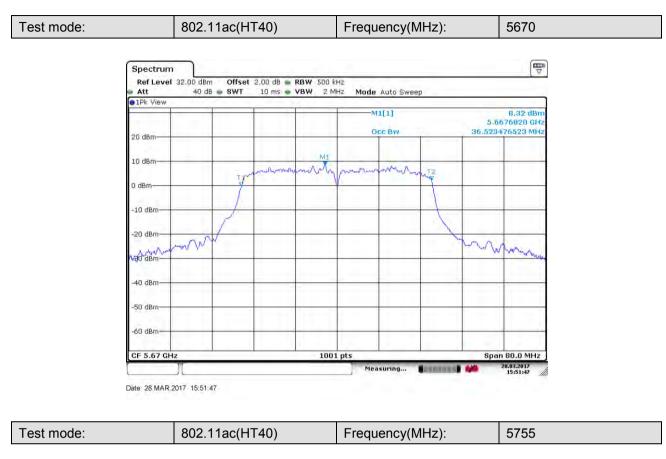


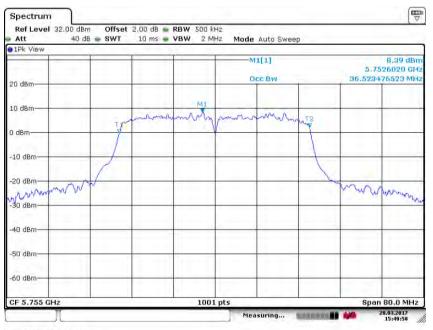




Date: 28.MAR 2017 15:57:29



Report No.: SZEM170300176004 Page: 81 of 256

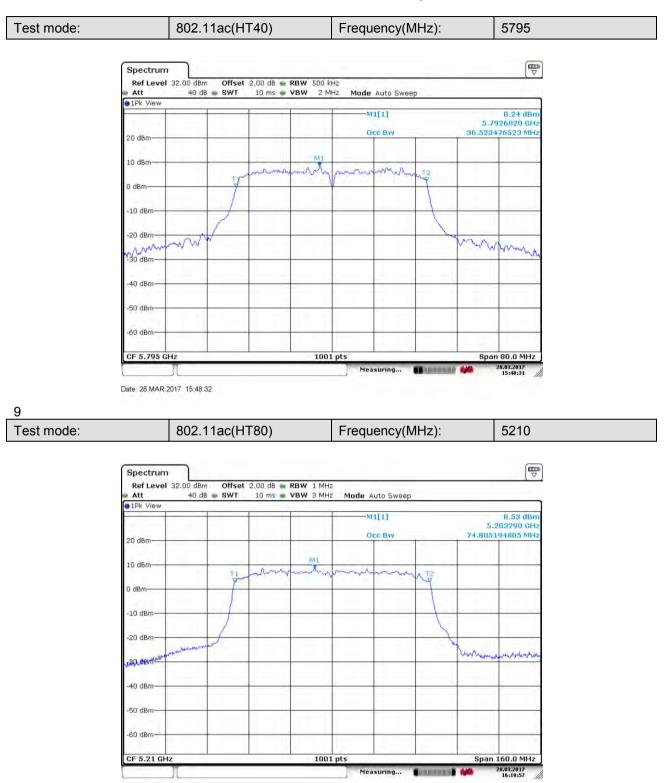



Date: 28.MAR.2017 15:54:01



Report No.: SZEM170300176004 Page: 82 of 256





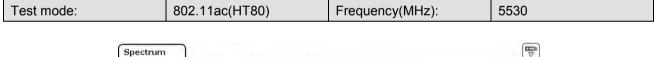

Date: 28.MAR.2017 15:49:58



Report No.: SZEM170300176004 Page: 83 of 256



Date: 28 MAR 2017 16:19:58




Report No.: SZEM170300176004 Page: 84 of 256

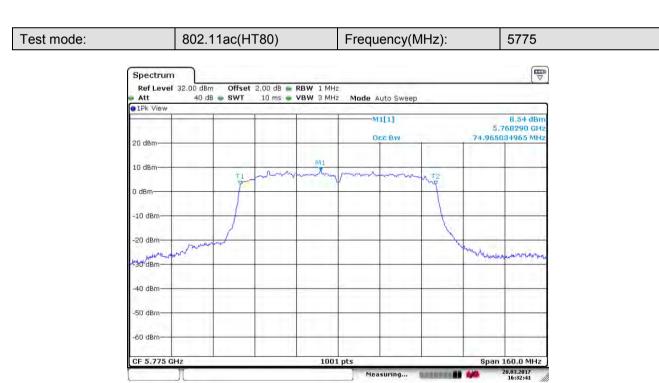




Date: 28.MAR.2017 16:23:47







Date: 28.MAR 2017 16:29:39



Report No.: SZEM170300176004 Page: 85 of 256







Date: 28 MAR 2017 16:32:41



Report No.: SZEM170300176004 Page: 86 of 256

#### 6.5 6dB Occupy Bandwidth

| Test Requirement:      | 47 CFR Part 15 Sect                                                                           | ion 15.407(e)                                                                                                                                                                                                                                                         |
|------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10: 2013                                                                             |                                                                                                                                                                                                                                                                       |
| Test Setup:            |                                                                                               | E.U.T                                                                                                                                                                                                                                                                 |
|                        |                                                                                               | ound Reference Plane                                                                                                                                                                                                                                                  |
| Test Instruments:      | Refer to section 5.10                                                                         | for details                                                                                                                                                                                                                                                           |
| Exploratory Test Mode: | Transmitting with all k                                                                       | kind of modulations, data rates                                                                                                                                                                                                                                       |
| Final Test Mode:       | MCS0 of rate is the v<br>case of 802.11n(HT4<br>MCS0 of rate is the w<br>case of 802.11ac(HT8 | ad the 6Mbps of rate is the worst case of 802.11a;<br>worst case of 802.11n(HT20); MCS0 of rate is the worst<br>0); MCS0 of rate is the worst case of 802.11ac(HT20);<br>worst case of 802.11ac(HT40); MCS0 of rate is the worst<br>80)<br>is recorded in the report. |
| Limit:                 | Frequency Band                                                                                | Limit                                                                                                                                                                                                                                                                 |
|                        | 5725-5850MHz                                                                                  | At lease 500kHz                                                                                                                                                                                                                                                       |
| Test Results:          | Pass                                                                                          |                                                                                                                                                                                                                                                                       |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

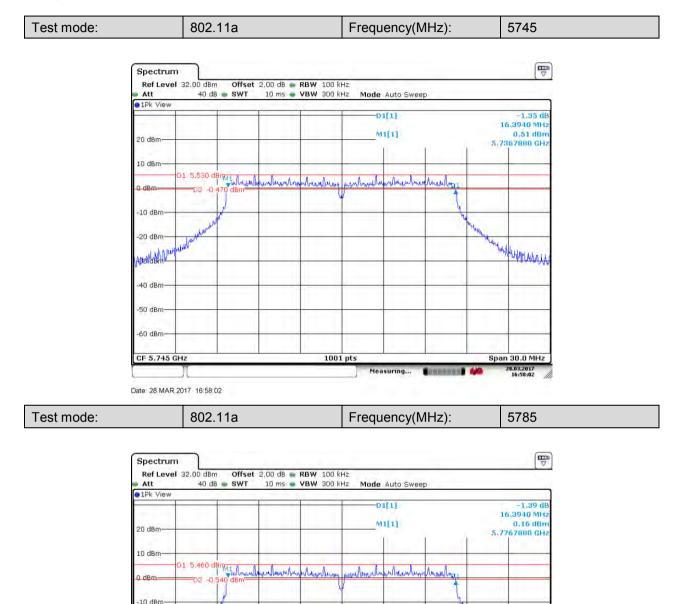


Report No.: SZEM170300176004 Page: 87 of 256

#### Measurement Data:

|                 | 802.11a mode               |             |        |
|-----------------|----------------------------|-------------|--------|
| Frequency (MHz) | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |
| 5745            | 16.39                      | ≥500        | Pass   |
| 5785            | 16.39                      | ≥500        | Pass   |
| 5825            | 16.39                      | ≥500        | Pass   |
|                 | 802.11n(HT20) mode         |             |        |
| Frequency (MHz) | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |
| 5745            | 17.62                      | ≥500        | Pass   |
| 5785            | 17.62                      | ≥500        | Pass   |
| 5825            | 17.62                      | ≥500        | Pass   |
|                 | 802.11ac(HT20) mode        |             |        |
| Frequency (MHz) | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |
| 5745            | 17.62                      | ≥500        | Pass   |
| 5785            | 17.62                      | ≥500        | Pass   |
| 5825            | 17.62                      | ≥500        | Pass   |
|                 | 802.11 n(HT40) mode        |             |        |
| Frequency (MHz) | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |
| 5755            | 35.84                      | ≥500        | Pass   |
| 5795            | 35.61                      | ≥500        | Pass   |
|                 | 802.11 ac(HT40) mode       |             |        |
| Frequency (MHz) | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |
| 5755            | 35.43                      | ≥500        | Pass   |
| 5795            | 35.25                      | ≥500        | Pass   |
|                 | 802.11ac(HT80) mode        | 1           |        |
| Frequency (MHz) | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |
| 5775            | 75.16                      | ≥500        | Pass   |




Report No.: SZEM170300176004 Page: 88 of 256

MANA ANA

Span 30.0 MHz

28.03.2017

#### Test plot as follows:



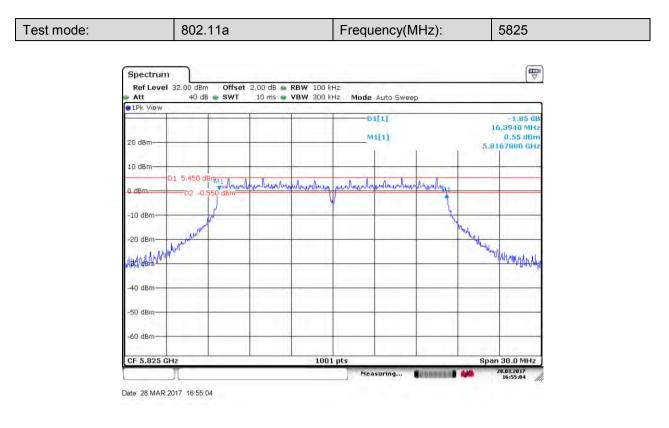
Date: 28 MAR 2017 16:53:23

-20 dBm

NAD HAND

-40 dBm -50 dBm -60 dBm CF 5.785 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.apx">http://www.sgs.com/en/Terms-and-Conditions.apx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-

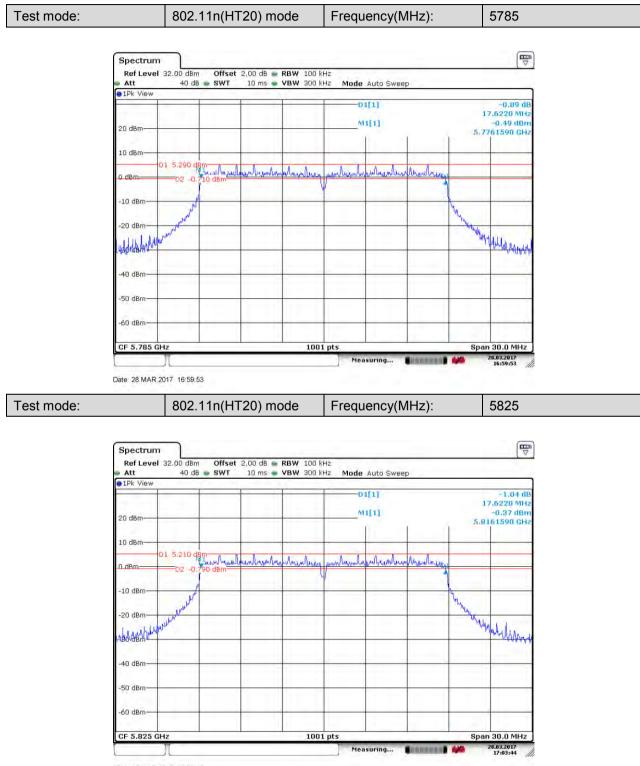

1001 pts

Measuring...

Stangard .



Report No.: SZEM170300176004 Page: 89 of 256




| Test mode: | 802.11n(HT20) mode | Frequency(MHz): | 5745 |
|------------|--------------------|-----------------|------|
|            |                    |                 |      |

| 1Pk View     |            | - · · · · · · |              |         |          | Auto Swei    |                     |          |                                                  |
|--------------|------------|---------------|--------------|---------|----------|--------------|---------------------|----------|--------------------------------------------------|
| 20 dBm       |            |               |              |         |          | 1[1]<br>1[1] |                     |          | -0,89 d8<br>7.6220 MH:<br>0.00 dBm<br>861590 GH: |
| 10 dBm       |            | -             |              |         | -        |              |                     |          | -                                                |
| 0 dBm        | D1 5,540 d | ACO dBm       | minternation | Munhung | produced | walnumber    | inthe participation |          |                                                  |
| -10 dBm      |            |               |              | Y       |          |              |                     |          |                                                  |
| -20 dBm      | Magueria   |               |              |         |          |              |                     | Mayer    |                                                  |
| 486/48multin | www.       |               |              |         |          |              |                     | What was | Wanapplin                                        |
| -40 dBm      |            |               |              |         | _        |              |                     |          | 1.00                                             |
| -50 dBm      |            |               |              |         |          |              |                     |          |                                                  |
| -60 dBm      | -          |               |              |         |          |              |                     |          |                                                  |
| CF 5.745 G   | 47         |               |              | 1001    | nte      |              |                     | Spar     | 30.0 MHz                                         |



Report No.: SZEM170300176004 Page: 90 of 256

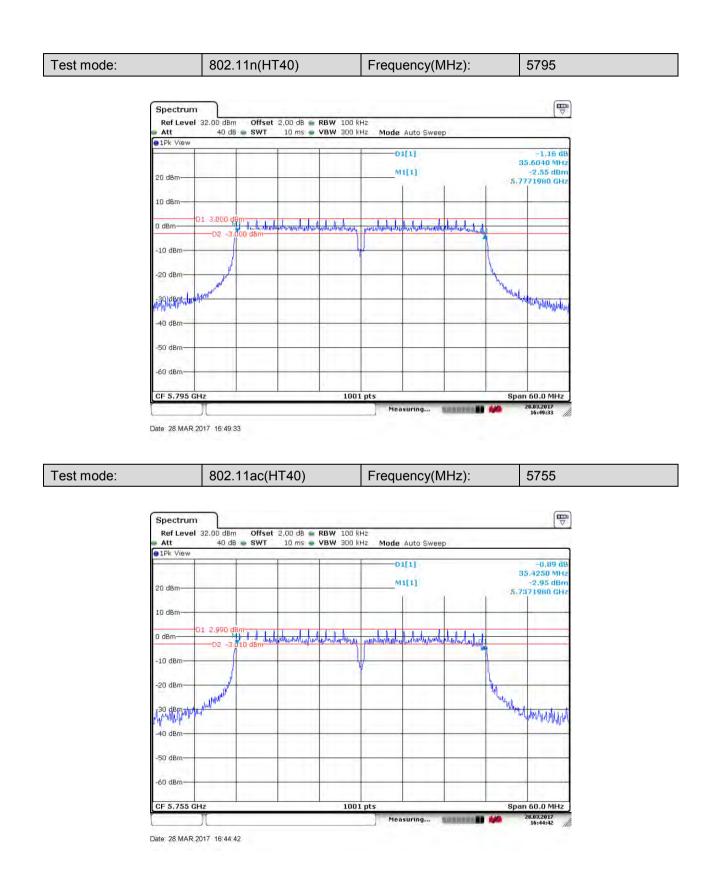


Date: 28 MAR 2017 17:03:45



Report No.: SZEM170300176004 Page: 91 of 256

|                                                                                                                                                             | 002.1                                                                                          | 1ac(HT20)                           | Frequency                                                 | (1011 12). | 5745                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|------------|--------------------------------------------------------|
|                                                                                                                                                             |                                                                                                |                                     |                                                           |            |                                                        |
| Spect                                                                                                                                                       | And the second second                                                                          |                                     |                                                           |            |                                                        |
| <ul> <li>Att</li> </ul>                                                                                                                                     | evel 32.00 dBm<br>40 dB                                                                        | Offset 2,00 dB  RBW SWT 10 ms VBW   |                                                           | reep       |                                                        |
| ⊖1Pk V                                                                                                                                                      | iew                                                                                            |                                     | 01[1]                                                     |            | -0.83 dB                                               |
| de for                                                                                                                                                      |                                                                                                |                                     | M1[1]                                                     |            | 17.6220 MHz<br>-0.33 dBm                               |
| 20 dBm                                                                                                                                                      |                                                                                                |                                     | 1                                                         | -1 - 1-    | 5.7361590 GHz                                          |
| 10 dBm                                                                                                                                                      |                                                                                                |                                     |                                                           |            |                                                        |
| 0 dBm-                                                                                                                                                      | D1 5,460 dBn                                                                                   | O demander al mal marke             | when which have                                           | madrealing |                                                        |
| 10.10                                                                                                                                                       |                                                                                                |                                     | 4                                                         |            |                                                        |
| -10 dB                                                                                                                                                      | n - M                                                                                          |                                     |                                                           |            |                                                        |
| -20 dB                                                                                                                                                      | m                                                                                              |                                     |                                                           |            | et al m                                                |
| 1.39 PR                                                                                                                                                     | WAAR HA                                                                                        |                                     |                                                           | _          | 2 Warden                                               |
|                                                                                                                                                             |                                                                                                |                                     |                                                           | _          |                                                        |
| -40 dB)                                                                                                                                                     |                                                                                                |                                     |                                                           |            |                                                        |
| -50 dBi                                                                                                                                                     | n                                                                                              |                                     |                                                           |            | -                                                      |
| -60 dB                                                                                                                                                      | n                                                                                              |                                     |                                                           | _          | _                                                      |
|                                                                                                                                                             | 45 GHz                                                                                         |                                     | 1001 pts                                                  |            | Span 30.0 MHz                                          |
|                                                                                                                                                             | 10 0112                                                                                        |                                     | 1001 pt3                                                  |            | 28.03.2017                                             |
| Ċ                                                                                                                                                           | MAR 2017 17:06:59                                                                              |                                     | Frequency                                                 | (MHz):     | 5785                                                   |
| Ċ                                                                                                                                                           |                                                                                                | 1ac(HT20)                           | Frequency                                                 |            |                                                        |
| Date: 28.                                                                                                                                                   | 802.1                                                                                          |                                     |                                                           |            | 5785                                                   |
| Date: 28.                                                                                                                                                   | 802.1                                                                                          | 1ac(HT20)<br>Offset 2,00 dB ■ RBW   |                                                           | (MHz):     |                                                        |
| Date: 28.                                                                                                                                                   | 802.1                                                                                          | 1ac(HT20)<br>offset 2,00 dB ■ RBW   |                                                           | (MHz):     | 5785                                                   |
| Spect<br>Ref L                                                                                                                                              | 802.1                                                                                          | 1ac(HT20)<br>Offset 2,00 dB ■ RBW   |                                                           | (MHz):     | 5785                                                   |
| Spect<br>Ref L                                                                                                                                              | 802.1                                                                                          | 1ac(HT20)<br>Offset 2,00 dB ■ RBW   | Frequency<br>100 kHz<br>300 kHz<br>Mode Auto Sw           | (MHz):     | 5785<br>                                               |
| Spect<br>Ref L<br>Att<br>20 dBm                                                                                                                             | 802.1                                                                                          | 1ac(HT20)<br>Offset 2,00 dB ■ RBW   | V 100 KHz<br>V 100 KHz<br>V 300 KHz Mode Auto Sw<br>D1[1] | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm                   |
| Spect<br>Ref L<br>Att<br>10 dBm<br>10 dBm                                                                                                                   | 802.1                                                                                          | 0ffset 2,00 dB RBW<br>SWT 10 ms VBV | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm                   |
| Spect<br>Ref L<br>Att<br>20 dBm                                                                                                                             | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm                   |
| Spect<br>Ref L<br>Att<br>10 dBm<br>10 dBm                                                                                                                   | 802.1<br>rum<br>evel 32.00 dBm<br>40 dB<br>iew<br>01 5,590 dBm<br>01 5,590 dBm<br>01 5,590 dBm | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm                   |
| Spect<br>Ref L<br>Att<br>10 dBm<br>0 dBm                                                                                                                    | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MHz<br>-0.33 dBm<br>\$.7761590 GHz |
| Spect<br>Ref L<br>Att<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                       | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm<br>5.7761590 GH2  |
| Spect<br>Ref L<br>Att<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                        | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MHz<br>-0.33 dBm<br>\$.7761590 GHz |
| Spect<br>Ref L<br>Att<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                       | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm<br>5.7761590 GH2  |
| Spect<br>Ref L<br>Att<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                                                                            | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm<br>5.7761590 GH2  |
| Date: 28.<br>Date: 28.<br>Ref L<br>Att<br>1Pk V<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-40 dBm<br>-50 dBm                       | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm<br>5.7761590 GH2  |
| Date: 28.<br>Ref I<br>Att<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-40 dBm                                                                             | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     | (MHz):     | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm<br>5.7761590 GH2  |
| Date: 28.<br>Date: 28.<br>Ref L<br>Att<br>PIPk V<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm | 802.1                                                                                          | Offset 2,00 dB RBW<br>SWT 10 ms VBW | V 100 KH2<br>V 300 KH2 Mode Auto Sw<br>D1[1]<br>M1[1]     |            | -0.77 dB<br>17.6220 MH2<br>-0.33 dBm<br>5.7761590 GH2  |




Report No.: SZEM170300176004 Page: 92 of 256

| :                                                    | 0                                                                                                                                                                                                                                                 | 02.11ac(l                       | HI20)                                    | Frequency(M                                                                                                                                | 112).      | 5825                                                        |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------|
|                                                      |                                                                                                                                                                                                                                                   |                                 |                                          |                                                                                                                                            |            |                                                             |
| Spe                                                  | trum                                                                                                                                                                                                                                              |                                 |                                          |                                                                                                                                            |            |                                                             |
| Ref<br>Att                                           | Level 32.0                                                                                                                                                                                                                                        | 0 dBm Offse<br>40 dB 🖷 SWT      | t 2,00 dB 📻 RBW<br>10 ms 🖷 VBW           |                                                                                                                                            |            |                                                             |
| 😁 1 Pk                                               | View                                                                                                                                                                                                                                              | Ĩ                               | 1 1                                      |                                                                                                                                            |            | a na da                                                     |
|                                                      |                                                                                                                                                                                                                                                   |                                 |                                          | D1[1]                                                                                                                                      |            | -0.96 dt<br>17.6220 MH                                      |
| 20 dB                                                | m                                                                                                                                                                                                                                                 |                                 |                                          | M1[1]                                                                                                                                      | 1.15       | -0.47 dBn<br>5.8161590 GH                                   |
| 10 dB                                                | m                                                                                                                                                                                                                                                 |                                 |                                          |                                                                                                                                            |            |                                                             |
| 26.65                                                |                                                                                                                                                                                                                                                   | 310 dBm                         | Spentrue Ingelas                         | alus rate toutresting                                                                                                                      | tranharing |                                                             |
| -0.dBn                                               | ) – C                                                                                                                                                                                                                                             | 2 -0.690 dBm                    | مالاله ورساليه ومناليه ومن المورد        | alway providence laper man                                                                                                                 | Marianog   |                                                             |
| -10 di                                               | 3m                                                                                                                                                                                                                                                | -                               |                                          |                                                                                                                                            |            |                                                             |
|                                                      |                                                                                                                                                                                                                                                   | N                               |                                          |                                                                                                                                            | X          |                                                             |
| -20 d                                                | Sm North                                                                                                                                                                                                                                          | 9                               |                                          |                                                                                                                                            |            | non .                                                       |
| 479.P                                                | ROUT                                                                                                                                                                                                                                              |                                 |                                          |                                                                                                                                            |            | mannah                                                      |
| -40 di                                               |                                                                                                                                                                                                                                                   |                                 |                                          |                                                                                                                                            |            |                                                             |
|                                                      |                                                                                                                                                                                                                                                   |                                 |                                          |                                                                                                                                            |            |                                                             |
| -50 di                                               | 3m-                                                                                                                                                                                                                                               |                                 |                                          |                                                                                                                                            |            |                                                             |
| -60 di                                               | 3m                                                                                                                                                                                                                                                |                                 |                                          |                                                                                                                                            |            | _                                                           |
| 1.17                                                 |                                                                                                                                                                                                                                                   |                                 |                                          |                                                                                                                                            |            |                                                             |
|                                                      |                                                                                                                                                                                                                                                   |                                 |                                          | 1001 pts                                                                                                                                   |            | 28.03.2017                                                  |
| 200                                                  | 3.MAR.2017                                                                                                                                                                                                                                        |                                 | T40)                                     |                                                                                                                                            | Hz).       | 5755                                                        |
| C                                                    | 3.MAR.2017                                                                                                                                                                                                                                        | <sup>17:09:51</sup><br>02.11n(H | T40)                                     | Frequency(M                                                                                                                                |            | 5755                                                        |
| Date: 28                                             | 3.MAR.2017                                                                                                                                                                                                                                        |                                 | T40)                                     |                                                                                                                                            |            | 5755                                                        |
| Date: 24                                             | 8.MAR.2017<br>8.Ctrum                                                                                                                                                                                                                             | 02.11n(H                        |                                          | Frequency(M                                                                                                                                |            |                                                             |
| Date: 24                                             | 8.MAR.2017<br>8.Ctrum<br>Level 32.0                                                                                                                                                                                                               | 02.11n(H                        | T40)<br>t 2.00 dB RBW<br>10 ms VBW       | Frequency(M                                                                                                                                | Hz):       | 5755                                                        |
| Date: 21                                             | 8 MAR 2017<br>8 Ctrum<br>Level 32.0                                                                                                                                                                                                               | 02.11n(H                        | t 2,00 dB 📻 RBW                          | Frequency(M                                                                                                                                | Hz):       | 5755<br>E                                                   |
| Date: 21                                             | 8 MAR 2017<br>8 Ctrum<br>Level 32.0                                                                                                                                                                                                               | 02.11n(H                        | t 2,00 dB 📻 RBW                          | Frequency(M                                                                                                                                | Hz):       | 5755<br>€<br>-1.66 dt<br>35.8440 MH                         |
| Date: 21                                             | 8 MAR 2017<br>8 ctrum<br>Level 32.0<br>View                                                                                                                                                                                                       | 02.11n(H                        | t 2,00 dB 📻 RBW                          | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1.66 dt                                            |
| Date: 24                                             | S MAR 2017<br>8 MAR 2017<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                     | 02.11n(H                        | t 2,00 dB 📻 RBW                          | Frequency(M                                                                                                                                | Hz):       | -1.66 dt<br>35.8440 MH<br>-2.37 dBn                         |
| Date: 21                                             | S MAR 2017     S MAR 2017     Strum     Level 32.0     View     m     m     m     01.2                                                                                                                                                            | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M       100 KHz       300 KHz       Mode Auto Sweep       01[1]       M1[1]                                                      | Hz):       | -1.66 dt<br>35.8440 MH<br>-2.37 dBn                         |
| Date: 21                                             | 8 MAR 2017<br>8 Ctrum<br>Level 32.0<br>View                                                                                                                                                                                                       | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M       100 KHz       300 KHz       Mode Auto Sweep       01[1]       M1[1]                                                      | Hz):       | -1.66 dt<br>35.8440 MH<br>-2.37 dBn                         |
| Date: 21                                             | S MAR 2017           8           ctrum           Level 32.0           View           m           01 2,           01 2,                                                                                                                            | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | -1.66 dt<br>35.8440 MH<br>-2.37 dBn                         |
| Date: 24                                             | J         8           8 MAR 2017         8           ctrum         2           Level 32.0         32.0           Wiew         1           m         1           D1 2.1         1           am         1                                           | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21<br>Date: 21<br>Ref<br>Att<br>20 dB<br>10 dB | J         8           8 MAR 2017         8           ctrum         2           Level 32.0         32.0           Wiew         1           m         1           D1 2.1         1           am         1                                           | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21                                             | S MAR 2017           8           ctrum           Level 32.0           View           m           D1 2,           3m           3m                                                                                                                  | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21                                             | S MAR 2017           8 MAR 2017           ctrum           Level 32.0           View           m           D1 2.           am           am           am                                                                                            | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | -1.66 dt<br>35.8440 MH<br>-2.37 dBn                         |
| Date: 21                                             | S MAR 2017           8 MAR 2017           ctrum           Level 32.0           View           m           D1 2.           am           am           am                                                                                            | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21                                             | S MAR 2017           8           ctrum           Level 32.0           View           m           D1 2,           am           am           am           am           am           am                                                              | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21                                             | S MAR 2017           S MAR 2017           Ctrum           Level 32.0           View           m           D1 2,           am           am           am           am           am           am           am           am           am           am | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Frequency(M                                                                                                                                | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21                                             | S MAR 2017           S MAR 2017           Ctrum           Level 32.0           View           m           D1 2,           am           am           am           am           am           am           am           am           am           am | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | Interference       100 kHz       300 kHz       Mode Auto Sweep       D1[1]       M1[1]       M1[1]                                         | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |
| Date: 21                                             | S MAR 2017           S MAR 2017           Ctrum           Level 32.0           View           m           D1 2,           am           am           am           am           am           am           am           am           am           am | 02.11n(H                        | t 2,00 dB <b>RBW</b><br>10 ms <b>VBW</b> | IOO KH2<br>300 KH2<br>300 KH2<br>Mode Auto Sweep<br>D1[1]<br>M1[1]<br>M1[1]<br>M1[1]<br>M1[1]<br>M1[1]<br>M1[1]<br>M1[1]<br>M1[1]<br>M1[1] | Hz):       | 5755<br>-1,66 di<br>35.8440 MH<br>-2.37 dBn<br>5,7370780 GH |



Report No.: SZEM170300176004 Page: 93 of 256





Report No.: SZEM170300176004 Page: 94 of 256

|                                                                                                            | 802.11                  | lac(HT40)                           | Fre                         | quency(I                         | MHz):         |            | 5795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|-----------------------------|----------------------------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                                                                          |                         |                                     |                             |                                  |               |            | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Spectru                                                                                                    | 12 · · · · ·            |                                     | and the                     | _                                |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Att</li> </ul>                                                                                    | el 32.00 dBm<br>40 dB 🖷 | Offset 2,00 dB = R<br>SWT 10 ms = V |                             | de Auto Swe                      | ер            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e 1Pk Viev                                                                                                 |                         |                                     |                             | -01[1]                           |               | -          | -1.83 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11                                                                                                         |                         |                                     | 1.1.1                       | M1[1]                            |               | 3          | 5.2450 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20 dBm-                                                                                                    |                         |                                     |                             |                                  | a 3           | 5.7        | 773780 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10 dBm-                                                                                                    |                         |                                     |                             |                                  |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | D1 2.820 dBm            |                                     |                             | -                                |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm-                                                                                                     |                         | dem markalanta funda                | trollartimal pennilari      | non-she have                     | liftertailing |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -10 dBm-                                                                                                   |                         |                                     |                             | -                                | -             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm-                                                                                                   | 1                       |                                     |                             |                                  |               | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 abili                                                                                                   | and the product         |                                     |                             |                                  |               | My mark of | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANNIN T                                                                                                    | populate "              |                                     |                             |                                  |               | What!      | hannah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -40 dBm-                                                                                                   |                         |                                     |                             |                                  |               |            | as t coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                            |                         |                                     |                             |                                  |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm-                                                                                                   |                         |                                     |                             |                                  | -             | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm-                                                                                                   |                         |                                     |                             |                                  | -             | _          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                            |                         |                                     |                             |                                  |               | _          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CF 5.795                                                                                                   | GHz                     |                                     | 1001 pts                    | Measuring                        | -             | Spar       | 28,03,2017<br>16:42:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date: 20.MA                                                                                                | R.2017 16:42:30         |                                     | Ero                         | augnov/                          | \/∐→\·        |            | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date: 20.WiA                                                                                               |                         | lac(HT80)                           | Fre                         | quency(I                         | MHz):         |            | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date: 20.WA                                                                                                |                         | lac(HT80)                           | Fre                         | quency(I                         | MHz):         |            | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Spectru                                                                                                    | 802.11                  |                                     |                             | quency(I                         | MHz):         |            | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Spectru<br>Ref Lev                                                                                         | 802.11                  | Offset 2,00 dB 🕋 R                  | <b>BW</b> 100 kHz           |                                  |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spectru                                                                                                    | 802.11                  | Offset 2,00 dB 🕋 R                  | <b>BW</b> 100 kHz           | ode Auto Swe                     |               |            | (The second seco |
| Spectru<br>Ref Lev<br>Att                                                                                  | 802.11                  | Offset 2,00 dB 🕋 R                  | <b>BW</b> 100 kHz           | ode Auto Swe                     |               |            | -4,54 dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Spectru<br>Ref Lev<br>Att                                                                                  | 802.11                  | Offset 2,00 dB 🕋 R                  | <b>BW</b> 100 kHz           | ode Auto Swe                     |               |            | -4,54 di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Spectru<br>Ref Lev<br>• Att                                                                                | 802.11                  | Offset 2,00 dB 🕋 R                  | <b>BW</b> 100 kHz           | ode Auto Swe                     |               |            | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>1Pk Viev<br>20 dBm-<br>10 dBm-                                                | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5,         | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>1Pk Viev<br>20 dBm—                                                           | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5,         | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>1Pk Viev<br>20 dBm-<br>10 dBm-                                                | 802.11                  | Offset 2,00 dB 🕋 R                  | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5,         | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>1Pk Viev<br>20 dBm-<br>10 dBm-<br>-10 dBm-                                    | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5,         | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>20 dBm-<br>10 dBm-<br><del>0 dB</del> m-                                      | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5,         | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                    | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5.         | -4,54 dB<br>75,160 MH<br>-4.59 dB<br>127480 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spectru<br>Ref Lev<br>Att<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                    | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5.         | -4,54 dB<br>75,160 MH<br>-4.59 dB<br>127480 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spectru<br>Ref Lev<br>Att<br>D dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-             | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5.         | -4,54 dl<br>75.160 MH<br>-4.59 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectru<br>Ref Lev<br>Att<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                    | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5.         | -4,54 dB<br>75,160 MH<br>-4.59 dB<br>127480 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spectru<br>Ref Lev<br>Att<br>D dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-             | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | 5.         | -4,54 dB<br>75,160 MH<br>-4.59 dB<br>127480 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spectru<br>Ref Lev<br>Att<br>10 dBm-<br>10 dBm-<br>-0 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm- | 802.11                  | Offset 2,00 dB = R<br>SWT 10 ms V   | BW 100 kH2<br>BW 300 kH2 Mi | Dde Auto Swe<br>—D1[1]<br>_M1[1] | ep            | s.         | -4,54 dB<br>75,160 MH<br>-4.59 dB<br>127480 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



Report No.: SZEM170300176004 Page: 95 of 256

#### 6.6 Power Spectral Density

| Test Requirement:      | 47 CFR Part 15 Sect                                                                           | ion 15.407(a)                                                                                                                                                                                                                                                         |
|------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10: 2013                                                                             |                                                                                                                                                                                                                                                                       |
| Test Setup:            | N                                                                                             | Ilyzer<br>E.U.T<br>Ion-Conducted Table                                                                                                                                                                                                                                |
| Test Instruments:      | Refer to section 5.10                                                                         | for details                                                                                                                                                                                                                                                           |
| Exploratory Test Mode: | Transmitting with all k                                                                       | ind of modulations, data rates                                                                                                                                                                                                                                        |
| Final Test Mode:       | MCS0 of rate is the v<br>case of 802.11n(HT4<br>MCS0 of rate is the w<br>case of 802.11ac(HT8 | id the 6Mbps of rate is the worst case of 802.11a;<br>worst case of 802.11n(HT20); MCS0 of rate is the worst<br>0); MCS0 of rate is the worst case of 802.11ac(HT20);<br>worst case of 802.11ac(HT40); MCS0 of rate is the worst<br>80)<br>is recorded in the report. |
| Limit:                 | Frequency Band                                                                                | Limit                                                                                                                                                                                                                                                                 |
|                        | 5150-5250MHz                                                                                  | The power spectral density less than 11dBm/1MHz                                                                                                                                                                                                                       |
|                        | 5250-5350MHz                                                                                  | The power spectral density less than 11dBm/1MHz                                                                                                                                                                                                                       |
|                        | 5470-5725MHz                                                                                  | The power spectral density less than 11dBm/1MHz                                                                                                                                                                                                                       |
|                        | 5725-5850MHz                                                                                  | The power spectral density less than 30dBm/500kHz                                                                                                                                                                                                                     |
| Test Results:          | Pass                                                                                          |                                                                                                                                                                                                                                                                       |



Report No.: SZEM170300176004 Page: 96 of 256

#### **Measurement Data:**

|                 | 802.11a mode           |               |        |
|-----------------|------------------------|---------------|--------|
| Frequency (MHz) | Power Spectral Density | Limit         | Result |
| 5180            | 7.81                   | ≤11dBm/1MHz   | Pass   |
| 5220            | 7.52                   | ≤11dBm/1MHz   | Pass   |
| 5240            | 7.65                   | ≤11dBm/1MHz   | Pass   |
| 5260            | 7.66                   | ≤11dBm/1MHz   | Pass   |
| 5300            | 7.60                   | ≤11dBm/1MHz   | Pass   |
| 5320            | 7.63                   | ≤11dBm/1MHz   | Pass   |
| 5500            | 7.51                   | ≤11dBm/1MHz   | Pass   |
| 5600            | 7.43                   | ≤11dBm/1MHz   | Pass   |
| 5700            | 7.60                   | ≤11dBm/1MHz   | Pass   |
| 5745            | 5.94                   | ≤30dBm/500kHz | Pass   |
| 5785            | 5.76                   | ≤30dBm/500kHz | Pass   |
| 5825            | 5.58                   | ≤30dBm/500kHz | Pass   |

|                 | 802.11n(HT20) mode     |               |        |
|-----------------|------------------------|---------------|--------|
| Frequency (MHz) | Power Spectral Density | Limit         | Result |
| 5180            | 7.52                   | ≤11dBm/1MHz   | Pass   |
| 5220            | 7.51                   | ≤11dBm/1MHz   | Pass   |
| 5240            | 7.26                   | ≤11dBm/1MHz   | Pass   |
| 5260            | 7.55                   | ≤11dBm/1MHz   | Pass   |
| 5300            | 7.37                   | ≤11dBm/1MHz   | Pass   |
| 5320            | 7.38                   | ≤11dBm/1MHz   | Pass   |
| 5500            | 7.22                   | ≤11dBm/1MHz   | Pass   |
| 5600            | 7.23                   | ≤11dBm/1MHz   | Pass   |
| 5700            | 7.11                   | ≤11dBm/1MHz   | Pass   |
| 5745            | 5.97                   | ≤30dBm/500kHz | Pass   |
| 5785            | 5.76                   | ≤30dBm/500kHz | Pass   |
| 5825            | 5.53                   | ≤30dBm/500kHz | Pass   |



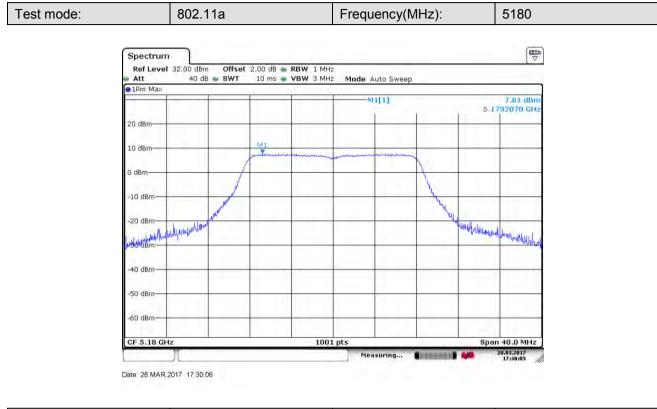
Report No.: SZEM170300176004 Page: 97 of 256

|                 | 802.11ac(HT20) mode    |               | _      |
|-----------------|------------------------|---------------|--------|
| Frequency (MHz) | Power Spectral Density | Limit         | Result |
| 5180            | 7.28                   | ≤11dBm/1MHz   | Pass   |
| 5220            | 7.12                   | ≤11dBm/1MHz   | Pass   |
| 5240            | 6.98                   | ≤11dBm/1MHz   | Pass   |
| 5260            | 7.12                   | ≤11dBm/1MHz   | Pass   |
| 5300            | 7.21                   | ≤11dBm/1MHz   | Pass   |
| 5320            | 7.17                   | ≤11dBm/1MHz   | Pass   |
| 5500            | 6.98                   | ≤11dBm/1MHz   | Pass   |
| 5600            | 7.01                   | ≤11dBm/1MHz   | Pass   |
| 5700            | 6.92                   | ≤11dBm/1MHz   | Pass   |
| 5745            | 5.94                   | ≤30dBm/500kHz | Pass   |
| 5785            | 5.75                   | ≤30dBm/500kHz | Pass   |
| 5825            | 5.52                   | ≤30dBm/500kHz | Pass   |

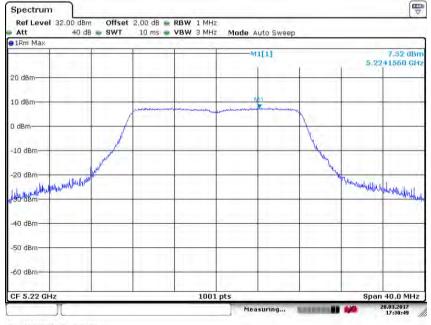
|                 | 802.11n(HT40) mode     | -             |        |
|-----------------|------------------------|---------------|--------|
| Frequency (MHz) | Power Spectral Density | Limit         | Result |
| 5190            | 4.76                   | ≤11dBm/1MHz   | Pass   |
| 5230            | 4.57                   | ≤11dBm/1MHz   | Pass   |
| 5270            | 4.68                   | ≤11dBm/1MHz   | Pass   |
| 5310            | 4.68                   | ≤11dBm/1MHz   | Pass   |
| 5510            | 4.63                   | ≤11dBm/1MHz   | Pass   |
| 5590            | 4.54                   | ≤11dBm/1MHz   | Pass   |
| 5670            | 4.27                   | ≤11dBm/1MHz   | Pass   |
| 5755            | 3.20                   | ≤30dBm/500kHz | Pass   |
| 5795            | 3.16                   | ≤30dBm/500kHz | Pass   |



Report No.: SZEM170300176004 Page: 98 of 256


| 802.11ac(HT40) mode |                        |               |        |  |
|---------------------|------------------------|---------------|--------|--|
| Frequency (MHz)     | Power Spectral Density | Limit         | Result |  |
| 5190                | 4.74                   | ≤11dBm/1MHz   | Pass   |  |
| 5230                | 4.61                   | ≤11dBm/1MHz   | Pass   |  |
| 5270                | 4.60                   | ≤11dBm/1MHz   | Pass   |  |
| 5310                | 4.66                   | ≤11dBm/1MHz   | Pass   |  |
| 5510                | 4.53                   | ≤11dBm/1MHz   | Pass   |  |
| 5590                | 4.47                   | ≤11dBm/1MHz   | Pass   |  |
| 5670                | 4.55                   | ≤11dBm/1MHz   | Pass   |  |
| 5755                | 3.33                   | ≤30dBm/500kHz | Pass   |  |
| 5795                | 3.16                   | ≤30dBm/500kHz | Pass   |  |

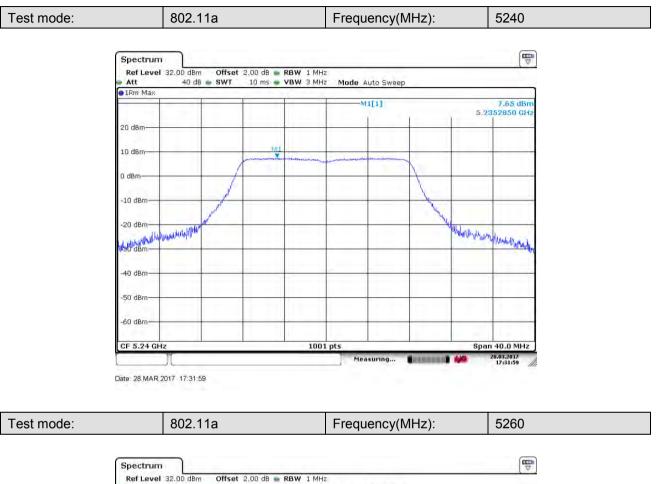

| 802.11ac(HT80) mode |                        |               |        |  |
|---------------------|------------------------|---------------|--------|--|
| Frequency (MHz)     | Power Spectral Density | Limit         | Result |  |
| 5210                | 1.91                   | ≤11dBm/1MHz   | Pass   |  |
| 5290                | 1.76                   | ≤11dBm/1MHz   | Pass   |  |
| 5530                | 1.76                   | ≤11dBm/1MHz   | Pass   |  |
| 5610                | 1.56                   | ≤11dBm/1MHz   | Pass   |  |
| 5775                | 0.55                   | ≤30dBm/500kHz | Pass   |  |

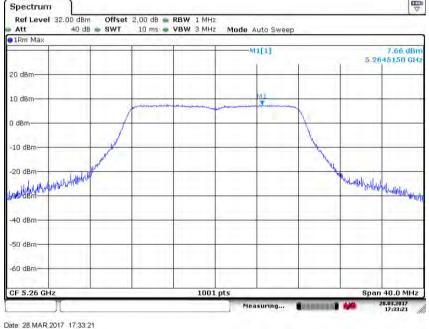



Report No.: SZEM170300176004 Page: 99 of 256

#### Test plot as follows:



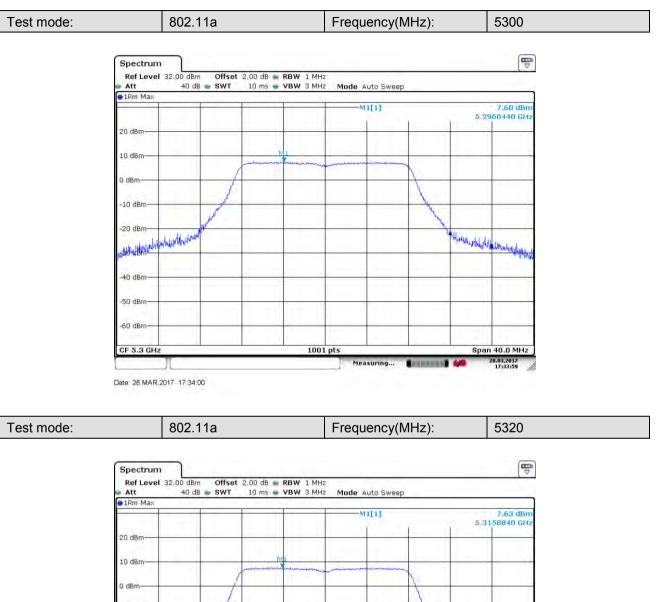


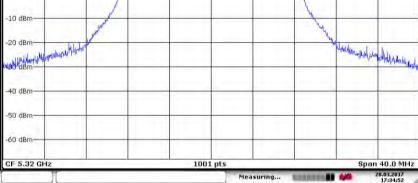




Date: 28 MAR 2017 17:30:50



Report No.: SZEM170300176004 Page: 100 of 256



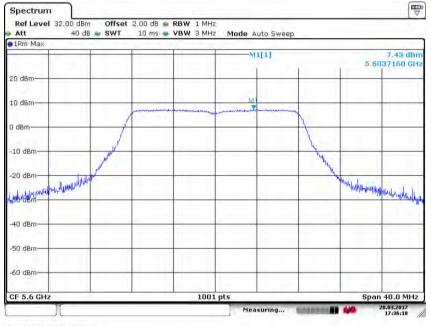




Date: 2010/11/2017 11:00:21



Report No.: SZEM170300176004 Page: 101 of 256

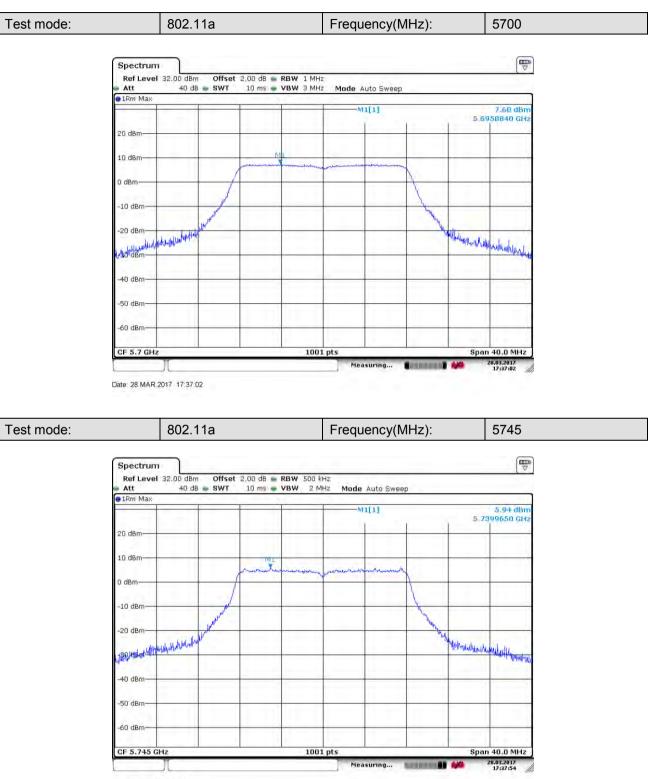





Date: 28 MAR 2017 17:34:53



Report No.: SZEM170300176004 Page: 102 of 256






Date: 28 MAR 2017 17:36:19



Report No.: SZEM170300176004 Page: 103 of 256



Date: 28.MAR.2017 17:37:54