

FCC Test Report

Product Name: LTE CPE

Model Number: B593u-12

Report No: SYBH(Z-RF)004052012-2003 FCC ID: QISB593U-12

Reliability Laboratory of Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L0310.
- 2. The laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 97456.
- 3. The laboratory has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 6369A-2.
- 4. The test report is invalid if not marked with "exclusive stamp for the test report".
- 5. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
- 6. The test report is invalid if there is any evidence of erasure and/or falsification.
- 7. If there is any dissidence for the test report, please file objection to the test centre within 15 days from the date of receiving the test report.
- 8. Normally, the test report is only responsible for the samples that have undergone the test.
- 9. Context of the test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the laboratory.

REGULATION	FCC CFR47 Part 2:2010: Subpart J;
	FCC CFR47 Part 15:2010: Subpart C;
	ANSI C63.10:2009
START OF TEST	
START OF TEST	Apr.27, 2012
END OF TEST	May.05, 2012
Final Judgement:	Pass

Approved By Senior Engineer	May.07, 2012	Dai Linjun	Duilingun
	Date	Name	Signature
Reviewed By	May.07, 2012 Date	Cousy Xu Name	Cousy XU Signature
Operator	May.07, 2012 Date	Huang Qiuliang Name	Huang Quilliang Signature

Contents

1	Su	ımmary	5
_			
2	Pro	oduct Description	6
	2.1	PRODUCT INFORMATION	6
	2.2	Modification Information	
3	Tes	est Site Description	7
	3.1	TESTING PERIOD	7
	3.2	TEST MODES	
4	Pro	oduct Description	8
	<u></u> 4.1	TECHNICAL CHARACTERISTICS	
	4.1 4.2	EUT IDENTIFICATION LIST	
		ain Test Instruments	
5	ivia	ain Test Instruments	11
6	Tra	ansmitter Measurements	12
	6.1	BANDWIDTH MEASUREMENT	12
	6.2	PEAK OUTPUT POWER	
	6.3	BAND EDGE SPURIOUS EMISSION	
	6.4	CONDUCTED RF SPURIOUS	23
	6.5	POWER SPECTRAL DENSITY	26
	6.6	RADIATED SPURIOUS EMISSION & SPURIOUS IN RESTRICTED BAND	
	6.7	CONDUCTED EMISSION AT POWER PORT	32
7	Sy	stem Measurement Uncertainty	34
8	Δn	ppendices	35

1 **Summary**

The table below summarizes the measurements and results for the EUT. Detailed results and descriptions are shown in the following pages.

Table 1 Summary of results

FCC Measurement Specification	Description	Result
15.247 (a) (2)	6dB bandwidth measurement	PASS
15.247 (b) (3)	Conducted Peak output power	PASS
15.247 (d)	Band edge compliance measurement	PASS
15.247 (d)	Conducted RF spurious	PASS
15.247 (e)	Power spectral density	PASS
15.247 (d) / 15.205 & 15.209	Radiated spurious emission & Radiated restricted band measurement	PASS
15.207	Conducted emission test for power port	PASS

2 Product Description

2.1 Product Information

2.1.1 General Description

B593u-12 LTE/WCDMA/GSM three mode 11 bands CPE is subscriber equipment in the LTE/UMTS/GSM system. B593u-12 implement such functions as RF signal receiving/transmitting, LTE/WCDMA/GSM protocol processing, data service etc. WIFI including 11b/g/n provides an wireless access. Externally it provides USB interface (to connect to the printer etc.), USIM card interface, RJ45 Ethernet interface and RJ11 telephone interface. B593u-12 has two internal antenna and two External Antenna, can automatic switch.

Note: Only WIFI function was considered in this report.

2.1.2 Support function and Service

The EUT support the function and service as follows:

Table 2 Service and Test mode List

Service Name	mode	Characteristic
Data	11b	IEEE 802.11b with data rate of 11 Mbps
Data	11g	IEEE 802.11g with data rate of 54 Mbps
Data	11n20	IEEE 802.11n with 20 MHz bandwidth and data rate of MCS-7, not using MIMO
Data	11n40	IEEE 802.11n with 40 MHz bandwidth and data rate of MCS-7, not using MIMO
Data	11n20-mimo	IEEE 802.11n with 20 MHz bandwidth and data rate of MCS-15, using MIMO
Data	11n40-mimo	IEEE 802.11n with 40 MHz bandwidth and data rate of MCS-15, using MIMO

2.2 Modification Information

For original equipment, following table is not application.

Table 3 Modification Information

Model Number	Board/M	Original	New	Modify Information
	odule	Version	Version	
7∖7	Л	Ĭ	0	
				aniai
TAO				

3 Test Site Description

The test site of:

Huawei Technologies Co. Ltd. P.O. Box 518129 Huawei base, bantian, Longgang District, Shenzhen, China

3.1 Testing Period

The test have been performed during the period of

Apr.27, 2012 - May.5, 2012

3.2 Test Modes

NOTE: Typical working modes for each IEEE 802.11 mode are selected to perform tests.

Test Mode	Test Modes Description
TM1	IEEE 802.11b with data rate of 11 Mbps
TM2	IEEE 802.11g with data rate of 54 Mbps
TM3	IEEE 802.11n with 20 MHz bandwidth and data rate of MCS-7, not using MIMO
TM4	IEEE 802.11n with 40 MHz bandwidth and data rate of MCS-7, not using MIMO
TM5	IEEE 802.11n with 20 MHz bandwidth and data rate of MCS-15, using MIMO
TM6	IEEE 802.11n with 40 MHz bandwidth and data rate of MCS-15, using MIMO

NOTE: All relevant operation modes have been tested, and the worst case data is included in this report.

4 Product Description

4.1 Technical Characteristics

4.1.1 Frequency Range

Table 4 Frequency Range

Uplink band:	2400 to 2483.5 MHz		
Downlink band:	2400 to 2483.5 MHz		
Hop frequency support:	☐ YES	⊠ NO	
4.1.2 Channel Spacing / Separation			
Table 5 Channel 8	Table 5 Channel Spacing / raster of 20 MHz bandwidth		
Channel spacing:	22 MHz		
Channel raster:	5 MHz		
Table 6 Channel Spacing / raster of 40 MHz bandwidth			
Channel spacing:	40 MHz		
Channel raster:	5 MHz		

4.1.3 Antenna Information

Table 7 Antenna Information

Туре:	Integrated / Internal
Maximum Gain(dBi):	2.0 (from 2400MHz to 2500MHz)

4.1.4 Environmental Requirements

Table 8 Environmental Requirements

Minimum temperature:	- 10 °C
Maximum temperature:	+ 55 °C

Relative Humidity:	5%-95%

4.1.5 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (9).

Please reference the document Tune-up Procedure in TCF.

4.2 EUT Identification List

4.2.1 Board Information

Table 9 Board Information

LTE CPE			
B593u-12			
Board and Module			
Router Board Software Version Modem Board			
B593RW2A	V100R001	MD1EM92012UM	

4.2.2 Adapter Technical Data

AC/DCAdapter Model	HW-120200U1W
Manufacturer	FUHUA
Input Voltage	90Vac~270Vac 50/60Hz 0.8A
Output Voltage	+12V 2.0A
Rated Power	24W(max)

AC/DCAdapter Model	HW-120200U1W
Manufacturer	HuntKey
Input Voltage	90Vac~270Vac 50/60Hz 0.8A
Output Voltage	+12V 2.0A
Rated Power	24W(max)

4.3 Associated Equipment Used during Test

Cable	Quantity	Length	Type of Cable
AC Power	2	<3m	Unshielded
USB	1	<3m	shielded
LAN Cable	4	<3m	Unshielded
Phone Cable	2	<3m	Unshielded

4.4 Associated Equipment Used during Test

Name	Model	Manufacturer	S/N	Calibrated Deadline
Notebook	D630	DELL	0W7349	N/A
Memorizer	/	R&S	/	N/A
Memorizer	/	SANDISK	/	N/A
PHONE	HCD8188	COMIX	/	N/A

4.5 FCC Identification

Grantee Code: QIS
Product Code: B593U-12
FCC Identification: QISB593U-12

5 Main Test Instruments

Table 10 Main Test Equipments

Equipment Description	Manufacturer	Model	Serial Number	Calibrated until
Power supply	KEITHLEY	2303	1288003	Sep.27,2012
Spectrum Analyzer	Agilent	E4440A	MY48250119	Jul.17,2012
Signal Analyzer	R&S	FSQ31	200021	Sep.27,2012
Temperature Chamber	WEISS	WKL64	24600294	Feb.13,2013
Signal generator	Agilent	E8257D	MY49281095	Jul.09.2012
Test receiver	R&S	ESU26 100150		May.29.2012
Tunable Dipole	Schwarzbeck	D69250- UHAP/D69250- VHAP	919/1009	Jan.29.2013
Tunable Dipole	Schwarzbeck	D69250- UHAP/D69250- VHAP	979/917	Jan.29.2013
Horn Antenna	R&S	HF906 100683		May.15, 2012
Horn Antenna	R&S	HF906	100684	Jul.01, 2012
Broadband Antenna	Schwarzbeck	VULB 9163 9163-357		May.15, 2012
Broadband Antenna	Schwarzbeck	VULB 9163	9163-356	May.15, 2012

Note: All the equipments are calibrated once a year. When it's almost due, we will arrange calibration again before the calibration deadline.

6 Transmitter Measurements

6.1 Bandwidth measurement

6.1.1 Test Conditions

Table 11 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3/TM4/TM5/TM6 at channel No. B,M,T

6.1.2 Test Specifications and Limits

6.1.2.1 Specification

CFR 47 (FCC) part 15.247 (a) (2) and KDB 558074

6.1.2.2 Supporting Standards

Table 12 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices

6.1.2.3 Limits

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Table 13 Limits

Limits	≥ 500kHz
--------	----------

6.1.3 Test Method and Setup

- (a) Connect test port of EUT to spectrum analyzer.
- (b) Set the EUT to transmit maximum output power at 2.4GHz, then set the measured frequency number and test the 6dB bandwidth with spectrum analyzer.

Test setup

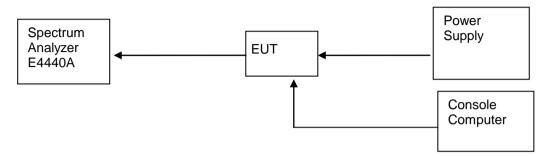


Figure 1. Test Set-up

6.1.4 Measurement Results

Table 14 Measurement Results

Test condition	Chain	Channel Position	Chan nel Numb er	Frequenc y [MHz]	Bandwidth Type	Measured Bandwidth [MHz]	Result												
		В	1	0440	6dB	8.611	Pass												
		Ь	ı	2412	99%	10.21	Pass												
	1	M	6	2437	6dB	8.20	Pass												
	'	IVI	O	2431	99%	10.14	F a 5 5												
		Т	11	2462	6dB	8.225	Pass												
TM1		ı	11	2402	99%	10.20	Pass												
		В	1	2412	6dB	7.25	Door												
		Б	I	2412	99%	10.09	Pass												
2	2	2 M		0407	6dB	8.215	Pass												
	_		6	2437	99%	10.10													
		Т	Т	11	2462	6dB	8.641	Pass											
			-	99%	10.15	1 400													
		В	1	2412	6dB	15.65	Pass												
			2112	99%	16.45	1 ass													
	1 M	М	6	2437	6dB	14.77	Pass												
	'		Ŭ	0 2437	99%	16.26	Pa55												
		_	4.4	0.400	6dB	15.77	Dana												
TM2	Т	11 2462	2462	99%	16.45	Pass													
2					6dB	15.73	Door												
		В	1	2412	99%	16.43	Pass												
	2	2	M 6	2437	6dB	15.73	Dana												
		IVI			99%	16.50	Pass												
	ļ												<u> </u>	Т	11	2462	6dB	15.77	Pass
		•		2102	99%	16.52	1 400												

<u> </u>		T	1	ı	T												
	В	1	2412 -	6dB	17.24	Pass											
				99%	17.41	1 400											
	1	М	6	2427	6dB	14.43											
		IVI	6	2437	99%	17.32											
		_	44	2402	6dB	17.39	Door										
TM3		Т	11	2462	99%	17.40	Pass										
		Ъ	4	2442	6dB	17.46	Dana										
		В	1	2412	99%	17.43	Pass										
	2	N		2427	6dB	17.52	Dana										
		М	6	2437	99%	17.47	Pass										
		Т	11	2462	6dB	17.54	Pass										
		-			99% 6dB	17.45 36.59											
		В	3	2.422			Pass										
					99%	36.20											
	1	М	6	2437	6dB	35.97	Pass										
					99%	35.93											
		Т	9	2452	6dB	35.86	Pass										
TM4	TM4				99%	36.05											
		В	3	2422	6dB	36.44	Pass										
					99%	36.10											
	2	M T	6	2437	6dB	36.46	Pass										
					99%	36.21											
			9	2452	6dB 99%	36.16 36.03	Pass										
					6dB	17.29											
		В	1	2412	99%	17.41	Pass										
	1				6dB	15.10											
		1	1	1	1	1	1	1	1	1	1	M	6	2437	99%	17.32	Pass
									6dB	17.10							
										Т	11	2462	99%	17.42	Pass		
TM5						6dB	17.49										
		В	1	2412	99%	17.45	Pass										
	_							6dB	17.42								
	2	M	6	2437	99%	17.49	Pass										
		_			6dB	16.39	Pass										
		Т	11	2462	99%	17.44											
TM6	ם	2	0.400	6dB	36.49	Dane											
		В	3	2422	99%	36.13	Pass										
	4	N 4	_	2427	6dB	35.63	D										
	1	1 M	6	2437	99%	35.89	Pass										
			+ -		6dB	35.89											
		Т	9	2452	99%	36.06	Pass										
	2	В	3	2422	6dB	36.35	Pass										

				99%	36.08	
	M	6	2437	6dB	36.36	Poss
	IVI	b	2437	99%	36.08	Pass
	т	9	2452	6dB	35.75	Pass
	'	9	2432	99%	35.99	1 855

6.1.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix A.

6.2 Peak output power

6.2.1 Test Conditions

Table 15 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3/TM4/TM5/TM6 at channel No. B,M,T

6.2.2 Test Specifications and Limits

6.2.2.1 Specification

CFR 47 (FCC) part 15.247 (b) (3) and KDB 558074

6.2.2.2 Supporting Standards

Table 16 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices

6.2.2.3 Limits

Compliance with part 15.247 (b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level.

Table 17 Limits

2.4GHz and 5.8GHz system using digital modulation	1 Watt / 30 dBm
---	-----------------

6.2.3 Test Method and Setup

- (a) Connect test port of EUT to spectrum analyzer.
- (b) Set the EUT to transmit maximum output power.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted output power separately.

Test setup

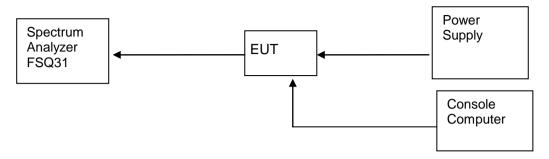


Figure 2. Test Set-up

6.2.4 Measurement Results

Table 18 Measurement Results

Test conditio n	Chain	Channe I Position	Channe I Number	Frequenc y [MHz]	Meas. Level (Cond.) [dBm]	Limit [dBm]	Result
		В	1	2412	18.37	< 30	pass
	1	М	6	2437	19.33	< 30	pass
TM1		Т	11	2462	18.47	< 30	pass
TIVIT		В	1	2412	19.37	< 30	pass
	2	М	6	2437	19.42	< 30	pass
		Т	11	2462	19.71	< 30	pass
		В	1	2412	21.29	< 30	pass
	1	М	6	2437	21.42	< 30	pass
- 1.40		Т	11	2462	21.09	< 30	pass
TM2		В	1	2412	21.39	< 30	pass
	2	М	6	2437	21.60	< 30	pass
		Т	11	2462	21.50	< 30	pass

			I	<u> </u>	<u> </u>		
		В	1	2412	20.08	< 30	pass
	1	М	6	2437	19.91	< 30	pass
TM3		Т	11	2462	19.33	< 30	pass
		В	1	2412	19.83	< 30	pass
	2	М	6	2437	19.95	< 30	pass
		Т	11	2462	19.99	< 30	pass
		В	3	2422	19.95	< 30	pass
	1	М	6	2437	20.00	< 30	pass
TN44		Т	9	2452	20.01	< 30	pass
TM4		В	3	2422	20.21	< 30	pass
	2	М	6	2437	20.43	< 30	pass
		Т	9	2452	20.22	< 30	pass
		В	1	2412	19.32		
	1	М	6	2437	20.08		
		Т	11	2462	19.12		
		В	1	2412	19.68		
TM5	2	М	6	2437	19.57		
		Т	11	2462	19.84		
		В	1	2412	22.51	< 30	pass
	1+2	М	6	2437	22.84	< 30	pass
		Т	11	2462	22.51	< 30	pass
		В	3	2422	20.25		
TM6	1	М	6	2437	20.38		
I IVIO		Т	9	2452	20.55		
	2	В	3	2422	20.65		

	М	6	2437	20.55		
	Т	9	2452	20.51		
	В	3	2422	23.46	< 30	pass
1+2	М	6	2437	23.48	< 30	pass
	Т	9	2452	23.54	< 30	pass

6.2.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix B.

6.3 Band edge spurious emission

6.3.1 Test Conditions

Table 19 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3/TM4/TM5/TM6 at channel No. B, T

6.3.2 Test Specifications and Limits

6.3.2.1 Specification

CFR 47 (FCC) part 15.247(d) and KDB 558074

6.3.2.2 Supporting Standards

Table 20 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

6.3.2.3 Limits

Compliance with part 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

Table 21 Limits

Band edge spurious:	20 dBc/100kHz
---------------------	---------------

6.3.3 Test Method and Setup

- (a) Connect test port of EUT to spectrum analyzer
- (b) Set the EUT to transmit maximum output power at 2.4GHz
- (c) Then set the EUT to transmit at high, low frequency and measure the conducted band edge spurious separately.

Test setup

Figure 3. Test Set-up

6.3.4 Measurement Results

Table 22 Measurement Results

Test	Chain	Channe	Channe	Frequenc	Carrier	Max.	Limit	Result
conditio n		l Position	l Number	y [MHz]	Power [dBm]	Spuriou s Level [dBm]	[dBm]	
	1	Low Edge	1	2412	6.91	-34.62	-13.1	pass
TM1		High Edge	11	2462	7.00	-29.51	-13.0	pass
I IVI I	2	Low Edge	1	2412	8.07	-30.07	-11.9	pass
	2	High Edge	11	2462	8.13	-27.11	-11.9	pass
	1	Low Edge	1	2412	2.89	-28.76	-17.1	pass
TM2	•	High Edge	11	2462	2.94	-29.70	-17.1	pass
I IVIZ	2	Low Edge	1	2412	2.86	-26.25	-17.1	pass
	2	High Edge	11	2462	3.77	-26.45	-16.2	pass
	1	Low Edge	1	2412	0.70	-34.20	-19.3	pass
TM3		High Edge	11	2462	0.83	-36.36	-19.2	pass
	2	Low Edge	1	2412	0.95	-33.89	-19.0	pass
		High Edge	11	2462	1.73	-31.57	-18.3	pass
TM4	1	Low Edge	3	2422	-2.32	-32.76	-22.3	pass

		High Edge	9	2452	-1.77	-33.12	-21.8	pass
	2	Low Edge	3	2422	-1.19	-32.43	-21.2	pass
		High Edge	9	2452	-1.47	-34.56	-21.5	pass
	1	Low Edge	1	2412	0.30	-34.45	-19.7	pass
TM5	ı	High Edge	11	2462	0.41	-38.47	-19.6	pass
TIVIS	2	Low Edge	1	2412	0.46	-35.21	-19.5	pass
	2	High Edge	11	2462	0.86	-30.23	-19.1	pass
	1	Low Edge	3	2422	-2.27	-32.18	-22.3	pass
TM6	'	High Edge	9	2452	-2.28	-32.46	-22.3	pass
	2	Low Edge	3	2422	-1.16	-32.84	-21.2	pass
		High Edge	9	2.452	-1.61	-33.39	-21.6	pass

6.3.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix C.

6.4 Conducted RF spurious

6.4.1 Test Conditions

Table 23 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3/TM4/TM5/TM6 at channel No.B, M, T

6.4.2 Test Specifications and Limits

6.4.2.1 Specification

CFR 47 (FCC) part 15.247 (d) and KDB 558074

6.4.2.2 Supporting Standards

Table 24 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless
	Devices

6.4.2.3 Limits

Compliance with part 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

Table 25 Limits

6.4.3 Test Method and Setup

- (a) Connect test port of EUT to spectrum analyzer
- (b) Set the EUT to transmit maximum output power at 2.4GHz and.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted band edge spurious separately.

Test setup

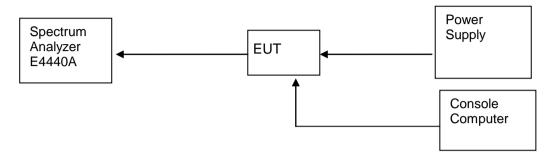


Figure 4. Test Set-up

6.4.4 Measurement Results

Table 26 Measurement Results

Test conditio n	Chai n	Test Frequenc y Range	Channe I No.	Carrier Frequenc y [MHz]	Carrie r Power [dBm]	Max. Spuriou s Level [dBm]	Limit [dBm]	Resul t
		9KHz- 26GHz	1	2412	10.39	-42.71	-9.6	Pass
	1	9KHz- 26GHz	6	2437	11.39	-42.32	-8.6	Pass
TM1		9KHz- 26GHz	11	2462	10.56	-41.98	-9.4	Pass
TIVII		9KHz- 26GHz	1	2412	11.75	-42.86	-8.2	Pass
	2	9KHz- 26GHz	6	2437	11.98	-41.47	-8.0	Pass
		9KHz- 26GHz	11	2462	11.75	-41.42	-8.2	Pass
		9KHz- 26GHz	1	2412	9.49	-42.64	-10.5	Pass
	1	1 9KHz- 26GHz	6	2437	8.95	-41.99	-11.1	Pass
TM2		9KHz- 26GHz	11	2462	8.27	-42.79	-11.7	Pass
TIVIZ		9KHz- 26GHz	1	2412	10.53	-42.52	-9.5	Pass
	2	9KHz- 26GHz	6	2437	11.89	-42.17	-8.1	Pass
		9KHz- 26GHz	11	2462	11.20	-42.79	-8.8	Pass
TM3	1	9KHz- 26GHz	1	2412	7.30	-42.33	-12.7	Pass

I -				•				
		9KHz- 26GHz	6	2437	8.43	-43.35	-11.6	Pass
		9KHz- 26GHz	11	2462	8.78	-41.01	-11.2	Pass
		9KHz- 26GHz	1	2412	7.94	-41.56	-12.1	Pass
	2	9KHz- 26GHz	6	2437	8.66	-42.89	-11.3	Pass
		9KHz- 26GHz	11	2462	7.25	-42.75	-12.8	Pass
		9KHz- 26GHz	3	2422	4.07	-42.77	-15.9	Pass
	1	9KHz- 26GHz	6	2437	6.39	-41.93	-13.6	Pass
TM4		9KHz- 26GHz	9	2452	5.88	-42.38	-14.1	Pass
1 1014		9KHz- 26GHz	3	2422	4.87	-43.15	-15.1	Pass
	2	9KHz- 26GHz	6	2437	4.64	-42.27	-15.4	Pass
		9KHz- 26GHz	9	2452	5.46	-42.28	-14.5	Pass
		9KHz- 26GHz	1	2422	7.06	-42.44	-12.9	Pass
	1	9KHz- 26GHz	6	2437	8.48	-43.11	-11.5	Pass
TM5		9KHz- 26GHz	11	2452	6.93	-42.55	-13.1	Pass
TIVIS		9KHz- 26GHz	1	2412	7.63	-42.84	-12.4	Pass
	2	9KHz- 26GHz	6	2437	8.71	-42.72	-11.3	Pass
		9KHz- 26GHz	11	2462	7.86	-41.75	-12.1	Pass
		9KHz- 26GHz	3	2422	4.95	-42.92	-15.1	Pass
TM6	1	9KHz- 26GHz	6	2437	5.97	-42.36	-14.0	Pass
		9KHz- 26GHz	9	2452	6.69	-42.65	-13.3	Pass
TIVIO		9KHz- 26GHz	3	2422	5.77	-42.31	-14.2	Pass
	2	9KHz- 26GHz	6	2437	5.04	-42.46	-15.0	Pass
		9KHz- 26GHz	9	2452	5.61	-42.66	-14.1	Pass

6.4.5 Conclusion

The equipment $\mbox{\bf PASSED}$ the requirement of this clause. For the measurement results refer to appendix D.

6.5 Power spectral density

6.5.1 Test Conditions

Table 27 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3/TM4/TM5/TM6 at channel No.B, M, T

6.5.2 Test Specifications and Limits

6.5.2.1 Specification

CFR 47 (FCC) part 15.247 (e) and KDB 558074

6.5.2.2 Supporting Standards

Table 28 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

6.5.2.3 Limits

Compliance with part 15.247 (e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. The same method of determining the conducted output power shall be used to determine the power spectral density.

Table 29 Limits

Band edge spurious:	8 dBm/3kHz
---------------------	------------

6.5.3 Test Method and Setup

- (a) Connect test port of EUT to spectrum analyzer
- (b) Set the EUT to transmit maximum output power at 2.4GHz and.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted band edge spurious separately.

Test setup

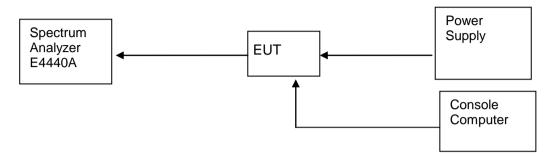


Figure 5. Test Set-up

6.5.4 Measurement Results

Table 30 Measurement Results

Test	Chain	Channe	Channe	Frequenc	Measured Power	Limit	Result
conditio	C 11 G 111	I	I	y [MHz]	spectral density	[dBm]	- NO GILL
n		Position	Number		[dBm]		
		В	1	2412	0.21	< 8	pass
	1	М	6	2437	1.82	< 8	pass
		Т	11	2462	0.76	< 8	pass
TM1		В	1	2412	2.02	< 8	pass
	2	М	6	2437	2.40	< 8	pass
		Т	11	2462	1.58	< 8	pass
		В	1	2412	-12.66	< 8	pass
	1	М	6	2437	-11.98	< 8	pass
TM2		Т	11	2462	-12.80	< 8	pass
I IVIZ		В	1	2412	-12.81	< 8	pass
	2	М	6	2437	-12.73	< 8	pass
		Т	11	2462	-12.53	< 8	pass
		В	1	2412	-15.25	< 8	pass
ТМЗ	1	М	6	2437	-14.10	< 8	pass
		Т	11	2462	-13.95	< 8	pass

l 		1	1	1		1	
		В	1	2412	-14.77	< 8	pass
	2	М	6	2437	-14.91	< 8	pass
		Т	11	2462	-2.18	< 8	pass
		В	3	2422	-19.60	<8	pass
	1	М	6	2437	-18.22	< 8	pass
TM4		Т	9	2452	-19.18	< 8	pass
		В	3	2422	-19.48	< 8	pass
	2	М	6	2437	-19.25	< 8	pass
		Т	9	2452	-18.68	< 8	pass
		В	1	2412	-15.29		
	1	М	6	2437	-7.64		
		Т	11	2462	-15.37		
	2	В	1	2412	-15.17		
TM5		М	6	2437	-15.02		
		Т	11	2462	-15.07		
		В	1	2412	-12.22	< 8	pass
	1+2	М	6	2437	-6.91	< 8	pass
		Т	11	2462	-12.21	< 8	pass
		В	3	2422	-20.28		
	1	М	6	2437	-18.40		
		Т	9	2452	-19.71		
		В	3	2422	-20.22		
TM6	2	М	6	2437	-19.93		
		Т	9	2452	-19.69		
		В	3	2422	-17.24	< 8	pass
	1+2	М	6	2437	-16.09	< 8	pass
		Т	9	2452	-16.69	< 8	pass

6.5.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix E.

6.6 Radiated spurious emission & spurious in restricted band

6.6.1 Test Conditions

Table 31 Test Conditions

Preconditioning:	0.5 hour
Measured at:	enclosure
Ambient temperature:	25. °C
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3/TM4/TM5/TM6 at channel No.B, M, T

6.6.2 Test Specifications and Limits

6.6.2.1 Specification

CFR 47 (FCC) part 15.247 (d), 15.205 & 15.209 and KDB 558074

6.6.2.2 Supporting Standards

Table 32 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

Table 33

6.6.2.3 Limits

According to part 15.247 (d) / 15.205 & 15.209, all spurious emission in the frequency range from 30MHz to 10th harmonics of carrier frequency should be meet the requirement of following table.

Table 34 Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)	Detector
0.009 - 0.490	2400/F(kHz)	20*lg(2400/F(kHz))	300	QP
0.490 - 1.705	24000/F(kHz)	20*lg(24000/F(kHz))	30	QP
1.705 - 30	30	29.5	30	QP
30 – 88	100	40	3	QP
88 – 216	150	43.5	3	QP
216 – 960	200	46	3	QP
960 -1000	500	54	3	QP
Above 1000	500	54	3	AV
Above 1000	500	74	3	PK

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table 42).

6.6.3 Test Method and Setup

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2009). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10. The Radiated Disturbance measurements were made using a Rohde and Schwarz Test Receiver and control software.

A preliminary scan and a final scan of the emissions were made by using test script of software; the emissions were measured using a Quasi-Peak Detector below 1GHz, and AV detector above 1GHz. The maximal emission value was acquired by adjusting the antenna height, polarisation and turntable azimuth in accordance with the software setup. Normally, the height range of antenna was 1m to 4m, the azimuth range of turntable was 0°to 360°, The receive antenna has two polarizations V and H.

A portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other nonmetallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal (x, y, z axes) axis positions such that emissions from the EUT are maximized.

The EUT was communicated with the BTS simulator through Air interface. The EUT operated on the typical channel.

Measurement bandwidth: 30 MHz - 1000 MHz: 120 kHz

Measurement bandwidth: 1000 MHz – 10th Carrier Frequency: 1 MHz

Test set up

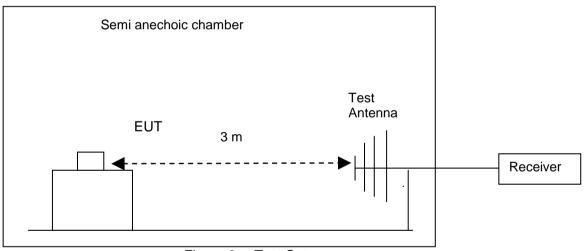


Figure 6. Test Set up

6.6.4 Measurement Results

Note 1: The following measurement results exceed the limit line is the carrier frequency.

Note 2: This test was carried out in all the test modes, here only the worst test result was shown.

Test condition	Channel No.	Carrier Frequency [MHz]	Measured	Result
	1	2412	Refer to Appendix F	Pass
TM1	6	2437	Refer to Appendix F	Pass
	11	2462	Refer to Appendix F	Pass
TM2	1	2412	Refer to Appendix F	Pass
1 1012	6	2437	Refer to Appendix F	Pass

	11	2462	Refer to Appendix F	Pass
	1	2412	Refer to Appendix F	Pass
TM3	6	2437	Refer to Appendix F	Pass
	11	2462	Refer to Appendix F	Pass
	3	2422	Refer to Appendix F	Pass
TM4	6	2437	Refer to Appendix F	Pass
	9	2452	Refer to Appendix F	Pass
	1	2412	Refer to Appendix F	Pass
TM5	6	2437	Refer to Appendix F	Pass
	11	2462	Refer to Appendix F	Pass
	3	2422	Refer to Appendix F	Pass
TM6	6	2437	Refer to Appendix F	Pass
	9	2452	Refer to Appendix F	Pass

6.6.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix F.

6.7 Conducted Emission at Power Port

6.7.1 Test Conditions

Table 35 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Power port
Ambient temperature:	25. °C
Relative humidity:	55%
Test Configurations:	TM1 at channel No. 6

6.7.2 Test Specifications and Limits

6.7.2.1 Specification

CFR 47 (FCC) part 15.207 and KDB 558074

6.7.2.2 Supporting Standards

Table 36 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

Table 37

6.7.2.3 Limits

Compliance with part15.207, conducted emission must meet the requirement of following table.

Table 38 Limits

Frequency of Emission (MHz)	Conducted Limit (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Note: * Decreases with the logarithm of the frequency.

6.7.3 Test Method and Setup

The Table-top EUT was placed upon a non-metallic table 0.8 m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2009.

Conducted Disturbance at AC Port measurements were undertaken on the L and N Lines. The emissions were measured using a Quasi-Peak Detector and Average Detector.

The EUT was communicated with the BTS simulator through Air interface, the BTS simulator controls

the Wireless Modem to transmitter the maximum power which defined in specification of product. The Wireless Modem operated on the typical channel.

Measurement bandwidth (RBW) for 150kHz to 30 MHz: 9 kHz;

Test Set-up

The EUT was setup in the screened chamber and operated under nominal conditions.

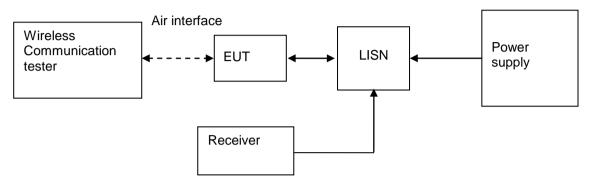


Figure 7. Test Set-up

6.7.4 Measurement Results

Table 39 MEASUREMENT RESULT: QP DECTER

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.224077	36.9	9.7	62.7	25.8	L1	FLO
0.330252	41.8	9.7	59.4	17.6	L1	FLO
0.335902	41.6	9.7	59.3	17.7	L1	FLO
0.854070	31.4	9.7	56.0	24.6	L1	FLO
0.862234	31.0	9.7	56.0	25.0	L1	FLO
1.250021	28.1	9.7	56.0	27.9	L1	FLO

Table 40 MEASUREMENT RESULT: AV DECTER

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.238829	29.3	9.7	52.1	22.8	L1	FLO
0.329378	33.3	9.7	49.5	16.2	L1	FLO
0.329396	33.2	9.7	49.5	16.3	L1	FLO
0.806325	22.5	9.7	46.0	23.5	L1	FLO
0.854111	21.4	9.7	46.0	24.6	L1	FLO
1.186392	22.3	9.7	46.0	23.7	L1	FLO

Table 41

6.7.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix G.

7 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 42 System Measurement Uncertainty

Items		Extended Uncertainty
20dB bandwidth measurement	Magnitude (%)	U=0.2%; k=2
Peak output power	Power(dBm)	U=0.39dB; k=2
Band edge compliance measurement	Disturbance Power(dBm)	U=2.0dB; k=2
111001001110111	Disturb sus a Device (dDrs)	LL O A-ID- I- O
Conducted RF spurious	Disturbance Power(dBm)	U=0.4dB; k=2
Power spectral density	Disturbance Power(dBm)	U=0.4dB; k=2
Radiated spurious emission &	Field strength (dBµV/m)	U=4.1dB; k=2
Radiated restricted band		U=4.1dB; k=2
measurement		
Conducted emission test for power	Disturbance Voltage(dBµV)	U=3.4dB; k=2
port		

8 Appendices

Appendix A	Measurement Results Bandwidth measurement
Appendix B	Measurement Results Peak output power
Appendix C	Measurement Results Band edge compliance measurement
Appendix D	Measurement Results Conducted RF spurious
Appendix E	Measurement Results Power spectral density
Appendix F	Measurement Results Radiated spurious emission
Appendix G	Measurement Results Conducted emission test for power port
Appendix H	Photos of Test Setup

-----The END-----