

FCC 47 CFR PART 15 SUBPART E

CERTIFICATION TEST REPORT

For

Outdoor Wireless LAN Access Point

MODEL NUMBER: AP8030DN

FCC ID: QISAP8030DN

REPORT NUMBER: 4788310840.1-4

ISSUE DATE: August 22, 2018

Prepared for

HUAWEI TECHNOLOGIES CO., LTD. Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen, P.R. China, 518129

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
	07/23/2018	Initial Issue	
R2	08/22/2018	Upgrade data from sections 6.3	Miller. Ma

Page 2 of 183

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Summary of Test Results				
Clause	Test Items	FCC/IC Rules	Test Results	
1	6/26db Bandwidth	FCC 15.407 (a)&(e) RSS-247 Clause 6.2	PASS	
2	99% Bandwidth	RSS-Gen Clause 6.6	PASS	
3	Maximum Conducted Output Power	FCC 15.407 (a) RSS-247 Clause 6.2	PASS	
4	Power Spectral Density	FCC 15.407 (a) RSS-247 Clause 6.2	PASS	
5	Antenna Conducted Spurious Emission	FCC 15.407 (b) RSS-247 Clause 6.2	PASS	
6	Radiated Bandedge and Spurious Emission	FCC 15.407 (a) FCC 15.209 FCC 15.205 RSS-247 Clause 6.2 RSS-GEN Clause 8.9	PASS	
7	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS	
8	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	PASS	
9	Frequency Stability	FCC 15.407 (g)	PASS	

Page 3 of 183

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	. 6
2.	TES	T METHODOLOGY	.7
3.	FAC	CILITIES AND ACCREDITATIO	.7
4.	CAI	IBRATION AND UNCERTAINTY	. 8
	l.1.	MEASURING INSTRUMENT CALIBRATION	
	l.2.	MEASUREMENT UNCERTAINTY	
5	FQI	JIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	
-	5.2.	CHANNEL LIST	
-	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
-	5.4.	TEST ENVIRONMENT	
-	5.5.	WORST-CASE CONFIGURATIONS	
-	5.6.	DESCRIPTION OF TEST SETUP	
	5.7.	MEASURING INSTRUMENT AND SOFTWARE USED	
ť			
6.	AN	TENNA PORT TEST RESULTS1	18
e	6.1.	ON TIME AND DUTY CYCLE	18
e	6.2.	6/26/99% dB BANDWIDTH	
	6.2. 6.2.		
	6.2.		
	6.2.		
	6.2.		
	6.2.		
	6.2.		
-	5.3.	MAXIMUM CONDUCTED OUTPUT POWER	
E		POWER SPECTRAL DENSITY	-
		2. 2TX MODE	
		3. 3TX MODE	
7.	RA	DIATED TEST RESULTS	51
7	7.1.	802.11a MODE	57
	7.1.		
		2. UNII-2C BAND	
	7.1.3	3. STRADDLE CHANNEL 14421	11

Page 4 of 183

7.2. 802.11n HT20 MODE 7.2.1. UNII-2A BAND	-
7.2.1. UNII-2C BAND	-
7.2.3. STRADDLE CHANNEL 144	
7.3. 802.11n HT40 MODE	
7.3.1. UNII-2A BAND	
7.3.2. UNII-2C BAND	
7.3.3. STRADDLE CHANNEL 142	
7.4. 802.11ac HT20 MODE	-
7.4.1. UNII-2A BAND	-
7.4.2. UNII-2C BAND 7.4.3. STRADDLE CHANNEL 144	
7.5. 802.11ac HT40 MODE 7.5.1. UNII-2A BAND	
7.5.2. UNII-2C BAND	
7.5.3. STRADDLE CHANNEL 142	
7.6. 802.11ac HT80 MODE	
7.6.1. UNII-2A BAND	
7.6.2. UNII-2C BAND	
7.6.3. STRADDLE CHANNEL 138	481
7.7. SPURIOUS EMISSIONS 26~40GHz	
7.7.1. 802.11a MODE	485
7.8. SPURIOUS EMISSIONS 18~26GHz	
7.8.1. 802.11a MODE	487
7.9. SPURIOUS EMISSIONS 30M ~ 1 GHz	
7.9.1. 802.11a MODE	489
7.10. SPURIOUS EMISSIONS BELOW 30M	491
7.10.1. 802.11a MODE	491
8. AC POWER LINE CONDUCTED EMISSIONS	
8.1. 802.11n20 MODE	
9. FREQUENCY STABILITY	498
10. ANTENNA REQUIREMENTS	501

1. ATTESTATION OF TEST RESULTS

Applicant Information Company Name:	HUAWEI TECHNOLOGIES CO., LTD.
Address:	Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen, P.R. China, 518129
Manufacturer Information Company Name:	HUAWEI TECHNOLOGIES CO., LTD.
Address:	Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen, P.R. China, 518129
EUT Description EUT Name: Model: Brand Name: Sample Status: Sample ID: Sample Received Date: Date of Tested:	Outdoor Wireless LAN Access Point AP8030DN HUAWEI Normal 1358586 January 04, 2018 January 04, 2018~ July 22, 2018

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart E

PASS

Tested By:

Miller Ma

Sherry les

Operations Leader

Shawn Wen

Checked By:

Miller Ma Engineer Project Associate

Approved By:

Sephentus

Stephen Guo

Operations Manager

Page 6 of 183

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 789033 D02 v02r01, KDB 662911 D01 v02r01, RSS-GEN Issue 4, RSS-247 Issue 2 and KDB414788 D01 Radiated Test Site v01.

3. FACILITIES AND ACCREDITATIO

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20019 and R-20004

Note: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Page 7 of 183

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Uncertainty for Conduction emission test	2.90dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB	
	5.04dB(1-6GHz)	
Uncertainty for Radiation Emission test (1GHz to 40GHz)(include Fundamental	5.30dB (6GHz-18Gz)	
emission)	5.23dB (18GHz-26Gz)	
	5.64dB (26GHz-40Gz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

Page 8 of 183

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Outdoor Wireless LAN Access Point			
EUT Description	The EUT is an Access Point for outdoor use.			
Model Name	Model Name AP8030DN			
David Overalia	Power Adapter	Input	AC 100~240V, 50~60Hz, 1.0A	
Power Supply		Output	DC 48V, 0.65A	
Hardware Version	VER.C			
Software Version	V200			

Page 9 of 183

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.2. CHANNEL LIST

20 MHz Bandwidth Channel frequencies				
Band Channel		Frequency (MHz)		
	52	5260		
UNII-2	56	5280		
	60	5300		
	64	5320		
	100	5500		
	104	5520		
	108	5540		
	112	5560		
	116	5580		
UNII-2C	120	5600		
	124	5620		
	128	5640		
	132	5660		
	136	5680		
	140	5700		
	144	5720		

Page 10 of 183

40 MHz Bandwidth Channel frequencies				
Band	Channel	Frequency (MHz)		
UNII-2A	54	5270		
	62	5310		
UNII-2C	102	5510		
	110	5550		
	118	5590		
	126	5630		
	134	5670		
	142	5710		

80 MHz Bandwidth Channel frequencies			
Band Channel		Frequency (MHz)	
UNII-2A 58		5290	
	106	5530	
UNII-2C	122	5610	
	138	5690	

Page 11 of 183

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
٨	5250-5350	Omni-Directional	11.5
A	5470-5725	Omni-Directional	11.5

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
В	5250-5350	Omni-Directional	11.5
D	5470-5725	Omni-Directional	11.5
A .e.t	- (141)	• · —	
Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
C	Frequency (MHz) 5250-5350	Antenna Type Omni-Directional	Antenna Gain (dBi) 11.5

Test Mode	Transmit and Receive Mode	Description
802.11a	3TX, 3RX	Antenna A, Antenna B and Antenna C can be used as transmitting/receiving antenna.
802.11n HT20	3TX, 3RX	Antenna A, Antenna B and Antenna C can be can be used as transmitting/receiving antenna.
802.11n HT40	3TX, 3RX	Antenna A, Antenna B and Antenna C can be can be used as transmitting/receiving antenna.
802.11ac HT20	3TX, 3RX	Antenna A, Antenna B and Antenna C can be can be used as transmitting/receiving antenna.
802.11ac HT40	3TX, 3RX	Antenna A, Antenna B and Antenna C can be can be used as transmitting/receiving antenna.
802.11ac HT80	3TX, 3RX	Antenna A, Antenna B and Antenna C can be can be used as transmitting/receiving antenna.

Remarks: EUT support for diversity and MIMO Transmission, all modes and antennas are prescanned, antenna C is worst for 1TX mode worst case, antenna B&C is worst case for 2TX mode, A&B&C is worst case for 3TX mode.

Page 12 of 183

5.4. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	55	5 ~ 65%			
Atmospheric Pressure:	1025Pa				
Temperature	TN	23 ~ 28°C			
	VL	N/A			
Voltage :	VN	AC 120V/60Hz			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 183

5.5. WORST-CASE CONFIGURATIONS

IEE Std.	Modulation	Modulation Type	Data Rate	Worst Case
802.11	Technology		(Mbps)	(Mbps)
а	OFDM	BPSK,QPSK,16QAM, 64QAM	54/48/36/24/18/12/9/6	6

	802.11n HT20/HT40										
Antenna	MCS	Modulation	HT20 Data	Rate(Mbps)	HT40 Data	Rate(Mbps)	Worst Case				
Antenna	WICO	Modulation	GI=800ns	GI=400ns	GI=800ns GI=400ns		(Mbps)				
	8	BPSK	13	14.4	27	30	MCS8				
	9	QPSK	26	28.9	54	60	MCS8				
	10	QPSK	39	43.3	81	90	MCS8				
0.0	11	16-QAM	52	57.8	108	120	MCS8				
2x2	12	16-QAM	78	86.7	162	180	MCS8				
	13	64-QAM	104	115.6	216	240	MCS8				
	14	64-QAM	117	130	243	270	MCS8				
	15	64-QAM	130	144.4	270	300	MCS8				

				802.11ac H	HT20/HT40)/HT80			
Antenna	MCS	Modulation	HT20 Data Rate (Mbps)			ata Rate ops)	HT80 D (Mb	Worst Case (Mbps)	
			GI=800ns	GI=400ns	GI=800ns	GI=400ns	GI=800ns	GI=400ns	
	0	BPSK	13	14.4	27	30	58.5	65	MCS0
	1	QPSK	26	28.9	54	60	117	130	MCS0
	2	QPSK	39	43.3	81	90	175.5	195	MCS0
	3	16-QAM	52	57.8	108	120	234	260	MCS0
222	4	16-QAM	78	86.7	162	180	351	390	MCS0
2x2	5	64-QAM	104	115.6	216	240	468	520	MCS0
	6	64-QAM	117	130.3	243	270	526.5	585	MCS0
	7	64-QAM	130	144.4	270	300	585	650	MCS0
	8	256-QAM	156	173.3	324	360	702	780	MCS0
	9	256-QAM	N/A	N/A	360	400	780	866.7	MCS0

Page 14 of 183

	802.11n HT20/HT40										
Antenna	MCS	Modulation	HT20 Data	Rate(Mbps)	HT40 Data	Rate(Mbps)	Worst Case				
, antonna	mee	modulation	GI=800ns	GI=400ns	GI=800ns	GI=400ns	(Mbps)				
	16	BPSK	19.5	21.7	40.5	45	MCS16				
	17	QPSK	39.0	43.3	81.0	90	MCS16				
	18	QPSK	58.5	65.0	121.5	135	MCS16				
3x3	19	16-QAM	78.0	86.7	162.0	180	MCS16				
323	20	16-QAM	117.0	130.0	243.0	270	MCS16				
	21	64-QAM	156.0	173.3	324.0	360	MCS16				
	22	64-QAM	175.5	195.0	364.5	405	MCS16				
	23	64-QAM	195.0	216.7	405.0	450	MCS16				

			802	2.11ac HT20)/HT40/HT	80			
Antenna	мсѕ	Modulation	HT20 Data Rate (Mbps)			ata Rate ops)	HT80 D (Mb	Worst Case	
			GI=800ns	GI=400ns	GI=800ns	GI=400ns	GI=800ns	GI=400ns	(Mbps)
	0	BPSK	19.5	21.6	40.5	45	87.8	97.5	MCS0
	1	QPSK	39	43.2	81	90	175.5	195	MCS0
	2	QPSK	58.5	65	121.5	135	263.3	292.5	MCS0
	3	16-QAM	78	86.7	162	180	351	390	MCS0
3x3	4	16-QAM	117	130	243	270	526.5	585	MCS0
575	5	64-QAM	156	173	324	360	702	780	MCS0
	6	64-QAM	175.5	195	364.5	405	789.9	877.5	MCS0
	7	64-QAM	195	216.6	405	450	877.5	975	MCS0
	8	256-QAM	234	260	486	540	1053	1170	MCS0
	9	256-QAM	260	288.9	540	600	1170	1300	MCS0

Remarks: EUT support for diversity and MIMO Transmission, all modes and antennas are prescanned, antenna C is worst for 1TX mode worst case, antenna B&C is worst case for 2TX mode, A&B&C is worst case for 3TX mode.

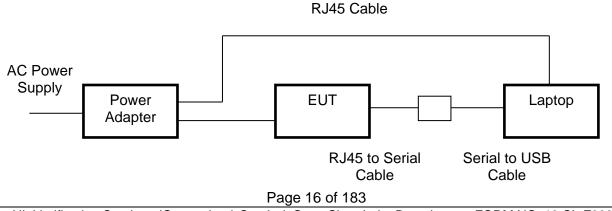
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Equipment Brand Name		P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	RJ45 to Serial Cable	N/A	N/A	N/A
3	Serial to USB Cable	N/A	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	GE0/PoE	RJ45	Unshielded	0.5	N/A
2	GE1	RJ45	Unshielded	0.5	N/A
3	SPF	Fiber Optic	Unshielded	N/A	N/A
4	Console	RJ45	Unshielded	0.5	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Power Adapter	HUAWEI	POE35-54A	Input: AC 100~240, 50/60Hz, 1.0 A Output: DC 48V, 0.65A

TEST SETUP

The EUT can work in engineering mode with software through a Laptop.

SETUP DIAGRAM FOR TESTS

5.7. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions								
Used	Equipment	Manufacturer	Мс	bdel	No.	Seri	al No.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	I	ESR3		10 ⁻	1961	Dec.12,2017	Dec.11,2018
	Two-Line V- Network	R&S	E	ENV216		101983		Dec.12,2017	Dec.11,2018
			So	ftwa	are				
Used	Des	cription			Manu	ufactu	urer	Name	Version
\checkmark	Test Software for C	Conducted distu	rband	ce		UL		Antenna port	Ver. 7.2
		Rad	iated	l En	nissio	ns			
Used	Equipment	Manufacturer	Мс	bdel	No.	Seri	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N	903	88A		56400 36	Dec.12,2017	Dec.11,2018
V	Hybrid Log Periodic Antenna	TDK	HLF	- -3(003C		0960	Jan.09, 2016	Jan.09, 2019
V	Preamplifier	HP	8	3447	7D		4A090 99	Dec.12,2017	Dec.11,2018
V	EMI Measurement Receiver	R&S	E	SR	26	10 ⁻	1377	Dec.12,2017	Dec.11,2018
\checkmark	Horn Antenna	TDK	HR	RN-C	0118	130939		Jan. 09, 2016	Jan. 09, 2019
V	High Gain Horn Antenna	Schwarzbeck	BBI	HA-	9170	691		Jan.06, 2016	Jan.06, 2019
V	Preamplifier	TDK	PA-	02-	0118		305- 066	Dec.12,2017	Dec.11,2018
V	Preamplifier	TDK	P	A-0	2-2	TRS-307- 00003		Dec.12,2017	Dec.11,2018
\checkmark	Loop antenna	Schwarzbeck	1	519	9B	00	800	Mar. 26, 2016	Mar. 26, 2019
			So	ftwa	are				
Used	Descr	iption		Ма	nufact	urer		Name	Version
\checkmark	Test Software for Ra	adiated disturba	nce		Farac	ł		EZ-EMC	Ver. UL-3A1
		Oth	ner in	str	ument	ts			
Used	Equipment	Manufacturer	Mc	bdel	No.	Seri	al No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N	N9030A			55410 12	Dec.12,2017	Dec.11,2018
V	EMI Measurement Receiver	R&S	E	ESR26		10 ⁻	1377	Dec.12,2017	Dec.11,2018
V	Power Sensor	Keysight	N	932	23A		55440 13	Dec.12,2017	Dec.11,2018
V	Power Sensor	Keysight	U2	202	1XA		57030 04	Dec.12,2017	Dec.11,2018

Page 17 of 183

6. ANTENNA PORT TEST RESULTS

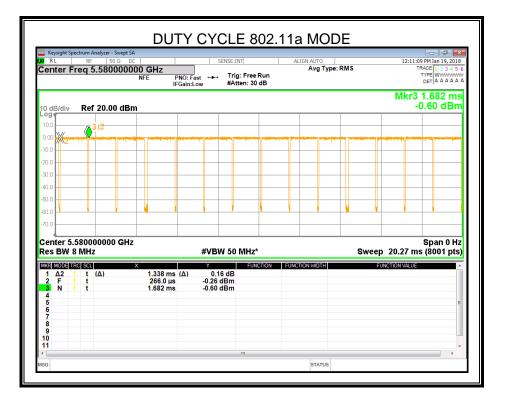
6.1. ON TIME AND DUTY CYCLE

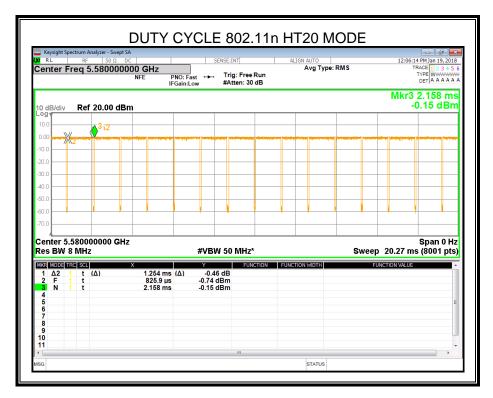
<u>LIMITS</u>

None; for reporting purposes only.

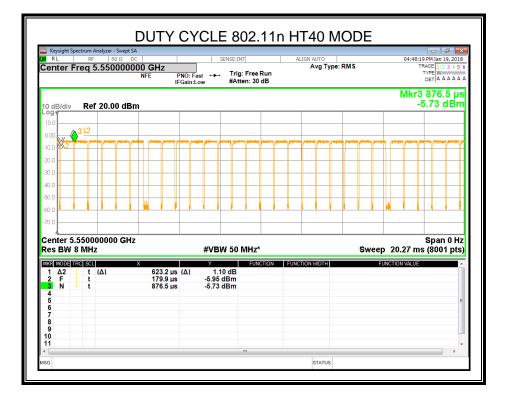
RESULTS

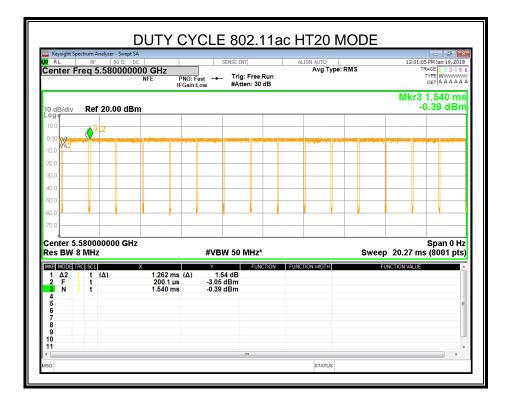
ANTENNA A

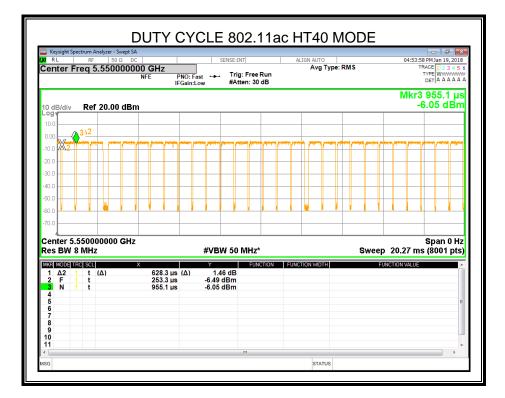

Mode	ON Time (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)
11a	1.338	1.416	0.944915254	94	0.25	0.75
11n HT20	1.254	1.3321	0.941370768	94	0.26	0.80
11n HT40	0.6232	0.6966	0.894631065	89	0.48	1.60
11ac HT20	1.262	1.34	0.941791045	94	0.26	0.79
11ac HT40	0.6283	0.7018	0.895269307	90	0.48	1.59
11ac HT80	0.3116	0.5016	0.621212121	62	2.07	3.21

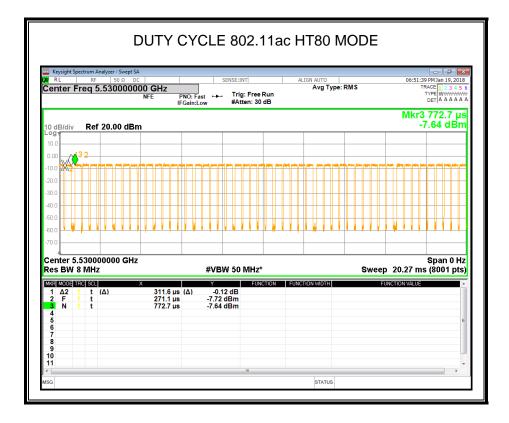

Note: Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle(Linear)


Antenna A, Antenna B and Antenna C has the same duty cycle, only ANT A data show here.


Page 18 of 183




Page 19 of 183

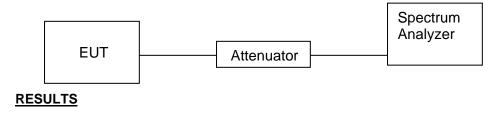
Page 20 of 183

Page 21 of 183

6.2. 6/26/99% dB BANDWIDTH

LIMITS

FCC Part15, Subpart E/ RSS-247				
Test Item	Limit	Frequency Range (MHz)		
	26 dB Bandwidth	5150-5250		
Bandwidth	26 dB Bandwidth	5250-5350		
	26 dB Bandwidth	For FCC:5470-5725		
		For IC:5470-5600		
		5650-5725		
	Minimum 500kHz 6dB Bandwidth	5725-5850		

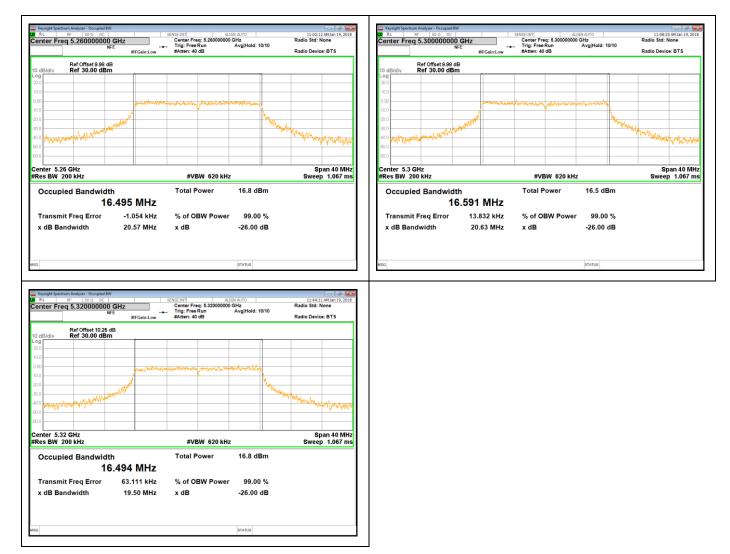

TEST PROCEDUREC

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth: RBW=100kHz For 26dB Bandwidth: approximately 1% of the emission bandwidth. For 99 % Occupied Bandwidth: approximately 1%~5% of the emission bandwidth.
VBW	For 6dB Bandwidth : VBW=300kHz For 26dB Bandwidth : >3RBW For 99 % Occupied Bandwidth : >3RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26/99% dB relative to the maximum level measured in the fundamental emission.

TEST SETUP


Page 22 of 183

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.2.1. 802.11a 3TX MODE

6.2.1.1. UNII-2A BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5260	20.57	16.495
Mid	5300	20.63	16.591
High	5320	19.50	16.494

Page 23 of 183

6.2.1.2. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5500	20.34	16.504
Mid	5580	20.47	16.515
High	5700	20.46	16.513
CH144	5720	20.69	16.617

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

Page 24 of 183


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.2.2. 802.11n HT20 3TX MODE

6.2.2.1. UNII-2A BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5260	21.36	17.739
Mid	5300	21.57	17.777
High	5320	20.97	17.713

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.2.2. UNII-2C BAND

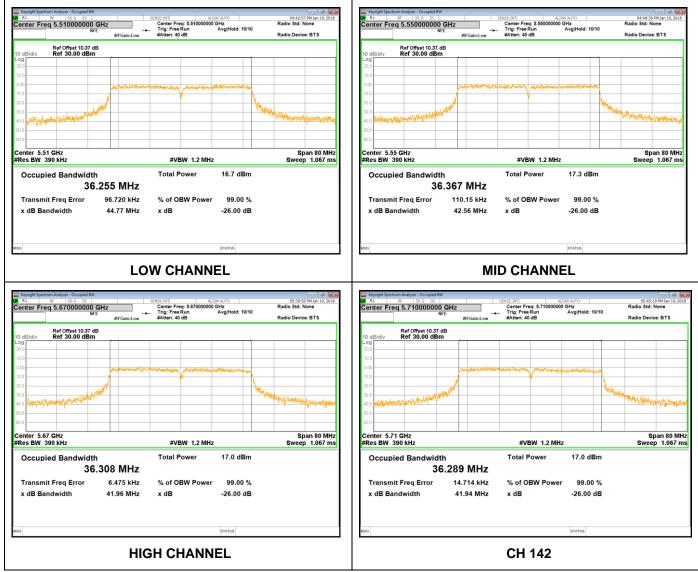
Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)	
Low	5500	20.99	17.669	
Mid	5580	21.73	17.658	
High	5700	20.69	17.721	
CH144	5720	22.05	17.774	

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.3. 802.11n HT40 3TX MODE

6.2.3.1. UNII-2A BAND


Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5270	42.90	36.231
High	5310	41.77	36.261

Page 27 of 183

6.2.3.2. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5510	44.77	36.255
Mid	5550	42.56	36.367
High	5670	41.96	36.308
CH142	5710	41.94	36.289

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.4. 802.11ac HT20 3TX MODE

6.2.4.1. NII-2A BAND

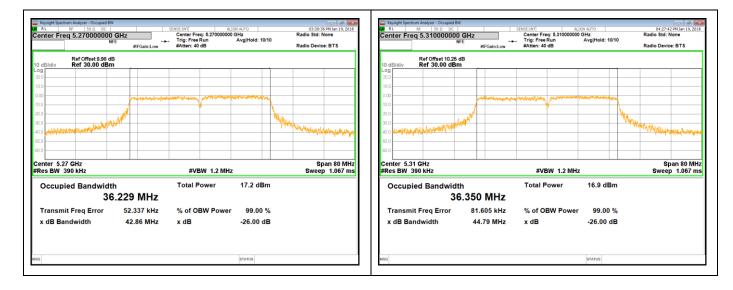

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)	
Low	5260	21.72	17.743	
Mid	5300	21.03	17.745	
High	5320	21.01	17.683	

Page 29 of 183

6.2.4.2. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5500	21.90	17.747
Mid	5580	20.89	17.733
High	5700	20.81	17.711
CH144	5720	21.83	17.746

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.5. 802.11ac HT40 3TX MODE

6.2.5.1. UNII-2A BAND

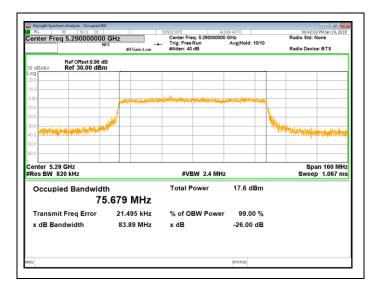
Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
Low	5270	42 .86	36.229
High	5310	44.79	36.350

Page 31 of 183

6.2.5.2. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)					
Low	5510	44.53	36.360					
Mid	5550	43.34	36.256					
High	5670	41.94	36.314					
CH142	5710	43.35	36.156					

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.6. 802.11ac HT80 3TX MODE

6.2.6.1. UNII-2A BAND

Channel	Frequency	26 dB BW	99% BW
	(MHz)	(MHz)	(MHz)
Low	5290	83.89	75.679

Page 33 of 183

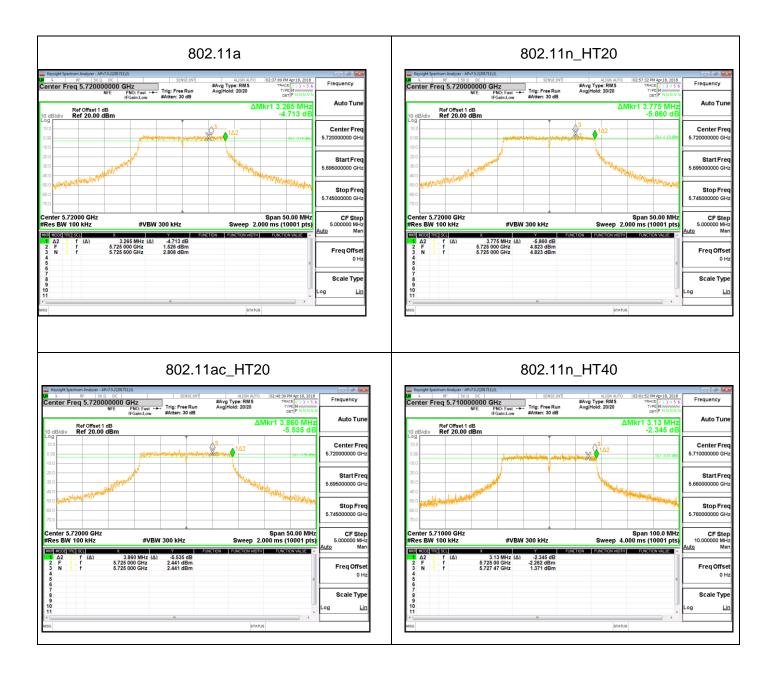
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.2.6.2. UNII-2C BAND

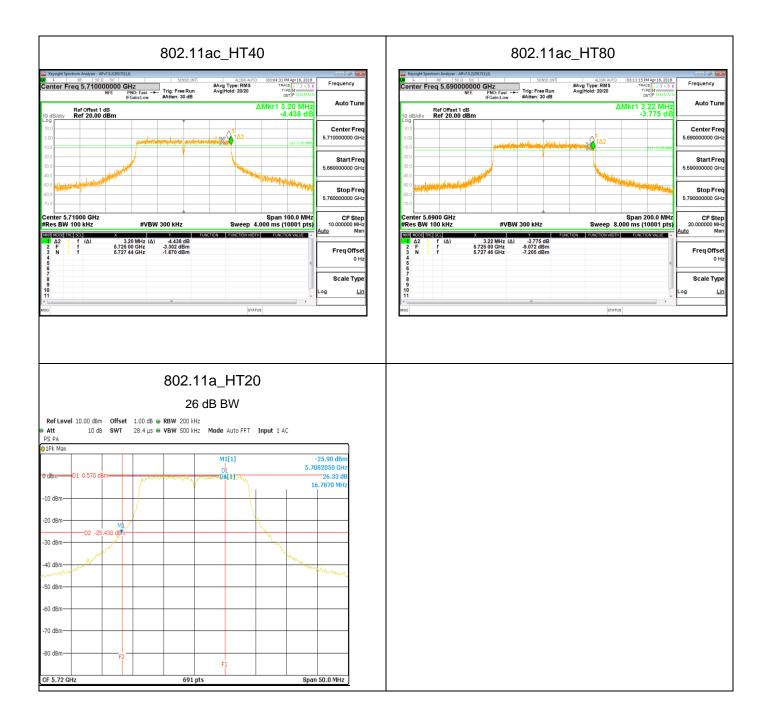
Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)					
Low	5530	85.84	75.886					
High	5610	87.32	75.744					
CH138	5690	83.90	75.666					

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

Page 40 of 501


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.2.7. 6 dB/26dB BANDWIDTH of STRADDLE CHANNEL

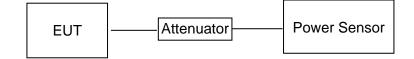

Mode	FREQUENCY	Channel	6 dB BW (MHz))	6 dB BW (KHz))	LIMIT (KHz)	RESULT
802.11a	5720	144	3.265	3265	500	PASS
802.11n_HT20	5720	144	3.775	3775	500	PASS
802.11ac_HT20	5720	144	3.860	3860	500	PASS
802.11n_HT40	5710	142	3.13	3130	500	PASS
802.11ac_HT40	5710	142	3.20	3200	500	PASS
802.11ac_HT80	5690	138	3.22	3220	500	PASS

Mode	FREQUENCY	Channel	Min 26 dB BW (MHz))	RESULT			
802.11a	5720	144	16.787	PASS			
Note: All the modes and antenna ports had been tested, 802.11a is the worst data recorded in the report.							

6.3. MAXIMUM CONDUCTED OUTPUT POWER

LIMITS

	FCC Part15, Subpart E/ RSS-247								
Test Item	Limit	Frequency Range (MHz)							
	For FCC client devices :250mW (24dBm)	5150-5250							
	For RSS:e.i.r.p. power: not exceed 200 mW(23dBm) or 10 + 10 log10 B								
Conducted Output Power	The lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250-5350							
	The lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	For FCC:5470-5725 For IC:5470-5600 5650-5725							
	1 Watt (30dBm)	5725-5850							


Note: 1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. Directional gain = $GANT + 10 \log(NANT) dBi$, where NANT is the number of outputs, GANT is the Antenna gain.

TEST PROCEDURE

Refer to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Connect the EUT to the a broadband peak RF power meter, the power meter shall have a video bandwidth that is greater than or equal to the bandwidth and shall utilize a fast-responding diode detector.

TEST SETUP

REULTS

6.3.1.1. 1TX Mode

6.3.1.1. 11X MODE								
Mode	Channel	Antenna	Setting Value	CONDUCTED POWER	Limit			
	5260	С	15.5	15.76	18.5			
	5300	С	15.5	15.64	18.5			
	5320	С	15.5	15.66	18.5			
а	5500	С	16	15.72	18.5			
	5580	С	16	15.52	18.5			
	5700	С	15.5	15.10	18.5			
	5720	С	16	15.17	17.75			
	5260	С	16	16.19	18.5			
	5300	С	16	15.91	18.5			
	5320	С	16	16.08	18.5			
n20	5500	С	16.5	16.16	18.5			
	5580	С	16.5	15.97	18.5			
	5700	С	14.50	14.19	18.5			
	5720	С	16.5	15.54	17.75			
	5260	С	16	16.14	18.5			
	5300	С	16	16.03	18.5			
	5320	С	16	16.15	18.5			
ac20	5500	С	14.5	14.04	18.5			
	5580	С	16.5	15.95	18.5			
	5700	С	16.5	16.1	18.5			
	5720	С	16.5	15.64	17.75			
	5270	С	18	18.03	18.5			
	5310	С	18	18.15	18.5			
n40	5510	С	14	14.01	18.5			
n40	5550	С	18	17.53	18.5			
	5670	С	18	17.52	18.5			
	5710	С	18	17.56	18.5			
	5270	С	18	18.02	18.5			
ac40	5310	С	18	18.08	18.5			
au40	5510	С	15.5	13.55	18.5			
	5550	С	18	17.47	18.5			

	5670	С	18	17.57	18.5
	5710	С	18	17.54	18.5
	5290	С	15	13.45	18.5
ac80	5530	С	10	8.74	18.5
acou	5610	С	17	16.12	18.5
	5690	С	17	16.18	18.5

Note: 1. All the antennas ports had been tested, but only the worst data recorded in the report.

2. The setting value means the power setting level in the software and these values will use for all the tests in the report.

6.3.1.2. 2TX Mode

Mode	Channel	Antenna		CONDUCTE	D POWER	Limit
Mode	Channel	Antenna	Setting Value	Single	Total	Limit
	5260	В	10	9.72	12.85	15.5
	5200	С		9.96	12.05	15.5
	5300	В	10	9.63	12.82	15.5
	0000	С	10	9.98	12.02	15.5
	5320	В	10	9.97	13.01	15.5
	5520	С	10	10.03	13.01	15.5
2	5500	В	10	9.02	12.29	15.5
а	5500	С	10	9.52	12.29	15.5
	5580	В	10	9.21	10.04	15.5
	0000	С	- 10 -	9.24	12.24	15.5
	5700	В	10	10.5	13.11	15.5
	5700	С		9.65		15.5
	5720	В	. 10	10.58	13.18	14.75
		С		9.71		14.75
	1				1	
	5260	В	10	9.96	12.9	15.5
	0200	С		9.82		15.5
	5300	В	10	9.67	12.87	15.5
		С		10.04		15.5
	5320	В	10	9.76	12.87	15.5
	0020	С	10	9.96	12.07	15.5
n20	5500	В	10.5	9.28	12.63	15.5
1120	5500	С	10.5	9.94	12.05	15.5
	5580	В	10.5	9.85	12.9	15.5
	5560	С	10.5	9.93	12.3	15.5
	E700	В	10	10.5	13.04	15.5
	5700	С	10	9.5	13.04	15.5
	5720	В	10	10.68	13.19	14.75
	0.20	С		9.62		14.75

		В		9.98		15.5
	5260	С	10	10.07	13.04	15.5
	5000	В	10	9.62	40.00	15.5
	5300	С	10	10	12.82	15.5
		В		9.8		15.5
	5320	С	10	9.8	12.81	15.5
a a 2 0	5500	В	40.5	9.4	40.74	15.5
ac20	5500	С	10.5	9.98	12.71	15.5
	5500	В	10 5	9.71	40.77	15.5
	5580	С	10.5	9.8	12.77	15.5
	5700	В	10	10.44	40.07	15.5
	5700	С	10	9.64	- 13.07	15.5
	5720	В	10	10.61	13.13	14.75
	5720	С	10	9.56	10.10	14.75
	5070	В	12.5	12.17	15.36	15.5
	5270	С		12.52		15.5
	5210	В	12.5	12.05	15.20	15.5
	5310	С		12.69	15.39	15.5
	5510	В	12.5	10.78	14.0	15.5
	5510	С		11.74	14.3	15.5
n40	EEE0	В	12.5	11.15	14.47	15.5
	5550	С		11.74		15.5
		В	10.5	12.45	45.07	15.5
	5670	С	12.5	12.27	15.37	15.5
	5740	В	40.5	12.58	45.05	15.5
	5710	С	12.5	12.09	15.35	15.5
	5070	В	40.5	12.02	45.00	15.5
	5270	С	12.5	12.41	15.23	15.5
	5040	В	40.5	11.96	45.05	15.5
	5310	С	12.5	12.69	15.35	15.5
	EE40	В	40 E	10.68	14.00	15.5
	5510	С	12.5	11.69	14.22	15.5
ac40		В	40 5	11.21	4 4 47	15.5
	5550	С	12.5	11.69	14.47	15.5
	5670	В	12.5	12.29	15.31	15.5

		С		12.31		15.5
	5710	В	40.5	12.68	15.44	15.5
		С	12.5	12.16		15.5

	5290	В	12	10.93	14.26	15.5
	5290	С	12	11.54	14.20	15.5
	5520	В	7.5	5.77	0.09	15.5
ac80	5530	С		5.22	9.98	15.5
acou	5610	В	12.5	11.36	14 50	15.5
	5010	С		11.68	14.53	15.5
	5600	В	12.5	12.04	15	15.5
	5690	С		11.94		15.5

Note: 1. All the antennas ports had been tested, but only the worst data recorded in the report.

2. The setting value means the power setting level in the software and these values will use for all the tests in the report.

|--|

	6.3.1.3.	3TX Mode				
Mode	Channel		Setting	CONDUCTED POWER		
INIDUE	Channel		Value	Single	Total	Limit
		А		5.65		13.5
	5260	В	8	6.59	11.07	13.5
		С		6.59		13.5
		A		5.46		13.5
	5300	В	8	6.45	10.94	13.5
		С		6.51		13.5
		A		5.25		13.5
	5320	В	8	6.02	10.73	13.5
		С		6.51		13.5
		A		5.4		13.5
а	5500	B	8	5.68	10.52	13.5
		C		6.13		13.5
	5500	A		5.64	40.00	13.5
	5580	B C	8	5.94	10.68	13.5
				6.14		13.5
	5700	A B	7.5	<u>5.33</u> 6.77	40.05	13.5 13.5
		C			10.85	13.5
				6.01		
	5720	A	7.5	5.76	┥ ┝	12.75
		В		6.94	11.13	12.75
		С		6.31		12.75
		1	1			
	5260	A		5.67		13.5
		В	8	6.51	11.09	13.5
		С		6.71		13.5
	5300	A	8	5.47		13.5
		В		6.36	10.9	13.5
		С		6.5		13.5
	5320	A	8	5.38	_	13.5
		В		6.22	10.85	13.5
		C		6.56		13.5
n20	5500	A	8	5.43		13.5
		В		5.54	10.45	13.5
		С		6.05		13.5
	5580	А	7	6.18		13.5
		В		6.34	11.17	13.5
		С		6.67	7 [13.5
		A	8	5.68		13.5
	5700	В		7.19	11.26	13.5
		С		6.47	7 [13.5

6.3.1.3. 3TX Mode

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C 6.52 13.5 A 5.5 13.5 5500 B 8 5.53 10.61 13.5 ac20 C 6.41 13.5
ac20 A 5.5 10.61 13.5 13.5 ac20 C A 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
ac20 5500 B 8 5.53 10.61 13.5 C 6.41 13.5
ac20 C 6.41 13.5
A 6.55 13.5
5580 B 7 6.29 11.23 13.5
C 6.53 13.5
A 5.97 13.5
5700 B 8 7.35 11.4 13.5
C 6.45 13.5
A 5.43 12.75
5720 B 7.5 6.77 10.9 12.75
C 6.08 12.75
A 7.63 13.5
5270 B 8.5 8.3 12.88 13.5
C 8.37 13.5
A 7.42 13.5
5310 B 8.5 7.98 12.69 13.5
n40 C 8.3 13.5
A 7.2 13.5
5510 B 8.5 6.97 12.05 13.5
C 7.63 13.5
A 7.87 13.5
5550 B 8.5 7.3 12.37 13.5

	С		7.62		13.5
5670	А	8.5	8.08	12.98	13.5
	В		8.36		13.5
	С		8.19		13.5
5710	А	8.5	7.82	12.93	13.5
	В		8.72		13.5
	С		7.89		13.5

ac40		А		7.75		13.5
	5270	В	8.5	8.06	12.82	13.5
		С		8.32		13.5
		Α		7.54		13.5
	5310	В	8.5	8.15	12.78	13.5
		С		8.31		13.5
	5510	А	8.5	7.3	12.21	13.5
		В		7.34		13.5
		С		7.68		13.5
	5550	А	8.5	7.84	12.68	13.5
		В		7.42		13.5
		С		8.41		13.5
		А		7.93		13.5
	5670	В	8.5	8.37	12.96	13.5
		С		8.26		13.5
	5710	Α	8.5	7.9	13.02	13.5
		В		8.77		13.5
		С		8.01		13.5

ac80		А		6.70		13.5
	5290	В	8	7.13	12.84	13.5
		С		7.36		13.5
	5530	А	5.5	4.55	8.68	13.5
		В		3.83		13.5
		С		3.26		13.5
	5610	А	8.5	7.77	12.31	13.5
		В		7.37		13.5
		С		7.46		13.5
	5690	А	8.5	7.7	12.71	13.5
		В		8.26		13.5
		С		7.85		13.5

Note: 1. All the antennas ports had been tested, but only the worst data recorded in the report.

2. The setting value means the power setting level in the software and these values will use for all the tests in the report.