

FCC 47 CFR PART 15 SUBPART E

CERTIFICATION TEST REPORT

For Outdoor Wireless LAN Access Point

MODEL NUMBER: AP8030DN

FCC ID: QISAP8030DN

REPORT NUMBER: 4788310840.1-2

ISSUE DATE: August 23, 2018

Prepared for HUAWEI TECHNOLOGIES CO., LTD. Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen, P.R. China, 518129

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
	07/22/2018	Initial Issue	
R2	08/23/2018	Updated sections 6.6.3 & 6.6.5	Miller. Ma

Page 2 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Description of Test Item	Standard	Results			
DFS Detection Threshold	FCC 15.407, KDB 905462 D02	PASS			
Channel Availability Check Time	FCC 15.407, KDB 905462 D02	PASS			
Non-Occupancy Period	FCC 15.407, KDB 905462 D02	PASS			
U-NII Detection Bandwidth	FCC 15.407, KDB 905462 D02	PASS			
Channel Closing Transmission Time	FCC 15.407, KDB 905462 D02	PASS			
Channel Move Time	FCC 15.407, KDB 905462 D02	PASS			
Statistical Performance Check	FCC 15.407, KDB 905462 D02	PASS			
Note: N/A is an abbreviation for Not Applicable					

Page 3 of 76

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS5	,
2.	TES	T METHODOLOGY6	;
3.	FAC	ILITIES AND ACCREDITATION6)
4.	CAL	IBRATION AND UNCERTAINTY7	,
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
5.	EQI	JIPMENT UNDER TEST	;
÷	5.1.	DESCRIPTION OF EUT	3
÷	5.2.	CHANNEL LIST)
÷	5.3.	TEST ENVIRONMENT	>
÷	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	3
÷	5.5.	MEASURING INSTRUMENT AND SOFTWARE USED	1
6.	Dyn	amic Frequency Selection15	;
(6.1.	Applicability of DFS requirements15	5
(6.2.		~
		Limits	Ĵ
	6.3.	Limits 16 Parameters of radar test Waveforms 17	
	6.3. 6.4. 6.4. 6.4. 6.4.	Parameters of radar test Waveforms	2
	6 <i>.4.</i> 6.4. 6.4.	Parameters of radar test Waveforms	223

1. ATTESTATION OF TEST RESULTS

Applicant Information	
Company Name:	HUAWEI TECHNOLOGIES CO., LTD.
Address:	Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen, P.R. China, 518129
Manufacturer Information	
Company Name:	HUAWEI TECHNOLOGIES CO., LTD.
Address:	Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen, P.R. China, 518129
EUT Description	
EUT Name:	Outdoor Wireless LAN Access Point
Model:	AP8030DN
Brand Name:	HUAWEI
Sample Status:	Normal
Sample ID:	1358586
Sample Received Date:	January 04, 2018
Date of Tested:	July 13, 2018~ July 19, 2018

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart E 15.407 (h)

PASS

Tested By:

Miller Ma

ſ

Checked By:

Miller Ma **Engineer Project Associate**

Approved By:

ephentus

Stephen Guo

Operations Manager

Page 5 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Shenny les

Shawn Wen Operations Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 CFR Part 15, Subpart E, KDB 905462 D02.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	· · · · · · · · · · · · · · · · · · ·

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Page 6 of 76

4. CALIBRATION AND UNCERTAINTY

4.1.MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

Page 7 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5. EQUIPMENT UNDER TEST

5.1.DESCRIPTION OF EUT

Equipment	Outdoor Wireless LAN Access Point			
EUT Description	The EUT is an Access Point for outdoor use.			
Model Name	AP8030DN			
Radio Technology	IEEE802.11a/n HT20/n HT40 /ac HT20/ac HT40/ac HT80			
Modulation IEEE 802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n: OFDM(BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256-QA			QPSK, 16QAM, 64QAM)	
David Original	Power	Input	AC 100~240V, 50~60Hz, 1.0A	
Power Supply	Adapter	Output	DC 48V, 0.65A	
Operating mode	Master			
Hardware Version	VER.C			
Software Version	V200			

15.407:U-NIL devices operating in the 5.25-5.35 GHZ band and the 5.47-5.725 GHZ band shall employ a TPC mechanism. The U-NIL device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm A TPC mechanism is not required for systems with an e.i.r.p of less than 500 mw.

U-NII devices operating in the 5.25-5.35 GHZ and 547-5.725 GHZ bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

- The EUTradio operates in the following bands: a.5150-5250MHz b.5250-5350MHz c.5470-5725MHz d.5725-5850MHz.
- 2. The EUT operates in Master mode and does not support bridge mode and MESH mode.
- 3. The maximum e.i.r.p of the 5GHZ equipment is 29.65dBm and the minimum possible e.i.r.p is 13.74dBm for the UNII-2A and 2C frequency bands.
- 4. The channel loading data file will be transferred from the Master Device to the Client Device for all test configurations.
- 5. Information regarding the parameters of the detected Radar Waveforms is not available to the end user.
- 6. For the 5250-5350MHZ and 5470-5725MH bands, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.
- 7. The manufacturer is permitted to select the first channel either manually or randomly. The manufacturer may also block DFS channels from use.

Page 8 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8. The Master requires(164.301) seconds to complete its power-on cycle.

Page 9 of 76

5.2.CHANNEL LIST

20 MHz Bandwidth Channel frequencies				
Band	Channel	Frequency (MHz)		
	36	5180		
UNII-1	40	5200		
	44	5220		
	48	5240		
	52	5260		
UNII-2	56	5280		
UNII-2	60	5300		
	64	5320		
	100	5500		
	104	5520		
	108	5540		
	112	5560		
	116	5580		
UNII-2C	120	5600		
01111 20	124	5620		
	128	5640		
	132	5660		
	136	5680		
	140	5700		
	144	5720		
	149	5745		
	153	5765		
UNII-3	157	5785		
	161	5805		
	165	5825		

Page 10 of 76

40 MHz Bandwidth Channel frequencies				
Band	Channel	Frequency (MHz)		
UNII-1	38	5190		
UNII-1	46	5230		
	54	5270		
UNII-2	62	5310		
	102	5510		
	110	5550		
	118	5590		
UNII-2C	126	5630		
	134	5670		
	142	5710		
UNII-3	151	5755		
	159	5795		

80 MHz Bandwidth Channel frequencies				
Band	Channel	Frequency (MHz)		
UNII-1	42	5210		
UNII-2 58		5290		
	106	5530		
UNII-2C	122	5610		
	138	5690		
UNII-3	155	5775		

Page 11 of 76

Environment Parameter Selected Values During Tests			
Relative Humidity	35 ~ 65%		
Atmospheric Pressure:	1025Pa		
Temperature	TN	23 ~ 28°C	
	VL	N/A	
Voltage :	VN	AC 120V/60Hz	
	VH	N/A	

5.3.TEST ENVIRONMENT

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 12 of 76

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	Antenna Technology
1	5150-5850	Omni-Directional	11.5	SISO&MIMO
Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	Antenna Technology
2	5150-5850	Omni-Directional	11.5	SISO&MIMO
Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	Antenna Technology
3	5150-5850	Omni-Directional	11.5	SISO&MIMO

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Page 13 of 76

R&S TS 8997 Test System						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date	
Power sensor, Power Meter	R&S	OSP- B157W8	100921	Apr.28,2018	Apr.27,2019	
Vector Signal Generator	R&S	SMBV100A	261637	Dec.12,2017	Dec.11,2018	
Signal Generator	R&S	SMB100A	178553	Dec.12,2017	Dec.11,2018	
Signal Analyzer	R&S	FSV40	A1512015	Dec.12,2017	Dec.11,2018	
	Software					
Description Manufacturer			Name	e Version		
For R&S TS 8997 Test System	Rohde & Schw	/arz	VMS32		V10.38	

5.5. MEASURING INSTRUMENT AND SOFTWARE USED

Note : R&S TS 8997 test system is used for DFS testing.

Page 14 of 76

6.1. Applicability of DFS requirements

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode				
Requirement	⊡Master	□Client Without Radar Detection	□Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	☑Master Device or Client with Radar Detection	□Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	⊠Master Device or Client with Radar Detection	□Client Without Radar Detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.					

6.2.Limits

(1) DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)					
EIRP ≥ 200 milliwatt	-64 dBm					
EIRP < 200 milliwatt and	-62 dBm					
power spectral density < 10 dBm/MHz	-02 UBIII					
EIRP < 200 milliwatt that do not meet the						
power	-64 dBm					
spectral density requirement						
Note 1: This is the level at the input of the receive						
Note 2: Throughout these test procedures an add	ditional 1 dB has been added to the amplitude of					
the test transmission waveforms to account for variations in measurement equipment. This will						
ensure that the test signal is at or above the detection threshold level to trigger a DFS response.						
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication						
662911 D01.						

(2) DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
	200 milliseconds + an aggregate of 60 milliseconds
Channel Closing Transmission Time	over
	remaining 10 second period.
	See Notes 1 and 2.
LI NIII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
U-NII Detection Bandwidth	power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

6.3. Parameters of radar test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

	D (117.44		se Radar Test waveforn		10.1		
Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum		
Type	(µsec)	(µsec)		Percentage of	Number of		
				Successful	Trials		
				Detection			
0	1	1428	18	See Note 1	See Note 1		
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \right\}$ $\left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \text{we}}} \right)$	60%	30		
2	1-5	in Test A 150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
Aggregate (Radar Types 1-			80%	120		
			used for the detection ba				
			see for the occentration of	nowidin icst, Cli	and nove		
time, and channel closing time tests.							

Table 5 – Short Pulse Radar Test Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

would be Roundup
$$\left\{ \left(\frac{1}{360}\right), \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Round up } \{17.2\} = 18.$$

Page 17 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Pulse Repetition	Pulse Repetition Frequency	Pulse Repetition
Frequency	(Pulses Per Second)	Interval
Number		(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 5a Dulce Popetition	Intonyale Values for Test A
Table 5a - Pulse Repetition	Intervals values for rest A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful	Minimum Percentage			
		Detections	of Successful			
			Detection			
1	35	29	82.9%			
2	30	18	60%			
3	30	27	90%			
4	50	44	88%			
Aggregate $(82.9\% + 60\% + 90\% + 88\%)/4 = 80.2\%$						

Page 18 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
	Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
	. –	(µsec)	(MHz)		per Burst		Successful	Trials
							Detection	
ſ	5	50-100	5-20	1000-	1-3	8-20	80%	30
				2000				

Table 6 – Long Pulse Radar Test Waveform

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

1) The transmission period for the Long Pulse Radar test signal is 12 seconds.

2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.

3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each

Burst within the 12 second sequence may have a different number of pulses.

4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.

5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.

6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the random time interval between the first and second pulses is chosen independently of the random time interval between the second and third pulses.

7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen randomly.

A representative example of a Long Pulse Radar Type waveform:

- 1) The total test waveform length is 12 seconds.
- 2) Eight (8) Bursts are randomly generated for the Burst Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.

Page 19 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random

PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 – 3,000,000 microsecond range).

Long Pulse Radar Test Signal Waveform 12 Second Transmission Start 12 Sec Burst 1 Burst 2 Burst 3 Burst 4 Burst N Burst Interval

Figure 1 provides a graphical representation of the Long Pulse Radar Test Waveform.

Figure 1: Graphical Representation of a Long Pulse Radar Type Waveform

Page 20 of 76

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulsesper Burst	Numberof Bursts	Minimum Percentage of Successful Detection	Minimum Number ofTrials
6	1	333	9	0.333	300	70%	30

Table 7 – Frequency Hopping Radar Test Waveform

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: ⁴

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 - 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Page 21 of 76

6.4.Test Setup

6.4.1. SYSTTEMITEST CONFIGURATON

Description of Test Configuration:

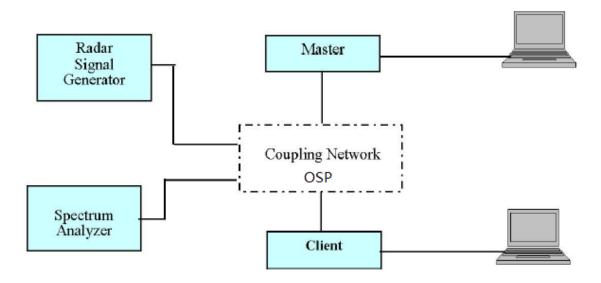
The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Stream the test file from the Master Device to the Client Device for IP based systems or frame based systems which dynamically allocate the talk/listen ratio.

Software to ping the client is used to simulate data transfer with a minimum channel loading of approximately 17% or greater.EUT Exercise Software

The test was performed under: DOS command, which was provided by the manufacturer.

Support Equipment List and Details


Item	Equipment	Brand Name	Model Name	S/N
1	Laptop	Lenovo	E42-80	R303U5EG
2	Desktop computer	Dell	DO7S	
3	11ac Wireless adapter	net-core	NW392	

External Cable

Cable No	Cable Description	Shielding Type	Ferrite Core	Cable Length(m)	Remarks
1	RJ-45 Cable	No	No	3	Connect Laptop to EUT

Page 22 of 76

Page 23 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.4.3. Conducted Method

7.2.1 Setup for Master with injection at the Master

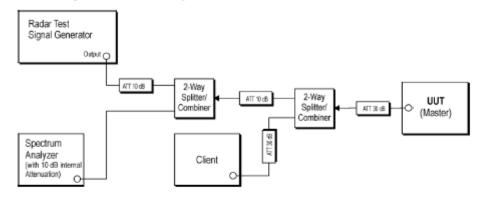


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

7.2.2 Setup for Client with injection at the Master

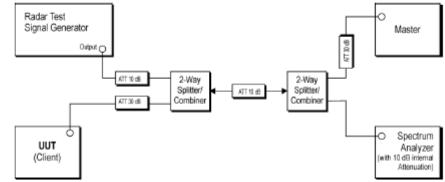


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

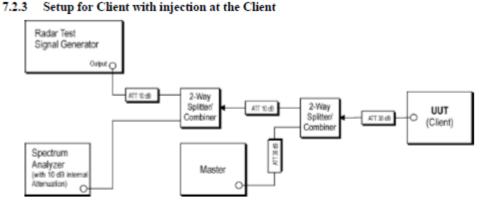


Figure 4: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client

Page 24 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.5.Test Procedure

Please refer to KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02 Clause 7.8.

6.5.1 U-NII Detection Bandwidth

Set up the generating equipment as shown in Figure 8, or equivalent. Set up the DFS timing monitoring equipment as shown in Figure 13 or Figure 14. Set up the overall system for either radiated or conducted coupling to the UUT.

Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0 - 4 in Table 5 at the center frequency of the UUT Operating Channel at the specified DFS Detection Threshold level found in Table 3.

Set the UUT up as a standalone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.

Generate a single radar Burst, and note the response of the UUT. Repeat for a minimum of 10 trials. The UUT must detect the Radar Waveform within the DFS band using the specified U-NII Detection Bandwidth criterion shown in Table 4. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.

Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 4. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as FH) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above FH is not required to demonstrate compliance.

Starting at the center frequency of the UUT operating Channel, decrease the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 4. Repeat this measurement in 1MHz steps at frequencies 5 MHz above where the detection rate begins to fall. Record the lowest frequency (denote as FL) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below FL is not required to demonstrate compliance.

The U-NII Detection Bandwidth is calculated as follows:

U-NII Detection Bandwidth = FH - FL

The U-NII Detection Bandwidth must meet the U-NII Detection Bandwidth criterion specified in Table 4. Otherwise, the UUT does not comply with DFS requirements. This is essential to ensure that the UUT is capable of detecting Radar Waveforms across the same frequency spectrum that contains the significant energy from the system. In the case that the U-NII

Page 25 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Detection Bandwidth is greater than or equal to the 99 percent power bandwidth for the measured FH and FL, the test can be truncated and the U-NII Detection Bandwidth can be reported as the measured FH and FL.

6.5.2 Performance Requirements Check

The following tests must be performed for U-NII device certification: Initial Channel Startup Check with a radar Burst at start of Channel Availability Check and with a radar Burst at end of Channel Availability Check; In-Service Monitoring; and the 30 minute Non-Occupancy Period.

6.5.3.1 Initial Channel Availability Check Time

The Initial Channel Availability Check Time tests that the UUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms and only needs to be performed one time.

a) The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 4 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.

b) The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.

c) Confirm that the UUT initiates transmission on the channel

This measurement can be used to determine the length of the power-on cycle if it is not supplied by the manufacturer. If the spectrum analyzer sweep is started at the same time the UUT is powered on and the UUT does not begin transmissions until it has completed the cycle, the power-on time can be determined by comparing the two times.

6.5.3..2 Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. This is illustrated in Figure 15.

a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections on configuration for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.

b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.

c) A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.

e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

Page 26 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

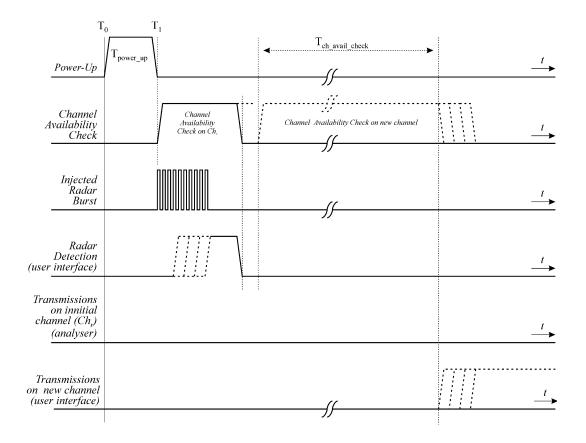


Figure 15: Example of timing for radar testing at the beginning of the Channel Availability Check Time

6.5.3.3 Radar Burst at the End of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1dB occurs at the end of the Channel Availability Check Time. This is illustrated in Figure 16.

a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.

b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.

c) A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.

Page 27 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

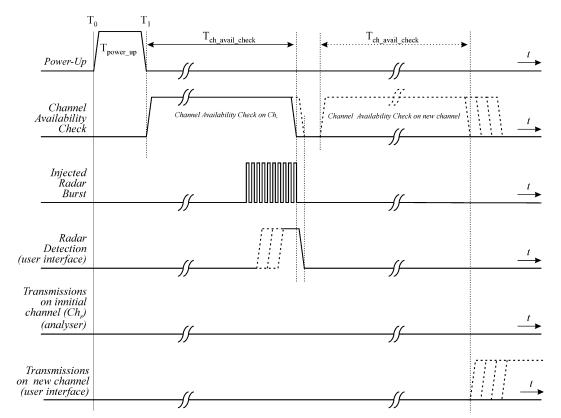


Figure 16: Example of timing for radar testing towards the end of the Channel Availability Check Time

Page 28 of 76

6.5.4 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

These tests define how the following DFS parameters are verified during In-Service Monitoring; - Channel Closing Transmission Time

- Channel Move Time
- Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U- NII device (In- Service Monitoring).

a) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.

b) In case the UUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed to the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
c) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

d) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

e) Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.

f) When operating as a Master Device, monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

g) In case the UUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps a) to f).

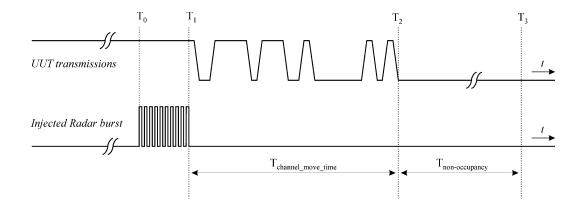
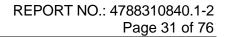



Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time

Page 30 of 76

6.5.5 Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of successful detection requirements found in Tables 5-7 when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In-Service Monitoring).

a) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.

b) In case the UUT is a U-NII device operating as a Client Device (with or without Radar Detection), a U-NII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.

c) Stream the channel loading test file from the Master Device to the Client Device on the test Channel

for the entire period of the test.

d) At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types 1- 6 in Tables 5-7, at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

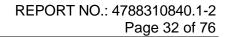
e) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Radar Type 0 to ensure detection occurs.

f) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.g) In case the UUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps a) to f).

7.8.4.1 Short Pulse Radar Test

Once the performance requirements check is complete, statistical data will be gathered, to determine the ability of the device to detect the radar test waveforms (Short Pulse Radar Types 1-4) found in Table 5. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trials. The percentage of successful detection is calculated by:

 $\frac{TotalWaveformDetections}{TotalWaveformTrials} \times 100 = Percentage of Successful Detection Radar Waveform N = P_dN$


In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows:

 $\frac{P_{d}1 + P_{d}2 + P_{d}3 + P_{d}4}{4}$

The minimum number of trails, minimum percentage of successful detection and the aggregate minimum percentage of successful detection are found in Table 5.

Page 31 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7.8.4.2 Long Pulse Radar Test

Statistical data will be gathered to determine the ability of the device to detect the Long Pulse Radar Type 5 found in Table 6. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trials.

Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ in where the Long Pulse Type 5 Signal is tuned in frequency:

a) the Channel center frequency (Figure 18);

b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge of the UUT Occupied Bandwidth (Figure 19); and

c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge of the UUT Occupied Bandwidth (Figure 20).

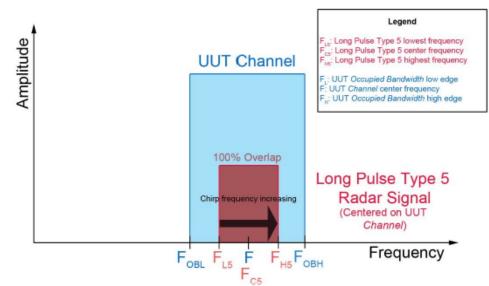


Figure 18: Example of the Relationship Between Long Pulse Type 5 Signal and the U-NII channel when the Signal is Tuned to the UUT Channel Center Frequency

Page 32 of 76



Figure 19: Example of the Relationship Between Long Pulse Type 5 Signal and the U-NII channel when the Signal is Tuned so that 90% of the Radar Signal Overlaps with the Low Edge of the UUT Occupied Bandwidth

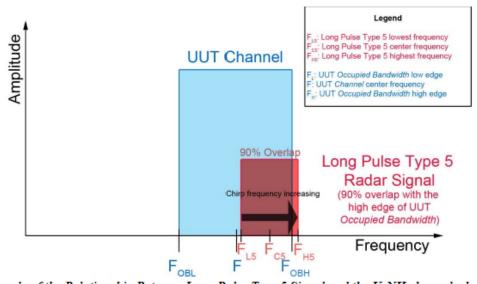


Figure 20: Example of the Relationship Between Long Pulse Type 5 Signal and the U-NII channel when the Signal is Tuned so that 90% of the Radar Signal Overlaps with the High Edge of the UUT Occupied Bandwidth

For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel.

For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2. The center frequency of the signal generator for each trial is calculated by: FL + (0.4 * Chirp Width [in MHz])

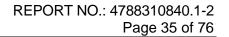
Page 33 of 76

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3. The center frequency of the signal generator for each trial is calculated by:

FH - (0.4 * Chirp Width [in MHz])

The percentage of successful detection is calculated by dividing the sum of the detections for the three subsets by the sum of trials for the three subsets:


TotalWaveformDetections TotalWaveformTrials

7.8.4.3 Frequency Hopping Radar Test

Statistical data will be gathered to determine the ability of the device to detect the Frequency Hopping radar test signal (radar type 6) found in Table 7. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The probability of successful detection is calculated by:

TotalWaveformDetections TotalWaveformTrials

Page 34 of 76

6.6.Test Result

6.6.1. DFS DETECTION THRESHOLD

The EUT operates in 5230-5350 MHZ and 5470-5723 MHZ range

The maximum conducted output power of EUT is 18.15dbm antenna gain is 11.5dBi, the Maximum EIRP=18.15+11.5=29.65dBm, Therefore the required interference threshold level is -64dbm, the required radiated threshold at antenna port is -64dbm.The calibrated radiated DFS detection threshold level is set to-64dBm, threshold level=-64dBm + antenna gain=-52.5 dBm.

DFS Threshold Level					
DFS Threshold Level Value	Limit	Result			
-64dBm	≤ -52.5dBm	Pass			

Note:EUT'Maxmun.E.I.R.P≥200 mw

6.6.2. DFS U-NII Detection Bandwidth

DFS U-NII Detection Bandwidth (5500 MHz; 20 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Measured Detection Bandwidth (MHz)	99% Transmission power Bandwidth (MHz)	Overall Result	Overall Comment
5500.000000	0	20.000000	16.600000	PASS	

Detection Bandwidth Detailed Results

Check Frequency (MHz)	Detection count	Percentage of Detection	Minimum Limit	Single Measurement Result	Single Measurement Comment
5485.000000	0 of 10	0 %	90%	FAIL	
5489.000000	0 of 10	0 %	90%	FAIL	
5490.000000	10 of 10	100 %	90%	PASS	Lower Limit
5495.000000	10 of 10	100 %	90%	PASS	
5500.000000	10 of 10	100 %	90%	PASS	
5505.000000	9 of 10	90 %	90%	PASS	
5510.000000	10 of 10	100 %	90%	PASS	Upper Limit
5511.000000	0 of 10	0 %	90%	FAIL	
5515.000000	0 of 10	0 %	90%	FAIL	

Page 35 of 76

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	6.85	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	69.85	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

U-NII Detection Bandwidth Sweep

Setting	Instrument Value	Target Value
Center Frequency	5.50000 GHz	5.50000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	12.000 s	12.000 s
Reference Level	-30.000 dBm	-30.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
Trigger	External	External
Trigger Offset	0.000 ms	0.000 ms

Page 36 of 76

DFS U-NII Detection Bandwidth (5510 MHz; 40 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Measured Detection Bandwidth (MHz)	99% Transmission power Bandwidth (MHz)	Overall Result	Overall Comment
5510.000000	0	42.000000	36.200000	PASS	

Detection Bandwidth Detailed Results

Check Frequency	Detection count	Percentage of Detection	Minimum Limit	Single Measurement	Single Measurement
(MHz)				Result	Comment
5485.000000	0 of 10	0 %	90%	FAIL	
5488.000000	0 of 10	0 %	90%	FAIL	
5489.000000	10 of 10	100 %	90%	PASS	Lower Limit
5490.000000	10 of 10	100 %	90%	PASS	
5495.000000	10 of 10	100 %	90%	PASS	
5500.000000	10 of 10	100 %	90%	PASS	
5505.000000	10 of 10	100 %	90%	PASS	
5510.000000	10 of 10	100 %	90%	PASS	
5515.000000	10 of 10	100 %	90%	PASS	
5520.000000	10 of 10	100 %	90%	PASS	
5525.000000	10 of 10	100 %	90%	PASS	
5530.000000	10 of 10	100 %	90%	PASS	
5531.000000	10 of 10	100 %	90%	PASS	Upper Limit
5532.000000	2 of 10	20 %	90%	FAIL	
5535.000000	1 of 10	10 %	90%	FAIL	

Page 37 of 76

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	6.92	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	69.92	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

U-NII Detection Bandwidth Sweep

Setting	Instrument Value	Target Value
Center Frequency	5.51000 GHz	5.51000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	12.000 s	12.000 s
Reference Level	-30.000 dBm	-30.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
Trigger	External	External
Trigger Offset	0.000 ms	0.000 ms

Page 38 of 76

DFS U-NII Detection Bandwidth (5530 MHz; 80 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Measured Detection Bandwidth (MHz)	99% Transmission power Bandwidth (MHz)	Overall Result	Overall Comment
5530.000000	0	80.000000	75.800000	PASS	

Detection Bandwidth Detailed Results

Check Frequency (MHz)	Detection count	Percentage of Detection	Minimum Limit	Single Measurement Result	Single Measurement Comment
5485.000000	0 of 10	0 %	90%	FAIL	
5489.000000	0 of 10	0 %	90%	FAIL	
5490.000000	10 of 10	100 %	90%	PASS	Lower Limit
5495.000000	10 of 10	100 %	90%	PASS	
5500.000000	10 of 10	100 %	90%	PASS	
5505.000000	10 of 10	100 %	90%	PASS	
5510.000000	10 of 10	100 %	90%	PASS	
5515.000000	10 of 10	100 %	90%	PASS	
5520.000000	10 of 10	100 %	90%	PASS	
5525.000000	10 of 10	100 %	90%	PASS	
5530.000000	10 of 10	100 %	90%	PASS	
5535.000000	10 of 10	100 %	90%	PASS	
5540.000000	10 of 10	100 %	90%	PASS	
5545.000000	10 of 10	100 %	90%	PASS	
5550.000000	10 of 10	100 %	90%	PASS	
5555.000000	10 of 10	100 %	90%	PASS	
5560.000000	10 of 10	100 %	90%	PASS	
5565.000000	10 of 10	100 %	90%	PASS	
5570.000000	10 of 10	100 %	90%	PASS	Upper Limit
5571.000000	0 of 10	0 %	90%	FAIL	
5575.000000	2 of 10	20 %	90%	FAIL	

Page 39 of 76

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	7.13	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	70.13	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

U-NII Detection Bandwidth Sweep

Setting	Instrument Value	Target Value
Center Frequency	5.53000 GHz	5.53000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	12.000 s	12.000 s
Reference Level	-30.000 dBm	-30.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
Trigger	External	External
Trigger Offset	0.000 ms	0.000 ms

Page 40 of 76

6.6.3. DFS Channel Availability Check

DFS Channel Availability Check (5320 MHz; 20 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Waveform Filename used	САС Туре	Overall Result	Overall Comment
5320.000000	FCC15407_2014-Type0-18.wv	Begin of CAC Phase	PASS	
5320.000000	FCC15407_2014-Type0-18.wv	End of CAC Phase	PASS	

Measurement Detailed Results

DUT Frequency (MHz)	Radar Type No.	Measured Startup time (s)	Configured Startup time (s)	Initial Channel Availability Check Time
5320.000000	0	224.301		224.301

DUT Frequency (MHz)	Time of Tx Start (s)	Limit (s)	Result	Comment
5320.000000	0.000	0.00	PASS	No emissions detected; OK
5320.000000	>150.0	>150.0	PASS	See Note 1.
5320.000000	0.000	0.00	PASS	No emissions detected; OK
5320.000000	>150.0	>150.0	PASS	See Note 1.

Radar Pulse verification Summary

Radar Type No.	No. of Pulses	Required No. of Pulses	Required Pulsewidth (us)
0	18	18	1.0
0	18	18	1.0

(continuation of the "Radar Pulse verification Summary" table from column 8 ...)

Page 41 of 76

Radar Pulse verification detail (Begin of CAC Phase)

Radar Type No.	Pulse No.	Required Pulsewidth (µs)
0	1	1.000
0	2	1.000
0	3	1.000
0	4	1.000
0	5	1.000
0	6	1.000
0	7	1.000
0	8	1.000
0	9	1.000
0	10	1.000
0	11	1.000
0	12	1.000
0	13	1.000
0	14	1.000
0	15	1.000
0	16	1.000
0	17	1.000
0	18	1.000

Radar Pulse verification detail (End of CAC Phase)

Radar	Pulse	Required
Туре	No.	Pulse width
No.		(µs)
0	1	1.000
0	2	1.000
0	3	1.000
0	4	1.000
0	5	1.000
0	6	1.000
0	7	1.000
0	8	1.000
0	9	1.000
0	10	1.000
0	11	1.000
0	12	1.000
0	13	1.000
0	14	1.000
0	15	1.000
0	16	1.000
0	17	1.000
0	18	1.000

Page 42 of 76

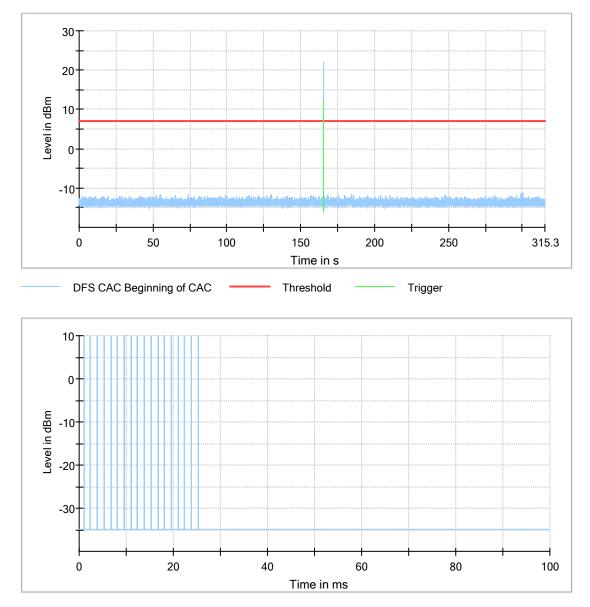
Additional Information

Note	Description
Note 1:	Sweep of Analyser and Radar pulse waveform are triggered at the same time. Therefore, the radar pulses maybe can be seen at the trigger point of the trace. Analysis of the Sweeps excludes the covered time for the radar pulses.
Note 2:	The radar signal is simultaneously evaluated as the analyser sweep after radar injection.

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	6.66	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	69.66	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

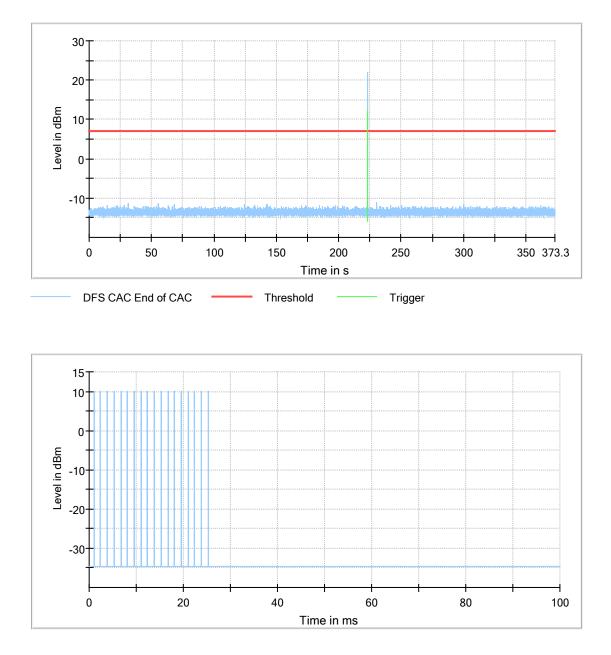
Page 43 of 76



Initial Channel Availability Check Time

DUT Frequency (MHz)	Radar Type No.	Configured Startup time (s)	Initial Cha Availability Ch (s)				
5320.000000	0		224.30	1			
Spectrum 🧩	Spectre	um 2 🛞	Spectrum 3	× s	pectrum 4 🛛 🔇	×	(**
Ref Level 10.0	0 dBm	•	RBW 3 MHz		-		
Att 🗧	20 dB 👄 😫	SWT 240 s 👄 🕯	VBW 3 MHz				
SGL							
●1Pk Max							
				M:	1[1]		-51.66 dBm 224.301 s
0 dBm							pepeladad
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
	managene	باستادين والدرام ويهاد الدورات	mannamena		and the second sec	www.	ML
-60 dBm			_				
-70 dBm			_				
-80 dBm			_				
05.5.00015							
CF 5.32 GHz			691 p	its			24.0 s/
				,	Ready		XA //

Page 44 of 76


DFS CAC Beginning of CAC

Note: Radar signal injection within 164.301 seconds and 170.301 seconds

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

DFS CAC End of CAC

Note: Radar signal injection within 218.301 seconds and 224.301 seconds

Page 46 of 76

Startup time

Setting	Instrument Value	Target Value
Center Frequency	5.32000 GHz	5.32000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	1001	~ 1001
Sweeptime	20.000 ms	20.000 ms
Reference Level	-20.000 dBm	-20.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
Trigger	Video	Video
Trigger Mode	constant	constant
Trigger Level	67.500 %	67.507 %
Trigger Offset	0.000 ms	0.000 ms

Begin of CAC Phase

Setting	Instrument Value	Target Value
Center Frequency	5.32000 GHz	5.32000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	315.301 s	315.301 s
Reference Level	-20.000 dBm	-20.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
Trigger	External	External
Trigger Offset	165.301 s	165.301 s

End of CAC Phase

Setting	Instrument Value	Target Value
Center Frequency	5.32000 GHz	5.32000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	373.301 s	373.301 s
Reference Level	-20.000 dBm	-20.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
		Dee

Page 47 of 76

Trigger	External	External
Trigger Offset	223.301 s	223.301 s

6.6.4. DFS In-Service Monitoring DFS In-Service Monitoring (5530 MHz;80 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result	Overall Comment
5530.000000	0	Channel Move Time	PASS	
5530.000000	0	Channel Closing Transmission Time	PASS	
5530.000000	0	Non-occupancy period	PASS	

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Result	CMT Comment
5530.000000	0	0.161	10.000	PASS	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)	CCTT Tx Time Limit (ms)
5530.000000	0	first 200 ms	20	1.496	200.000
5530.000000	0	remaining 10.0 second(s) period	0	0.000	60.000

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 6 ...)

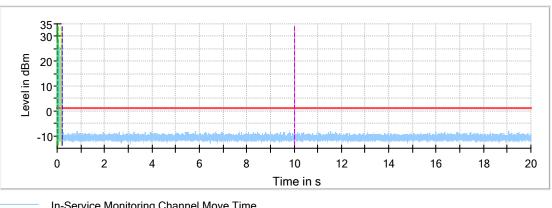
DUT Frequency (MHz)	CCTT Result	CCTT Comment
5530.000000	PASS	See Note 1.
5530.000000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Fre (Mi		Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)	NOP Result
5530	.000000	0	0	0	0.000	0.000	PASS

Page 48 of 76

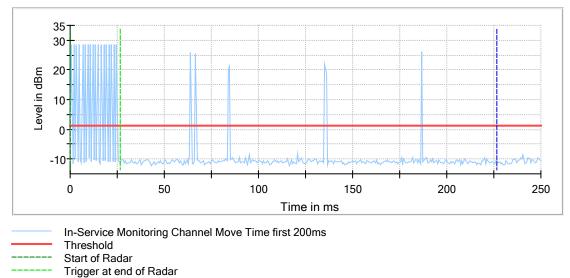
Additional Information


Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4 μ s
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

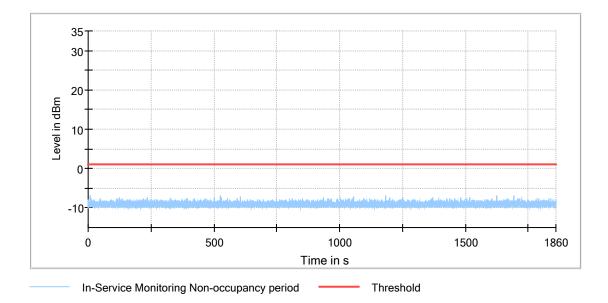
Page 49 of 76

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	7.13	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	70.13	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm


In-Service Monitoring Channel Move Time

In-Service Monitoring Channel Move Time
 Threshold
 Start of Radar
 Trigger at end of Radar
 First 200ms of Channel Closing Tx Time


- 10sec Channel Move Time Limit
- Last measured edge of Channel Closing Tx Time

Page 50 of 76

First 200ms of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period

Page 51 of 76

Channel Move Time; Channel Closing Transmission Time

Setting	Instrument Value	Target Value
Center Frequency	5.53000 GHz	5.53000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	20.000 s	20.000 s
Reference Level	-30.000 dBm	-30.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off
Trigger	External	External
Trigger Offset	0.000 ms	0.000 ms

Non-occupancy period

Setting	Instrument Value	Target Value
Center Frequency	5.53000 GHz	5.53000 GHz
Span	ZeroSpan	ZeroSpan
RBW	3.000 MHz	>= 3.000 MHz
VBW	3.000 MHz	>= 3.000 MHz
SweepPoints	30001	~ 30001
Sweeptime	1.860 ks	1.860 ks
Reference Level	-30.000 dBm	-30.000 dBm
Attenuation	0.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Clear Write	Clear Write
Sweeptype	Sweep	AUTO
Preamp	off	off

Page 52 of 76

6.6.5. DFS Statistical Performance Check

Note: that the frequency of the injected signal is varied across the signal 99% bandwidth from trial to trial.

DFS Statistical Performance Check (5500 MHz; 20 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Detection count	Percentage of Detection Px	Detection Limit	Overall Result	Overall Comment
5500.000000	1	27 of 30	90.00%	60.0 %	PASS	
5500.000000	2	28 of 30	93.33%	60.0 %	PASS	
5500.000000	3	27 of 30	90.00%	60.0 %	PASS	
5500.000000	4	28 of 30	93.33%	60.0 %	PASS	
5500.000000	5	30 of 30	100.00%	80.0 %	PASS	
5500.000000	6	30 of 30	100.00%	70.0 %	PASS	

Aggregate Results for Short Pulse Radar Type 1-4

Aggregate Calculation	Aggregate	Aggregate	Aggregate	Aggregate
as follows	Percentage	Limit	Result	Comment
(P1 + P2 + P3 + P4) / 4	91.67%	80.0 %	PASS	

Page 53 of 76

Trial Ran Number Tr us 1 2 3 4		Pulse Width (μs) 1.000 1.000 1.000	PRI (μs) 658.000 738.000 898.000	No. of Pulses 81 72	Pulses Detected YES No	Comment
us 1 2 3	ed 8 12 20 2 39	(µs) 1.000 1.000 1.000 1.000	658.000 738.000 898.000	81 72	YES	
1 2 3	8 12 20 2 39	1.000 1.000 1.000 1.000	738.000 898.000	72	-	
2 3	12 20 2 39	1.000 1.000 1.000	738.000 898.000	72	-	
3	20 2 39	1.000 1.000	898.000		No	
	2 39	1.000				
4	39			59	YES	
			538.000	99	YES	
5	25	1.000	1986.000	27	No	
6	35	1.000	1596.000	34	YES	
7	5	1.000	598.000	89	YES	
8	25	1.000	620.000	86	YES	
9	37	1.000	1791.000	30	YES	
10	41	1.000	2181.000	25	No	
11	27	1.000	815.000	65	YES	
12	22	1.000	938.000	57	YES	
13	18	1.000	858.000	62	YES	
14	33	1.000	1400.000	38	YES	
15	47	1.000	2767.000	20	YES	
16	19	1.000	878.000	61	YES	
17	49	1.000	2962.000	18	YES	
18	1	1.000	518.000	102	YES	
19	32	1.000	1303.000	41	YES	
20	40	1.000	2084.000	26	YES	
21	16	1.000	818.000	65	YES	
22	11	1.000	718.000	74	YES	
23	14	1.000	778.000	68	YES	
24	23	1.000	3066.000	18	YES	
25	7	1.000	638.000	83	YES	
26	29	1.000	1010.000	53	YES	
27	42	1.000	2279.000	24	YES	
28	30	1.000	1108.000	48	YES	
29	48	1.000	2864.000	19	YES	
30	34	1.000	1498.000	36	YES	

Page 54 of 76

Trial		Pulse	PRI	No. of	Pulses	Comment
Number	Trial	Width	(µs)	Pulses	Detected	
	used	(µs)	())			
1	33	4.000	223.000	27	YES	
2	20	3.200	211.000	24	YES	
3	48	3.300	180.000	24	YES	
4	16	4.100	193.000	27	YES	
5	36	2.600	172.000	26	YES	
6	3	3.700	201.000	24	YES	
7	15	3.700	201.000	29	YES	
8	35	4.400	224.000	24	YES	
9	23	3.700	220.000	26	YES	
10	28	1.400	195.000	25	YES	
11	11	4.700	182.000	24	No	
12	21	4.300	156.000	27	YES	
13	24	2.000	151.000	24	YES	
14	45	3.400	191.000	28	YES	
15	14	2.100	150.000	28	YES	
16	9	2.400	164.000	27	YES	
17	29	5.000	176.000	26	YES	
18	44	4.200	213.000	26	YES	
19	38	3.000	205.000	24	No	
20	18	3.400	163.000	25	YES	
21	41	1.400	174.000	24	YES	
22	32	3.000	170.000	28	YES	
23	8	2.600	164.000	27	YES	
24	37	1.200	215.000	26	YES	
25	22	3.700	226.000	28	YES	
26	1	1.000	208.000	28	YES	
27	30	1.200	214.000	27	YES	
28	25	3.600	228.000	23	YES	
29	19	4.500	152.000	25	YES	
30	10	1.900	176.000	23	YES	

Page 55 of 76

Detailed Results for Radar Type 5								
rial	Random	Pulse	PRI	No. of	Pulses	Comment		
Number	Trial	Width	(µs)	Pulses	Detected			
	used	(µs)						
1	18	6.200	485.000	17	YES			
2	15	8.900	352.000	16	YES			
3	3	6.600	426.000	16	YES			
4	43	8.900	448.000	17	YES			
5	41	7.000	452.000	17	YES			
6	31	8.600	330.000	17	YES			
7	46	8.400	256.000	18	YES			
8	50	9.000	372.000	17	YES			
9	48	8.900	238.000	17	YES			
10	33	9.200	381.000	17	YES			
11	14	7.300	487.000	16	YES			
12	22	7.500	374.000	16	YES			
13	32	9.900	239.000	16	YES			
14	38	7.000	425.000	18	No			
15	7	9.600	383.000	17	YES			
16	5	8.900	357.000	16	YES			
17	44	6.100	334.000	17	YES			
18	23	10.000	353.000	17	YES			
19	37	6.500	223.000	16	YES			
20	16	6.200	465.000	17	YES			
21	4	8.500	297.000	17	YES			
22	40	9.000	302.000	17	YES			
23	19	7.200	223.000	17	YES			
24	1	9.800	322.000	18	YES			
25	30	6.000	300.000	17	No			
26	8	6.800	202.000	18	YES			
27	12	6.800	397.000	18	YES			
28	2	7.400	287.000	17	No			
29	20	6.200	416.000	17	YES			
30	9	6.900	347.000	17	YES			

Page 56 of 76

Detailed Results for Radar Type 4							
Trial	Random	Pulse	PRI	No. of	Pulses	Comment	
Number	Trial used	Width (µs)	(µs)	Pulses	Detected		
1	6	12.100	433.000	13	YES		
2	14	12.500	359.000	16	YES		
3	49	17.400	265.000	12	YES		
4	33	14.200	352.000	15	YES		
5	21	19.100	220.000	13	No		
6	42	11.800	291.000	12	YES		
7	46	14.300	448.000	15	YES		
8	45	15.300	441.000	13	YES		
9	48	16.700	208.000	13	YES		
10	41	16.600	446.000	13	YES		
11	47	15.200	296.000	14	YES		
12	8	13.300	253.000	14	YES		
13	26	12.900	405.000	16	YES		
14	16	17.800	476.000	15	YES		
15	9	15.000	382.000	13	YES		
16	32	18.300	461.000	13	YES		
17	1	17.900	245.000	13	YES		
18	37	13.000	305.000	14	YES		
19	7	16.400	477.000	14	YES		
20	3	15.000	300.000	13	YES		
21	28	12.500	280.000	13	YES		
22	40	18.200	498.000	12	YES		
23	10	16.800	490.000	13	YES		
24	27	18.400	259.000	13	YES		
25	39	14.800	500.000	15	YES		
26	24	11.200	265.000	13	YES		
27	19	16.400	354.000	16	No		
28	36	12.400	226.000	12	YES		
29	5	15.500	325.000	13	YES		
30	43	19.500	243.000	13	YES		

Page 57 of 76

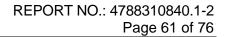
Detaile	eu Resi	uits it	л кай	ar Type 5	
Trial	Random	Pulse	No. of	Chirp width	Pulses
Number	Trial	Width	Pulses	(MHz)	Detected
	used	(µs)			
1	11	77.000	2	11.000000	YES
2	21	79.300	2	15.000000	YES
3	19	50.100	3	9.000000	YES
4	5	91.700	2	10.000000	YES
5	37	67.700	3	5.000000	YES
6	48	96.300	2	7.000000	YES
7	20	63.100	2	7.000000	YES
8	41	83.000	2	20.000000	YES
9	8	90.700	1	5.000000	YES
10	30	55.300	3	16.000000	YES
11	44	54.500	1	14.000000	YES
12	16	70.900	2	13.000000	YES
13	2	79.400	1	16.000000	YES
14	29	52.100	1	20.000000	YES
15	32	52.200	1	6.000000	YES
16	28	50.300	1	12.000000	YES
17	38	88.400	3	17.000000	YES
18	12	58.000	1	17.000000	YES
19	17	92.300	1	11.000000	YES
20	46	52.100	2	11.000000	YES
21	39	73.100	3	15.000000	YES
22	33	66.100	2	11.000000	YES
23	45	75.100	2	9.000000	YES
24	14	86.300	3	18.000000	YES
25	42	50.100	3	12.000000	YES
26	40	66.500	3	6.000000	YES
27	10	61.400	3	8.000000	YES
28	15	95.900	2	18.000000	YES
29	34	93.500	3	13.000000	YES
30	36	95.600	2	8.000000	YES

(continuation of the "Detailed Results for Radar Type 5" table from column 6 ...)

Trial Number	Comment
1	Data of first burst shown; no. of different Bursts = 18
2	Data of first burst shown; no. of different Bursts = 15
3	Data of first burst shown; no. of different Bursts = 13
4	Data of first burst shown; no. of different Bursts = 12
5	Data of first burst shown; no. of different Bursts = 18
6	Data of first burst shown; no. of different Bursts = 16
7	Data of first burst shown; no. of different Bursts = 14
8	Data of first burst shown; no. of different Bursts = 9
9	Data of first burst shown; no. of different Bursts = 15
10	Data of first burst shown; no. of different Bursts = 11
11	Data of first burst shown; no. of different Bursts = 12
12	Data of first burst shown; no. of different Bursts = 10
13	Data of first burst shown; no. of different Bursts = 9
14	Data of first burst shown; no. of different Bursts = 10
15	Data of first burst shown; no. of different Bursts = 13
16	Data of first burst shown; no. of different Bursts = 9
17	Data of first burst shown; no. of different Bursts = 19
18	Data of first burst shown; no. of different Bursts = 19
19	Data of first burst shown; no. of different Bursts = 11
20	Data of first burst shown; no. of different Bursts = 14
21	Data of first burst shown; no. of different Bursts = 20
22	Data of first burst shown; no. of different Bursts = 14
23	Data of first burst shown; no. of different Bursts = 13

Page 58 of 76

24	Data of first burst shown; no. of different Bursts = 8
25	Data of first burst shown; no. of different Bursts = 10
26	Data of first burst shown; no. of different Bursts = 8
27	Data of first burst shown; no. of different Bursts = 17
28	Data of first burst shown; no. of different Bursts = 9
29	Data of first burst shown; no. of different Bursts = 15
30	Data of first burst shown; no. of different Bursts = 17


Page 59 of 76

Detailed Results for Radar Type 6								
Trial	Pulse	PRI	No. of	Pulses	Comment			
Number	Width	(µs)	Pulses	Detected				
	(µs)							
1	1.000	333.000	9	YES				
2	1.000	333.000	9	YES				
3	1.000	333.000	9	YES				
4	1.000	333.000	9	YES				
5	1.000	333.000	9	YES				
6	1.000	333.000	9	YES				
7	1.000	333.000	9	YES				
8	1.000	333.000	9	YES				
9	1.000	333.000	9	YES				
10	1.000	333.000	9	YES				
11	1.000	333.000	9	YES				
12	1.000	333.000	9	YES				
13	1.000	333.000	9	YES				
14	1.000	333.000	9	YES				
15	1.000	333.000	9	YES				
16	1.000	333.000	9	YES				
17	1.000	333.000	9	YES				
18	1.000	333.000	9	YES				
19	1.000	333.000	9	YES				
20	1.000	333.000	9	YES				
21	1.000	333.000	9	YES				
22	1.000	333.000	9	YES				
23	1.000	333.000	9	YES				
24	1.000	333.000	9	YES				
25	1.000	333.000	9	YES				
26	1.000	333.000	9	YES				
27	1.000	333.000	9	YES				
28	1.000	333.000	9	YES				
29	1.000	333.000	9	YES				
30	1.000	333.000	9	YES				

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	6.85	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	69.85	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

Page 60 of 76

DFS Statistical Performance Check (5510 MHz; 40 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Detection count	Percentage of Detection Px	Detection Limit	Overall Result	Overall Comment
5510.000000	1	28 of 30	93.33%	60.0 %	PASS	
5510.000000	2	22 of 30	73.33%	60.0 %	PASS	
5510.000000	3	24 of 30	80.00%	60.0 %	PASS	
5510.000000	4	24 of 30	80.00%	60.0 %	PASS	
5510.000000	5	30 of 30	100.00%	80.0 %	PASS	
5510.000000	6	29 of 30	96.67%	70.0 %	PASS	

Aggregate Results for Short Pulse Radar Type 1-4

Aggregate Calculation	Aggregate	Aggregate	Aggregate	Aggregate
as follows	Percentage	Limit	Result	Comment
(P1 + P2 + P3 + P4) / 4	81.67%	80.0 %	PASS	

Page 61 of 76

Trial	Random	Pulse	PRI	No. of	Pulses	Comment
Number	Trial	Width	(µs)	Pulses	Detected	
	used	(µs)				
1	49	1.000	2962.000	18	YES	
2	2	1.000	538.000	99	YES	
3	6	1.000	618.000	86	YES	
4	23	1.000	3066.000	18	YES	
5	4	1.000	578.000	92	YES	
6	28	1.000	912.000	58	YES	
7	11	1.000	718.000	74	YES	
8	44	1.000	2474.000	22	YES	
9	5	1.000	598.000	89	YES	
10	31	1.000	1205.000	44	YES	
11	48	1.000	2864.000	19	YES	
12	1	1.000	518.000	102	YES	
13	9	1.000	678.000	78	YES	
14	47	1.000	2767.000	20	No	
15	19	1.000	878.000	61	YES	
16	21	1.000	918.000	58	YES	
17	34	1.000	1498.000	36	YES	
18	35	1.000	1596.000	34	YES	
19	38	1.000	1888.000	28	No	
20	30	1.000	1108.000	48	YES	
21	46	1.000	2669.000	20	YES	
22	13	1.000	758.000	70	YES	
23	18	1.000	858.000	62	YES	
24	17	1.000	838.000	63	YES	
25	24	1.000	522.000	102	YES	
26	20	1.000	898.000	59	YES	
27	22	1.000	938.000	57	YES	
28	8	1.000	658.000	81	YES	
29	25	1.000	620.000	86	YES	
30	37	1.000	1791.000	30	YES	

Page 62 of 76

Jotune	ea Resi	unto n				
Trial Number	Random Trial used	Pulse Width	PRI (µs)	No. of Pulses	Pulses Detected	Comment
		(µs)				
1	35	4.400	224.000	24	No	
2	24	2.000	151.000	24	YES	
3	12	3.000	226.000	25	YES	
4	37	1.200	215.000	26	No	
5	16	4.100	193.000	27	YES	
6	4	1.500	215.000	24	No	
7	9	2.400	164.000	27	YES	
8	15	3.700	201.000	29	YES	
9	11	4.700	182.000	24	YES	
10	6	4.100	210.000	26	No	
11	14	2.100	150.000	28	YES	
12	23	3.700	220.000	26	YES	
13	38	3.000	205.000	24	YES	
14	1	1.000	208.000	28	YES	
15	19	4.500	152.000	25	YES	
16	46	2.600	157.000	24	YES	
17	40	3.400	169.000	28	YES	
18	43	4.000	216.000	28	YES	
19	21	4.300	156.000	27	No	
20	13	2.200	219.000	25	No	
21	34	2.900	207.000	24	YES	
22	48	3.300	180.000	24	YES	
23	28	1.400	195.000	25	YES	
24	45	3.400	191.000	28	YES	
25	32	3.000	170.000	28	No	
26	10	1.900	176.000	23	No	
27	5	3.700	222.000	26	YES	
28	26	1.100	203.000	28	YES	
20	20	3.200	211.000	20	YES	
30	39	3.200	208.000	24	YES	

Page 63 of 76

Detailed Results for Radar Type 5							
rial	Random	Pulse	PRI	No. of	Pulses	Comment	
Number	Trial used	Width (µs)	(µs)	Pulses	Detected		
1	45	9.900	223.000	17	YES		
2	41	7.000	452.000	17	YES		
3	3	6.600	426.000	16	No		
4	18	6.200	485.000	17	YES		
5	40	9.000	302.000	17	YES		
6	27	6.400	276.000	16	YES		
7	1	9.800	322.000	18	YES		
8	8	6.800	202.000	18	YES		
9	38	7.000	425.000	18	YES		
10	36	9.800	324.000	17	YES		
11	50	9.000	372.000	17	YES		
12	5	8.900	357.000	16	No		
13	21	7.500	365.000	18	YES		
14	32	9.900	239.000	16	YES		
15	7	9.600	383.000	17	YES		
16	39	6.100	323.000	16	YES		
17	22	7.500	374.000	16	YES		
18	42	6.400	314.000	17	No		
19	16	6.200	465.000	17	YES		
20	13	6.300	234.000	17	YES		
21	26	7.700	362.000	17	YES		
22	20	6.200	416.000	17	YES		
23	9	6.900	347.000	17	YES		
24	43	8.900	448.000	17	No		
25	35	8.300	492.000	18	No		
26	4	8.500	297.000	17	YES		
27	23	10.000	353.000	17	YES		
28	6	6.600	313.000	16	No		
29	11	7.000	272.000	17	YES		
30	44	6.100	334.000	17	YES		

Page 64 of 76

Detailed Results for Radar Type 4								
Trial	Random	Pulse	PRI	No. of	Pulses	Comment		
Number	Trial used	Width (µs)	(µs)	Pulses	Detected			
1	13	11.100	270.000	14	YES			
2	46	14.300	448.000	15	YES			
3	49	17.400	265.000	12	YES			
4	41	16.600	446.000	13	YES			
5	7	16.400	477.000	14	YES			
6	31	18.100	312.000	13	YES			
7	29	19.000	465.000	15	YES			
8	16	17.800	476.000	15	YES			
9	33	14.200	352.000	15	YES			
10	24	11.200	265.000	13	No			
11	22	16.800	391.000	15	YES			
12	4	12.400	468.000	14	YES			
13	48	16.700	208.000	13	No			
14	9	15.000	382.000	13	YES			
15	30	18.600	407.000	14	YES			
16	40	18.200	498.000	12	No			
17	39	14.800	500.000	15	YES			
18	18	13.500	264.000	14	YES			
19	34	11.700	466.000	14	No			
20	42	11.800	291.000	12	YES			
21	26	12.900	405.000	16	YES			
22	38	14.600	376.000	14	YES			
23	45	15.300	441.000	13	YES			
24	6	12.100	433.000	13	YES			
25	36	12.400	226.000	12	No			
26	28	12.500	280.000	13	YES			
27	3	15.000	300.000	13	YES			
28	14	12.500	359.000	16	No			
29	19	16.400	354.000	16	YES			
30	50	16.100	342.000	13	YES			

Page 65 of 76

Delane	eu Resi	uits it	л кай	ar Type 5	
Trial	Random	Pulse	No. of	Chirp width	Pulses
Number	Trial	Width	Pulses	(MHz)	Detected
	used	(µs)			
1	21	79.300	2	15.000000	YES
2	39	73.100	3	15.000000	YES
3	22	85.500	1	20.000000	YES
4	36	95.600	2	8.000000	YES
5	48	96.300	2	7.000000	YES
6	10	61.400	3	8.000000	YES
7	41	83.000	2	20.000000	YES
8	44	54.500	1	14.000000	YES
9	6	60.200	2	14.000000	YES
10	42	50.100	3	12.000000	YES
11	8	90.700	1	5.000000	YES
12	24	82.600	1	8.000000	YES
13	12	58.000	1	17.000000	YES
14	5	91.700	2	10.000000	YES
15	9	67.000	2	17.000000	YES
16	27	67.900	1	14.000000	YES
17	32	52.200	1	6.000000	YES
18	28	50.300	1	12.000000	YES
19	29	52.100	1	20.000000	YES
20	19	50.100	3	9.000000	YES
21	47	82.900	2	16.000000	YES
22	35	96.900	1	18.000000	YES
23	38	88.400	3	17.000000	YES
24	43	69.300	2	10.000000	YES
25	20	63.100	2	7.000000	YES
26	4	69.600	2	15.000000	YES
27	15	95.900	2	18.000000	YES
28	31	61.900	3	10.000000	YES
29	37	67.700	3	5.000000	YES
30	17	92.300	1	11.000000	YES

(continuation of the "Detailed Results for Radar Type 5" table from column 6 ...)

Trial Number	Comment
1	Data of first burst shown; no. of different Bursts = 15
2	Data of first burst shown; no. of different Bursts = 20
3	Data of first burst shown; no. of different Bursts = 16
4	Data of first burst shown; no. of different Bursts = 17
5	Data of first burst shown; no. of different Bursts = 16
6	Data of first burst shown; no. of different Bursts = 17
7	Data of first burst shown; no. of different Bursts = 9
8	Data of first burst shown; no. of different Bursts = 12
9	Data of first burst shown; no. of different Bursts = 13
10	Data of first burst shown; no. of different Bursts = 10
11	Data of first burst shown; no. of different Bursts = 15
12	Data of first burst shown; no. of different Bursts = 18
13	Data of first burst shown; no. of different Bursts = 19
14	Data of first burst shown; no. of different Bursts = 12
15	Data of first burst shown; no. of different Bursts = 16
16	Data of first burst shown; no. of different Bursts = 8
17	Data of first burst shown; no. of different Bursts = 13
18	Data of first burst shown; no. of different Bursts = 9
19	Data of first burst shown; no. of different Bursts = 10
20	Data of first burst shown; no. of different Bursts = 13
21	Data of first burst shown; no. of different Bursts = 15
22	Data of first burst shown; no. of different Bursts = 16
23	Data of first burst shown; no. of different Bursts = 19

Page 66 of 76

24	Data of first burst shown; no. of different Bursts = 11
25	Data of first burst shown; no. of different Bursts = 14
26	Data of first burst shown; no. of different Bursts = 11
27	Data of first burst shown; no. of different Bursts = 9
28	Data of first burst shown; no. of different Bursts = 12
29	Data of first burst shown; no. of different Bursts = 18
30	Data of first burst shown; no. of different Bursts = 11

Page 67 of 76

Detaile	a ke	Suits	for Ra	dar Typ	e 6
Trial	Pulse	PRI	No. of	Pulses	Comment
Number	Width	(µs)	Pulses	Detected	
	(µs)				
1	1.000	333.000	9	YES	
2	1.000	333.000	9	YES	
3	1.000	333.000	9	YES	
4	1.000	333.000	9	YES	
5	1.000	333.000	9	No	
6	1.000	333.000	9	YES	
7	1.000	333.000	9	YES	
8	1.000	333.000	9	YES	
9	1.000	333.000	9	YES	
10	1.000	333.000	9	YES	
11	1.000	333.000	9	YES	
12	1.000	333.000	9	YES	
13	1.000	333.000	9	YES	
14	1.000	333.000	9	YES	
15	1.000	333.000	9	YES	
16	1.000	333.000	9	YES	
17	1.000	333.000	9	YES	
18	1.000	333.000	9	YES	
19	1.000	333.000	9	YES	
20	1.000	333.000	9	YES	
21	1.000	333.000	9	YES	
22	1.000	333.000	9	YES	
23	1.000	333.000	9	YES	
24	1.000	333.000	9	YES	
25	1.000	333.000	9	YES	
26	1.000	333.000	9	YES	
27	1.000	333.000	9	YES	
28	1.000	333.000	9	YES	
29	1.000	333.000	9	YES	
30	1.000	333.000	9	YES	

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	69.18	mW
Configured DUT PSD:	11.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	6.92	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	69.92	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

Page 68 of 76

DFS Statistical Performance Check (5530 MHz; 80 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Detection count	Percentage of Detection Px	Detection Limit	Overall Result	Overall Comment
5530.000000	1	30 of 30	100.00%	60.0 %	PASS	
5530.000000	2	30 of 30	100.00%	60.0 %	PASS	
5530.000000	3	30 of 30	100.00%	60.0 %	PASS	
5530.000000	4	25 of 30	83.33%	60.0 %	PASS	
5530.000000	5	29 of 30	96.67%	80.0 %	PASS	
5530.000000	6	29 of 30	96.67%	70.0 %	PASS	

Aggregate Results for Short Pulse Radar Type 1-4

Aggregate Calculation	Aggregate	Aggregate	Aggregate	Aggregate
as follows	Percentage	Limit	Result	Comment
(P1 + P2 + P3 + P4) / 4	95.83%	80.0 %	PASS	

Page 69 of 76

Detailed Results for Radar Type I									
Trial	Random	Pulse	PRI	No. of	Pulses	Comment			
Number	Trial	Width	(µs)	Pulses	Detected				
	used	(µs)							
1	36	1.000	1693.000	32	YES				
2	15	1.000	798.000	67	YES				
3	34	1.000	1498.000	36	YES				
4	12	1.000	738.000	72	YES				
5	5	1.000	598.000	89	YES				
6	42	1.000	2279.000	24	YES				
7	43	1.000	2376.000	23	YES				
8	41	1.000	2181.000	25	YES				
9	24	1.000	522.000	102	YES				
10	8	1.000	658.000	81	YES				
11	29	1.000	1010.000	53	YES				
12	9	1.000	678.000	78	YES				
13	3	1.000	558.000	95	YES				
14	17	1.000	838.000	63	YES				
15	37	1.000	1791.000	30	YES				
16	11	1.000	718.000	74	YES				
17	44	1.000	2474.000	22	YES				
18	19	1.000	878.000	61	YES				
19	2	1.000	538.000	99	YES				
20	14	1.000	778.000	68	YES				
21	40	1.000	2084.000	26	YES				
22	28	1.000	912.000	58	YES				
23	27	1.000	815.000	65	YES				
24	16	1.000	818.000	65	YES				
25	45	1.000	2572.000	21	YES				
26	35	1.000	1596.000	34	YES				
27	31	1.000	1205.000	44	YES				
28	33	1.000	1400.000	38	YES				
29	48	1.000	2864.000	19	YES				
30	50	1.000	3060.000	18	YES				

Page 70 of 76

Trial		Pulse	PRI	No. of	Pulses	Comment
Number	Trial	Width	(µs)	Pulses	Detected	
	used	(µs)	())			
1	12	3.000	226.000	25	YES	
2	14	2.100	150.000	28	YES	
3	7	4.500	210.000	25	YES	
4	34	2.900	207.000	24	YES	
5	9	2.400	164.000	27	YES	
6	47	3.000	192.000	28	YES	
7	15	3.700	201.000	29	YES	
8	44	4.200	213.000	26	YES	
9	40	3.400	169.000	28	YES	
10	10	1.900	176.000	23	YES	
11	25	3.600	228.000	23	YES	
12	2	2.600	215.000	26	YES	
13	1	1.000	208.000	28	YES	
14	28	1.400	195.000	25	YES	
15	41	1.400	174.000	24	YES	
16	3	3.700	201.000	24	YES	
17	50	4.700	224.000	29	YES	
18	13	2.200	219.000	25	YES	
19	42	1.200	215.000	25	YES	
20	32	3.000	170.000	28	YES	
21	36	2.600	172.000	26	YES	
22	49	3.700	176.000	24	YES	
23	11	4.700	182.000	24	YES	
24	43	4.000	216.000	28	YES	
25	30	1.200	214.000	27	YES	
26	21	4.300	156.000	27	YES	
27	27	2.200	225.000	26	YES	
28	23	3.700	220.000	26	YES	
29	18	3.400	163.000	25	YES	
30	46	2.600	157.000	24	YES	

Page 71 of 76

Detailed Results for Radar Type 3									
rial Number	Random Trial	Pulse Width	PRI (µs)	No. of Pulses	Pulses Detected	Comment			
Number	used	(µs)	(µ3)	1 01000	Deleoieu				
1	10	8.500	368.000	17	YES				
2	19	7.200	223.000	17	YES				
3	1	9.800	322.000	18	YES				
4	23	10.000	353.000	17	YES				
5	30	6.000	300.000	17	YES				
6	37	6.500	223.000	16	YES				
7	42	6.400	314.000	17	YES				
8	29	8.700	291.000	17	YES				
9	16	6.200	465.000	17	YES				
10	14	7.300	487.000	16	YES				
11	4	8.500	297.000	17	YES				
12	43	8.900	448.000	17	YES				
13	44	6.100	334.000	17	YES				
14	36	9.800	324.000	17	YES				
15	46	8.400	256.000	18	YES				
16	17	9.400	363.000	18	YES				
17	38	7.000	425.000	18	YES				
18	47	6.200	322.000	16	YES				
19	28	9.400	282.000	16	YES				
20	11	7.000	272.000	17	YES				
21	50	9.000	372.000	17	YES				
22	49	7.400	226.000	17	YES				
23	26	7.700	362.000	17	YES				
24	15	8.900	352.000	16	YES				
25	6	6.600	313.000	16	YES				
26	9	6.900	347.000	17	YES				
27	32	9.900	239.000	16	YES				
28	20	6.200	416.000	17	YES				
29	25	9.600	334.000	16	YES				
30	12	6.800	397.000	18	YES				

Page 72 of 76

Detailed Results for Radar Type 4								
Trial	Random	Pulse	PRI	No. of	Pulses	Comment		
Number	Trial used	Width (µs)	(µs)	Pulses	Detected			
1	27	18.400	259.000	13	YES			
2	38	14.600	376.000	14	YES			
3	15	16.500	263.000	15	YES			
4	16	17.800	476.000	15	YES			
5	22	16.800	391.000	15	YES			
6	8	13.300	253.000	14	YES			
7	6	12.100	433.000	13	YES			
8	30	18.600	407.000	14	YES			
9	47	15.200	296.000	14	YES			
10	19	16.400	354.000	16	YES			
11	21	19.100	220.000	13	YES			
12	44	12.200	209.000	15	YES			
13	39	14.800	500.000	15	YES			
14	34	11.700	466.000	14	No			
15	20	15.000	269.000	15	YES			
16	3	15.000	300.000	13	YES			
17	49	17.400	265.000	12	YES			
18	10	16.800	490.000	13	YES			
19	28	12.500	280.000	13	YES			
20	2	15.000	211.000	16	YES			
21	40	18.200	498.000	12	No			
22	4	12.400	468.000	14	No			
23	31	18.100	312.000	13	YES			
24	35	14.100	290.000	14	YES			
25	14	12.500	359.000	16	YES			
26	45	15.300	441.000	13	No			
27	37	13.000	305.000	14	YES			
28	24	11.200	265.000	13	YES			
29	50	16.100	342.000	13	YES			
30	46	14.300	448.000	15	No			

Page 73 of 76

Detaile	a Resi	uits it	л кай	iar Type 5	
Trial	Random	Pulse	No. of	Chirp width	Pulses
Number	Trial	Width	Pulses	(MHz)	Detected
	used	(µs)			
1	17	92.300	1	11.000000	YES
2	12	58.000	1	17.000000	YES
3	42	50.100	3	12.000000	YES
4	13	53.400	2	19.00000	YES
5	34	93.500	3	13.000000	YES
6	31	61.900	3	10.000000	YES
7	47	82.900	2	16.000000	YES
8	11	77.000	2	11.000000	YES
9	48	96.300	2	7.000000	YES
10	19	50.100	3	9.000000	YES
11	44	54.500	1	14.000000	YES
12	26	72.300	2	7.000000	YES
13	4	69.600	2	15.000000	YES
14	14	86.300	3	18.000000	YES
15	23	87.800	2	9.000000	YES
16	43	69.300	2	10.000000	YES
17	37	67.700	3	5.000000	YES
18	6	60.200	2	14.000000	YES
19	30	55.300	3	16.000000	YES
20	36	95.600	2	8.000000	YES
21	29	52.100	1	20.000000	YES
22	46	52.100	2	11.000000	YES
23	5	91.700	2	10.000000	YES
24	33	66.100	2	11.000000	YES
25	38	88.400	3	17.000000	YES
26	27	67.900	1	14.000000	YES
27	28	50.300	1	12.000000	YES
28	25	73.100	2	19.000000	No
29	32	52.200	1	6.000000	YES
30	18	61.800	1	5.000000	YES

(continuation of the "Detailed Results for Radar Type 5" table from column 6 ...)

Trial Number	Comment
1	Data of first burst shown; no. of different Bursts = 11
2	Data of first burst shown; no. of different Bursts = 19
3	Data of first burst shown; no. of different Bursts = 10
4	Data of first burst shown; no. of different Bursts = 20
5	Data of first burst shown; no. of different Bursts = 15
6	Data of first burst shown; no. of different Bursts = 12
7	Data of first burst shown; no. of different Bursts = 15
8	Data of first burst shown; no. of different Bursts = 18
9	Data of first burst shown; no. of different Bursts = 16
10	Data of first burst shown; no. of different Bursts = 13
11	Data of first burst shown; no. of different Bursts = 12
12	Data of first burst shown; no. of different Bursts = 20
13	Data of first burst shown; no. of different Bursts = 11
14	Data of first burst shown; no. of different Bursts = 8
15	Data of first burst shown; no. of different Bursts = 17
16	Data of first burst shown; no. of different Bursts = 11
17	Data of first burst shown; no. of different Bursts = 18
18	Data of first burst shown; no. of different Bursts = 13
19	Data of first burst shown; no. of different Bursts = 11
20	Data of first burst shown; no. of different Bursts = 17
21	Data of first burst shown; no. of different Bursts = 10
22	Data of first burst shown; no. of different Bursts = 14
23	Data of first burst shown; no. of different Bursts = 12

Page 74 of 76

24	Data of first burst shown; no. of different Bursts = 14
25	Data of first burst shown; no. of different Bursts = 19
26	Data of first burst shown; no. of different Bursts = 8
27	Data of first burst shown; no. of different Bursts = 9
28	Data of first burst shown; no. of different Bursts = 19
29	Data of first burst shown; no. of different Bursts = 13
30	Data of first burst shown; no. of different Bursts = 12

Page 75 of 76

Trial Number Pulse Width (μs) PRI (μs) No. of Pulses Pulses Comment 1 1.000 333.000 9 YES 2 1.000 333.000 9 YES 3 1.000 333.000 9 YES 4 1.000 333.000 9 YES 5 1.000 333.000 9 YES 6 1.000 333.000 9 YES 7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES	Detaile	ea Ke	Sults 1	for Ra	dar iyp	e 6
2 1.000 333.000 9 YES 3 1.000 333.000 9 YES 4 1.000 333.000 9 YES 5 1.000 333.000 9 YES 6 1.000 333.000 9 YES 7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 23 1.000		Width				Comment
3 1.000 333.000 9 YES 4 1.000 333.000 9 YES 5 1.000 333.000 9 YES 6 1.000 333.000 9 YES 7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES <t< td=""><td>1</td><td>1.000</td><td>333.000</td><td>9</td><td>YES</td><td></td></t<>	1	1.000	333.000	9	YES	
4 1.000 333.000 9 YES 5 1.000 333.000 9 YES 6 1.000 333.000 9 YES 7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000	2	1.000	333.000	9	YES	
5 1.000 333.000 9 YES 6 1.000 333.000 9 YES 7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000	3	1.000	333.000	9	YES	
6 1.000 333.000 9 YES 7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES	4	1.000	333.000	9	YES	
7 1.000 333.000 9 YES 8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES	5	1.000	333.000	9	YES	
8 1.000 333.000 9 YES 9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES	6	1.000	333.000	9	YES	
9 1.000 333.000 9 YES 10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES	7	1.000	333.000	9	YES	
10 1.000 333.000 9 YES 11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES	8	1.000	333.000	9	YES	
11 1.000 333.000 9 YES 12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 26 1.000 <td>9</td> <td>1.000</td> <td>333.000</td> <td>9</td> <td>YES</td> <td></td>	9	1.000	333.000	9	YES	
12 1.000 333.000 9 YES 13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 <td>10</td> <td>1.000</td> <td>333.000</td> <td>9</td> <td>YES</td> <td></td>	10	1.000	333.000	9	YES	
13 1.000 333.000 9 YES 14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 YES 28 1.000 <td>11</td> <td>1.000</td> <td>333.000</td> <td>9</td> <td>YES</td> <td></td>	11	1.000	333.000	9	YES	
14 1.000 333.000 9 YES 15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	12	1.000	333.000	9	YES	
15 1.000 333.000 9 YES 16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	13	1.000	333.000	9	YES	
16 1.000 333.000 9 YES 17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	14	1.000	333.000	9	YES	
17 1.000 333.000 9 YES 18 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	15	1.000	333.000	9	YES	
18 1.000 333.000 9 YES 19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	16	1.000	333.000	9	YES	
19 1.000 333.000 9 YES 20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	17	1.000	333.000	9	YES	
20 1.000 333.000 9 YES 21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	18	1.000	333.000	9	YES	
21 1.000 333.000 9 YES 22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	19	1.000	333.000	9	YES	
22 1.000 333.000 9 YES 23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	20	1.000	333.000	9	YES	
23 1.000 333.000 9 YES 24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	21	1.000	333.000	9	YES	
24 1.000 333.000 9 YES 25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	22	1.000	333.000	9	YES	
25 1.000 333.000 9 YES 26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	23	1.000	333.000	9	YES	
26 1.000 333.000 9 YES 27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	24	1.000	333.000	9		
27 1.000 333.000 9 YES 28 1.000 333.000 9 No 29 1.000 333.000 9 YES	25	1.000	333.000	9	-	
28 1.000 333.000 9 No 29 1.000 333.000 9 YES	26	1.000	333.000	9	-	
29 1.000 333.000 9 YES	27	1.000	333.000	9	YES	
	28	1.000	333.000	9	No	
30 1.000 333.000 9 YES	29	1.000	333.000	9	YES	
	30	1.000	333.000	9	YES	

Radar level verification

Description	Value	Unit
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	7.13	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	70.13	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-63.00	dBm

END OF REPORT

Page 76 of 76