FCC/ IC DFS TEST REPORT

Issued Date : Jul. 20, 2012 **Project No.** : 1204C048A

Equipment: Outdoor Wireless LAN Access Point

Model Name : AP6610DN-AGN-US

Applicant: Huawei Technologies Co.,Ltd.

Address : Bantian, Longgang District, Shenzhen China

Tested by:

Neutron Engineering Inc. EMC Laboratory

Date of Receipt: Apr. 17, 2012

Date of Test: Apr. 17, 2012 ~ Jul. 16, 2012

Testing Engineer

(David Mao)

Technical Manager

(Leo Hung)

Authorized Signatory

(Steven Lu)

NEUTRON ENGINEERING INC.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. 523792

TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Report No.: NEI-FICP-1-1204C48A Page 1 of 54

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: NEI-FICP-1-1204C48A Page 2 of 54

Table of Contents	Page
1. CERTIFICATION	4
2 . EUT INFORMATION	5
2.1 EUT SPECIFICATION TABLE	5
2.4 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER	7
3 . U-NII DFS RULE REQUIREMENTS	8
3.1 WORKING MODES AND REQUIRED TEST ITEMS	8
3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS	9
4. TEST INSTRUMENTS	11
5 . EMC EMISSION TEST	12
5.1 DFS MEASUREMENT SYSTEM:	12
5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:	14
5.3 DEVIATION FROM TEST STANDARD	14
6 . TEST RESULTS	15
6.1 SUMMARY OF TEST RESULT	15
6.2 DETELED TEST RESULTS	16
6.2.1 TEST MODE: DEVICE OPERATING IN MASTER MODE.	16
6.2.2 DFS DETECTION THRESHOLD	16
6.2.3 CHANNEL AVAILABILITY CHECK TIME	20
6.2.4 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIM	
TRAFFIC	23
6.2.5 NON- OCCUPANCY PERIOD	49
6.2.6 UNIFORM SPREADING	50 54
6.2.7 U-NII DETECTION BANDWIDTH	51 54
6.2.8 TEST SETUP PHOTOS	54

Report No.: NEI-FICP-1-1204C48A Page 3 of 54

1. CERTIFICATION

Equipment: Outdoor Wireless LAN Access Point

Trade Name HUAWEI

Model Name. AP6610DN-AGN-US

Applicant: Huawei Technologies Co.,Ltd. Date of Test: Apr. 17, 2012 ~ Jul. 16, 2012 Test Item: ENGINEERING SAMPLE

Standards: FCC Part 15, Subpart E (Section 15.407) FCC 06-96

Canada RSS-210:2010

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-1-1204C048A) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of NVLAP and TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Report No.: NEI-FICP-1-1204C48A Page 4 of 54

2. EUT INFORMATION

2.1 EUT SPECIFICATION TABLE

Table 1: Specification of EUT

Product name	Outdoor Wireless LAN Access Point	
Brand Name	HUAWEI	
Model	AP6610DN-AGN-US	
FCC ID	QISAP6610DN-AGN	
IC ID	6369A-AP6610DN	
Software Version	V200R001C00B012	
Firmware Version	VER.C	
Operational Mode	Master	
Operating Frequency Range	5260~5320MHz&5500~5700MHz	
Modulation	OFDM	

Note: This device was functioned as a ■Master □ Slave device during the DF

Channel List:

802.11a / 802.11n 20M					
Band 2 Band 3					
Channel	Frequency (MHz)			Frequency (MHz)	
52	5260	100	5500	136	5680
56	5280	104	5520	140	5700
60	5300	108	5540		
64	5320	112	5560		

	802.11n 40M				
Band 2 Band 3					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	102	5510		
62	5310	110	5550		

Report No.: NEI-FICP-1-1204C48A Page 5 of 54

2.2 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

Table 2: Antenna list.

Ant.	Brand	Model Name	Antenna Type	function	Gain (dBi)
AIII.	Diana	Woder Name	/ Connector	Turiction	5.2GHz
1	() LARSEN	W5030	N Male	TX/RX	6.4
2	() LARSEN	W5030	N Male	TX/RX	6.4

Report No.: NEI-FICP-1-1204C48A Page 6 of 54

2.3 CONDUCTED OUTPUT POWER AND EIRP POWER

TABLE 3: THE CONDUCTED OUTPUT POWER LIST

TX (11a)

FREQUENCY	MAX. POWER	
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)
5260~5320	21.40	138.04
5500~5700	22.34	171.40

TX (40MH<u>z)</u>

FREQUENCY	MAX. POWER		
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
5260~5320	19.29	84.92	
5500~5700	19.76	94.62	

2.4 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER

TABLE 4: THE CONDUCTED OUTPUT POWER LIST

TX (11a)

FREQUENCY	MAX. POWER	
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)
5260~5320	27.80	602.56
5500~5700	22.34	748.17

TX (40MHz)

FREQUENCY	MAX. POWER		
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
5300~5320	25.69	370.68	
5500~5700	26.16	413.05	

Report No.: NEI-FICP-1-1204C48A Page 7 of 54

3. U-NII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Table 5: Applicability of DFS requirements prior to use a channel

		Operational Mod	le
Requirement	Master	Client without radar detection	Client with radar detection
Non-Occupancy Period	✓	Not required	✓
DFS Detection Threshold	✓	Not required	✓
Channel Availability Check Time	✓	Not required	Not required
Uniform Spreading	✓	Not required	Not required
U-NII Detection Bandwidth	✓	Not required	✓

Table 6: Applicability of DFS requirements during normal operation.

		Operational Mod	е
Requirement	Master	Client without radar detection	Client with radar detection
DFS Detection Threshold	✓	Not required	✓
Channel Closing Transmission Time	✓	✓	✓
Channel Move Time	✓	✓	✓
U-NII Detection Bandwidth	✓	Not required	✓

Report No.: NEI-FICP-1-1204C48A Page 8 of 54

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

Table 7: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 8: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second
U-NII Detection Bandwidth	period. See Notes 1 and 2. Minimum 80% of the UNII 99% transmission
O THI BOLOGIOTI BATTAMIANT	power bandwidth. See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: NEI-FICP-1-1204C48A Page 9 of 54

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 9: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Rad	80%	120		

Table 10: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulsesper Burst	Numberof Bursts	Minimum Percentage of Successful Detection	Minimum Number ofTrials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 11: Frequency Hopping Radar Test Waveform

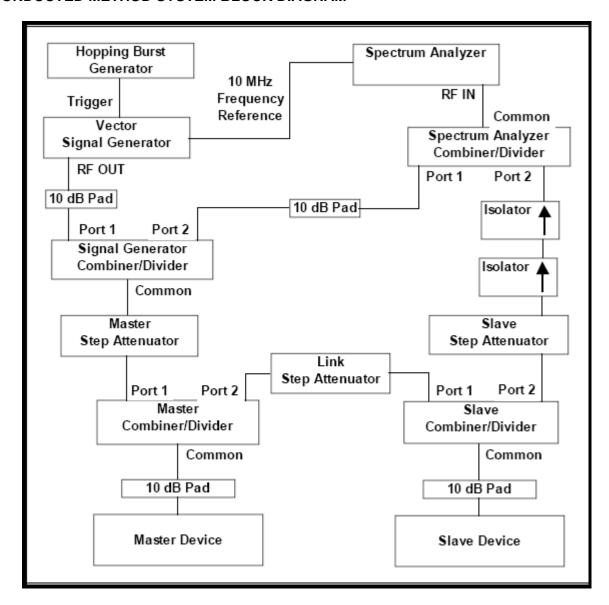
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulsesper Burst	Numberof Bursts	Minimum Percentage of Successful Detection	Minimum Number ofTrials
6	1	333	9	0.333	300	70%	30

Report No.: NEI-FICP-1-1204C48A Page 10 of 54

4. TEST INSTRUMENTS

Table 1: Test instruments list.

DESCRIPTION	MANUFACTURER	MODEL NO.	Serial No	CALIBRATED UNTIL
EXA Specturm Analyzer	Agilent	N9010A	MY50520044	2012-05-04
Signal Generator	Agilent	E4438C	My49071316	2012-05-04
POWER SPLITTER	Mini-Cicuits	ZFRSC-123-S+	331000910	2012-05-04
POWER SPLITTER	Mini-Cicuits	ZN4PD1-63-S+	SF933501045	2012-05-04
POWER SPLITTER	Mini-Cicuits	ZN2PD-9G-S+	SF012700714	2011-05-04
attenuator	Mini-Cicuits	VAT-30+	30912	2012-05-04
attenuator	Mini-Cicuits	VAT-10+	30909	2012-05-04
Specturm Analyzer	R&S	FSL6	1004423	2011-11-25
PC	Dell 745	DCSM	G7K832X	
Netbook	Нр	HSTNN-I69C-3	CNU02203XG	


Note: Calibration interval of instruments listed above is one year.

Report No.: NEI-FICP-1-1204C48A Page 11 of 54

5. EMC EMISSION TEST

5.1 DFS MEASUREMENT SYSTEM: CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

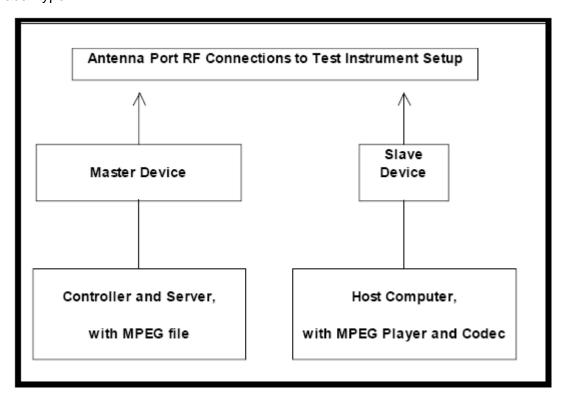
Report No.: NEI-FICP-1-1204C48A Page 12 of 54

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

Report No.: NEI-FICP-1-1204C48A Page 13 of 54


5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –62 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

Report No.: NEI-FICP-1-1204C48A Page 14 of 54

6. TEST RESULTS

6.1 SUMMARY OF TEST RESULT

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Applicable	Pass
15.407	Channel Availability Check Time	Applicable	Pass
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Applicable	Pass
15.407	U-NII Detection Bandwidth	Applicable	Pass

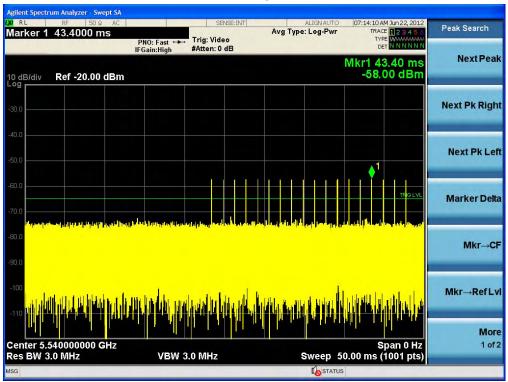
Report No.: NEI-FICP-1-1204C48A Page 15 of 54

6.2 DETELED TEST RESULTS

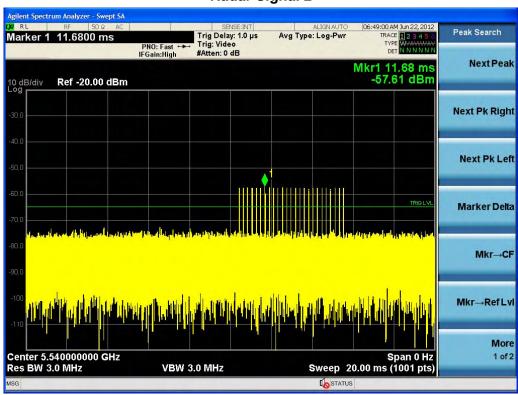
Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Applicable	Pass
15.407	Channel Availability Check Time	Applicable	Pass
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Applicable	Pass
15.407	U-NII Detection Bandwidth	Applicable	Pass

6.2.1 TEST MODE: DEVICE OPERATING IN MASTER MODE.

Master with injection at the Master. (Radar Test Waveforms are injected into the Master)

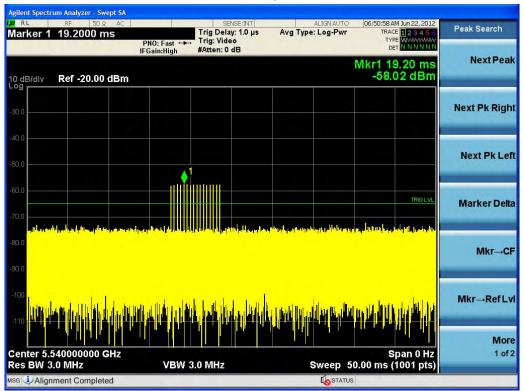

6.2.2 DFS DETECTION THRESHOLD

Calibration:

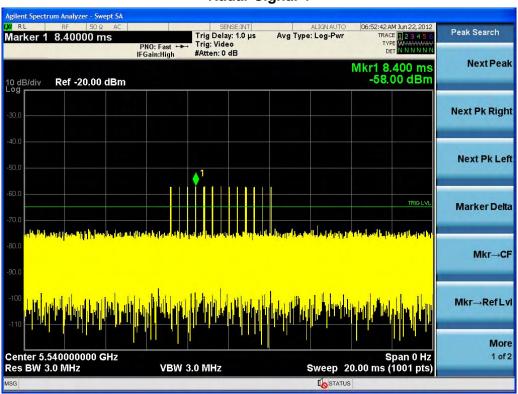

For a detection threshold level of –64dBm and the EUT antenna gain is 6.4dBi, required detection threshold is -57.6dBm (= -64+6.4).

Report No.: NEI-FICP-1-1204C48A Page 16 of 54

Radar Signal 1

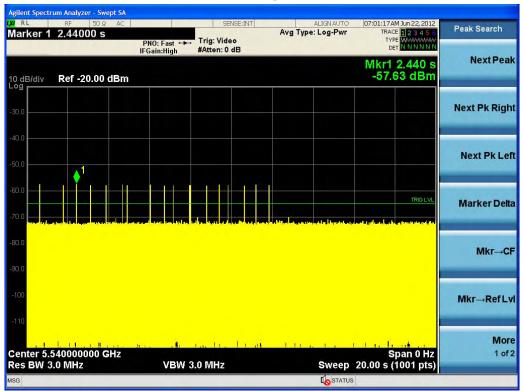


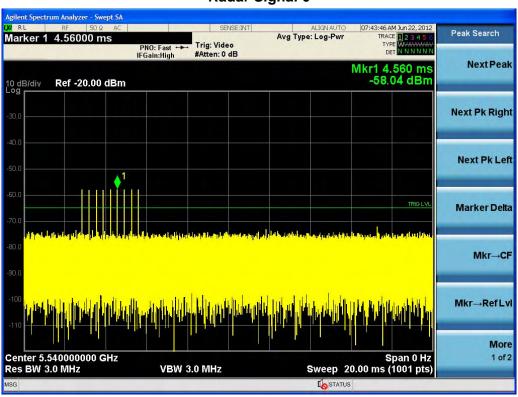
Radar Signal 2



Report No.: NEI-FICP-1-1204C48A Page 17 of 54

Radar Signal 3


Radar Signal 4


Report No.: NEI-FICP-1-1204C48A Page 18 of 54

Radar Signal 5

Radar Signal 6

Report No.: NEI-FICP-1-1204C48A Page 19 of 54

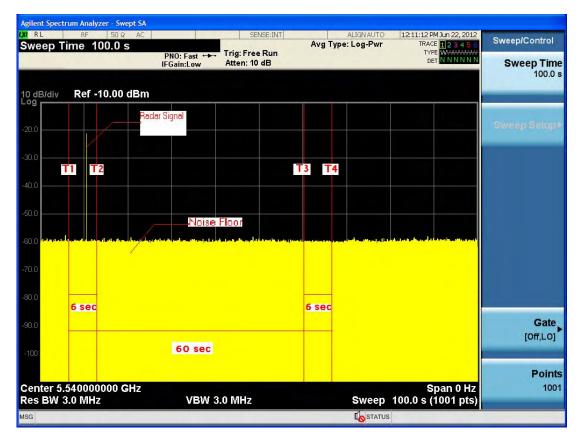
6.2.3 CHANNEL AVAILABILITY CHECK TIME

If the UUT successfully detected the radar burst, it should be observed as the UUT has no transmissions occurred until the UUT starts transmitting on another channel.

· · · · · · · · · · · · · · · · · ·	Observation				
Timing of Radar Signal	UUT	Spectrum Analyzer			
Spectrum Analyzer	Spectrum Analyzer	Spectrum Analyzer			
Spectrum Analyzer	Spectrum Analyzer	Spectrum Analyzer			

A Mode

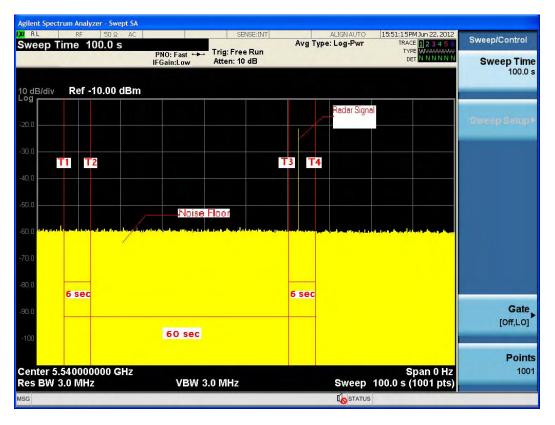
Initial Channel Availability Check Time



Note: T1 denotes the end of power-up time period is 7 second. T4 denotes the end of Channel Availability Check time is 67 second. Channel Availability Check time is equal to (T4 – T1) 60 seconds.

Report No.: NEI-FICP-1-1204C48A Page 20 of 54

A Mode Radar Burst at the Beginning of the Channel Availability Check Time


Note: T1 denotes the end of power up time period is 7 second.

T2 denotes 13 second. the radar burst was commenced within a 6 second window starting from the end of power-up sequence.

T4 denotes the 67 second.

Report No.: NEI-FICP-1-1204C48A Page 21 of 54

A Mode
Radar Burst at the End of the Channel Availability Check Time

Note: T1 denotes the end of power up time period is 7 second.

T3 denotes 63 second and radar burst was commenced within 54th second to 60th second window starting from the end of power-up sequence.

T4 denotes the 67 second.

Report No.: NEI-FICP-1-1204C48A Page 22 of 54

6.2.4 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME WLAN TRAFFIC

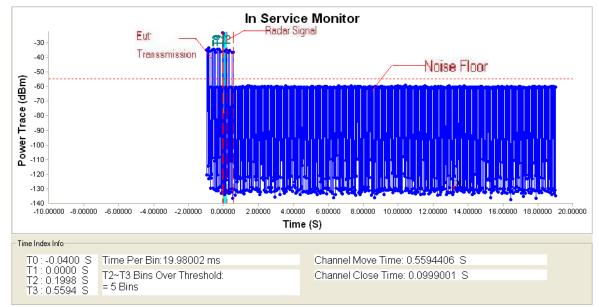
TX (A Mode)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	1	1428	28	2	93%
2	1-5	150-230	29	1	97%
3	6-10	200-500	27	3	90%
4	11-20	200-500	28	2	93%
Aggreg	Aggregate (Radar Types 1-4)			8	93%

Table 2: Long Pulse Radar Test Waveform

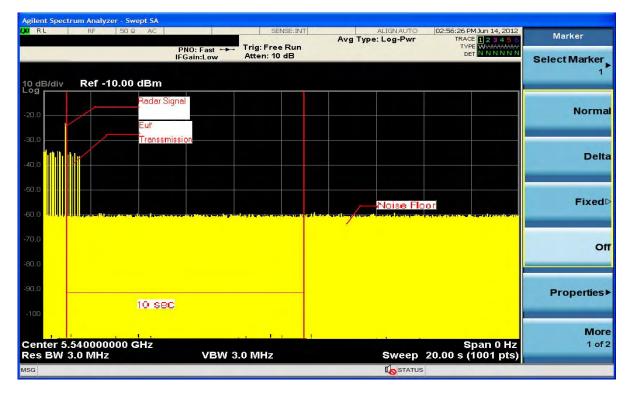
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulses Per Burst	Number of Bursts	Number of Trials (Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	27	3	90%


Table 3: Frequency Hopping Radar Test Waveform

Rada Type	Width	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Time s)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	87%

Report No.: NEI-FICP-1-1204C48A Page 23 of 54

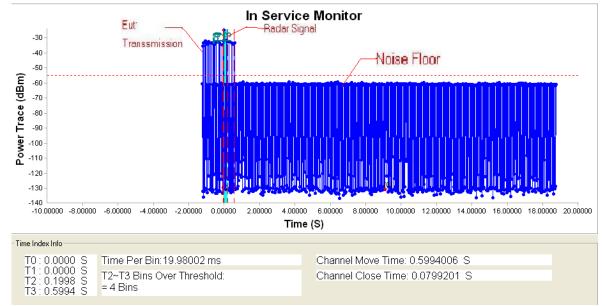
Radar signal 1



Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

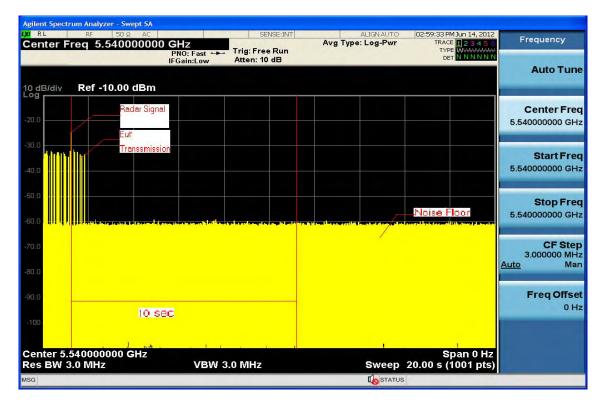
T3 denotes the end of Channel Move Time.


T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 24 of 54

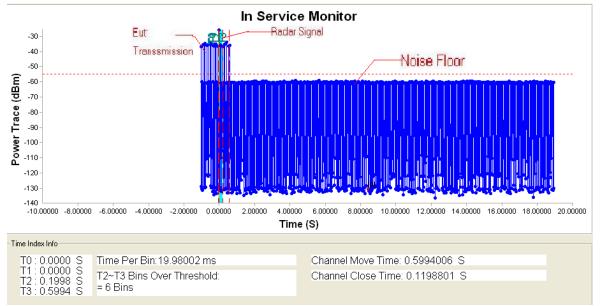
Radar signal 2



Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

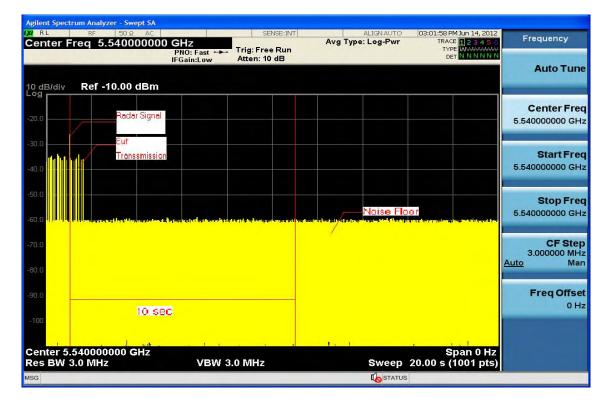
T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.


T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

Note: An expanded plot for the device vacates the channel in the required 500ms

Radar signal 3

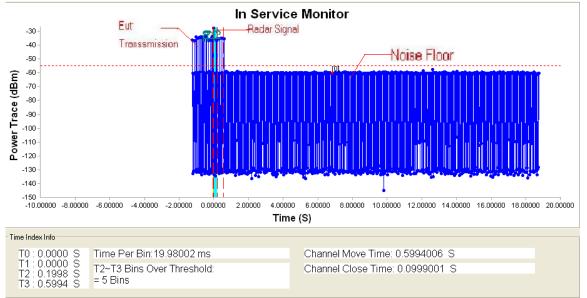


Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

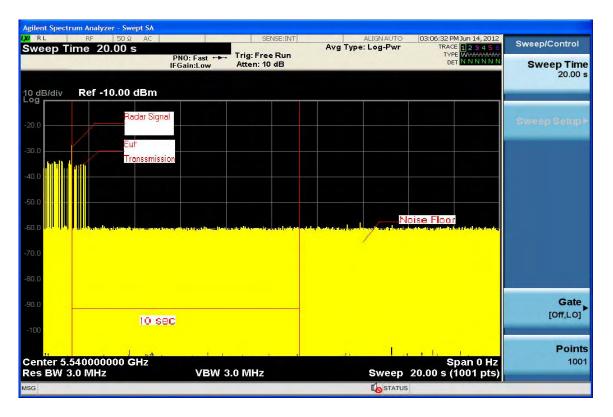
T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.



Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 26 of 54

Radar signal 4

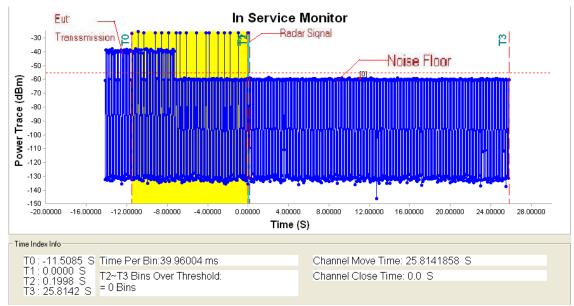


Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

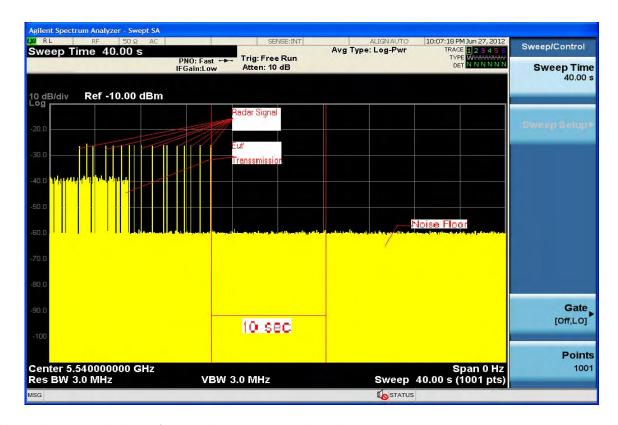

Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 27 of 54

Neutron Engineering Inc.

TX (A Mode)

Radar signal 5

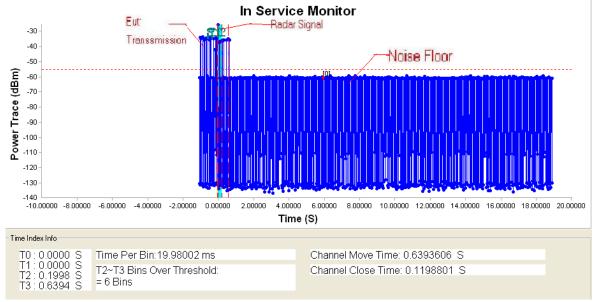


Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

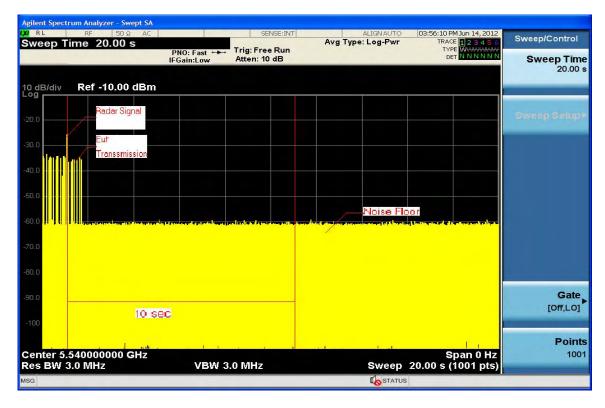

Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 28 of 54

Neutron Engineering Inc.

TX (A Mode)

Radar signal 6



Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 29 of 54

Trial #	Pluse per Burst	Pluse Width(us)	PRI(us)	Detection(Yes / No
1	18	1. 0u	1.428	YES
2	18	1. 0u	1.428	YES
3	18	1. 0u	1. 428	NO
4	18	1. 0u	1.428	YES
5	18	1. Ou	1.428	YES
6	18	1. Ou	1.428	YES
7	18	1. 0u	1.428	YES
8	18	1. 0u	1.428	YES
9	18	1. 0u	1.428	YES
10	18	1. Ou	1.428	YES
11	18	1. 0u	1. 428	YES
12	18	1. 0u	1.428	YES
13	18	1. 0u	1. 428	YES
14	18	1. 0u	1.428	YES
15	18	1. Ou	1.428	YES
16	18	1. 0u	1.428	YES
17	18	1. 0u	1.428	YES
18	18	1. 0u	1. 428	YES
19	18	1. 0u	1. 428	YES
20	18	1. Ou	1. 428	YES
21	18	1. 0u	1. 428	YES
22	18	1. 0u	1.428	YES
23	18	1. Ou	1. 428	YES
24	18	1. 0u	1.428	NO
25	18	1. Ou	1.428	YES
26	18	1. 0u	1.428	YES
27	18	1. 0u	1. 428	YES
28	18	1. 0u	1. 428	YES
29	18	1. 0u	1. 428	YES
30	18	1. 0u	1.428	YES

Report No.: NEI-FICP-1-1204C48A Page 30 of 54

Trial #	Pluse per Burst	Pluse Width(us)	PRI(us)	Detection(Yes / No	
1	23	3. 4u	222	YES	
2	25	4. 0u	200	YES	
3	25	2. 1u	193	YES	
4	26	3. 4u	228	YES	
5	23	4. 0u	216	NO	
6	23	2.7u	225	YES	
7	28	2. 7u	221	YES	
8	29	2. 2u	227	YES	
9	27	1. 3u	169	YES	
10	26	1. 4u	158	YES	
11	24	4. 5u	220	YES	
12	28	3. 3u	168	YES	
13	25	2. 4u	209	YES	
14	24	2.8u	204	YES	
15	26	2. 7u	225	YES	
16	28	2. 9u	224	YES	
17	27	1.8u	207	YES	
18	23	2. Ou	2. 0u 158	YES	
19	25	2. 3u	208	YES	
20	27	3. 0u	160	YES	
21	25	2.3u	189	YES	
22	24	3. 0u	186	YES	
23	28	1. 2u	176	YES	
24	29	1. 0u	176	YES	
25	29	1. 3u	221	YES	
26	28	1. 4u	159	YES	
27	24	4. 5u	220	YES	
28	26	3. 3u	201	YES	
29	25	2. 4u	163	YES	
30	26	3. 8u	151	YES	

Report No.: NEI-FICP-1-1204C48A Page 31 of 54

Trial #	Pluse per Burst	Pluse Width(us)	PRI(us)	Detection(Yes / No	
1	16	6. 6u	492	YES	
2	17	8. 8u	480	YES	
3	16	9. 5u	216	NO NO	
4	18	9. 5u	224	YES	
5	16	8. 6u	477	YES	
6	17	8. 2u	246	YES	
7	17	8. 7u	213	YES	
8	17	9. 0u	482	YES	
9	18	8. 2u	436	YES	
10	16	8. 7u	447	NO	
11	18	9. 0u	310	YES	
12	18	9. 8u	481	YES	
13	17	10. Ou	269	YES	
14	16	7. 9u	447	YES	
15	16	8. 8u	310	YES	
16	18	7. 6u	481	YES	
17	18	7. 9u	269	YES	
18	16	6. 0u	463	YES	
19	18	9. 9u	445	YES	
20	18	8. 5u	442	YES	
21	17	8. 0u	414	YES	
22	16	8. 6u	450	NO	
23	17	8. 4u	206	YES	
24	16	9. 3u	248	YES	
25	17	8. 5u	386	YES	
26	17	8. 2u	258	YES	
27	18	8. 7u	269	YES	
28	18	9. 0u	431	YES	
29	17	9. 8u	330	YES	
30	16	7. 5u	420	YES	

Report No.: NEI-FICP-1-1204C48A Page 32 of 54

Trial #	Pluse per Burst	Pluse Width(us)	PRI(us)	Detection(Yes / No	
1	16	12. 7u	365	YES	
2	15	15 19, 8u		YES	
3	16	11. 0u	377	YES	
4	12	16. 6u	463	YES	
5	13	12. 7u	445	YES	
6	13	12. 0u	445	YES	
7	15	13. 8u	405	NO NO	
8	15	14. 9u	463	YES	
9	15	15. 8u	445	YES	
10	14	14. 6u	409	YES	
11	14	13. 9u	398	YES	
12	15	16. 0u	364	YES	
13	16	16. 6u	367	YES	
14	15	12. 7u	258	YES	
15	14	12. 0u	445	YES	
16	13	13. 8u	442	YES	
17	15	14. 9u	405	YES	
18	15	15. 8u	463	YES	
19	15	14. 6u	445	YES	
20	12	13. 9u	447	YES	
21	13	16. 0u	410	NO	
22	16	17. 0u	481	YES	
23	15	15. 3u	492	YES	
24	15	14. Ou	463	YES	
25	15	15. 3u	445	YES	
26	13	14. 0u	442	YES	
27	14	15. 6u	250	YES	
28	15	17. 0u	478	YES	
29	16	19. 3u	350	YES	
30	15	13. 0u	496	YES	

Report No.: NEI-FICP-1-1204C48A Page 33 of 54

R	Radar5 Statical Performances							
Trial #	Test Signal name							
1	LP_Signal_01	Yes						
2	LP_Signal_02	Yes						
3	LP_Signal_03	Yes						
4	LP_Signal_04	Yes						
5	LP_Signal_05	Yes						
6	LP_Signal_06	Yes						
7	LP_Signal_07	Yes						
8	LP_Signal_08	NO						
9	LP_Signal_09	Yes						
10	LP_Signal_10	Yes						
11	LP_Signal_11	Yes						
12	LP_Signal_12	Yes						
13	LP_Signal_13	Yes						
14	LP_Signal_14	Yes						
15	LP_Signal_15	Yes						
16	LP_Signal_16	Yes						
17	LP_Signal_17	Yes						
18	LP_Signal_18	Yes						
19	LP_Signal_19	Yes						
20	LP_Signal_20	Yes						
21	LP_Signal_21	NO						
22	LP_Signal_22	Yes						
23	LP_Signal_23	NO						
24	LP_Signal_24	Yes						
25	LP_Signal_25	Yes						
26	LP_Signal_26	Yes						
27	LP_Signal_27	Yes						
28	LP_Signal_28	Yes						
29	LP_Signal_29	Yes						
30	LP_Signal_30	Yes						
	Detection	Rate 90%						

Report No.: NEI-FICP-1-1204C48A Page 34 of 54

Trial #	Hoping Frequency Sequence Name	Detection(Yes / No)		
1	HOP_FREQ_SEQ_01	Yes		
2	HOP_FREQ_SEQ_02	Yes		
3	HOP_FREQ_SEQ_03	Yes		
4	HOP_FREQ_SEQ_04	No		
5	HOP_FREQ_SEQ_05	Yes		
6	HOP_FREQ_SEQ_06	Yes		
7	HOP_FREQ_SEQ_07	Yes		
8	HOP_FREQ_SEQ_08	Yes		
9	HOP_FREQ_SEQ_09	Yes		
10	HOP_FREQ_SEQ_10	No		
11	HOP_FREQ_SEQ_11	Yes		
12	HOP_FREQ_SEQ_12	Yes		
13	HOP_FREQ_SEQ_13	Yes		
14	HOP_FREQ_SEQ_14	Yes		
15	HOP_FREQ_SEQ_15	Yes		
16	HOP_FREQ_SEQ_16	No		
17	HOP_FREQ_SEQ_17	Yes		
18	HOP_FREQ_SEQ_18	Yes		
19	HOP_FREQ_SEQ_19	Yes		
20	HOP_FREQ_SEQ_20	Yes		
21	HOP_FREQ_SEQ_21	No		
22	HOP_FREQ_SEQ_22	Yes		
23	HOP_FREQ_SEQ_23	Yes		
24	HOP_FREQ_SEQ_24	Yes		
25	HOP_FREQ_SEQ_25	Yes		
26	HOP_FREQ_SEQ_26	Yes		
27	HOP_FREQ_SEQ_27	Yes		
28	HOP_FREQ_SEQ_28	Yes		
29	HOP_FREQ_SEQ_29	Yes		
30	HOP_FREQ_SEQ_30	Yes		

Report No.: NEI-FICP-1-1204C48A Page 35 of 54

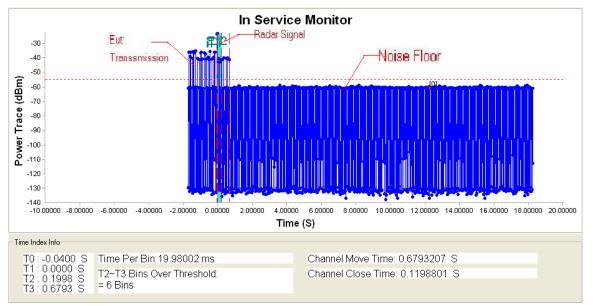
TX (40MHz Mode)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	1	1428	27	3	90%
2	1-5	150-230	27	3	90%
3	6-10	200-500	27	3	90%
4	11-20	200-500	28	2	93%
Aggregate (Radar Types 1-4)			109	11	91%

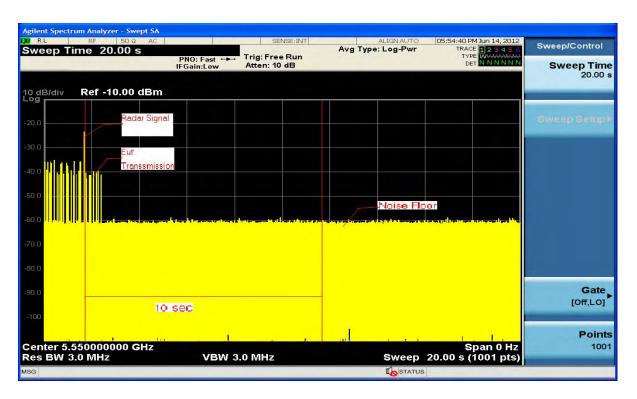
Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulses Per Burst	Number of Bursts	Number of Trials (Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	27	3	90%


Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Time s)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	87%

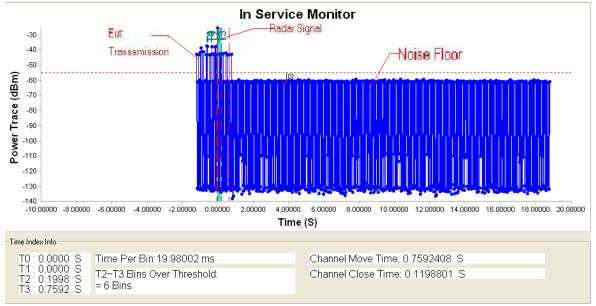
Report No.: NEI-FICP-1-1204C48A Page 36 of 54


TX (N40 Mode)

Radar signal 1

Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

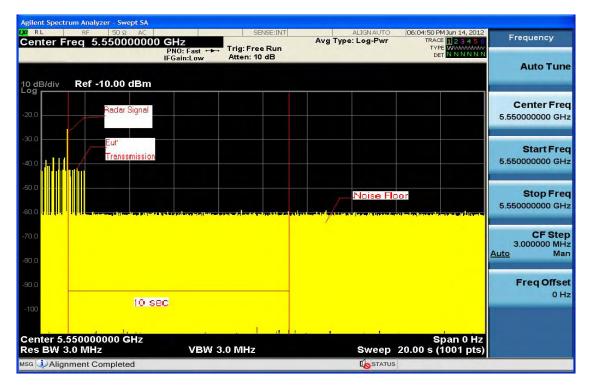
- T2 denotes the data transmission time of 200ms from T1.
- T3 denotes the end of Channel Move Time.
- T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.


Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 37 of 54

TX (N40 Mode)

Radar signal 2

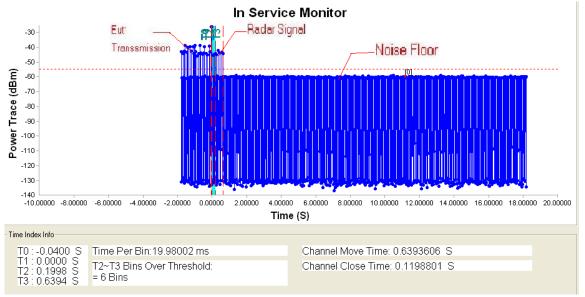


Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.



Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 38 of 54

TX (N40 Mode)

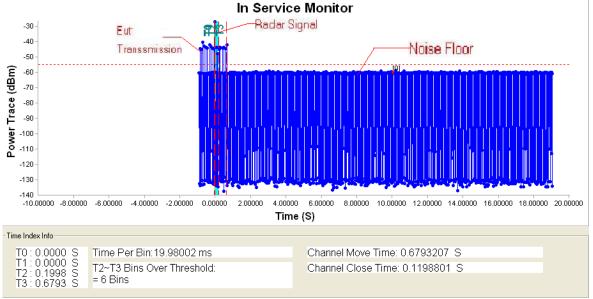
Radar signal 3

Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

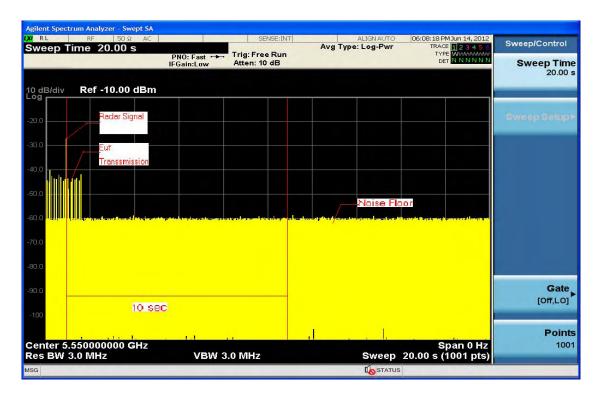


Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 39 of 54

TX (N40 Mode)

Radar signal 4

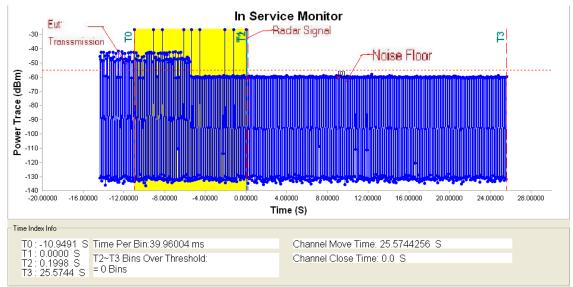


Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

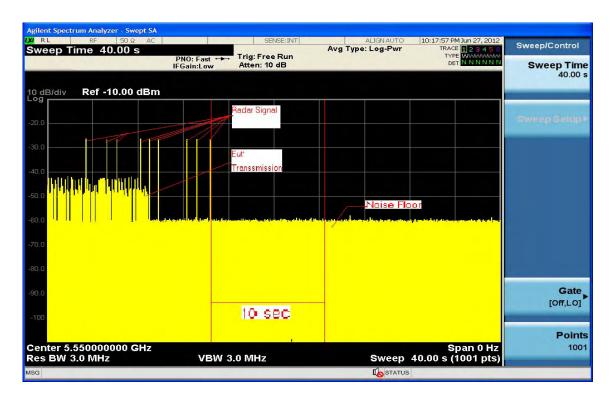


Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 40 of 54

TX (N40 Mode)

Radar signal 5

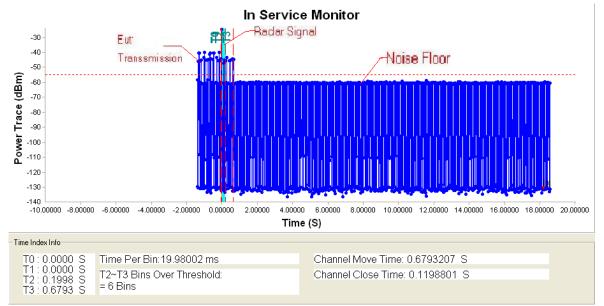


Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

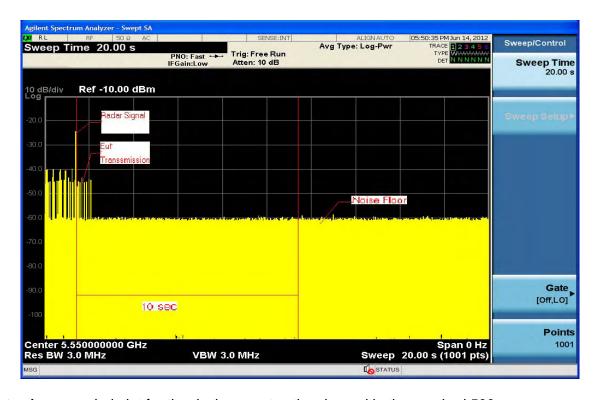


Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 41 of 54

TX (N40 Mode)

Radar signal 6



Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

Note: An expanded plot for the device vacates the channel in the required 500ms

Report No.: NEI-FICP-1-1204C48A Page 42 of 54

TX (N40 Mode)

Trial #	Pluse per Burst	Pluse Width(us)	PRI(us)	Detection(Yes / No YES		
1	18	1. 0u	1.428			
2	18	1. 0u	1.428	YES		
3	18	1. 0u	1.428	YES		
4	18	1. 0u	1.428	YES		
5	18	1. 0u	1.428	YES		
6	18	1. 0u	1.428	YES		
7	18	1. 0u	1.428	YES		
8	18	1. 0u	1.428	YES		
9	18	1. 0u	1.428	YES		
10	18	1. Ou	1.428	YES		
11	18	1. 0u	1.428	YES YES		
12	18	1. 0u	1.428			
13	18	1. Ou	1.428	YES		
14	18	1. 0u	1.428	YES		
15	18	1. 0u	1.428	YES		
16	18	1. 0u	1.428	YES		
17	18	1. 0u	1.428	YES		
18	18	1. Ou	1.428	YES		
19	18	1. 0u	1.428	YES		
20	18	1. 0u	1.428	YES		
21	18	1. 0u	1.428	YES		
22	18	1. 0u	1.428	YES		
23	18	1. Ou	1.428	YES		
24	18	1. 0u	1.428	YES		
25	18	1. 0u	1.428	YES		
26	18	1. 0u	1.428	YES		
27	18	1. 0u	1.428	YES		
28	18	1. 0u	1.428	YES		
29	18	1. 0u	1.428	YES		
30	18	1. 0u	1.428	YES		

Report No.: NEI-FICP-1-1204C48A Page 43 of 54

Trial #	Pluse per Burst			Detection(Yes / No		
1	28	4. 5u	226	YES		
2	27	4. 5u	224	YES		
3	26	3. 3u	157	YES		
4	26	2. 4u	170	YES		
5	28	4. 0u	192	YES		
6	24	2. 6u	224	YES		
7	25	2. 5u	207	YES		
8	23	4. 9u	227	NO		
9	23	2. 7u	186	YES		
10	26	3. 2u	172	YES		
11	28	4. 3u	170	YES		
12	27	3. 1u	221	YES		
13	29	4. 9u	203	YES		
14	29	2. 7u	190	NO		
15	23	2. 9u	229	YES		
16	25	2.8u	158	YES		
17	28	1. 0u	170	YES		
18	27	2. 5u	192	YES		
19	26	4. 9u	224	YES		
20	24	1, 4u	207	YES		
21	24	4. 9u	158	YES		
22	26	3. 0u	208	YES		
23	26	4, 5u	160	YES		
24	25	4. 5u	198	YES		
25	24	4. 3u	224	YES		
26	25	3. 1u	207	YES		
27	24	2. 2u	158	YES		
28	23	1. 3u	210	YES		
29	27	1. 4u	170	YES		
30	28	4. 5u	186	YES		

Report No.: NEI-FICP-1-1204C48A Page 44 of 54

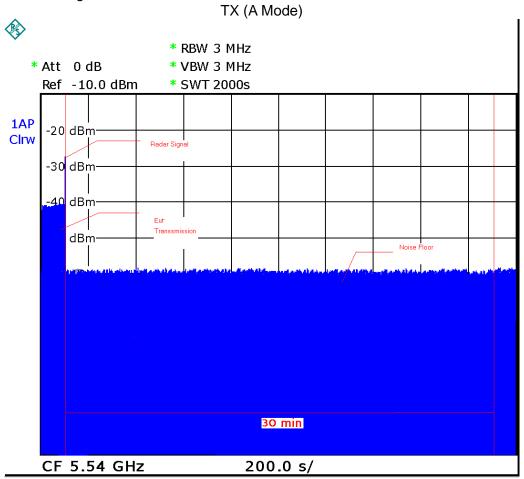
Trial #	Pluse per Burst			Detection(Yes / No			
1			255	YES			
2	16	9. 9u	324	YES			
3	16	8. 5u	316	YES			
4	18	8. 0u	264	YES			
5	16	9. 6u	216	YES			
6	17	6. 0u	495	YES			
7	17	9. 9u	269	YES			
8	18	8. 5u	431	YES			
9	17	8. 0u	213	YES			
10	16	6. 0u	482	YES			
11	17	9. 5u	336	YES			
12	18	6. Ou	463	YES			
13	18	8. 8u	392	YES			
14			352	YES			
15	17	8. 0u	430	YES			
16	16	6. 6u	486	YES			
17	16	7. 9u	286	YES			
18	17	8. 0u	206	YES			
19	16	7. 0u	213	YES			
20	18	7. 6u	482	YES			
21	18	7. 9u	436	YES			
22	17	8. 0u	447	YES			
23	16	9. 9u	269	YES			
24	18	8. 5u	331	YES			
25	17	8. 0u	330	YES			
26	16	9. 6u	230	YES			
27	18	6. Ou	364	YES			
28	16	6. 8u	366	YES			
29	18	7. 1u	445	YES			
30	16	9. 3u	440	YES			

Report No.: NEI-FICP-1-1204C48A Page 45 of 54

Trial #	Pluse per Burst			Detection(Yes / No		
1	16	18. 2u	220	YES		
2	14	15. 3u	482	YES		
3	14	19. 0u	331	YES		
4	13	13. 8u	335	YES		
5	16	14. 9u	328	YES		
6	14	15. 8u	445	YES		
7	14	19. 6u	352	YES		
8	14	13. 9u	332	YES		
9	15	16. 0u	478	YES		
10	13	11. 5u	472	YES		
11	15	14. 0u	405	YES		
12	13	15. 6u	405	YES		
13	15	17. 0u	409	YES		
14	14	18. 0u	477	YES		
15	12	13. 2u	206	YES		
16	15	12. 0u	216	YES		
17	16	12. 0u	213	YES		
18	12	13. 8u	482	YES		
19	13	14. 9u	336	YES		
20	16	15. 8u	447	YES		
21	16	14. 6u	258	YES		
22	16	13. 9u	308	YES		
23	12	16. 5u	425	YES		
24	15	14. 0u	490	YES		
25	16	15. 6u	445	YES		
26	16	11.8u	305	YES		
27	12	14. 9u	375	YES		
28	14	12. 5u	488	YES		
29	15	14. 6u	375	YES		
30	15	12. 0u	497	YES		

Report No.: NEI-FICP-1-1204C48A Page 46 of 54

Trial #	Radar5 Statical Pe Test Signal name	Detection(Yes / No)
1	LP_Signal_01	Yes
2	LP_Signal_02	Yes
3	LP_Signal_03	Yes
4	LP_Signal_04	Yes
5	LP_Signal_05	Yes
6	LP_Signal_06	No
7	LP_Signal_07	Yes
8	LP_Signal_08	Yes
9	LP_Signal_09	Yes
10	LP_Signal_10	Yes
11	LP_Signal_11	Yes
12	LP_Signal_12	Yes
13	LP_Signal_13	Yes
14	LP_Signal_14	Yes
15	LP_Signal_15	Yes
16	LP_Signal_16	Yes
17	LP_Signal_17	Yes
18	LP_Signal_18	Yes
19	LP_Signal_19	No
20	LP_Signal_20	Yes
21	LP_Signal_21	Yes
22	LP_Signal_22	Yes
23	LP_Signal_23	Yes
24	LP_Signal_24	Yes
25	LP_Signal_25	Yes
26	LP_Signal_26	Yes
27	LP_Signal_27	Yes
28	LP_Signal_28	Yes
29	LP_Signal_29	Yes
30	LP_Signal_30	Yes


Report No.: NEI-FICP-1-1204C48A Page 47 of 54

Trial #	Hoping Frequency Sequence Name	Detection(Yes / No)			
1	HOP_FREQ_SEQ_01	Yes			
2	HOP_FREQ_SEQ_02	Yes			
3	HOP_FREQ_SEQ_03	Yes			
4	HOP_FREQ_SEQ_04	Yes			
5	HOP_FREQ_SEQ_05	No			
6	HOP_FREQ_SEQ_06	Yes			
7	HOP_FREQ_SEQ_07	Yes			
8	HOP_FREQ_SEQ_08	Yes			
9	HOP_FREQ_SEQ_09	Yes			
10	HOP_FREQ_SEQ_10	Yes			
11	HOP_FREQ_SEQ_11	Yes			
12	HOP_FREQ_SEQ_12	No			
13	HOP_FREQ_SEQ_13	Yes			
14	HOP_FREQ_SEQ_14	Yes			
15	HOP_FREQ_SEQ_15	Yes			
16	HOP_FREQ_SEQ_16	Yes			
17	HOP_FREQ_SEQ_17	Yes			
18	HOP_FREQ_SEQ_18	No			
19	HOP_FREQ_SEQ_19	Yes			
20	HOP_FREQ_SEQ_20	Yes			
21	HOP_FREQ_SEQ_21	Yes			
22	HOP_FREQ_SEQ_22	Yes			
23	HOP_FREQ_SEQ_23	Yes			
24	HOP_FREQ_SEQ_24	Yes			
25	HOP_FREQ_SEQ_25	Yes			
26	HOP_FREQ_SEQ_26	Yes			
27	HOP_FREQ_SEQ_27	Yes			
28	HOP_FREQ_SEQ_28	Yes			
29	HOP_FREQ_SEQ_29	Yes			
30	HOP_FREQ_SEQ_30	Yes			

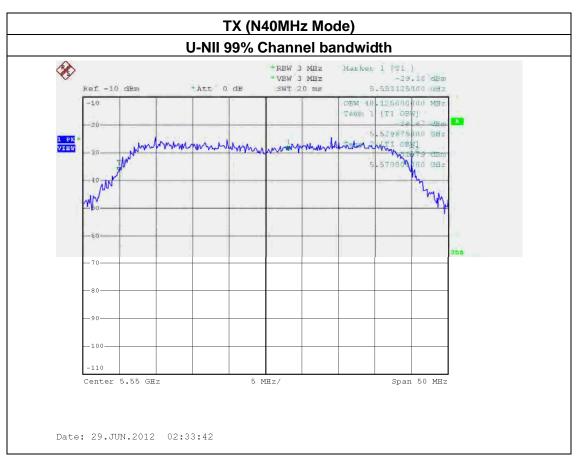
Report No.: NEI-FICP-1-1204C48A Page 48 of 54

6.2.5 NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

Date: 8.JUN.2012 18:35:52


Report No.: NEI-FICP-1-1204C48A Page 49 of 54



6.2.6 UNIFORM SPREADING
The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the
spectrum. The UUT using the bands 5250 to 5350MHz and 5470 to 5600 MHz channels so that the probability of selecting a given channel shall be the same for channels. The UUT will select
channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

Report No.: NEI-FICP-1-1204C48A Page 50 of 54

6.2.7 U-NII DETECTION BANDWIDTH

Report No.: NEI-FICP-1-1204C48A Page 51 of 54

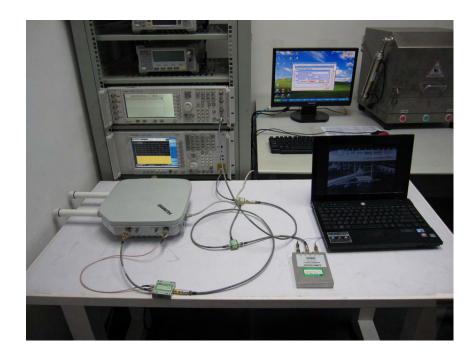
A Mode

Detection Bandwith test transmission 20M

EUT FREQUENCY 5540M											
EUT power bandwith : 21.1MHz											
Detection Bandwith limit(80%of EUT 99% Power bandwith) 16.88											
Detection Bandwith(5550(fh)-5529(fl)) 21											
Test Result: PASS											
Radar Freq									Detection		
(MHz)	DIS	ретес	CTOIL	IIIais	(1-D	etecti	011, 0-	- NO D	etecti	OII/	Rate (%)
(MIIZ)	1	2	3	4	5	6	7	8	9	10	Nate (%)
5529 (FL)	1	0	0	1	1	1	1	0	1	0	60
5530	1	0	1	1	1	0	1	1	1	1	80
5531	1	1	1	1	1	1	1	1	1	1	100
5532	1	1	1	1	1	1	1	1	1	1	100
5533	1	1	1	1	1	1	1	1	1	1	100
5534	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5536	1	1	1	1	1	1	1	1	1	1	100
5537	1	1	1	1	1	1	1	1	1	1	100
5538	1	1	1	1	1	1	1	1	1	1	100
5539	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5541	1	1	1	1	1	1	1	1	1	1	100
5542	1	1	1	1	1	1	1	1	1	1	100
5543	1	1	1	1	1	1	1	1	1	1	100
5544	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5546	1	1	1	1	1	1	1	1	1	1	100
5547	1	1	1	1	1	1	1	1	1	1	100
5548	1	1	1	1	1	1	1	1	1	1	100
5549	1	0	1	1	1	1	1	1	1	1	90
5550 (FH)	1	1	0	1	1	0	1	1	1	1	80
5551	1	0	1	0	1	1	0	1	1	1	70

Report No.: NEI-FICP-1-1204C48A Page 52 of 54

N40 Mode


Detection Bandwith test tranmission 40M

EUT FREQUENCY 5550M											
EUT power bandwith : 40.125MHz											
Detection Bandwith limit(80% of EUT 99% Power bandwith) 32.1											
Detection Bandwith(5570(fh)-5530(fl)) 39											
Test Result PASS											
Radar Freq	DFS	Detec	ction	Trials	(1=D	etecti	on, 0=	No D	etecti	on)	Detection
(MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5529	1	1	0	0	1	1	1	0	1	0	60
5530 (FL)	1	1	1	1	0	0	1	0	0	1	60
5531	1	1	1	0	1	1	0	1	0	1	70
5532	1	1	1	1	1	0	1	1	1	1	90
5533	1	1	1	1	1	1	1	1	1	1	100
5534	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5536	1	1	1	1	1	1	1	1	1	1	100
5537	1	1	1	1	1	1	1	1	1	1	100
5538	1	1	1	1	1	1	1	1	1	1	100
5539	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5541	1	1	1	1	1	1	1	1	1	1	100
5542	1	1	1	1	1	1	1	1	1	1	100
5543	1	1	1	1	1	1	1	1	1	1	100
5544	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5546	1	1	1	1	1	1	1	1	1	1	100
5547	1	1	1	1	1	1	1	1	1	1	100
5548	1	1	1	1	1	1	1	1	1	1	100
5549	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5551	1	1	1	1	1	1	1	1	1	1	100
5552	1	1	1	1	1	1	1	1	1	1	100
5553	1	1	1	1	1	1	1	1	1	1	100
5554	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5556	1	1	1	1	1	1	1	1	1	1	100
5557	1	1	1	1	1	1	1	1	1	1	100
5558	1	1	1	1	1	1	1	1	1	1	100
5559	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5561	1	1	1	1	1	1	1	1	1	1	100
5562	1	1	1	1	1	1	1	1	1	1	100
5563	1	1	1	1	1	1	1	1	1	1	100
5564	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	1	1	1	100
5568	1	1	0	1	1	0	1	1	1	1	80
5569	1	0	1	0	1	0	0	1	0	1	50
5570 (FH)	1	0	0	0	1	0	1	0	0	1	40

Report No.: NEI-FICP-1-1204C48A Page 53 of 54

6.2.8 TEST SETUP PHOTOS

Report No.: NEI-FICP-1-1204C48A Page 54 of 54