	Radar4 Statical Performances				
Trial #	Pluse per	Pluse	PRI(us)	Detection(Yes / No)	
	Burst	Width(us)	114(43)	Detection(1007110)	
1	12	19.0u	300	YES	
2	13	11.4u	336	NO	
3	16	12.5u	328	YES	
4	13	16.6u	463	YES	
5	13	18.8u	445	YES	
6	15	19.0u	442	YES	
7	15	14.8u	405	YES	
8	15	18.6u	409	YES	
9	16	13.2u	477	YES	
10	12	12.7u	206	YES	
11	13	12.0u	213	YES	
12	13	13.8u	482	YES	
13	15	14.9u	436	YES	
14	15	15.8u	447	YES	
15	15	14.6u	410	YES	
16	14	13.9u	481	YES	
17	14	16.0u	492	YES	
18	15	17.0u	463	YES	
19	16	17.5u	445	YES	
20	12	16.0u	442	YES	
21	13	13.6u	405	YES	
22	16	14.4u	409	YES	
23	16	15.3u	398	YES	
24	13	14.0u	364	YES	
25	13	15.6u	367	YES	
26	14	17.0u	258	YES	
27	15	19.3u	270	YES	
28	15	18.2u	441	YES	
29	16	20.0u	332	YES	
30	14	14.8u	478	YES	
	Detection Rate 97%				

Radar5 Statical Performances				
Trial #	Test Signal name	Detection(Yes / No)		
1	LP_Signal_01	Yes		
2	LP_Signal_02	Yes		
3	LP_Signal_03	Yes		
4	LP_Signal_04	Yes		
5	LP_Signal_05	Yes		
6	LP_Signal_06	Yes		
7	LP_Signal_07	No		
8	LP_Signal_08	Yes		
9	LP_Signal_09	Yes		
10	LP_Signal_10	Yes		
11	LP_Signal_11	No		
12	LP_Signal_12	No		
13	LP_Signal_13	Yes		
14	LP_Signal_14	Yes		
15	LP_Signal_15	Yes		
16	LP_Signal_16	Yes		
17	LP_Signal_17	Yes		
18	LP_Signal_18	Yes		
19	LP_Signal_19	Yes		
20	LP_Signal_20	Yes		
21	LP_Signal_21	Yes		
22	LP_Signal_22	Yes		
23	LP_Signal_23	Yes		
24	LP_Signal_24	Yes		
25	LP_Signal_25	Yes		
26	LP_Signal_26	No		
27	LP_Signal_27	Yes		
28	LP_Signal_28	No		
29	LP_Signal_29	Yes		
30	LP_Signal_30	Yes		
Detection Rate 83%				

Radar6 Statical Performances				
Trial #	Hoping Frequency Sequence Name	Detection(Yes / No)		
1	HOP_FREQ_SEQ_01	Yes		
2	HOP_FREQ_SEQ_02	Yes		
3	HOP_FREQ_SEQ_03	Yes		
4	HOP_FREQ_SEQ_04	Yes		
5	HOP_FREQ_SEQ_05	Yes		
6	HOP_FREQ_SEQ_06	Yes		
7	HOP_FREQ_SEQ_07	No		
8	HOP_FREQ_SEQ_08	Yes		
9	HOP_FREQ_SEQ_09	Yes		
10	HOP_FREQ_SEQ_10	Yes		
11	HOP_FREQ_SEQ_11	No		
12	HOP_FREQ_SEQ_12	No		
13	HOP_FREQ_SEQ_13	Yes		
14	HOP_FREQ_SEQ_14	Yes		
15	HOP_FREQ_SEQ_15	Yes		
16	HOP_FREQ_SEQ_16	Yes		
17	HOP_FREQ_SEQ_17	Yes		
18	HOP_FREQ_SEQ_18	Yes		
19	HOP_FREQ_SEQ_19	Yes		
20	HOP_FREQ_SEQ_20	Yes		
21	HOP_FREQ_SEQ_21	Yes		
22	HOP_FREQ_SEQ_22	Yes		
23	HOP_FREQ_SEQ_23	Yes		
24	HOP_FREQ_SEQ_24	Yes		
25	HOP_FREQ_SEQ_25	Yes		
26	HOP_FREQ_SEQ_26	No		
27	HOP_FREQ_SEQ_27	Yes		
28	HOP_FREQ_SEQ_28	No		
29	HOP_FREQ_SEQ_29	Yes		
30	HOP_FREQ_SEQ_30	Yes		
Detection Rate 83%				

TX (20MHz Mode)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	1	1428	26	30	87%
2	1-5	150-230	28	30	93%
3	6-10	200-500	29	30	97%
4	11-20	200-500	27	30	90%
Aggregate (Radar Types 1-4)			110	120	92%

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulses Per Burst	Number of Bursts	Number of Trials (Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	26	30	87%

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Time s)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	87%

Note: An expanded plot for the device vacates the channel in the required 500ms

Note: An expanded plot for the device vacates the channel in the required 500ms

TX (N20 Mode)

RO

ů

	Radar1 Statical Performances			
Trial #	Pluse per	Pluse	PRI(us)	Detection(Yes / No)
	Burst	Width(us)		
1	18	1.0u	1.428	YES
2	18	1.0u	1.428	YES
3	18	1.0u	1.428	YES
4	18	1.0u	1.428	YES
5	18	1.0u	1.428	YES
6	18	1.0u	1.428	YES
7	18	1.0u	1.428	NO
8	18	1.0u	1.428	YES
9	18	1.0u	1.428	YES
10	18	1.0u	1.428	YES
11	18	1.0u	1.428	YES
12	18	1.0u	1.428	YES
13	18	1.0u	1.428	YES
14	18	1.0u	1.428	YES
15	18	1.0u	1.428	YES
16	18	1.0u	1.428	NO
17	18	1.0u	1.428	YES
18	18	1.0u	1.428	YES
19	18	1.0u	1.428	YES
20	18	1.0u	1.428	NO
21	18	1.0u	1.428	YES
22	18	1.0u	1.428	YES
23	18	1.0u	1.428	YES
24	18	1.0u	1.428	YES
25	18	1.0u	1.428	YES
26	18	1.0u	1.428	YES
27	18	1.0u	1.428	YES
28	18	1.0u	1.428	NO
29	18	1.0u	1.428	YES
30	18	1.0u	1.428	YES
Detection Rate 87%				

Radar2 Statical Performances					
T-1-1-4	Pluse per	Pluse			
i riai #	Burst	Width(us)	PRI(us)	Detection (Yes / No)	
1	23	2.6u	151	YES	
2	25	1.7u	168	YES	
3	25	1.8u	193	YES	
4	27	2.4u	228	YES	
5	26	3.8u	216	YES	
6	23	2.7u	225	YES	
7	27	3.2u	221	YES	
8	26	4.3u	227	YES	
9	26	3.1u	169	YES	
10	25	2.2u	208	NO	
11	27	1.3u	220	YES	
12	28	1.4u	168	YES	
13	25	4.5u	209	YES	
14	24	3.3u	204	YES	
15	23	2.4u	229	YES	
16	27	3.8u	224	YES	
17	23	1.2u	207	YES	
18	23	1.4u	158	YES	
19	25	1.5u	208	YES	
20	26	2.6u	160	YES	
21	24	2.2u	184	YES	
22	27	1.3u	186	YES	
23	28	1.4u	172	YES	
24	28	4.5u	170	YES	
25	29	2.7u	221	NO	
26	27	2.9u	203	YES	
27	24	1.8u	190	YES	
28	26	2.6u	198	YES	
29	25	2.5u	193	YES	
30	28	3.0u	159	YES	
	Detection Rate 93%				

Radar3 Statical Performances					
Trial #	Pluse per	Pluse		Detection(Vec. / Ne)	
inai#	Burst	Width(us)	PRI(us)	Detection(res/No)	
1	18	8.6u	300	YES	
2	18	8.2u	336	YES	
3	17	8.7u	328	YES	
4	18	9.0u	408	YES	
5	16	9.8u	492	YES	
6	17	9.5u	463	YES	
7	17	9.8u	445	YES	
8	16	8.6u	442	YES	
9	16	8.2u	405	YES	
10	18	8.7u	409	YES	
11	16	9.0u	398	YES	
12	17	9.5u	364	YES	
13	17	6.6u	366	YES	
14	16	8.8u	258	NO	
15	16	9.5u	477	YES	
16	18	9.8u	206	YES	
17	18	8.6u	213	YES	
18	16	9.9u	482	YES	
19	17	8.5u	436	YES	
20	17	8.0u	447	YES	
21	18	8.6u	410	YES	
22	18	8.8u	409	YES	
23	16	7.6u	398	YES	
24	16	7.9u	364	YES	
25	16	8.0u	366	YES	
26	18	9.9u	258	YES	
27	16	8.5u	269	YES	
28	17	8.0u	431	YES	
29	18	9.6u	330	YES	
30	18	6.0u	440	YES	
Detection Rate 97%					

	Radar4 Statical Performances				
Trial #	Pluse per	Pluse	DDI/wa)		
That#	Burst	Width(us)	PRI(us)	Detection(res/No)	
1	12	12.7u	330	YES	
2	14	12.0u	335	NO	
3	15	13.8u	328	YES	
4	15	14.9u	445	YES	
5	13	19.8u	442	YES	
6	15	14.6u	405	YES	
7	13	13.9u	409	YES	
8	15	18.0u	477	YES	
9	16	13.2u	206	YES	
10	12	12.0u	206	YES	
11	13	12.0u	213	YES	
12	13	13.8u	482	YES	
13	13	14.9u	436	YES	
14	15	15.8u	447	NO	
15	15	14.6u	258	YES	
16	14	13.9u	270	YES	
17	14	16.5u	441	YES	
18	15	14.0u	332	YES	
19	16	15.6u	478	YES	
20	12	17.0u	442	YES	
21	13	19.3u	405	YES	
22	16	18.2u	409	YES	
23	16	15.3u	481	YES	
24	14	19.0u	492	NO	
25	14	13.8u	463	YES	
26	13	14.9u	445	YES	
27	16	15.8u	442	YES	
28	15	19.6u	405	YES	
29	16	13.9u	334	YES	
30	14	16.0u	470	YES	
	Detection Rate 90%				

Report No.: NEI-FCCP-1-1204C46A

Radar5 S	Radar5 Statical Performances					
Trial #	Test Signal name	Detection(Yes / No)				
1	LP_Signal_01	Yes				
2	LP_Signal_02	Yes				
3	LP_Signal_03	Yes				
4	LP_Signal_04	Yes				
5	LP_Signal_05	Yes				
6	LP_Signal_06	Yes				
7	LP_Signal_07	Yes				
8	LP_Signal_08	NO				
9	LP_Signal_09	Yes				
10	LP_Signal_10	Yes				
11	LP_Signal_11	Yes				
12	LP_Signal_12	NO				
13	LP_Signal_13	Yes				
14	LP_Signal_14	Yes				
15	LP_Signal_15	Yes				
16	LP_Signal_16	Yes				
17	LP_Signal_17	Yes				
18	LP_Signal_18	Yes				
19	LP_Signal_19	NO				
20	LP_Signal_20	Yes				
21	LP_Signal_21	Yes				
22	LP_Signal_22	Yes				
23	LP_Signal_23	Yes				
24	LP_Signal_24	Yes				
25	LP_Signal_25	NO				
26	LP_Signal_26	Yes				
27	LP_Signal_27	Yes				
28	LP_Signal_28	Yes				
29	LP_Signal_29	Yes				
30	LP_Signal_30	Yes				
Detection Rate 87%						

Radar6 Statical Performances				
Trial #	Hoping Frequency Sequence Name	Detection(Yes / No)		
1	HOP_FREQ_SEQ_01	Yes		
2	HOP_FREQ_SEQ_02	Yes		
3	HOP_FREQ_SEQ_03	Yes		
4	HOP_FREQ_SEQ_04	Yes		
5	HOP_FREQ_SEQ_05	Yes		
6	HOP_FREQ_SEQ_06	Yes		
7	HOP_FREQ_SEQ_07	NO		
8	HOP_FREQ_SEQ_08	Yes		
9	HOP_FREQ_SEQ_09	Yes		
10	HOP_FREQ_SEQ_10	Yes		
11	HOP_FREQ_SEQ_11	Yes		
12	HOP_FREQ_SEQ_12	NO		
13	HOP_FREQ_SEQ_13	Yes		
14	HOP_FREQ_SEQ_14	Yes		
15	HOP_FREQ_SEQ_15	Yes		
16	HOP_FREQ_SEQ_16	Yes		
17	HOP_FREQ_SEQ_17	Yes		
18	HOP_FREQ_SEQ_18	Yes		
19	HOP_FREQ_SEQ_19	NO		
20	HOP_FREQ_SEQ_20	NO		
21	HOP_FREQ_SEQ_21	Yes		
22	HOP_FREQ_SEQ_22	Yes		
23	HOP_FREQ_SEQ_23	Yes		
24	HOP_FREQ_SEQ_24	Yes		
25	HOP_FREQ_SEQ_25	Yes		
26	HOP_FREQ_SEQ_26	Yes		
27	HOP_FREQ_SEQ_27	Yes		
28	HOP_FREQ_SEQ_28	Yes		
29	HOP_FREQ_SEQ_29	Yes		
30	HOP_FREQ_SEQ_30	Yes		
Detection Rate 87%				

TX (40MHz Mode)

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	1	1428	25	30	83%
2	1-5	150-230	29	30	97%
3	6-10	200-500	26	30	87%
4	11-20	200-500	28	30	93%
Aggreg	ate (Radar Type	s 1-4)	108	120	90%

Table 1: Short Pulse Radar Test Waveforms.

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulses Per Burst	Number of Bursts	Number of Trials (Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	25	30	83%

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Time s)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	87%

TX (N40 Mode)

Note: An expanded plot for the device vacates the channel in the required 500ms

TX (N40 Mode)

	Radar1 Statical Performances									
T-1-1-4	Pluse per	Pluse								
I rial #	Burst	Width(us)	PRI(us)	Detection(Yes / No)						
1	18	1.0u	1.428	YES						
2	18	1.0u	1.428	YES						
3	18	1.0u	1.428	YES						
4	18	1.0u	1.428	YES						
5	18	1.0u	1.428	YES						
6	18	1.0u	1.428	NO						
7	18	1.0u	1.428	YES						
8	18	1.0u	1.428	YES						
9	18	1.0u	1.428	YES						
10	18	1.0u	1.428	YES						
11	18	1.0u	1.428	YES						
12	18	1.0u	1.428	YES						
13	18	1.0u	1.428	YES						
14	18	1.0u	1.428	YES						
15	18	1.0u	1.428	YES						
16	18	1.0u	1.428	YES						
17	18	1.0u	1.428	NO						
18	18	1.0u	1.428	YES						
19	18	1.0u	1.428	YES						
20	18	1.0u	1.428	YES						
21	18	1.0u	1.428	YES						
22	18	1.0u	1.428	YES						
23	18	1.0u	1.428	YES						
24	18	1.0u	1.428	YES						
25	18	1.0u	1.428	YES						
26	18	1.0u	1.428	YES						
27	18	1.0u	1.428	YES						
28	18	1.0u	1.428	YES						
29	18	1.0u	1.428	YES						
30	18	1.0u	1.428	YES						
		C	etection Rate	93%						

	Rada	r2 Statical Pe	rformances	
T	Pluse per	Pluse		
I rial #	Burst	Width(s)	PRI(us)	Detection(Yes / No)
1	26	3.0u	157	YES
2	25	1.9u	168	YES
3	24	1.8u	192	YES
4	27	2.8u	228	YES
5	23	3.8u	216	YES
6	25	2.7u	225	YES
7	26	3.2u	221	YES
8	24	4.3u	227	YES
9	27	3.1u	186	YES
10	28	2.2u	172	YES
11	28	1.3u	170	YES
12	29	1.4u	221	NO
13	25	4.5u	203	YES
14	27	3.3u	190	YES
15	26	2.4u	198	YES
16	26	3.8u	224	YES
17	25	3.2u	207	YES
18	27	1.4u	158	YES
19	28	4.0u	208	YES
20	25	3.3u	160	YES
21	24	2.4u	218	YES
22	23	3.8u	220	YES
23	27	1.4u	168	YES
24	23	4.9u	209	YES
25	29	2.7u	204	YES
26	27	2.9u	229	YES
27	24	2.8u	224	YES
28	29	2.6u	198	YES
29	25	2.5u	193	YES
30	25	4.9u	220	YES
		[Detection Rate	97%

	Rada	r3 Statical Pe	rformances	
Trial #	Pluse per	Pluse	DDI(ue)	Detection(Vec. / No)
That#	Burst	Width(s)	FRI(us)	Detection(res/No)
1	17	6.5u	477	YES
2	18	8.2u	206	YES
3	18	8.7u	213	YES
4	18	9.5u	482	YES
5	16	6.0u	436	YES
6	17	7.0u	463	YES
7	17	9.5u	492	YES
8	16	9.8u	463	YES
9	16	8.6u	445	NO
10	18	9.9u	442	YES
11	16	8.5u	405	YES
12	17	8.0u	364	YES
13	18	6.0u	366	YES
14	16	9.5u	364	YES
15	16	6.0u	366	NO
16	18	8.8u	258	YES
17	18	9.5u	269	YES
18	16	9.8u	431	YES
19	16	8.6u	436	YES
20	18	9.9u	447	YES
21	16	8.5u	477	YES
22	17	8.0u	206	YES
23	17	7.6u	213	YES
24	16	7.9u	482	YES
25	16	8.0u	436	NO
26	17	9.9u	447	YES
27	18	8.5u	269	YES
28	18	8.0u	431	YES
29	18	9.6u	330	YES
30	18	6.0u	230	YES
		[Detection Rate	90%

	Radar4 Statical Performances									
Trial #	Pluse per	Pluse		Detection(Vee / Ne)						
That#	Burst	Width(us)	FRI(us)	Detection(res/No)						
1	14	18.0u	405	YES						
2	12	13.2u	409	YES						
3	15	12.0u	477	YES						
4	16	12.0u	206	YES						
5	12	13.8u	216	YES						
6	13	14.9u	213	YES						
7	16	15.8u	482	YES						
8	16	14.6u	436	YES						
9	14	13.9u	447	YES						
10	14	16.5u	258	YES						
11	13	14.0u	270	YES						
12	16	15.6u	482	YES						
13	15	17.0u	330	YES						
14	16	19.3u	335	YES						
15	14	18.2u	328	YES						
16	14	15.3u	445	YES						
17	14	19.0u	442	YES						
18	15	13.8u	332	YES						
19	16	14.9u	478	YES						
20	12	15.8u	442	YES						
21	15	19.6u	405	YES						
22	16	13.9u	409	YES						
23	16	16.0u	463	YES						
24	12	11.5u	490	YES						
25	14	12.0u	442	YES						
26	15	13.8u	405	YES						
27	15	14.9u	370	YES						
28	13	19.8u	470	YES						
29	15	14.6u	320	YES						
30	13	13.9u	480	YES						
		D	etection Rate	100%						

Ra	adar5 Statical Perfor	mances
Trial #	Test Signal name	Detection(Yes / No)
1	LP_Signal_01	Yes
2	LP_Signal_02	Yes
3	LP_Signal_03	NO
4	LP_Signal_04	Yes
5	LP_Signal_05	Yes
6	LP_Signal_06	Yes
7	LP_Signal_07	Yes
8	LP_Signal_08	Yes
9	LP_Signal_09	Yes
10	LP_Signal_10	Yes
11	LP_Signal_11	Yes
12	LP_Signal_12	NO
13	LP_Signal_13	NO
14	LP_Signal_14	Yes
15	LP_Signal_15	Yes
16	LP_Signal_16	Yes
17	LP_Signal_17	Yes
18	LP_Signal_18	Yes
19	LP_Signal_19	Yes
20	LP_Signal_20	Yes
21	LP_Signal_21	Yes
22	LP_Signal_22	Yes
23	LP_Signal_23	Yes
24	LP_Signal_24	Yes
25	LP_Signal_25	Yes
26	LP_Signal_26	Yes
27	LP_Signal_27	NO
28	LP_Signal_28	Yes
29	LP_Signal_29	Yes
30	LP_Signal_30	Yes
	Detection Rate	87%

	Radar6 Statical Performances								
Trial #	Hoping Frequency Sequence Name	Detection(Yes / No)							
1	HOP_FREQ_SEQ_01	Yes							
2	HOP_FREQ_SEQ_02	Yes							
3	HOP_FREQ_SEQ_03	Yes							
4	HOP_FREQ_SEQ_04	Yes							
5	HOP_FREQ_SEQ_05	Yes							
6	HOP_FREQ_SEQ_06	Yes							
7	HOP_FREQ_SEQ_07	No							
8	HOP_FREQ_SEQ_08	Yes							
9	HOP_FREQ_SEQ_09	Yes							
10	HOP_FREQ_SEQ_10	Yes							
11	HOP_FREQ_SEQ_11	Yes							
12	HOP_FREQ_SEQ_12	No							
13	HOP_FREQ_SEQ_13	No							
14	HOP_FREQ_SEQ_14	Yes							
15	HOP_FREQ_SEQ_15	Yes							
16	HOP_FREQ_SEQ_16	Yes							
17	HOP_FREQ_SEQ_17	Yes							
18	HOP_FREQ_SEQ_18	Yes							
19	HOP_FREQ_SEQ_19	Yes							
20	HOP_FREQ_SEQ_20	Yes							
21	HOP_FREQ_SEQ_21	Yes							
22	HOP_FREQ_SEQ_22	Yes							
23	HOP_FREQ_SEQ_23	Yes							
24	HOP_FREQ_SEQ_24	Yes							
25	HOP_FREQ_SEQ_25	Yes							
26	HOP_FREQ_SEQ_26	Yes							
27	HOP_FREQ_SEQ_27	Yes							
28	HOP_FREQ_SEQ_28	Yes							
29	HOP_FREQ_SEQ_29	Yes							
30	HOP_FREQ_SEQ_30	Yes							
	Detection Rate	90%							

6.2.5 NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

Date: 5.JUN.2012 21:51:42

6.2.6 UNIFORM SPREADING

The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the spectrum. The UUT using the bands 5250 to 5350MHz and 5470 to 5600 MHz channels so that the probability of selecting a given channel shall be the same for channels. The UUT will select channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

Date: 5.JUN.2012 21:51:42

6.2.7 U-NII DETECTION BANDWIDTH

A Mode

Detection Bandwith test tranmission 20M

EUT FREQUENCY 5540M

EUT power bandwith :20.7MHz

Detection Bandwith limit(80% of EUT 99% Power bandwith) : 16.56

Detection Bandwith(5550(fh)-5529(fl)): 21

Test Result:	PASS		Test Result.PASS											
		DF	S Deteo	ction Tri	als (1=D	Detection	n, 0= No	Detect	ion)					
Radar Freq											Detection			
(MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)			
5529(FL)	1	1	0	1	1	1	1	0	1	0	70			
5530	1	1	1	1	1	0	1	0	0	1	80			
5531	1	1	1	1	1	1	1	1	1	1	100			
5532	1	1	1	1	1	1	1	1	1	1	100			
5533	1	1	1	1	1	1	1	1	1	1	100			
5534	1	1	1	1	1	1	1	1	1	1	100			
5535	1	1	1	1	1	1	1	1	1	1	100			
5536	1	1	1	1	1	1	1	1	1	1	100			
5537	1	1	1	1	1	1	1	1	1	1	100			
5538	1	1	1	1	1	1	1	1	1	1	100			
5539	1	1	1	1	1	1	1	1	1	1	100			
5540	1	1	1	1	1	1	1	1	1	1	100			
5541	1	1	1	1	1	1	1	1	1	1	100			
5542	1	1	1	1	1	1	1	1	1	1	100			
5543	1	1	1	1	1	1	1	1	1	1	100			
5544	1	1	1	1	1	1	1	1	1	1	100			
5545	1	1	1	1	1	1	1	1	1	1	100			
5546	1	1	1	1	1	1	1	1	1	1	100			
5547	1	1	1	1	1	1	1	1	1	1	100			
5548	1	1	1	1	1	1	1	1	1	1	100			
5549	1	0	1	1	1	1	1	1	1	1	90			
5550(FH)	1	1	1	1	1	0	1	0	1	1	80			
5551	1	1	1	0	1	0	0	1	1	1	70			

TX N20

Detection Bandwith test tranmission 20M

EUT FREQUENCY 5540M

EUT power bandwith :20.7MHz

Detection Bandwith limit(80% of EUT 99% Power bandwith) : 17.6

Detection Bandwith(5552(fh)-5529(fl)):23

Test Result:PASS

	DFS Detection Trials (1=Detection, 0= No Detection)											
-											Detection	
Radar Freq											Rate	
(MHz)	1	2	3	4	5	6	7	8	9	10	(%)	
5529(FL)	1	0	1	0	1	1	0	0	1	0	50	
5530	1	1	0	1	1	0	1	0	0	1	70	
5531	1	1	1	1	1	1	1	1	1	1	100	
5532	1	1	1	1	1	1	1	1	1	1	100	
5533	1	1	1	1	1	1	1	1	1	1	100	
5534	1	1	1	1	1	1	1	1	1	1	100	
5535	1	1	1	1	1	1	1	1	1	1	100	
5536	1	1	1	1	1	1	1	1	1	1	100	
5537	1	1	1	1	1	1	1	1	1	1	100	
5538	1	1	1	1	1	1	1	1	1	1	100	
5539	1	1	1	1	1	1	1	1	1	1	100	
5540	1	1	1	1	1	1	1	1	1	1	100	
5541	1	1	1	1	1	1	1	1	1	1	100	
5542	1	1	1	1	1	1	1	1	1	1	100	
5543	1	1	1	1	1	1	1	1	1	1	100	
5544	1	1	1	1	1	1	1	1	1	1	100	
5545	1	1	1	1	1	1	1	1	1	1	100	
5546	1	1	1	1	1	1	1	1	1	1	100	
5547	1	1	1	1	1	1	1	1	1	1	100	
5548	1	1	1	1	1	1	1	1	1	1	100	
5549	1	0	1	1	1	1	1	1	1	1	90	
5550	1	1	1	0	1	1	1	0	1	1	80	
5551	1	1	1	0	0	0	0	1	1	1	60	
5552(FH)	1	0	0	1	1	0	1	0	1	0	40	

	1	Dete	ection Ba	andwith	test trar	nmissio	on 40M				
EUT FREQUENCY	5550N	1									
EUT power bandwith	:	39.875	5MHz								
Detection Bandwith l	imit(80%	%of EU⁻	T 99% P	ower ba	andwith)	31.9N	1Hz				
Detection Bandwith(5	5569(fh))-5530(1	fl)) :	39							
Test Result:	PASS										
		DFS	Detectio	on Trials	s (1=Det	ection	, 0= No	Detec	tion)		
											Detection
Radar Freq											Rate
(MHz)	1	2	3	4	5	6	7	8	9	10	(%)
5529	1	0	0	1	0	1	1	0	1	0	50
5530(FL)	1	1	0	1	0	0	1	0	0	1	50
5531	1	1	1	0	1	1	0	1	0	1	70
5532	1	1	1	1	1	1	1	1	1	1	80
5533	1	1	1	1	1	1	1	0	1	1	90
5534	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5536	1	1	1	1	1	1	1	1	1	1	100
5537	1	1	1	1	1	1	1	1	1	1	100
5538	1	1	1	1	1	1	1	1	1	1	100
5539	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
55/1	1	1	1	1	1	1	1	1	1	1	100
5542	1	1	1	1	1	1	1	1	1	1	100
5542	1	1	1	1	1	1	1	1	1	1	100
5543	1	1	1	1	1	1	1	1	1	1	100
5544	1	1	1	1	1	1	1	1	1	1	100
5545		1	1	1	1		1	1	1	1	100
5546		1	1	1	1	1	1	1	1	1	100
5547	1	1	1	1	1	1	1	1	1	1	100
5548	1	1	1	1	1	1	1	1	1	1	100
5549	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5551	1	1	1	1	1	1	1	1	1	1	100
5552	1	1	1	1	1	1	1	1	1	1	100
5553	1	1	1	1	1	1	1	1	1	1	100
5554	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5556	1	1	1	1	1	1	1	1	1	1	100
5557	1	1	1	1	1	1	1	1	1	1	100
5558	1	1	1	1	1	1	1	1	1	1	100
5559	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5561	1	1	1	1	1	1	1	1	1	1	100
5562	1	1	1	1	1	1	1	1	1	1	100
5563	1	1	1	1	1	1	1	1	1	1	100
5564	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	0	1	1	90
5568	1	1	0	1	1	0	1	0	1	1	70
5569(FH)	1	0	1	0	1	0	1	1	0	1	60
5570	1	1 n	0	0	1	n	1	0	0	1	40
0070	'	0		5		5	1		5	_ '	70

6.2.8 TEST SETUP PHOTOS

