HUAWEI

RF Test Report

Product Name: Wireless LAN Access Point
Product Model: AP7110DN-AGN
Report Number: SYBH(R)00703759EB-2
FCC ID: QISAP7110DNAGN
IC ID: 6369A-AP7110DNAGN

Reliability Laboratory of Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District,
Shenzhen, 518129, P.R.C

Notice

1. The laboratory has Passed the accreditation by China National Accreditation Service for Conformity Assessment (CNAS). The accreditation number is L0310.
2. The laboratory has Passed the accreditation by The American Association for Laboratory Accreditation (A2LA). The accreditation number is 2174.01.
3. The laboratory has been listed by the US Federal Communications Commission to perform electromagnetic emission measurements. The site recognition number is 97456 .
4. The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 6369A-1 and 6369A-3.
5. The laboratory has been listed by the VCCI to perform EMC measurements. The accreditation numbers of test site No. 1 are R-2364, G-415, C-2583, and T-256, and the accreditation numbers of test site No. 2 are R-3760, G-485, C-4210 and T-1237.
6. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
7. The test report is invalid if there is any evidence of erasure and/or falsification.
8. The test report is only valid for the test samples.
9. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Applicant:	Huawei Technologies Co., Ltd.
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,
	Bantian, Longgang District, Shenzhen, 518129, P.R.C
Product Name:	Wireless LAN Access Point
Product Model:	AP7110DN-AGN
Version:	V200R002

Date of Receipt Sample: 2012-08-13
Start Date of Test: 2012-08-17
End Date of Test: 2012-11-21
Test Result: Pass

Prepared by:

Modification Record

No.	Last Report No.	Modification Description
---	---	---

CONTENT

1 General Information 6
1.1 Applied Standard 6
1.2 Test Location 6
1.3 Test Environment Condition 6
2 Test Summary 7
2.1 Measurement Technical Requirements 7
2.2 Non-measurement Technical Requirements 8
3 Description of the Equipment under Test (EUT) 9
3.1 General Description 9
3.2 EUT Identity 9
3.3 Technical Description 10
4 General Test Conditions / Configurations 11
4.1 Declaration 11
4.2 Test Modes 12
4.3 EUT Configurations 13
4.4 Test Environments 15
4.5 Test Setups 16
4.6 Test Conditions 19
5 Main Test Instruments 22

1 General Information

1.1 Applied Standard	
Applied Rules:	47 CFR FCC Part 2, Subpart J (10-1-11 Edition)
	47 CFR FCC Part 15, Subpart C (10-1-11 Edition)
	IC RSS-Gen (Issue 3, December 2010)
	IC RSS-210 (Issue 8, December 2010)
Test Method:	FCC KDB 558074 D01 DTS Meas Guidance v01
	FCC KDB 558074 D01 DTS Meas Guidance v02
	FCC KDB 662911 D01 Multiple Transmitter Output v01

1.2 Test Location

Test Location 1:
Reliability Laboratory of Huawei Technologies Co., Ltd.
Address:
Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.3 Test Environment Condition

Ambient Temperature:
Ambient Relative Humidity:
Atmospheric Pressure:
22.5 to $25.5^{\circ} \mathrm{C}$

56 to 71 \%
Not applicable

Report of AP710DN-AGN V200R002

2 Test Summary

2.1 Measurement Technical Requirements

Test Item	FCC Part No.	IC Standard No.	Requirements	Test Result	Verdict (NOTE 2)
DTS (6 dB) Bandwidth	15.247(a)(2)	RSS-210, A8.2(a)	$\geq 500 \mathrm{kHz}$.	Appendix A	Pass
Occupied Bandwidth	---	RSS-210, 2.1 RSS-Gen, 4.6.1	No limit.	Appendix B	Pass
Maximum Peak Conducted Output Power	15.247(b)(3)	$\begin{aligned} & \hline \text { RSS-210, } \\ & \text { A8.4(4) } \end{aligned}$	For directional gain: < 30 dBm - (G[dBi] - 6 [dB]), peak; Otherwise: < 30 dBm, peak.	Appendix C	Pass
Maximum Power Spectral Density Level	15.247(e)	$\begin{aligned} & \text { RSS-210, } \\ & \text { A8.2(b) } \end{aligned}$	For directional gain: <8 $\mathrm{dBm} / 3 \mathrm{kHz}-(\mathrm{G}[\mathrm{dBi}]-6$ [dB]), peak. Otherwise: < $8 \mathrm{dBm} / 3 \mathrm{kHz}$, peak.	Appendix D	Pass
Unwanted Emissions into Non-Restricted Frequency Bands	15.247(d)	RSS-210, A8.5	$\begin{aligned} & <-20 \mathrm{dBr} / 100 \mathrm{kHz} \text { if total } \\ & \text { peak power } \leq \text { power } \\ & \text { limit. } \end{aligned}$	Appendix E	Pass
Unwanted Emissions into Restricted Frequency Bands (Conducted)	$\begin{aligned} & \hline 15.247(\mathrm{~d}) \\ & 15.209 \\ & \text { (NOTE 1) } \end{aligned}$	$\begin{aligned} & \hline \text { RSS-210, A8.5 } \\ & \text { RSS-210, 2.2 } \\ & \text { RSS-Gen, } 7.2 .2 \end{aligned}$	FCC Part 15.209 field strength limit; RSS-Gen 7.2.5 field	Appendix F. 1	Pass
Unwanted Emissions into Restricted Frequency Bands (Radiated)		RSS-Gen, 7.2.5 (NOTE 1)	strength limit.	Appendix F. 2	Pass
Receiver Spurious Emissions	---	RSS-210, 2.3 RSS-Gen, 6.1	RSS-Gen 6.1 radiated limit.	Appendix G	Pass
AC Power Line Conducted Emissions	15.207	RSS-Gen, 7.2.4	FCC Part 15.207 conducted limit; RSS-Gen, 7.2.4 conducted limit.	Appendix H	Pass
Photos of Test Setups	---	---	---	Appendix I	---

NOTE 1: According to KDB 558074, antenna-port conducted measurements are acceptable as an alternative to radiated measurements for demonstrating compliance to the limits in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case emissions will also be required.
NOTE 2: For the verdict, the "N/A" denotes "not applicable", the " N / T " denotes "not tested".

2.2 Non-measurement Technical Requirements

Description	FCC Rule No.	IC Rule No.	Requirements	Evidence	Verdict (NOTE)
Antenna Use	§15.203	RSS-Gen, 7.1.2	FCC\&IC: Permanently attached antenna. IC: User manual notices requied (see detailed for RSS-Gen, 7.1.2)	See user's manual.	Comply
User Manual Notice for Licence-Exempt Radio Apparatus	---	RSS-Gen, 7.1.3	User Manual Notice for Licence-Exempt Radio Apparatus is required.	See user's manual.	Comply
Radio Apparatus Containing Digital Circuits	§15 subpart B	RSS-Gen, 7.1.4, ICES-003	FCC: §15 subpart B. IC: ICES-003.	See separate test report (EMC).	Comply
Radiation Exposure Requirement	$\begin{aligned} & \text { §15.247(i), } \\ & \text { §1.1307(b), } \\ & \text { §2.1091, } \\ & \text { §2.1093 } \end{aligned}$	RSS-Gen, 5.6, RSS-102	General population/uncontrolled limit.	See separate test report or declaration document (MPE).	Comply

NOTE: For the verdict, the "N/A" denotes "not applicable", the " N / T " denotes "not tested".

3 Description of the Equipment under Test (EUT)

3.1 General Description

The AP7110DN-AGN is an enhanced indoor dual-band 3×3 MIMO access point (AP) that supports 2.4 GHz and 5 GHz frequency bands. It complies with IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} /$ nsupports 2.4 GHz and 5 GHz frequency bands, and has enhanced coverage performance and protection capabilities. It supports wireless bridging, complies with IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$, connects a large number of users, and works as a Fit AP. The AP7110DN-AGN has the following advantages:

- High reliability
- High security
- Simple network deployment
- Automatic AC discovery and configuration
- Real-time management and maintenance

The AP7110DN-AGN is recommended for use in buildings with a simple structure, small area, a high density of users, and require a high capacity, for example, small-scale meeting rooms, bars, and entertainment places. The AP7110DN-AGN APs can be flexibly deployed in these places and work in both Fit AP and bridge mode.

3.2 EUT Identity

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

3.2.1 Board

Board		
Board Name	Hardware Version	Description
H87D2TT1D200	VER.C	Broadband Control

3.2.2 Sub-Assembly

Sub-Assembly			
Sub-Assembly Name	Model	Manufacturer	Description
---	---	---	---

Report of AP7110DN-AGN V200R002

3.3 Technical Description

4 General Test Conditions / Configurations

4.1 Declaration

4.1.1 Modular Approval

$\boxtimes \quad$ Not applicable.
$\square \quad$ The present document is based on the RF module installed within the product. The RF module was proved complying with relevant standard, see test report issued by \qquad with report number \qquad for the RF module with model number \qquad . The present document provides additive assessments and/or measurements to prove that the whole product still complies with relevant standard.

The differences and modifications between the "alone RF module" (RF_org) and the "RF module integrated into the host/combination product" (RF_new) are declared by the applicant and showed as below:

- ---
- All other components of the RF_org are not changed.

4.1.2 Permissive Change

$\boxtimes \quad$ Not applicable.

$\square \quad$ The present document/product is based on another report/product as reference, both of which utilize the similar or identical radio design, shielding, interface, physical layout and so on. The referred test report was proved complying with relevant standard, see test report issued by \qquad with report number \qquad for the product with model number \qquad . The present document provides additive assessments and/or measurements, which are based on the referred test report, to prove the compliance with relevant standard.

The differences and modifications between the referred test report/product (Product_ref) and the present test report/product (Product_cur) are declared by the applicant and showed as below:

- All other components of the Product_ref are not changed.

4.1.3 Multiple Models Applications

$\boxtimes \quad$ The present document applies to single model number.
$\square \quad$ The present document applies to several model numbers. The practical measurements are performed with the model number \qquad -.

These model numbers utilize the similar radio design, shielding, interface, physical layout and so on. The differences and modifications between these model numbers are declared by the applicant and showed as below:

- ---
- All others between these model numbers are identical.

4.2 Test Modes

NOTE: Typical working modes for each IEEE 802.11 mode are selected to perform tests.

Test Mode	Test Modes Description
$11 \mathrm{~B} / 1$	IEEE 802.11 b with data rate of 1 Mbps using SISO mode.
$11 \mathrm{Bd} / 1$	IEEE 802.11 b with data rate of 1 Mbps using Diversity mode.
$11 \mathrm{G} / 6$	IEEE 802.11 g with data rate of 6 Mbps using SISO mode.
$11 \mathrm{Gd} / 6$	IEEE 802.11 g with data rate of 6 Mbps using Diversity mode.
$11 \mathrm{~N} 20 / 0$	IEEE 802.11 n with data date of MCS0 and bandwidth of 20 MHz using SISO mode.
$11 \mathrm{~N} 20 \mathrm{~m} / 8$	IEEE 802.11 n with data date of MCS8 and bandwidth of 20 MHz using MIMO mode (2*2).
$11 \mathrm{~N} 20 \mathrm{~m} / 16$	IEEE 802.11 n with data date of MCS16 and bandwidth of 20 MHz using MIMO mode $\left(3^{*} 3\right)$.
$11 \mathrm{x} _$RX	Continues Receiving mode (if supported).

4.3 EUT Configurations

4.3.1 General Configurations

Configuration	Description
Test Antenna Ports	Until otherwise specified, $-\quad$ All TX tests are performed at all TX antenna ports of the EUT, and $-\quad$ All RX tests are performed at all RX antenna ports of the EUT.
Multiple RF Sources	Other than the tested RF source of the EUT, other RF source(s) are disabled or shutdown during measurements.

4.3.2 Customized Configurations

\# EUT Conf.	Test Mode	RF Ch.	Antenna Port	TX Freq. [MHz]	RX Freq. [MHz]	Ch. BW [MHz]	Power Conf., per Port	Duty Cycle
11B/1_B@2	11B/1	B	Ant 2	$\begin{aligned} & \text { Ch No. } 1 \text { / } \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	20	1
11B/1_M@2	11B/1	M	Ant 2	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	20	1
11B/1_T@2	11B/1	T	Ant 2	$\begin{aligned} & \text { Ch No. } 11 \text { / } \\ & 2462 \mathrm{MHz} \end{aligned}$	---	20	20	1
11Bd/1_B@1+2	11B/1	B	Ant 1 + Ant 2	$\begin{aligned} & \text { Ch No. } 1 \text { / } \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	17	1
11Bd/1_M@1+2	11B/1	M	Ant 1 + Ant 2	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \text { MHz } \end{aligned}$	---	20	17	1
11Bd/1_T@1+2	11B/1	T	Ant 1 + Ant 2	$\begin{aligned} & \text { Ch No. } 11 \text { / } \\ & 2462 \mathrm{MHz} \end{aligned}$	---	20	17	1
11Bd/1_B@1+2+3	11B/1	B	Ant $1+$ Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 1 \text { / } \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	15.3	1
11Bd/1_M@1+2+3	11B/1	M	Ant 1 + Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	15.3	1
11Bd/1_T@1+2+3	11B/1	T	Ant 1 + Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 11 \text { / } \\ & 2462 \mathrm{MHz} \end{aligned}$	---	20	15.3	1
11G/6_B@2	11G/6	B	Ant 2	$\begin{aligned} & \text { Ch No. } 1 \text { / } \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	15	1
11G/6_M@2	11G/6	M	Ant 2	$\begin{aligned} & \text { Ch No. } 6 \text { / } \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	17	1
11G/6_T@2	11G/6	T	Ant 2	Ch No. 11 /	---	20	15	1

\# EUT Conf.	Test Mode	RF Ch.	Antenna Port	TX Freq. [MHz]	RX Freq. [MHz]	Ch. BW [MHz]	Power Conf., per Port	Duty Cycle
				2462 MHz				
11Gd/6_B@1+2	11G/6	B	Ant 1 + Ant 2	$\begin{aligned} & \text { Ch No. } 1 \text { / } \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	12	1
11Gd/6_M@1+2	11G/6	M	Ant 1 + Ant 2	Ch No. 6 / $2437 \text { MHz }$	---	20	14	1
11Gd/6_T@1+2	11G/6	T	Ant 1 + Ant 2	Ch No. 11 / 2462 MHz	---	20	12	1
11Gd/6_B@1+2+3	11G/6	B	Ant 1 + Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 1 / \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	10.3	1
11Gd/6_M@1+2+3	11G/6	M	Ant 1 + Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	12.3	1
11Gd/6_T@1+2+3	11G/6	T	Ant $1+$ Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 11 \text { / } \\ & 2462 \mathrm{MHz} \end{aligned}$	---	20	10.3	1
11N20/0_B@2	11N20/0	B	Ant 2	$\begin{aligned} & \text { Ch No. } 1 \text { / } \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	15	1
11N20/0_M@2	11N20/0	M	Ant 2	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	17	1
11N20/0_T@2	11N20/0	T	Ant 2	Ch No. 11 / $2462 \mathrm{MHz}$	---	20	15	1
11N20m/8_B@1+2	11N20m/8	B	Ant 1 + Ant 2	$\begin{aligned} & \text { Ch No. } 1 / \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	12	1
11N20m/8_M@1+2	11N20m/8	M	Ant 1 + Ant 2	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	14	1
11N20m/8_T@1+2	11N20m/8	T	Ant $1+$ Ant 2	$\begin{aligned} & \text { Ch No. } 11 \text { / } \\ & 2462 \mathrm{MHz} \end{aligned}$	---	20	12	1
$\begin{aligned} & \text { 11N20m/16_B@1+2 } \\ & +3 \end{aligned}$	11N20m/16	B	Ant $1+$ Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 1 / \\ & 2412 \mathrm{MHz} \end{aligned}$	---	20	10.3	1
$\begin{aligned} & \text { 11N20m/16_M@1+2 } \\ & +3 \end{aligned}$	11N20m/16	M	Ant $1+$ Ant $2+$ Ant 3	$\begin{aligned} & \text { Ch No. } 6 / \\ & 2437 \mathrm{MHz} \end{aligned}$	---	20	12.3	1
$\begin{aligned} & \hline 11 \mathrm{~N} 20 \mathrm{~m} / 16 _\mathrm{T} @ 1+2 \\ & +3 \end{aligned}$	11N20m/16	T	Ant 1 + Ant $2+$ Ant 3	Ch No. 11 / $2462 \text { MHz }$	---	20	10.3	1
11x/RX	11x/RX	---	Ant 1 + Ant $2+$ Ant 3	---	---	---	---	---

4.4 Test Environments

NOTE: The values used in the test report may be stringent than the declared.

Environment Parameter			
	Temperature	Voltage	Relative Humidity
NTNV	Ambient	12.0 VDC	Ambient

4.5 Test Setups

4.5.1 Test Setup 1

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

4.5.2 Test Setup 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.4. The test distance is 3 m . The setup is according to ANSI C63.4 and CAN/CSA-CEI/IEC CISPR 22.

The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m , the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(Below 1 GHz)

(Above 1 GHz)

4.5.3 Test Setup 3

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8 m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m .

4.6 Test Conditions

Test Case	Test Conditions	
	Configuration	Description
DTS (6 dB) Bandwidth	Meas. Method	FCC KDB 558074 §7.1.1 Option 1.
	Test Env.	NTNV
	Test Setup	Test Setup 1
	EUT Conf.	```11B/1_B@2, 11B/1_M@2, 11B/1_T@2, 11Bd/1_B@1+2, 11Bd/1_M@1+2, 11Bd/1_T@1+2, 11Bd/1_B@1+2+3, 11Bd/1_M@1+2+3, 11Bd/1_T@1+2+3, 11G/6_B@2,11G/6_M@2,11G/6_T@2, 11Gd/6_B@1+2,11Gd/6_M@1+2,11Gd/6_T@1+2, 11Gd/6_B@1+2+3, 11Gd/6_M@1+2+3, 11Gd/6_T@1+2+3, 11N20/0_B@2, 11N20/0_M@2, 11N20/0_T@2, 11N20m/8_B@1+2, 11N20m/8_M@1+2, 11N20m/8_T@1+2, 11N20m/16_B@1+2+3, 11N20m/16_M@1+2+3,11N20m/16_T@1+2+3.```
Occupied Bandwidth	Meas. Method	RSS-Gen, 4.6.1.
	Test Env.	NTNV
	Test Setup	Test Setup 1
	EUT Conf.	```11B/1_B@2, 11B/1_M@2, 11B/1_T@2, 11Bd/1_B@1+2, 11Bd/1_M@1+2, 11Bd/1_T@1+2, 11Bd/1_B@1+2+3, 11Bd/1_M@1+2+3, 11Bd/1_T@1+2+3, 11G/6_B@2,11G/6_M@2,11G/6_T@2, 11Gd/6_B@1+2,11Gd/6_M@1+2,11Gd/6_T@1+2, 11Gd/6_B@1+2+3, 11Gd/6_M@1+2+3, 11Gd/6_T@1+2+3, 11N20/0_B@2, 11N20/0_M@2, 11N20/0_T@2, 11N20m/8_B@1+2, 11N20m/8_M@1+2, 11N20m/8_T@1+2, 11N20m/16_B@1+2+3, 11N20m/16_M@1+2+3,11N20m/16_T@1+2+3.```
Maximum Peak Conducted Output Power	Meas. Method	FCC KDB 558074 §7.2.1.2 Option 2 (integrated band power method).
	Test Env.	NTNV
	Test Setup	Test Setup 1
	EUT Conf.	```11B/1_B@2, 11B/1_M@2, 11B/1_T@2, 11Bd/1_B@1+2, 11Bd/1_M@1+2,11Bd/1_T@1+2, 11Bd/1_B@1+2+3, 11Bd/1_M@1+2+3, 11Bd/1_T@1+2+3, 11G/6_B@2,11G/6_M@2, 11G/6_T@2, 11Gd/6_B@1+2,11Gd/6_M@1+2,11Gd/6_T@1+2, 11Gd/6_B@1+2+3,11Gd/6_M@1+2+3,11Gd/6_T@1+2+3, 11N20/0_B@2, 11N20/0_M@2, 11N20/0_T@2, 11N20m/8_B@1+2, 11N20m/8_M@1+2, 11N20m/8_T@1+2, 11N20m/16_B@1+2+3, 11N20m/16_M@1+2+3, 11N20m/16_T@1+2+3.```
Maximum Power Spectral	Meas. Method	FCC KDB 558074 §7.3.1 Option 1 (peak PSD).
	Test Env.	NTNV

Test Case	Test Conditions	
	Configuration	Description
Density Level	Test Setup	Test Setup 1
	EUT Conf.	```11B/1_B@2, 11B/1_M@2, 11B/1_T@2, 11Bd/1_B@1+2, 11Bd/1_M@1+2, 11Bd/1_T@1+2, 11Bd/1_B@1+2+3, 11Bd/1_M@1+2+3, 11Bd/1_T@1+2+3, 11G/6_B@2,11G/6_M@2,11G/6_T@2, 11Gd/6_B@1+2,11Gd/6_M@1+2,11Gd/6_T@1+2, 11Gd/6_B@1+2+3, 11Gd/6_M@1+2+3, 11Gd/6_T@1+2+3, 11N20/0_B@2, 11N20/0_M@2, 11N20/0_T@2, 11N20m/8_B@1+2, 11N20m/8_M@1+2, 11N20m/8_T@1+2, 11N20m/16_B@1+2+3, 11N20m/16_M@1+2+3, 11N20m/16_T@1+2+3.```
Unwanted Emissions into Non-Restricted Frequency Bands	Meas. Method	FCC KDB 558074 §7.4.1, use Peak PSD.
	Test Env.	NTNV
	Test Setup	Test Setup 1
	EUT Conf.	```11B/1_B@2, 11B/1_M@2, 11B/1_T@2, 11Bd/1_B@1+2, 11Bd/1_M@1+2, 11Bd/1_T@1+2, 11Bd/1_B@1+2+3, 11Bd/1_M@1+2+3, 11Bd/1_T@1+2+3, 11G/6_B@2, 11G/6_M@2, 11G/6_T@2, 11Gd/6_B@1+2,11Gd/6_M@1+2,11Gd/6_T@1+2, 11Gd/6_B@1+2+3, 11Gd/6_M@1+2+3,11Gd/6_T@1+2+3, 11N20/0_B@2, 11N20/0_M@2, 11N20/0_T@2, 11N20m/8_B@1+2, 11N20m/8_M@1+2, 11N20m/8_T@1+2, 11N20m/16_B@1+2+3, 11N20m/16_M@1+2+3, 11N20m/16_T@1+2+3.```
Unwanted Emissions into Restricted Frequency Bands (Conducted)	Meas. Method	FCC KDB 558074 §7.4.2, Conducted (antenna-port).
	Test Env.	NTNV
	Test Setup	Test Setup 1
	EUT Conf.	```11B/1_B@2, 11B/1_M@2, 11B/1_T@2, 11Bd/1_B@1+2, 11Bd/1_M@1+2, 11Bd/1_T@1+2, 11Bd/1_B@1+2+3, 11Bd/1_M@1+2+3, 11Bd/1_T@1+2+3, 11G/6_B@2,11G/6_M@2,11G/6_T@2, 11Gd/6_B@1+2,11Gd/6_M@1+2,11Gd/6_T@1+2, 11Gd/6_B@1+2+3,11Gd/6_M@1+2+3,11Gd/6_T@1+2+3, 11N20/0_B@2, 11N20/0_M@2, 11N20/0_T@2, 11N20m/8_B@1+2, 11N20m/8_M@1+2, 11N20m/8_T@1+2, 11N20m/16_B@1+2+3, 11N20m/16_M@1+2+3, 11N20m/16_T@1+2+3.```
Unwanted Emissions into Restricted Frequency Bands (Radiated)	Meas. Method	FCC KDB 558074 §7.4.2, Radiated (cabinet/case emissions with impedance matching for antenna-port). (1) 30 MHz to 1 GHz : Pre: \quad RBW $=100 \mathrm{kHz}$; VBW $=300 \mathrm{kHz}$; Det. $=$ Peak. Final: \quad RBW $=120 \mathrm{kHz}$; Det. = CISPR Quasi-Peak. (2) 1 GHz to 26.5 GHz : Average: RBW $=1 \mathrm{MHz}$; VBW $=3 \mathrm{MHz}$; Det. = RMS; SPAN / Sweep-point \leq RBW / 2; Sweep-time ≥ 10 * Sweep-points * Ts (Ts - transmission

Test Case	Test Conditions		
	Configuration	Description	
		symbol period); Trace $=$ Single. Peak: RBW $=1 \mathrm{MHz} ;$ VBW $=3 \mathrm{MHz} ;$ Det. = Peak; Sweep-time = Auto; Trace $=$ Max Hold * 100.	
	Test Env.	NTNV	
	Test Setup	Test Setup 2	
	EUT Setup	\square Flatwise, \square Upright, \square Hung	
	EUT Conf.	$30 \mathrm{MHz}-1 \mathrm{GHz}$	Worst Case (11B/1_T@2).
		$1-3 \mathrm{GHz}$	Worse Case (11B/1_B@2) Worse Case (11B/1_M@2) Worse Case (11B/1_T@2) Worse Case (11B/1_T@1+2) Worse Case (11N20/0_B@2)
		3-18 GHz	Worst Case (11B/1_T@2)
		$18-26.5 \mathrm{GHz}$ Worst Case (11B/1_M@2)	
Receiver Spurious Emissions	Meas. Method	Antenna-conducted, \boxtimes Radiated. NOTE: If the receiver has a detachable antenna of known impedance, antenna conducted spurious emissions measurement is permitted as an alternative to radiated measurement. However, the radiated method is recommended. The antenna conducted test shall be performed with the antenna disconnected and the receiver antenna terminals connected to a measuring instrument having equal impedance to that specified for the antenna. (1) 30 MHz to 1 GHz : Pre: $\text { RBW = } 100 \text { kHz; VBW = } 300 \text { kHz; Det. = Peak. }$ Final: \quad RBW $=120 \mathrm{kHz}$; Det. $=$ CISPR Quasi-Peak. (2) 1 GHz to 8 GHz : Pre: \quad RBW $=1 \mathrm{MHz}$; VBW $=3 \mathrm{MHz}$; Det. = Peak. Final: \quad RBW $=1 \mathrm{MHz}$; Det. = Average.	
	Test Env.	NTNV	
	Test Setup	Test Setup 2	
	EUT Setup	Only for radiated: \boxtimes Flatwise, \square Upright, \square Hung	
	EUT Conf.	11x_RX	
AC Power Line Conducted Emissions	Meas. Method	AC mains conducted. Pre: \quad RBW $=10 \mathrm{kHz}$; Det. $=$ Peak. Final: \quad RBW $=9 \mathrm{kHz}$; Det. $=$ CISPR Quasi-Peak \& Average.	
	Test Env.	NTNV	
	Test Setup	Test Setup 3	
	EUT Conf.	11B/1_B@1	

5 Main Test Instruments

NOTE: Unless otherwise specified, the calibration intervals for test instruments were Annual (per year). The other intervals, if applicable, are marked with (\#\#y), which denotes \#\# years calibration interval.

Equipment Name	Manufacturer	Model	Serial Number	Cal. Due
Test Setup 1				
Spectrum Analyzer	R\&S	E4440A	MY49420179	2013-05-13
Test Setup 2				
EMI Test Receiver	R\&S	ESU40	100144	2013-05-13
Bilog Antenna (30M-1GHz)	Schaffner	CBL 6112B	2536	2013-01-12
Horn Antenna (1G-18GHz)	R\&S	HF906	359287/005	2014-03-23 (2y)
Horn Antenna (18G-16.5GHz)	ETS	3160-9	053215	2013-02-01
Test Setup 3				
EMI Test Receiver	R\&S	ESCI	101019	2013-2-26
Artificial Mains Network	R\&S	ENV4200	100141	2012-12-19

END

