Cinterion Wireless Modules GmbH
Mr. Thorsten Liebig
Siemensdamm 50
13629 Berlin
Germany

Mr. René Hour
2013-03-20
Phone +49 (0) 2102749318
Fax +49 (0) 2102749350
e-Mail: Rene.Houx@7layers.de

Maximum Permissible Exposure for product: Cinterion Wireless Module PVS8

Dear Mr. Liebig,
please find enclosed your Maximum Permissible Exposure calculations for the Cinterion Wireless Module PVS8.

Best Regards

René Houx (Project Manager)

Maximum Permissible Exposure

(as specified in Table 1B of 47 CFR 1.1310 - Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure)

Frequency range (MHz)	Power density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$300-1500$	$\mathrm{f} / 1500$
$1,500-100000$	1.0

General Comment

Calculations 850 MHz band

Maximum average output power at Antenna terminal:
24.50 dBm
(Max RMS power $=24.50 \mathrm{dBm}-0.00 \mathrm{dBm}$ duty cycle)
Maximum output power at Antenna terminal:
29.30 dBm
(Max peak power $=29.30 \mathrm{dBm}$)

Prediction distance R: $\quad 20 \mathrm{~cm}$
Prediction frequency: $\quad 823.10 \mathrm{MHz}$
MPE limit S: $\quad 0.5487 \mathrm{~mW} / \mathrm{cm}^{2}$
Equation OET bulletin 65, page 18, edition 97-01: $\quad S=P^{*} G /\left(4 \pi R^{2}\right)$
S = power density
$\mathrm{P}=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the centre of radiation of the antenna

Maximum permissible antenna gain (Table 1B of 47 CFR 1.1310):
9.91 dBi

Maximal permissible antenna gain considering output power limitation of 7 Watts ERP (FCC §22.931).
$\mathrm{G}=10 * \log (7000)-29.30+2.15$

Prediction

The maximum allowed MPE value of $0.5487 \mathrm{~mW} / \mathrm{cm}^{2}$ will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 9.91 dBi is used. Considering the max output power of 7 Watts ERP (FCC §22.931) for mobile stations the maximum antenna gain is 11.30 dBi , which is higher than 9.91 dBi . For mobile stations the antenna gain is limited to 9.91 dBi in accordance to the FCC regulations.

Calculations 1900 MHz band

Maximum average output power at Antenna terminal:
23.72 dBm
(Max RMS power $=23.72 \mathrm{dBm}-0.00 \mathrm{dBm}$ duty cycle)
Maximum output power at Antenna terminal:
28.66 dBm
(Max peak power $=29.66 \mathrm{dBm}$)
Prediction distance R: $\quad 20 \mathrm{~cm}$
Prediction frequency: $\quad 1880.00 \mathrm{MHz}$

MPE limit S: $\quad 1 \mathrm{~mW} / \mathrm{cm}^{2}$

Equation OET bulletin 65 , page 18 , edition $97-01: \quad S=P^{*} G /\left(4 \pi R^{2}\right)$
S = power density
$\mathrm{P}=$ power input to the antenna
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the centre of radiation of the antenna

Maximum permissible antenna gain (Table 1B of 47 CFR 1.1310):
13.29 dBi

Maximum permissible antenna gain for mobile / portable stations:
4.40 dBi
(Considering 2 Watts EIRP FCC §24.235: G=10*log(2000)-29.66)

Prediction

The maximum allowed MPE value of $1 \mathrm{~mW} / \mathrm{cm}^{2}$ will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 13.29 dBi is used. Considering the max output power of 2 Watts EIRP (FCC §24.235) for mobile / portable stations the maximum antenna gain is 4.40 dBi , which is lower than 13.29 dBi . For mobile and portable stations the antenna gain is limited to 4.40 dBi in accordance with the FCC regulations.

