

Inter Lab

EMC Measurement/Technical Report on GSM Module MC75 Siemens Cellular Engine MC75

Report Reference: 4_Siem_0504_GSM_FCCb

with

Development Board DSB75

Test Laboratory (Headquarter):

7 Layers AG Borsigstr. 11 40880 Ratingen Germany

TTI-P-G 178/99

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG, Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 http://www.7Layers.com

Chairman of the Supervisory Board: Michael Abels Vorstand - Board of Directors: Dr. Hans-Jürgen Meckelburg René Schildknecht

Aufsichtsratsvorsitzender -

Registergericht - registered in: Düsseldorf, HRB 44096 USt-IdNr VAT Nr: DE 203159652

Interlab is a registered trademark of 7 layers AG

Table of Contents

0. Summary	3
0.1 Technical Report Summary	3
0.2 Measurement Summary	4
1. Administrative Data	5
1.1 Testing Laboratory	5
1.2 Project Data	5
1.3 Applicant Data	5
1.4 Manufacturer Data	5
2. Product Labeling	6
2.1 FCC ID Label	6
2.2 Location of Label on the EUT	6
3. Testobject Data	7
3.1 General EUT Description	7
3.2 EUT Main Components	8
3.3 Ancillary Equipment	8
3.4 EUT Setups	8
3.5 Operating Modes	9
4. Test Results	10
- Conducted Emissions	
- Occupied Bandwidth	
- Peak Power Output	
- Spurious RF Conducted Emissions	
4.1 Spurious RF Radiated Emissions	10
- Dwell Time	
- Power Density	
- Channel Separation	
- Processing Gain	
5. Testequipment	13
6. Foto Report	16
7. Setup Drawings	12

0 Summary

0.1 Technical Report Summary

Type of Authorization:

Certification for an Unintentional Radiator (Class B digital device)

Applicable FCC Rules:

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 (2004-07-12 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification Sections

Part 15, Subpart B - Unintentional Radiators

§ 15.101 Equipment authorization requirement

§ 15.107 Conducted limits

§ 15.109 Radiated emission limits

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart B §15.31, §15.109

Spurious Radiated Emissions

The measurement was performed according to ANSI C63.4

NSI C63.4 2003

OP-Mode

Setup

Port

Final Result

op-mode 1

01s400a01

Enclosure

passed

Responsible for Accreditation Scope:

Responsible for Test Report:

a. 4

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

1. Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:

- Deutscher Akkreditierungs Rat DAR-Registration no. TTI-P-G 178/99

Responsible for Accreditation Scope: Dipl.-Ing Bernhard Retka

Dipl.-Ing Arndt Stöcker Dipl.-Ing Thomas Hoell

1.2 Project Data

Responsible for testing and report:

Receipt of EUT:

Date of Test(s):

Date of Report:

2004-12-20

2004-01-07

2005-01-17

1.3 Applicant Data

Company Name: Siemens AG (BLN)

Address: Siemensdamm 50

13629 Berlin

Germany

Contact Person: Thorsten Liebig

1.4 Manufacturer Data

Company Name: please see Applicant data

Address:

Contact Person:

2.0 Product Labeling

2.1 FCC ID Label:

At the time of the report there was no FCC label available.

2.2 Location of Label on the EUT:

see above

3. Testobject Data

3.1 General EUT Description

Equipment under Test: GSM Module MC75

Type Designation: Siemens Cellular Engine MC75

Kind of Device:

(optional)

GSM 850/900/1800/1900

Voltage Type: DC

Voltage level: 4,5 V

General product description:

GSM module for mobile phones which is able to operate in the bands 850, 900, 1800 and 1900.

The EUT provides the following ports:

Ports

DC port of EUT B Enclosure

The main components of EUT are listed and described in Chapter 3.2

3.2 EUT Main components:

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 01400z02)	GSM Module	MC75	IMEI: 004999003471868	B2.3	Revision 00.144	2005-01-03
EUT A is equ	ipped with an antenna	connector. For r	adiated tests an external	l antenna will b	e used additio	nally.
EUT B (Code: 014001aa)	Development Board	DSB75	DSB75_B1_0089	В1	-	2004-12-20
EUT B is po	wered by 9 V DC and s	upplies the EUT	A.			

NOTE: The short description is used to simplify the identification of the EUT in this test report

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial No.	FCC Id
AE1	Allgon-MiniMAG Dualband Antenna	Ordering number: 1140.26	-	-	EMV Referenz Antenne_02	-

3.4 EUT Setups

This chapter describes the combination of EUT's and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
 01s400a01	EUT A + EUT B + AE1	GSM mobile phone module + development board + external antenna

3.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Call established on Traffic Channel (TCH) 512, Carrier Frequency 1850,2 MHz	512 is the lowest channel

4. Test Results

4.1 Spurious Radiated Emissions

Standard FCC Part 15, 2004-07-12 Subpart B

The test was performed according to: ANSI C63.4 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4-2003.

The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}$ in the semi-anechoic chamber. The test was performed at an EUT to receiving antenna distance of 3m.

The radiated emissions measurements were made in a typical installation configuration.

The measurement procedure consists of four steps. It is implemented into EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF–Bandwidth: 120 kHz

Measuring time / Frequency step: 100 μs
 Turntable angle range: –180 to 180 °

- Turntable stepsize: 90°

Height variation range: 1 – 3m
Height variation stepsize: 2m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. With this data, the test system performs (to reduce the number of final measurements) a data reduction with the following parameters:

- Offset for acceptance analysis: Limit line - 10 dB

- Maximum number of final measurements: 12

Step 2:

With the frequencies determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100ms

- Turntable angle range: -180 to 180 °

- Turntable stepsize: 45°

Height variation range: 1 – 4m
Height variation stepsize: 0,5m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0,5m

Step 3:

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency the turntable azimuth and antenna height, which was determined in step 3, will be adjusted.

The turntable azimuth will be slowly varied by +/- 22,5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined in step 3. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

Settings for step 3:

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
 Measuring time: 100ms
- Turntable angle range: -22,5° to + 22,5° around the value determined in stop 2
- Height variation range: -0,25m to + 0,25m around the value determined in step 2

Step 4

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1s

The following modfications apply to the measurement procedure for the frequency range

above 1 GHz:

The measurement distance was reduced to 1m. The results were extrapolated by the extrapolation factor of 20 dB/decade (invers linear-distance for field strength measurements, invers linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 Ghz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

Detector: Peak, Average

RBW = VBW = 1 MHz, above 7 GHz 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

4.1.2 Test Limits

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits

Frequency Range (MHz): Class B Limit (dBµV/m) 30 – 88 40,0 88 – 216 43,5 216 – 960 46,0

§15.35(b)

above 960

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

54.0

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.1.3 Test Protocol

Temperature: 25 °C Air Pressure: 1020 hPa Humidity: 30 %

Op. Mode	Setup	Port	Test Parameter
op-mode 1	01s400a01	Enclosure	

Polarisation	Frequency MHz	Corrected Value dBµV/m		Limit QP/AV	Limit Peak	Delta to AV/QP	Delta to Peak Limit	
		QP	Peak	AV	dBμV/m	dBµV/m	Limit/dB	dB
-								

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan. The measurement was performed up to 1 GHz.

4.1.3 Test result: Spurious Radiated Emissions

FCC Part 15, Subpart B	Op. Mode	Setup	Port	Result
	op-mode 1	01s40	Enclosure	passed
		0201		

5. Testequipment

EUT Digital Signalling System

Equipment	Type	Serial No.	Manufacturer
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz
Signalling Unit for Bluetooth Spurious Emissions	PTW60	100004	Rohde & Schwarz
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise Emitter	CNE III	99/016	York
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz- 26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 30MHz- 18GHz	JS4-00101800-35-5P	896037	Miteq
Broadband Amplifier 45MHz- 27GHz	JS4-00102600-42-5A	619368	Miteq
Cable "ESI to EMI Antenna"	RTK081+Aircell7	W18.01+W38.01a	Huber+Suhner
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-2	Rosenberger-Microcoax
Cable "ESI to Horn Antenna"	RTK 081	W18.04+3599/001	Rosenberger
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2- KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5- KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5- KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26,5 GHz	Model 3160-09	9910-1184	EMCO

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

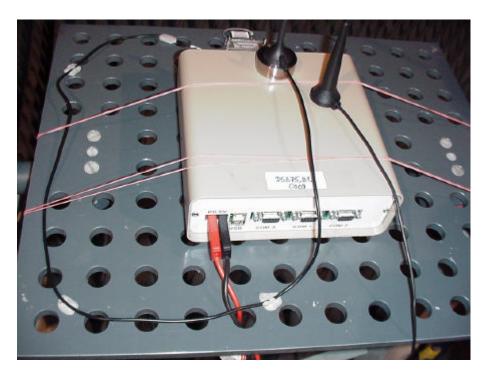
Equipment	Туре	Serial No.	Manufacturer
Broadband Resist. Power Divider N	1506A / 93459	LM390	Weinschel
Broadband Resist. Power Divider SMA	1515 / 93459	LN673	Weinschel
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver	FO RS232 Link	182-018	Pontis
I/Q Modulation Generator	AMIQ-B1	832085/018	Rohde & Schwarz
Notch Filter ultra stable	WRCA800/960-6EEK	24	Wainwright
Spectrum Analyzer 9KHz To 3GHz	FSP3	838164/004	Rohde & Schwarz
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro Datalogger 03	Opus10 THI (8152.00)	7482	Lufft Mess- und Regeltech
ThermoHygro_01	430202		Fischer

Anechoic Chamber

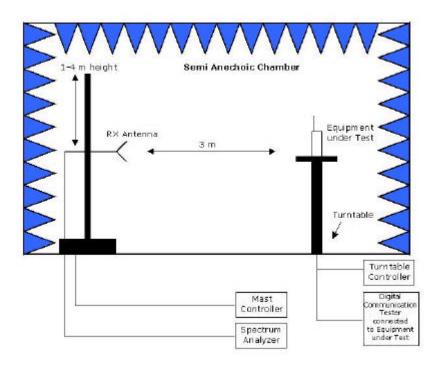
Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	HD 100	100/603	HD GmbH H. Deisel
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth™ Full RF Test Solution

Bluetooth RF Conformance Test System TS8960


Equipment	Туре	Serial No.	Manufacturer
10MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyser FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Analyser FSP30 100051	FSP30	100051	Rohde & Schwarz
Signal Generator 101175	SMIQ03B	101175	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

6. Foto Report


Picture 1 : EUT (GSM module)

Picture 2 : Setup for radiated emissions tests

7. Setup Drawings

Drawing 1 : Setup for radiated tests (in principle)